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Abstract: The simplest elasticity model of foundation underlying a slender beam under flexure was
conceived by Winkler, requiring local proportionality between soil reactions and beam deflection.
Such an approach leads to well-posed elastostatic and elastodynamic problems, but, as highlighted
by Wieghardt, it provides elastic responses which are not technically significant for a wide variety of
engineering applications. Thus, Winkler’s model was replaced by Wieghardt himself by assuming
that the beam deflection is the convolution integral between soil reaction field and an averaging kernel.
Due to conflict between constitutive and kinematic compatibility requirements, the corresponding
elastic problem of an inflected beam resting on Wieghardt foundation results to be ill-posed.
Modifications of the original Wieghardt model were proposed by introducing fictitious boundary
concentrated forces of constitutive type, which are physically questionable, being significantly
influenced on prescribed kinematic boundary conditions. Inherent difficulties and issues are
overcome in the present research using a displacement-driven nonlocal integral strategy got by
swapping input and output fields involved in Wieghardt’s original formulation. That is, nonlocal
soil reaction fields are output of integral convolutions of beam deflection fields with an averaging
kernel. Equipping the displacement-driven nonlocal integral law with the bi-exponential averaging
kernel, an equivalent nonlocal differential problem, supplemented with non-standard constitutive
boundary conditions involving nonlocal soil reactions, is established. As a key implication, the
integro-differential equations governing the elastostatic problem of an inflected elastic slender
beam resting on displacement-driven nonlocal integral foundation are replaced with much simpler
differential equations supplemented with kinematic, static and new constitutive boundary conditions.
The proposed nonlocal approach is illustrated by examining and analytically solving exemplar
problems of structural engineering. Benchmark solutions for numerical analyses are also detected.

Keywords: Wieghardt foundation; Bernoulli-Euler beams; nonlocal effects; integral nonlocal model.

1. Introduction

Structural models of beams on elastic foundation have been widely exploited by the scientific
community to describe engineering problems with numerous applications in geotechnics, road,
railroad, marine engineering and biomechanics, see e.g. [1].

The problem of a beam subjected to a transverse distributed loading proportional to its deflection
was considered by E. Winkler in the framework of the local theory of elasticity [2]. It was then
considered to model railway tracks on continuous linear elastic foundations by H. Zimmermann in his
handbook on railway constructions [3]. Winkler and Zimmermann’s theory quickly had followers due
to its simplicity and easy mathematical treatment since the soil is modeled in terms of one parameter
as a continuous bed of independent linear elastic one-dimensional springs with uniform stiffness.
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However, in 1922, E. Wieghardt [4] remarked that, in spite of its intuitive nature, Winkler’s model
is not physically fully reliable since it predicts sharp discontinuities in the beam-soil profile at beam
ends which are not actually present in real phenomena. Then, Wieghardt proposed a model in which
the deflection at each point of the surface of the foundation depends on the response of the entire
contact region beam-soil through an integral of soil reactions weighted by a suitable kernel function.
The mathematical model thus depends on a stiffness parameter and on an additional parameter
entering the averaging kernel. Later on, this problem was tackled by W. Prager [5] and P. Neményi [6]
for two-dimensional foundations.

Subsequently, in the framework of the local theory of elasticity, two different soil models
characterized by two material parameters were introduced. The former was proposed by M.
Filonenko-Borodich [7] assuming that a membrane under tension is interposed between beam and
Winkler-type elastic springs. The latter was provided by P. Pasternak [8] by considering a shear
interaction among elastic springs modelling the soil. A discussion on formulations of beam-soil and
plate-soil interactions can be found in the review paper by Wang et al. [9].

1.1. Winkler and Wieghardt foundations

Let us consider a straight beam, with cross-section Ω, of length L laying on elastic foundation.
The x-coordinate is taken along the beam length, the y-coordinate is along the thickness (height) and
the z-coordinate is along the beam width originating at cross-section elastic centre C. The pair {y, z}
collects principal axes of geometric inertia of the cross-section Ω.

The classical Winkler theory of a continuous medium supporting a beam (see e.g. [2], [3]) considers
the elastic foundation composed of an infinite sequence of linear elastic springs and, at each point,
the foundation reaction per unit length is directly proportional to the deflection of the foundation.
The elastic foundation is characterized by a positive parameter β representing the pressure to be
orthogonally applied to the surface to get a unit vertical displacement of the surface of the foundation.
The modulus β is a volumetric density of force and, denoting by b the width of the beam cross-section
in contact with the surface of the elastic soil, the related stiffness is given by k = βb. Hence, the
relationship between reaction per unit length r(x) applied to the foundation surface and transverse
displacement v(x) is

r(x) = kv(x). (1)

We assume that the beam remains in contact with the foundation surface so that the transverse
displacement v of the beam coincides with the transverse displacement of the surface of the foundation.
According to the classical (local) Winkler elastic model provided by Eq. (1), the reaction at a point x
is proportional to the displacement at the same point. Hence, the mechanical model of the Winkler
elastic foundation is illustrated by linear springs unconnected with each other.

The refinement originally proposed by Wieghardt [4], afterwards analyzed in [12]-[15], introduces
the assumption that the transverse displacement v at a point of the foundation surface depends
on reactions r on other points of the foundation in a non-uniform way in terms of the following
Reaction-Driven (RD) integral convolution law

v (x, Lc) =
∫ L

0
φ (x− t, Lc)

r (t)
k

dt. (2)

The smoothing kernel φ depends on the characteristic length of Eringen nonlocal elasticity
Lc = λL, being λ > 0 a non-dimensional nonlocal parameter, and is given by the bi-exponential
averaging function, see e.g. [10], [11]

φ(x, Lc) =
1

2Lc
exp

(
−|x|

Lc

)
. (3)
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The maximum value of the bi-exponential function is attained at x = 0 for any Lc and decaying to zero
at suitable distances. Thus, Wieghardt model is of nonlocal nature and this aspect makes it different
from all the others where basically the response at a point depends on the displacement at that point.

2. Research significance, motivation and outline

It has to be pointed out that it is not possible to solve, in general, the nonlocal elastostatic problem
of a beam on Wieghardt elastic foundation modelled by Eq. (2), as highlighted by Wieghardt himself
and discussed by T. Van Langendonck [12], A. Sollazzo [13], A. Ylinen and M. Mikkola [14].

In fact, the RD (Reaction-Driven) formulation of Wieghardt elastic foundation Eq. (2) can be
equivalently rewritten in the following differential form

1
L2

c
v(x)− ∂2

xv(x) =
1

kL2
c

r(x), (4)

with x ∈ [0, L], subject to two RD Foundation Boundary Conditions (RDFBCs)
∂xv (x)|x=0 =

1
Lc

v (0)

∂xv (x)|x=L = − 1
Lc

v (L) .
(5)

Proof of the result above is analogous to the one in [11] regarding Eringen’s internal elasticity theory.
It is then apparent that ill-posedness of Bernoulli-Euler beam on RD model of Wieghardt elastic

foundation is related to the incompatibility between kinematic boundary conditions and RDFBCs.
In fact Eq. (5) force the rotations ϕ (x) = ∂xv (x) of the beam end cross-sections to coincide to
corresponding transverse displacements divided by the nonlocal parameter ±Lc. Such requirements
are not met by most of kinematic boundary conditions of beams involved in technical applications.

In order to by-pass the ill-posedness of the elastostatic problem of a beam on Wieghardt elastic
foundation, two fictitious reactive forces exerted by the soil were introduced at the beam end points [13].
Accordingly, the Modified Reaction-Driven (MRD) nonlocal model of Wieghardt elastic foundation
was introduced by defining the transverse displacement v of the surface of the elastic foundation in
terms of the reaction r and of two fictitious forces A1 and A2 in the following form

v (x) =
∫ L

0
φ (x− t, Lc)

r (t)
k

dt +
A1

2Lck
exp

(
− x

Lc

)
+

A2

2Lck
exp

(
x− L

Lc

)
. (6)

The elastic equilibrium problem of a beam on the modified Wieghardt elastic foundation is reported
for completeness in Appendix A. It is then apparent that the two fictitious forces have been added
in order to match the number of unknowns of the problem with the six boundary conditions of the
elastostatic nonlocal differential problem, see also [23].

Motivation of the present paper consists in formulating a well-posed nonlocal integral model
of elastic foundation such that no fictitious forces are postulated at the end points of Bernoulli-Euler
beams in order to solve the relevant structural problem. Specifically, the nonlocal model of elastic
foundation is cast in the framework of Eringen theory [16]-[18] requiring that reaction fields are outputs
of convolutions between displacement fields of the elastic foundation and a suitable averaging kernel.
Such an approach of external elasticity will be thus named the displacement-driven nonlocal model.

It is worth recalling that, as acknowledged by the scientific community, Eringen’s strain-driven
nonlocal model of internal elasticity is inapplicable to structural problems of applicative interest due
to incompatibility between equilibrium and constitutive requirements [19], [20]. On the contrary, no
conflict is present if the elastostatic problem of a Bernoulli-Euler beam resting on elastic foundation is
formulated by considering the displacement-driven nonlocal model of external elasticity.
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However, the corresponding equations of elastic equilibrium are described by complicated
integro-differential laws [21] whose solution requires utilization of advanced computational procedures.
A skillful FEM strategy was indeed conceived in [22] to solve nonlocal dynamical problems of
viscoelastic structures.

In this paper, the integro-differential elastic problem of a beam resting on displacement-driven
nonlocal foundation is shown to be equivalent to a much simpler differential problem which can be
analytically solved without any additional complication with respect to classical Winkler equations.
The key idea consists in proving that the convolution integral describing the nonlocal model of elastic
foundation is equivalent to an ordinary second-order differential equation equipped with non-standard
constitutive boundary conditions. The new approach is exploited to investigate the bending behaviour
of Bernoulli-Euler elastic beams on displacement-driven nonlocal foundation for a variety of boundary
kinematic constraints of technical interest. Effects of nonlocal parameter and stiffness coefficient of the
Winkler elastic soil on structural transverse displacements, reactions, bending and shear forces are
analytically evaluated and compared with outcomes in literature.

3. Bernoulli-Euler beams on elastic foundation

In a Bernoulli-Euler beam, applied loads and geometry are such that the displacements
(
sx, sy, sz

)
along the coordinates (x, y, z) are functions of the x− and y−coordinates and are given by

sx (x, y) = −∂xv (x) y, sy (x, y) = v (x) , sz (x, y) = 0 (7)

where v is the transverse displacement of the cross-section and the symbol ∂x(•) denotes the derivative
of the function • along the nanobeam axis x.

The rotation ϕ of the beam cross-section is ϕ (x) = ∂xv (x) so that the nonvanishing kinematically
compatible deformation is given by the axial strain

εx (x, y) = −∂2
xv (x) y = −χ(x)y (8)

where χ(x) = ∂2
xv (x) is the kinematically compatible bending curvature of the beam. In absence

of thermal distortions, the kinematically compatible flexural curvature χ coincides with the elastic
bending curvature.

The stress resultant moment M is

M = −
∫

Ω
σydA = IEχ(x) (9)

being IE the second moment of elastic area about the z axis of the distribution of Young moduli E(y)

IE =
∫

Ω
E (y) y2dA. (10)

The differential equilibrium equation of a beam subject to a distributed transverse load qy(x)
per unit length in the interval [0, L] is given by ∂2

x M(x) = qy(x)− r (x) in [0, L] with the boundary
conditions T(x) = −∂x M(x) = F , M(x) = M at the beam end point x = L and T(x) = −F ,
M(x) = −M at x = 0 with T shear force and (F ,M) transverse force and couple respectively.

Using the differential condition of equilibrium, the definition of bending curvature χ and Eq. (9),
we get the elastic equilibrium differential equation of the beam on an elastic foundation in the form

IE∂4
xv (x) = qy (x)− r (x) . (11)
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4. Elastic equilibrium problem of a beam on displacement-driven nonlocal foundation

A well-posed nonlocal model of a beam lying on elastic foundation is presented below.
Let us assume that reactions r are linked to the transverse displacement v of the surface of the

foundation, in corrispondence of the beam interval [0, L], by a displacement-driven (DD) convolution
integral in the following form

r (x, Lc) =
∫ L

0
φ (x− t, Lc) kv (t) dt. (12)

For simplicity, in the sequel, explicit dependence of r on the characteristic length Lc is dropped.
The bi-exponential kernel φ (x, Lc) Eq. (3) fulfils normalization, symmetry and limit impulsivity

conditions. The symmetry condition φ (x, Lc) = φ (−x, Lc) of the function φ expresses the mechanical
assumption that symmetrically placed points of the foundation with respect to the considered point x
have the same influence on the reactions r at x. Moreover, the characteristic parameter Lc is a measure
of how rapidly the influence of the displacement v at a point t decreases with the distance from the
considered point x. Denoting by δ(x) the Dirac unit impulse at the point x inside the structural interval,
the impulsivity condition

lim
Lc→0+

φ (x, Lc) = δ(x) (13)

ensures that Eq. (12) yields r (x) = kv (x), for Lc → 0+, so that the classical Winkler model of elastic
foundation, see Eq. (1), is recovered in ]0, L[ .

The elastostatic structural problem of a beam resting on nonlocal DD elastic foundation can be
formulated by considering the beam elastic equilibrium Eq. (11), with classical kinematic and static
boundary conditions, and DD convolution integral of the nonlocal elastic foundation Eq. (12) as
reported in Box 1.

BOX 1
Elastostatic structural problem of a beam on nonlocal DD elastic foundation.

IE∂4
xv (x) = qy (x)− r (x) Beam elastic equilibrium

{v (x) , ϕ (x) ,
M (x) , T (x)}x={0,L}

Kinematic and static BCs

r (x) =
∫ L

0
φ (x− t, Lc) kv (t) dt

Nonlocal DD
elastic foundation

(14)

A noteworthy result shows that the nonlocal integral equation (14)3 can be replaced with an
equivalent differential problem and foundation boundary conditions according to the next Proposition
proved in Appendix B starting from the results provided in [11].
Proposition 1. Equivalence property for displacement-driven (DD) elastic foundation. The reactions r
of the integral equation Eq. (14)3 with the special kernel Eq. (3) provides the unique solution of the constitutive
differential equation of the elastic foundation

r (x)− L2
c ∂2

xr (x) = kv(x), (15)

with x ∈ [0, L], subject to the two homogeneous foundation boundary conditions (FBCs)
∂xr (x)|x=0 −

1
Lc

r (0) = 0

∂xr (x)|x=L +
1
Lc

r (L) = 0.
(16)
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�
Accordingly, the DD convolution law Eq. (14)3 can be replaced with the differential equation Eq.

(15) and the FBCs Eq. (16).
Hence, to solve the elastostatic model of a beam on a nonlocal DD model of the elastic foundation,

reported in the Box 1, we substitute the transverse displacement v, obtained from Eq. (15), into Eq.
(14)1. The elastostatic structural nonlocal differential problem is thus reported in Box 2.

BOX 2
Elastostatic structural differential problem of a beam on nonlocal DD elastic foundation.

IE
k

∂4
xr (x)− IEL2

c
k

∂6
xr (x)

+r (x) = qy (x)

Beam elastic
equilibrium

{
1
k

r (x)− L2
c

k
∂2

xr (x) ,

1
k

∂xr (x)− L2
c

k
∂3

xr (x) ,

IE
k

∂2
xr (x)− IEL2

c
k

∂4
xr (x) ,

− IE
k

∂3
xr (x) +

IEL2
c

k
∂5

xr (x)
}

x={0,L}


Kinematic and
static BCs

∂xr (x)|x=0 −
1
Lc

r (0) = 0

∂xr (x)|x=L +
1
Lc

r (L) = 0.

 FBCs

(17)

The sixth-order differential equation of the elastic problem Eq. (17)1 can be solved by using four
classical kinematic and static boundary conditions following from Eqs. (17)2 in terms of reactions r
and two FBCs Eqs. (17)3−4.

The transverse displacement v in the beam interval [0, L] is obtained by Eq. (15) in terms of
reactions r

v(x) =
1
k

r (x)− L2
c

k
∂2

xr (x) . (18)

Further, bending moment and shear force fields of the beam are given by

M(x) =
IE
k

∂2
xr (x)− IEL2

c
k

∂4
xr (x)

T(x) = − IE
k

∂3
xr (x) +

IEL2
c

k
∂5

xr (x) .

(19)

It is worth noting that the elastostatic structural problem of a beam on nonlocal DD elastic
foundation is solved without postulating the existence of any fictitious reactive force at the beam end
points as it must be done in the modified Wieghardt model.

4.1. Transverse displacement of the nonlocal elastic foundation outside the beam interval

If the elastic foundation extends outside the beam interval [0, L], we can evaluate the transverse
displacement fields of the surface of the elastic foundation v1DD, for x ≤ 0, and v2DD, for x ≥ L, by
considering the following nonlocal expressions obtained by the RD model Eq. (2)

v1DD (x) =
∫ L

0

1
2Lck

exp
(

x− t
Lc

)
r (t) dt + C1 exp

(
x
Lc

)
for x ≤ 0

v2DD (x) =
∫ L

0

1
2Lck

exp
(
− x− t

Lc

)
r (t) dt + C2 exp

(
− x− L

Lc

)
for x ≥ L

(20)
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where the reaction field r is the solution of the elastostatic structural problem of the beam on the
nonlocal DD elastic foundation. The parameters C1 and C2 are introduced in order to fulfil the
continuity requirement of the displacement field at the beam end points x = 0 and x = L.

Since the continuity of the displacement field at x = 0 and x = L requires

v1DD (0) = v (0) , v2DD (L) = v (L) , (21)

using Eqs. (20), the two parameters C1 and C2 are given in the form
C1 = v (0)−

∫ L

0

1
2Lck

exp
(
− t

Lc

)
r (t) dt

C2 = v (L)−
∫ L

0

1
2Lck

exp
(
− L− t

Lc

)
r (t) dt.

(22)

Hence, the transverse displacement fields Eqs. (20) of the surface of the elastic foundation v1DD
and v2DD are 

v1DD (x) = v (0) exp
(
−|x|

Lc

)
for x ≤ 0

v2DD (x) = v (L) exp
(
− x− L

Lc

)
for x ≥ L.

(23)

Remark 1. The transverse displacement fields v1DD and v2DD can also be obtained by differentiating Eqs. (20)
to get 

∂xv1DD (x) =
1
Lc

v1DD (x) for x ≤ 0

∂xv2DD (x) = − 1
Lc

v2DD (x) for x ≥ L.
(24)

The solution of the differential equations (24) provides the transverse displacement fields of the surface of the
elastic foundation in terms of two integration constants Ĉ1 and Ĉ2

v1DD (x) = Ĉ1 exp
(
−|x|

Lc

)
for x ≤ 0

v2DD (x) = Ĉ2 exp
(
− x

Lc

)
for x ≥ L.

(25)

Enforcing the continuity of the displacement field at x = 0 and x = L Eqs. (21) it results

Ĉ1 = v (0) , Ĉ2 = v (L) exp
(

L
Lc

)
(26)

so that the transverse displacement fields of the surface of the elastic foundation v1DD and v2DD are provided by
inserting Eqs. (26) into Eqs. (25). The transverse displacement fields Eqs. (23) are thus recovered.
Remark 2. The transverse displacement fields of the surface of the elastic foundation pertaining to the MRD
nonlocal model v1M, for x ≤ 0, and v2M, for x ≥ L, are given in the form [13]

v1M (x) =
∫ L

0

1
2Lck

exp
(

x− t
Lc

)
r (t) dt

+
A1

2Lck
exp

(
x
Lc

)
+

A2

2Lck
exp

(
x− L

Lc

) for x ≤ 0

v2M (x) =
∫ L

0

1
2Lck

exp
(
− x− t

Lc

)
r (t) dt

+
A1

2Lck
exp

(
− x

Lc

)
+

A2

2Lck
exp

(
− x− L

Lc

)
.

for x ≥ L

(27)
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The two fictitious forces A1 and A2 are obtained by enforcing the continuity of the displacement field at x = 0
and x = L

v1M (0) = vM (0) , v2M (L) = vM (L) , (28)

being vM the transverse displacement field of the surface of the elastic foundation obtained by the MRD nonlocal
model. Substituting such forces in Eqs. (27), the transverse displacement fields v1M and v2M are given by

v1M (x) = vM (0) exp
(
−|x|

Lc

)
for x ≤ 0

v2M (x) = vM (L) exp
(
− x− L

Lc

)
for x ≥ L.

(29)

It is worth noting that Eqs. (29) turn out to be coincident to the ones reported in [13] and, also, to Eqs. (23) by
replacing v (0) and v (L) with vM (0) and vM (L).

5. Numerical applications

We provide some numerical results of technical interest to illustrate the effectiveness of the
proposed methodology for the analysis of Bernoulli-Euler beams on nonlocal foundation. The
free-beam (FF) under uniform load and simply supported beam (SS) under uniform load are
considered.

The solution of the elastostatic problem for a beam on nonlocal DD elastic foundation is obtained
by the nonlocal differential problem reported in the Box 2. This solution is then compared with the
MRD nonlocal model [13].

We consider the nonlocal elastostatic problem in a non-dimensional form by introducing the
following non-dimensional quantities: abscissa ξ, nonnegative length scale parameter λ, transverse
displacement v∗, transverse load q∗y, transverse force F ∗, Winkler modulus k∗, reaction r∗, bending
moment M∗ and shear force T∗

ξ =
x
L

, λ =
Lc

L
, v∗ =

v
L

, q∗y =
qyL3

IE
, F ∗ = FL2

IE

k∗ =
kL4

IE
, r∗ =

rL3

IE
, M∗ =

ML
IE

, T∗ =
TL2

IE
.

(30)

The non-dimensional length scale parameter is λ ∈ {0+, 0.10, 0.20, 0.30, 0.40, 0.50}, where λ = 0+

stands for λ→ 0, and the non-dimensional Winkler modulus is k∗ ∈ {0, 0.4, 2, 10, 20}.

5.1. Free beam on a nonlocal foundation subject to a uniformly distributed load

Let us consider a FF beam on a nonlocal elastic foundation subject to a non-dimensional uniform
transverse load q∗y = −1.

The solution of the beam on nonlocal DD elastic foundation can be provided by solving Eq. (17)1

of Box 2 rewritten in the non-dimensional form

− ∂6
ξr∗ (ξ) +

1
λ2 ∂4

ξr∗ (ξ) +
k∗

λ2 r∗ (ξ) = − k∗

λ2 (31)
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equipped with the classical non-dimensional static boundary conditions at the beam end points
following from Eq. (17)2, i.e. M∗(0) = T∗(0) = M∗(1) = T∗(1) = 0, and the FBCs Eqs. (17)3−4 in the
form 

∂2
ξr∗ (ξ)

∣∣∣
ξ=0
− λ2∂4

ξr∗ (ξ)
∣∣∣
ξ=0

= 0

−∂3
ξr∗ (ξ)

∣∣∣
ξ=0

+ λ2 ∂5
ξr∗ (ξ)

∣∣∣
ξ=0

= 0

∂2
ξr∗ (ξ)

∣∣∣
ξ=1
− λ2 ∂4

ξr∗ (ξ)
∣∣∣
ξ=1

= 0

−∂3
ξr∗ (ξ)

∣∣∣
ξ=1

+ λ2 ∂5
ξr∗ (ξ)

∣∣∣
ξ=1

= 0

∂ξr∗ (ξ)
∣∣
ξ=0 −

1
λ

r∗ (0) = 0

∂ξr∗ (ξ)
∣∣
ξ=1 +

1
λ

r∗ (1) = 0.

(32)

The non-dimensional transverse displacement v∗ of the beam is then given by Eq. (18) in terms of
the non-dimensional foundation reactions r∗

v∗(x) =
1
k∗

r∗ (ξ)− λ2

k∗
∂2

ξr∗ (ξ) . (33)

The non-dimensional bending moment and shear force follow from Eqs. (19)
M∗(ξ) =

1
k∗

∂2
ξr∗ (ξ)− λ2

k∗
∂4

ξr∗ (ξ)

T∗(ξ) = − 1
k∗

∂3
ξr∗ (ξ) +

λ2

k∗
∂5

ξr∗ (ξ) .
(34)

The non-dimensional transverse displacement of the surface of the elastic foundation outside the
beam interval [0, L] can be obtained by Eqs. (23) in the following form

v∗1DD (ξ) = v∗ (0) exp
(
−|ξ|

λ

)
for ξ ≤ 0

v∗2DD (ξ) = v∗ (1) exp
(
− ξ − 1

λ

)
for ξ ≥ 1

(35)

where v∗ (0) and v∗ (1) are the non-dimensional displacements at the beam end points.
The solution of the FF beam on the nonlocal DD elastic foundation yields the classical solution of

the FF beam on a Winkler foundation by letting λ→ 0+.
The non-dimensional transverse deflection v∗, reaction r∗ and bending moment M∗ at the

midpoint ξ = 1/2 of the free beam subjected to a uniform transverse load are presented in Tables 1,
2 and 3 using the DD and MRD nonlocal models for several values of the non-dimensional Winkler
parameter k∗ and length scale parameter λ.

Table 1. Free beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional
maximum displacement v∗ (1/2) versus the non-dimensional length scale parameter λ evaluated
by the non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD models.

v∗ (1/2)
DD MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0+ -2.5 -0.5 -0.1 -0.05 -2.5 -0.5 -0.1 -0.05
0.1 -2.7775 -0.555285 -0.110845 -0.0552931 -2.08434 -0.41767 -0.0843029 -0.0425966
0.2 -3.11944 -0.623643 -0.124485 -0.0620923 -1.78773 -0.359129 -0.0732901 -0.0374405
0.3 -3.51736 -0.703245 -0.140422 -0.0700698 -1.56541 -0.315348 -0.0650625 -0.0335266
0.4 -3.95023 -0.789841 -0.157764 -0.0787552 -1.39259 -0.28135 -0.0586113 -0.030365
0.5 -4.40376 -0.880569 -0.175931 -0.0878521 -1.25437 -0.254164 -0.0533617 -0.0277079
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Table 2. Free beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional midpoint
foundation reaction r∗ (1/2) versus the non-dimensional length scale parameter λ evaluated by the
non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD models.

r∗ (1/2)
DD MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0+ -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
0.1 -1.10354 -1.10322 -1.10166 -1.09974 -0.833821 -0.835754 -0.845019 -0.85574
0.2 -1.14542 -1.14522 -1.14425 -1.14305 -0.71566 -0.721065 -0.746027 -0.773076
0.3 -1.14127 -1.14117 -1.14065 -1.14001 -0.627843 -0.638892 -0.687364 -0.735528
0.4 -1.12745 -1.12739 -1.1271 -1.12673 -0.560558 -0.579707 -0.658509 -0.729175
0.5 -1.11353 -1.1135 -1.11332 -1.1131 -0.507919 -0.537668 -0.651312 -0.742323

Table 3. Free beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional midpoint
bending moment M∗ (1/2) versus the non-dimensional length scale parameter λ evaluated by the
non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD models.

M∗ (1/2)
DD MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0+ 0 0 0 0 0 0 0 0
0.1 -0.00840319 -0.00838687 -0.00830616 -0.00820727 0.0207943 0.0206397 0.0198977 0.0190375
0.2 -0.00995599 -0.00994611 -0.00989699 -0.00983623 0.0355889 0.0350958 0.0328139 0.0303315
0.3 -0.00922294 -0.00921768 -0.00919144 -0.00915884 0.0465999 0.0455298 0.0408201 0.0361086
0.4 -0.00816841 -0.00816543 -0.00815058 -0.00813209 0.0550571 0.0531471 0.0452469 0.038086
0.5 -0.00721239 -0.00721058 -0.00720154 -0.00719027 0.0616985 0.0586827 0.0470779 0.037633

The two non-dimensional fictitious forces A∗1 = A∗2 of the beam on the nonlocal MRD elastic
foundation are reported in Table 4. The non-dimensional transverse displacement v∗ of the surface
of the nonlocal elastic foundation in the interval [0.5, 3] is reported in Table 5 for the DD and MRD
nonlocal models for increasing values of the Winkler parameter k∗ and for the length scale parameter
λ = 0.5. The non-dimensional transverse displacement v∗ of the surface of the elastic foundation in
the interval [−2, 3], obtained by the DD and MRD methods, are respectively reported in Fig. 1(a) and
1(c) in terms of the length scale parameter λ with k∗ = 10. The zoom of the beam deflection is reported
in Fig. 1(b) for the DD method and in Fig. 1(d) for the MRD method.

Table 4. Free beam subjected to a non-dimensional uniform load q∗y = −1. Non-dimensional
parameters A∗1 = A∗2 versus the non-dimensional length scale parameter λ evaluated by the
non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the MRD model.

A∗1 = A∗2
MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0.1 -0.0832594 -0.0829661 -0.0815572 -0.0799202
0.2 -0.142532 -0.141251 -0.135315 -0.128836
0.3 -0.186708 -0.183624 -0.170018 -0.156337
0.4 -0.220721 -0.214963 -0.191062 -0.169231
0.5 -0.247531 -0.23823 -0.202257 -0.172651
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Table 5. Free beam subjected to a non-dimensional uniform load q∗y = −1 with the non-dimensional
length scale parameter λ = 0.5. Non-dimensional displacement v∗ (ξ) evaluated by the
non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD models.

v∗(ξ) with λ = 0.5
DD MRD

ξ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0.5 -4.40376 -0.880569 -0.175931 -0.0878521 -1.25437 -0.254164 -0.0533617 -0.0277079
0.6 -4.40379 -0.880604 -0.175967 -0.0878876 -1.25407 -0.253872 -0.0531278 -0.0275208
0.7 -4.40389 -0.880706 -0.176068 -0.0879886 -1.25317 -0.253021 -0.0524435 -0.0269726
0.8 -4.40405 -0.880858 -0.17622 -0.0881401 -1.25176 -0.251679 -0.0513622 -0.0261034
0.9 -4.40423 -0.88104 -0.176402 -0.0883215 -1.24996 -0.249964 -0.049975 -0.0249838
1.0 -4.40442 -0.881232 -0.176594 -0.0885133 -1.24794 -0.24804 -0.0484141 -0.0237196
1.2 -2.95237 -0.590707 -0.118374 -0.0593323 -0.836521 -0.166266 -0.032453 -0.0158997
1.4 -1.97903 -0.395963 -0.0793487 -0.0397716 -0.560737 -0.111451 -0.021753 -0.0106579
1.6 -1.32659 -0.265422 -0.053189 -0.0266597 -0.375873 -0.0747081 -0.0145821 -0.0071442
1.8 -0.889237 -0.177918 -0.0356536 -0.0178705 -0.251955 -0.0500784 -0.00977464 -0.0047889
2.0 -0.596073 -0.119262 -0.0238994 -0.011979 -0.168891 -0.0335685 -0.00655214 -0.00321009
2.2 -0.39956 -0.0799436 -0.0160202 -0.00802975 -0.113211 -0.0225017 -0.0043920 -0.00215179
2.4 -0.267833 -0.0535878 -0.0107387 -0.0053825 -0.0758875 -0.0150833 -0.00294407 -0.00144239
2.6 -0.179534 -0.035921 -0.00719835 -0.003608 -0.0508689 -0.0101106 -0.00197347 -0.000966862
2.8 -0.120345 -0.0240785 -0.0048252 -0.00241851 -0.0340984 -0.00677737 -0.00132285 -0.00064810
3.0 -0.0806698 -0.0161403 -0.00323443 -0.00162118 -0.0228569 -0.00454301 -0.000886735 -0.000434439

λ=0+

λ=0.10

λ=0.20

λ=0.30

λ=0.40

λ=0.50

-2 -1 0 1 2 3

-0.15

-0.10

-0.05

0.00

ξ

v
*

(a)

(a)

Note that the displacements v∗(1/2) of the surface of the foundation obtained by solving the
beam on the nonlocal DD model of the elastic foundation are greater than the corresponding ones
provided by the MRD model for a given λ and k∗, see Tables 1 and 5. The displacements of the surface
of the foundation obtained by solving the beam on the nonlocal DD and MRD models of the elastic
foundation decrease for increasing values of the Winkler parameter k∗ at a given value of λ. The
displacement v∗(1/2) obtained by solving the beam on the nonlocal DD elastic foundation increases
for increasing values of λ at a given valued of the Winkler parameter k∗ and decreases for the nonlocal
MRD model.

The non-dimensional reaction r∗, applied on the surface of the elastic foundation, obtained by the
DD model is plotted in Fig. 2 in terms of the length scale parameter λ with k∗ = 10.
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Figure 1. FF − q beam. Plots of the non-dimensional transverse displacement v∗ of the surface of
the elastic foundation for increasing values of the non-dimensional non-local parameter λ in the
set
{

0+, 0.1, 0.2, 0.3, 0.4, 0.5
}

with k∗ = 10: (a) DD method, (b) MRD method, (c) zoom of the beam
deflection using the DD method, (d) zoom of the beam deflection using the MRD method.
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Figure 2. FF− q beam. DD method: plots of the non-dimensional reaction r∗ of the elastic foundation
for increasing values of the non-dimensional non-local parameter λ in the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = 10.

The reactions r∗(1/2) obtained by solving the beam on the nonlocal DD model of the elastic
foundation are greater than the corresponding ones provided by the MRD method for a given λ and
k∗, see Table 2. The reactions obtained by solving the beam on the nonlocal DD model of the elastic
foundation decrease for increasing values of the the Winkler parameter k∗ at a given value of λ and
increases for the nonlocal MRD method. The reactions r∗(1/2) obtained by solving the beam on the
nonlocal DD elastic foundation increases for increasing values of λ at a given value of the Winkler
parameter k∗ and then decreases. The reactions r∗(1/2) obtained by solving the beam on the nonlocal
MRD model of the elastic foundation decreases for increasing values of λ at a given value of the
Winkler parameter k∗.

The non-dimensional bending moment M∗ and shear force T∗ obtained by the DD model are
plotted in terms of the length scale parameter λ with k∗ = 10 in Figs. 3(a) and 3(b). The slope of the
bending moment, and hence the shear force T∗, at the beam end points of the free beam vanishes for
any value of the length scale parameter λ. The bending moment M∗ obtained by solving the beam on
the nonlocal DD model of the elastic foundation is smaller than the corresponding ones provided by
the MRD model for a given λ and k∗, see Table 3. The bending moment M∗ obtained by solving the
beam on the nonlocal DD and MRD models of the elastic foundation decreases for increasing values of
the the Winkler parameter k∗ at a given value of λ. The bending moment M∗ obtained by solving the
beam on the nonlocal DD elastic foundation increases for increasing values of λ at a given value of the
Winkler parameter k∗ and then decreases. The bending moment M∗ obtained by solving the beam on
the nonlocal MRD model of the elastic foundation increases for increasing values of λ at a given value
of the Winkler parameter k∗.

A comparison of the non-dimensional displacement v∗(1/2), reaction r∗(1/2), bending moment
M∗(1/2) and shear force T∗(−1) obtained by the DD and MRD models are plotted in Figs.
4(a)-(b)-(c)-(d).

5.2. Simply supported beam on a nonlocal foundation subject to a uniformly distributed load

Let us consider a SS beam on a nonlocal elastic foundation subject to a non-dimensional uniform
transverse load q∗y = −1.

The solution of the beam on a nonlocal DD elastic foundation using the differential approach can
be provided by solving Eq. (17)1 of Box 2 rewritten in the non-dimensional form

− ∂6
ξr∗ (ξ) +

1
λ2 ∂4

ξr∗ (ξ) +
k∗

λ2 r∗ (ξ) = − k∗

λ2 (36)
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Figure 3. FF− q beam. Plots for increasing values of the non-dimensional non-local parameter λ in the
set
{

0+, 0.1, 0.2, 0.3, 0.4, 0.5
}

with k∗ = 10 of: (a) non-dimensional bending moment M∗ using the DD
method, (b) non-dimensional shear force T∗ using the DD method.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2021                   doi:10.20944/preprints202102.0139.v1

https://doi.org/10.20944/preprints202102.0139.v1


Journal Not Specified 2020, 1, 0 15 of 26

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
0 0.1 0.2 0.3 0.4 0.5

Di
m

en
sio

nl
es

s m
id

po
in

t t
ra

ns
ve

rs
e 

di
sp

la
ce

m
en

t

DD0.4 MRDS0.4 DD2 MRDS2 DD10 MRDS10

(a)

-1.25

-1.15

-1.05

-0.95

-0.85

-0.75

-0.65

-0.55

-0.45
0 0.1 0.2 0.3 0.4 0.5

Di
m

en
sio

nl
es

s m
id

po
in

t r
ea

c�
on

s

DD0.4 MRDS0.4 DD2 MRDS2 DD10 MRDS10

(b)

-0.014

-0.004

0.006

0.016

0.026

0.036

0.046

0.056

0.066

0Di
m

en
sio

nl
es

s m
id

po
in

t b
en

di
ng

 m
om

en
t

DD0.4 MRDS0.4 DD2 MRDS2 DD10 MRDS10

0.1 0.2 0.4 0.50.3

(c)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2021                   doi:10.20944/preprints202102.0139.v1

https://doi.org/10.20944/preprints202102.0139.v1


Journal Not Specified 2020, 1, 0 16 of 26

-0.28

-0.23

-0.18

-0.13

-0.08

-0.03

0.02

Di
m

en
sio

nl
es

s s
he

ar
 fo

rc
e 

at
 ξ=

-1

DD0.4 MRDS0.4 DD2 MRDS2 DD10 MRDS10

0.1 0.2 0.4 0.50.3

(d)

Figure 4. FF − q beam. Comparison of the DD and MRD methods for increasing values of the
non-dimensional non-local parameter λ in the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = {0.4, 2, 10}: (a)

non-dimensional transverse midpoint displacement v∗(1/2), (b) dimensionless reaction r∗(1/2), (c)
non-dimensional bending moment M∗(1/2), (d) non-dimensional shear force T∗(−1).

equipped with the classical kinematic and static boundary conditions at the beam end points following
from Eq. (17)2, i.e. v∗(0) = M∗(0) = v∗(1) = M∗(1) = 0, and the FBCs following from Eqs. (17)3−4 in
the non-dimensional form 

r∗ (0)− λ2∂2
ξr∗ (ξ)

∣∣∣
ξ=0

= 0

∂2
ξr∗ (ξ)

∣∣∣
ξ=0
− λ2 ∂4

ξr∗ (ξ)
∣∣∣
ξ=0

= 0

r∗ (1)− λ2∂2
ξr∗ (ξ)

∣∣∣
ξ=1

= 0

∂2
ξr∗ (ξ)

∣∣∣
ξ=1
− λ2 ∂4

ξr∗ (ξ)
∣∣∣
ξ=1

= 0

∂ξr∗ (ξ)
∣∣
ξ=0 −

1
λ

r∗ (0) = 0

∂ξr∗ (ξ)
∣∣
ξ=1 +

1
λ

r∗ (1) = 0.

(37)

The non-dimensional transverse displacement v∗ of the beam is then given by Eq. (18) in terms of
the non-dimensional foundation reactions r∗

v∗(x) =
1
k∗

r∗ (ξ)− λ2

k∗
∂2

ξr∗ (ξ) . (38)

The non-dimensional bending moment M∗ and shear force is T∗ follow from Eq. (19).
The non-dimensional classical displacement and bending moment at the midpoint of the SS beam

with no elastic foundation (NEF) are − 5
384

= −0.0130208 and
1
8

= −0.125, respectively, and the

non-dimensional shear force at ξ = 1 is
1
2
= 0.5.

The DD and MRD models yield the classical solution of a beam on a Winkler foundation by letting
λ→ 0+.

The non-dimensional transverse displacement v∗, foundation reactions r∗ and bending moment
M∗ at the midpoint ξ = 1/2 and the shear force T∗(1) of the SS beam are presented in Tables 6, 7, 8
and 9 using the DD and MRD models for several values of non-dimensional Winkler parameter k∗ and

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2021                   doi:10.20944/preprints202102.0139.v1

https://doi.org/10.20944/preprints202102.0139.v1


Journal Not Specified 2020, 1, 0 17 of 26

non-dimensional length scale parameter λ. The two non-dimensional fictitious forces A∗1 = A∗2 of the
beam on the nonlocal MRD elastic foundation are reported in Table 10.

The displacements v∗(1/2) of the surface of the foundation obtained by the DD model are greater
than the corresponding ones provided by the MRD model for a given λ and k∗.

The non-dimensional transverse displacement v∗ obtained by the DD model is reported in Fig. 5
in terms of the length scale parameter λ with k∗ = 10.

NEF
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Figure 5. SS− q beam. DD method: plots of the non-dimensional transverse displacement v∗ of the
surface of the elastic foundation for increasing values of the non-dimensional non-local parameter λ in
the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = 10.

The non-dimensional transverse displacement v∗(1/2) obtained by solving the beam on the
nonlocal DD elastic foundation are greater than the corresponding ones provided by the MRD model
for a given λ and k∗, see Table 6. The displacement v∗(1/2) obtained by solving the beam on the
nonlocal DD and MRD models of the elastic foundation decreases for increasing values of the Winkler
parameter k∗ at a given value of λ.

Table 6. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1.
Non-dimensional maximum displacement v∗ (1/2) versus the non-dimensional length scale parameter
λ evaluated by the non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD
models.

v∗ (1/2)
DD MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0+ -0.0129674 -0.0127579 -0.011804 -0.0107944 -0.0129674 -0.0127579 -0.011804 -0.0107944
0.1 -0.0129713 -0.0127769 -0.0118858 -0.0109322 -0.0129621 -0.0127325 -0.0116961 -0.0106152
0.2 -0.0129781 -0.0128101 -0.012031 -0.0111806 -0.0129464 -0.012657 -0.0113839 -0.0101115
0.3 -0.0129842 -0.0128399 -0.0121636 -0.0114121 -0.0129203 -0.0125331 -0.010899 -0.00937019
0.4 -0.0129891 -0.0128637 -0.0122715 -0.0116035 -0.0128839 -0.0123637 -0.0102855 -0.00849743
0.5 -0.0129929 -0.0128826 -0.0123577 -0.0117587 -0.0128374 -0.0121524 -0.00959096 -0.00758798

The displacement v∗(1/2) obtained by solving the beam on the nonlocal DD model of the elastic
foundation increases for increasing values of λ at a given valued of the Winkler parameter k∗ and
decreases for the nonlocal MRD model.

The non-dimensional reaction r∗, applied on the surface of the elastic foundation, obtained by the
DD model is plotted in Fig. 6 in terms of the length scale parameter λ with k∗ = 10.

The reactions r∗(1/2) obtained by solving the beam on the nonlocal DD model of the elastic
foundation are smaller than the corresponding ones provided by the MRD model for a given λ and
k∗, see Table 7. The reactions r∗(1/2) obtained by solving the beam on the nonlocal DD and MRD
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Figure 6. SS− q beam. DD method: plots of the non-dimensional reaction r∗ of the elastic foundation
for increasing values of the non-dimensional non-local parameter λ in the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = 10.

models decrease for increasing values of the Winkler parameter k∗ at a given value of λ and then
increases. The reactions r∗(1/2) obtained by solving the beam on the nonlocal DD model of the elastic
foundation decreases for increasing values of λ at a given value of the Winkler parameter k∗. On the
contrary, the reactions r∗(1/2) obtained by solving the beam on the nonlocal MRD model of the elastic
foundation increases for increasing values of λ at a given value of the Winkler parameter k∗.

The non-dimensional bending moment M∗ and shear force T∗ of the DD model are plotted in
terms of the length scale parameter λ with k∗ = 10 in Figs. 7(a) and 7(b). The non-dimensional bending
moment M∗ and shear force T∗ depend on the value the length scale parameter λ.

Table 7. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1.
Non-dimensional midpoint foundation reaction r∗ (1/2) versus the non-dimensional length scale
parameter λ evaluated by the non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and
MRD models.

r∗ (1/2)
DD MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0+ -0.00518695 -0.0255157 -0.11804 -0.215888 -0.00518695 -0.0255157 -0.11804 -0.215888
0.1 -0.00473987 -0.0233446 -0.108595 -0.199791 -0.00568254 -0.0279081 -0.128154 -0.232559
0.2 -0.00392519 -0.0193724 -0.0909833 -0.169134 -0.00716682 -0.0350271 -0.157386 -0.279296
0.3 -0.00325168 -0.016078 -0.0761649 -0.142938 -0.00963245 -0.0467014 -0.202683 -0.347708
0.4 -0.00275059 -0.0136205 -0.0649725 -0.122886 -0.0130672 -0.0626567 -0.259779 -0.427556
0.5 -0.00237493 -0.011774 -0.0564754 -0.107486 -0.0174544 -0.082531 -0.324063 -0.509754

The bending moment M∗(1/2) obtained by solving the beam on the nonlocal DD elastic
foundation are greater than the corresponding ones provided by the MRD model for a given λ

and k∗, see Table 8. The bending moment M∗(1/2) obtained by solving the beam on the nonlocal DD
and MRD models of the elastic foundation decrease for increasing values of the the Winkler parameter
k∗ at a given value of λ. The bending moment M∗(1/2) obtained by solving the beam on the nonlocal
DD elastic foundation increases for increasing values of λ at a given value of the Winkler parameter
k∗. The bending moment M∗(1/2) obtained by solving the beam on the nonlocal MRD model of the
elastic foundation decreases for increasing values of λ at a given value of the Winkler parameter k∗.
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Figure 7. SS− q beam. Plots for increasing values of the non-dimensional non-local parameter λ in the
set
{

0+, 0.1, 0.2, 0.3, 0.4, 0.5
}

with k∗ = 10 of: (a) non-dimensional bending moment M∗ using the DD
method, (b) non-dimensional shear force T∗ using the DD method.
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Table 8. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1.
Non-dimensional midpoint bending moment M∗ (1/2) versus the non-dimensional length scale
parameter λ evaluated by the non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the DD
and MRD models.

M∗ (1/2)
DD MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0+ 0.124473 0.122406 0.112995 0.103036 0.124473 0.122406 0.112995 0.103036
0.1 0.124512 0.122598 0.113826 0.104439 0.124421 0.122156 0.111935 0.101277
0.2 0.124582 0.122936 0.115305 0.106976 0.124266 0.121414 0.108867 0.0963317
0.3 0.124643 0.123235 0.116638 0.109306 0.124009 0.120195 0.104103 0.0890578
0.4 0.124691 0.123472 0.11771 0.111212 0.123651 0.118529 0.0980778 0.0805024
0.5 0.124729 0.123658 0.118562 0.112747 0.123194 0.116452 0.0912613 0.0715989

A comparison of the midpoint non-dimensional displacement v∗(1/2), reaction r∗(1/2), bending
moment M∗(1/2) and shear force T(1) of the DD and MRD methods are plotted in Figs. 8(a)-(b)-(c)-(d).

Table 9. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1.
Non-dimensional midpoint shear force T∗ (1) versus the non-dimensional length scale parameter
λ evaluated by the non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the DD and MRD
models.

T∗ (1)
DD MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20 k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0+ 0.49834 0.491834 0.462207 0.430842 0.49834 0.491834 0.462207 0.430842
0.1 0.498415 0.492192 0.463669 0.433139 0.498175 0.491035 0.4588 0.425162
0.2 0.498576 0.492972 0.466991 0.43863 0.49768 0.488657 0.448937 0.409178
0.3 0.498743 0.493787 0.470565 0.444756 0.496858 0.484753 0.433596 0.385589
0.4 0.498889 0.494496 0.473746 0.450343 0.495712 0.479413 0.414148 0.357704
0.5 0.499009 0.495087 0.476435 0.45515 0.494248 0.472753 0.392079 0.328478

Table 10. Simply supported beam subjected to a non-dimensional uniform load q∗y = −1.
Non-dimensional parameters A∗1 = A∗2 versus the non-dimensional length scale parameter λ evaluated
by the non-dimensional Winkler parameter k∗ ∈ {0.4, 2, 10, 20} in the MRD model.

A∗1 = A∗2
MRD

λ k∗ = 0.4 k∗ = 2 k∗ = 10 k∗ = 20
0.1 0.000165929 0.00081521 0.00375032 0.00682117
0.2 0.000662923 0.00324183 0.0146081 0.0260151
0.3 0.00148862 0.00722391 0.0314937 0.0543281
0.4 0.0026391 0.0126718 0.0528961 0.087776
0.5 0.00410896 0.0194672 0.0771786 0.1228
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Figure 8. SS − q beam. Comparison of the DD and MRD methods for increasing values of the
non-dimensional non-local parameter λ in the set

{
0+, 0.1, 0.2, 0.3, 0.4, 0.5

}
with k∗ = {0.4, 2, 10}: (a)

non-dimensional transverse midpoint displacement v∗(1/2), (b) dimensionless reaction r∗(1/2), (c)
non-dimensional bending moment M∗(1/2), (d) non-dimensional shear force T∗(1).

6. Concluding remarks

The bending behaviour of a beam resting on elastic foundation has been investigated by using a
well-posed displacement-driven (DD) nonlocal integral approach. The nonlocal equations governing
the relevant structural problem have been formulated by conveniently replacing the DD convolution
integral characterizing the foundation elasticity model with an equivalent nonlocal differential relation
and constitutive boundary conditions. Differently from the classical nonlocal model of Wieghardt
foundation, no concentrated forces at beam boundary x = 0 and x = L must be postulated in DD
formulation to render mathematically well-posed the associated structural problems. Effects of various
factors, such as Winkler modulus and nonlocal length-scale parameter, on bending elastic responses
of free and simply supported beams under different loading conditions and external constraints
of applicative interest have been established, examined and discussed. Extensive numerical data
have been given in tabular forms for several values of geometric and constitutive non-dimensional
parameters, detecting thus also benchmarks for future studies regarding beams on nonlocal foundation.
Unlike other approaches in literature, the proposed DD foundation model has been shown to provide
a significant assessment of nonlocal effects for any loading system and kinematic boundary conditions.

List of acronyms
DD: Displacement-Driven
FBCs: Foundation Boundary Conditions
FF: Free-Free beam
MFBCs: Modified Foundation Boundary Conditions
MRD: Modified Reaction-Driven
NEF: No Elastic Foundation
SS: Simply Supported beam
RD: Reaction-Driven
RDFBCs: Reaction-Driven foundation boundary conditions
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7. APPENDIX A

The Modified Reaction-Driven (MRD) nonlocal model of Wieghardt elastic foundation postulates
the existence of two fictitious forces at the end points x = 0 and x = L of the beam. Denoting by A1

and A2 such fictitious forces, the modified Wieghardt convolution integral Eq. (6) is rewritten hereafter
for convenience

v (x) =
∫ L

0
φ (x− t, Lc)

r (t)
k

dt +
A1

2Lck
exp

(
− x

Lc

)
+

A2

2Lck
exp

(
x− L

Lc

)
. (39)

The nonlocal integral equation Eq. (39) can be replaced with an equivalent differential formulation
and modified foundation boundary conditions (MFBCs) according to the next Proposition which can
be proved following a similar reasoning to the one reported in Appendix B.
Proposition 2. Equivalence property for the MRD model of a Wieghardt foundation. The transversal
displacement v obtained from the MRD Eq. (39) with the special kernel Eq. (3) provides the unique solution of
the differential equation

1
L2

c
v(x)− ∂2

xv(x) =
1

kL2
c

r(x), (40)

with x ∈ [0, L], subject to the two homogeneous modified foundation boundary conditions (MFBCs)
∂xv (x)|x=0 −

1
Lc

v (0) +
A1

L2
c k

= 0

∂xv (x)|x=L +
1
Lc

v (L)− A2

L2
c k

= 0.
(41)

�
The elastostatic structural problem of a beam on a nonlocal MRD foundation can be obtained

by substituting the reaction r, obtained from Eq. (40), into Eq. (11). Hence we get the differential
governing equation of a beam on a MRD model of the Wieghardt foundation in terms of the transverse
displacement v

IE∂4
xv (x)− kL2

c ∂2
xv(x) + kv(x) = qy (x) (42)

equipped with the classical kinematic and static boundary conditions by specifying {v, ∂xv, M, ∂x M}
at the beam end points x = {0, L} and the MFBCs Eq. (41).

It is apparent that the four integration constants following from Eq. (42) and the two unknown
fictitious forces A1 and A2 at the end points of the Wieghardt foundation can be obtained by solving
the linear sistem of equations obtained by imposing the four classical (local) constraint conditions of
the beam and the two MFBCs Eq. (41).

The foundation reactions r follow from Eq. (40), or equivalently from Eq. (11), in terms of the
transverse displacement v as

r(x) = kv (x)− kL2
c ∂2

xv (x) , (43)

the bending moment is M(x) = IE∂2
xv (x) and the shear force is T(x) = −IE∂3

xv (x).
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8. APPENDIX B

Let us prove the following result.
Proposition 3. Equivalence property for the displacement-driven (DD) model of an elastic
foundation. The following nonlocal constitutive law equipped with the bi-exponential kernel Eq. (3)

r (x) =
∫ L

0
φ (x− t, Lc) kv (t) dt. (44)

with x ∈ [0, L] is equivalent to the differential relation

r (x)− L2
c ∂2

xr (x) = kv(x) (45)

subject to the following two foundation boundary conditions (FBC)
∂xr (x)|x=0 −

1
Lc

r (0) = 0

∂xr (x)|x=L +
1
Lc

r (L) = 0.
(46)

Proof. Since the bi-exponential averaging function is given by

φ(x− t, Lc) =
1

2Lc
exp

(
−|x− t|

Lc

)
, (47)

and the integral convolution Eq. (44) can be rewritten in the form

r (x) =
∫ x

0
φ (x− t, Lc) kv (t) dt +

∫ L

x
φ (x− t, Lc) kv (t) dt, (48)

a direct evaluation provides the first derivative of the foundation reactions r

∂xr (x) =
k

2Lc
v(x)− 1

Lc

∫ x

0
φ (x− t, Lc) kv (t) dt+

− k
2Lc

v(x) +
1
Lc

∫ L

x
φ (x− t, Lc) kv (t) dt

= − 1
Lc

∫ x

0
φ (x− t, Lc) kv (t) dt

+
1
Lc

∫ L

x
φ (x− t, Lc) kv (t) dt.

(49)

The second derivative of the convolution Eq. (48) follows from Eq. (49) to get

∂2
xr (x) = − k

2L2
c

v(x) +
1
L2

c

∫ x

0
φ (x− t, Lc) kv (t) dt+

− k
2L2

c
v(x) +

1
L2

c

∫ L

x
φ (x− t, Lc) kv (t) dt

= − k
L2

c
v (x) +

1
L2

c

∫ L

0
φ (x− t, Lc) kv (t) dt.

(50)

Recalling Eq. (44) and rearranging the terms in Eq. (50), Eq. (45) is recovered.
The FBCs Eq. (46) of the nonlocal model follow by evaluating Eq. (49) at the beam boundary

points x = 0 and x = L. In fact, we have at x = 0

∂xr (x)|x=0 =
1
Lc

[∫ L

0
φ (−ξ, Lc) kv (t) dt

]
=

1
Lc

r (0) (51)
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and the FBC in Eq. (46)1 is recovered.
Analogously, setting x = L in Eq. (49) we get

∂xr (x)|x=L = − 1
Lc

[∫ L

0
φ (L− t, Lc) kv (t) dt

]
= − 1

Lc
r (L) (52)

and the FBC in Eq. (46)2 is recovered.
Uniqueness of the solution of Eq. (45) is consequent to the fact that the homogeneous differential

problem (with v(x) = 0), subject to the FBCs, admits only the trivial solution. �
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