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Abstract: This article examines the impact of some system parameters on an industrial system
composed of two dissimilar parallel units with one repairman. The active unit may fail due to es-
sential factors like aging or deteriorating, or exterior phenomena such as Poisson shocks that occur
at various time periods. Whenever the value of a shock is larger than the specified threshold of the
active unit, the active unit will fail. The article assumes that the repairman has the right to take any
of two decisions at the beginning of the system operation: either a takes a vacation if the two units
work in a normal way, or stay in the system to monitor the system until the first system failure. In
case of having a failure in any of the two units during the absence of the repairman, the failing unit
will have to wait until the repairman is called back to work. We suppose that the value of every
shock is assumed to be i.i.d. with some known distribution. The length of the repairman’s vacation,
repair time, and recall time are arbitrary distributions. Various reliability measures have been cal-
culated by the supplementary variable technique and the Markov’s vector process theory. At last,
numerical computation and graphical analysis have been given for a particular case to validate the
derived indices.

Keywords: Mean time to failure; Poisson shock; Steady-state availability; Steady-state frequency;
Supplementary variable technique.

1. Introduction

The economic progress of any country depends to a great extent on developing the
industrial and mechanical fields. This progress leads to the appearance of new techni-
calities that help solving problems that may occur in these complex industrial systems.
But in spite of all that help, consumers hope to deal with low cost and high efficiency
industrial systems. Therefore, system designers and researchers in this field face a great
challenge to develop many systems and raise their efficiency, reliability, and safety.

Many researches have been made in the past to explain the concept of reliability and
to raise the efficiency of many industrial systems, and to analyze the cost of the different
redundant systems under the effect of some restrictions such as the periods of which the
system is on or off, the different types of failures affecting that system, the different types
of repairing these units, whether or not it's better for the repair man to take single or
multiple vacations...etc.

In this context, we present some of the previous research work that deserves men-
tion. The concept of vacation was first presented to the model analysis of the queuing
system in article [1] as 2-standard vacation policies. These policies were defined as mul-
tiple vacations and single vacation. Some thorough and excellent studies from the mod-
ern results for a variety of vacation models, inclusive of some applications were pre-
sented by [2]. Many researchers, though, only studied different vacation models from a
queuing theory viewpoint. Therefore, in article [3] the concept of vacation was intro-
duced by the reliability theory viewpoint, and an n-component series system with mul-
tiple vacations of repairman was discussed. Since then, the researchers were interested in
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studying reliability models with the vacation. The reader can see e.g. [4, 5, 6, 7, 8, 9]. The
2-component repairable systems are one of the meaningful reliability applications.
Therefore, many authors have studied various repairable systems and obtained many
measures of reliability in those systems. For example, [10] used the Markov renewal
theory to study the behavior of the system which consists of a 2- parallel component in
the presence of the maintenance man. [11] applied the reliability theory on a
two-component series repairable system. The system can be used to analyze the reliabil-
ity measures of some automatic systems. The problem of repairing industrial equipment
with two vacation policies (single vacation and multiple vacations) is studied in article
[12] using queuing theory.
Most contemporary researchers focused on repairable systems under the effect of
Poisson shocks. For example, [13] discussed the effect of Poisson Shocks on the behavior
of a repairable system which consists of two units, one of them is working and the other
is cold standby with a single repairman. [14] analyzed the reliability of the repairable
system under the influence of two types of failure. One of them is external factors such
as Poisson shocks and the other is fundamental factors such as aging or deterioration.
The repairman has the right to take a vacation when the system is active. [15] displayed
a two non-identical unit cold standby repairable system maintained by a single repair-
man. The proposed system suffers from one of two types of failures. One has to do with
intrinsic factors, and the other is related to external shocks such as the stepwise Poisson
process. [16] focuses on one unit under Poisson shocks with the assumption that the de-
terioration caused by a single shock may be ineffective, and the system fails only when
the deterioration has accumulated to a specific level. The effect Poisson shocks has on
the system behavior, which consists of two-non-symmetric parallel units, one of them is
operative and the other is cold standby, with the presence of the imperfect key switch
between these two units, was investigated by [17].
The reliability measurements of two dissimilar parallel units for the repairable sys-
tems are important to the industry field. Analyzing and elicitation of these measure-
ments for the systems influenced by shocks can be more motivating and interesting as
chocks take place from time to time in the world. This induces us to derive the reliability
of two dissimilar parallel units for a repairable system. In this article, we assume the
system might be subjected to shocks following a Poisson process and the repairman has
the choice to either stay at the system to monitor the two units until one fails or takes a
vacation if the two units work in a normal way. It should be noted that system behav-
ior analysis is not an easy task when all system distributions are general distributions.
In this article, we present the supplementary variable method that helps in solving
partial differential equations related to describe the dynamics of movement between the
different states of the system. With the help of the ergodicity of the investigated process
and supplementary variable method, we obtain explicit expressions of reliability metrics
such as reliability function, steady-state availabilities, mean time to system failure,
Steady-state probability that the repairman is on vacation, Steady-state probability that
the system is waiting for repair, and Steady-state failure frequency.
This article is designed as follows:

Section 2 introduces more details about the system and assumptions of the system de-
scription. Section 3 deduces integro-differential equations which describe the movement
between the different states of the system. The reliability measures for this system are
calculated in section 4. Section 5 introduces a special case; the repairman stays in the
system without taking any vacation. The numerical examples are presented in section 6.
Conclusive remarks are offered in the final section.
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Notations
h(t),H(t) p-d.f. and c.d.f. of the repair time,
v1(8), V1 (1) p-d.f. and c.d.f. of the vacation time of a repairman,

v, (1), Vo (t) p-d.f. and c.d.f. of the recall time of a repairman,
P;(t,x),Q;(t,x) p.d.f. and c.d.f. of the system is in state i = 2,4 at period t and has an
elapsed repair time of x for unit A,
P;(t,x),Q;(t,x) p.d.f. and c.d.f. of the system is in state i = 1,8 at period t and has an
elapsed repair time of y for unit B,
Po(t,u),Qo(t,u) p.df. and c.d.f. of the system is in state Syat period t and has an
elapsed vacation time of u,
Pi(t,2),Q;(t,z) p.df. and c.d.f. of the system is in state i = 5,6,7 at period t and has
recalling time of z,
p the probabilities of calling the repairman from the vacation to repair
the unit A when the two units are a failure, i.e. "the probability of
moving from state 7 to state 4",
q the probabilities of calling the repairman from the vacation to repair
the unit B when the two units are a failure, i.e. "the probabilities of

moving from state 7 to state 8",

o) vacation time distribution function,

Uy (%) the repair rate of unit A,

u,(y) the repair rate of unit B,

a(z) call time distribution function,

h*(s) LT (Laplace transform) A(t),

pi(t) the probability of the system to be in state i at time t.

2. Description of the System and Assumptions

The system which consists of two dissimilar units and a single repairman under
Poisson shock is subjected to the following assumptions:

A1: At the initial time, both units are working with high efficiency, and a repairman has
the choice to either stay in the system or takes a vacation.

A2: The system is exposed to shocks continually. The arrival of shocks is considered as a
Poisson process {S(t),t = 0} with the strengthA; > 0. The value of every shock is ¥, i.i.d
random variable with distribution function F.

A3: When a shock occurs and the value of this shock overrides a threshold, the active
unit will break down. The threshold of units (A and B) is a non-negative random varia-
ble t; with a distribution functioné.

A4: When any unit fails with the existence of the repairman in the system, it will be re-
paired immediately. Once the repairman is done repairing the failed units, the repair-
man has the choice to either stay at the system or take a vacation, then he returns from
vacation if at least one unit is failing. The repair rule is “first-in-first-out”. If a unit fails
while the other is being repaired, the recently failed unit must wait for repair, and the
system has to stop working. To expedite the system operation when the repairman in a
vacation and the system is a breakdown, the system requires repairing one of two units
A or B, with probability p or q respectively.

A5: Shocks are the main reason for units to fail, and the system fails only if both the units
fail.
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Based on the preceding assumptions, we can conclude that the conditional failure proba-
bility of unit A and unit B are random variables &(¥) (i = 1,2).
The probability distributions are:

Ki) =P sy)=P(Y <&'0)) =FEON0<y<1.3(=12)
The possibility of a single shock causes unit (A or B) to fail. According to the above as-
sumptionsA,, A;, we get

=P <1)= me(‘ri <Y =9)arP(Y <9) = fmfi(y) dFM,0<y<1.(G(=12).
0 0

3. System Analysis

The states of this system (2(t) at time ¢ as a following:

So: at any time t, unit A is active, unit B is active, and the repairman has the choice to ei-
ther stay at the system or takes a vacation.

S1: at any time t, unit A is active unit B is being repaired, and the repairman still in the
system, the system is working.

S2: at any time t unit A is being repaired, unit B is active, and the repairman still in the
system, the system is working.

Ss: at any time t, unit A is active, unit B is active, and the repairman chooses to take a va-
cation, the system is working.

Sa: at any time t, unit A is still repaired from above S2, unit B is waiting for being re-
paired, and the system is down.

Ss: at any time t, unit A is active, unit B is waiting for repair, the repairman in a vacation,
and the system is working.

Se: at any time t, unit A is waiting for repair, unit B is active, and the repairman in a vaca-

tion, the system is working.

S7: at any time t, unit A is still waiting for repair from S6, unit B is waiting for repair and
the repairman in a vacation either go to state 4 with probability p or going to state 8 with
probability q and the system is down.

Ss: at any time t, unit A is waiting for being repaired, unit B is under repair and the sys-
tem is down.

The state space isE = {Sy,S1,S2,53,54,55,56, 57,5}, where the working state is U =
{S0,51, 55,853,855, Sg}and the down state is D = {S,,S;,Sg}. Accordance with the above
assumptions, and {Q(t),t = 0}is not a Markov process we using the supplementary
variables as a following;:

Xi(t): istime to make a vacation decision. Q(t) = {Sp}.

X, (t): is the elapsed vacation time. Q(t) = {Ss, S¢, S/}

Y; (t): is the elapsed repair time of unit A being repaired at time t. Q(t) = {S,5,}.

Y, (t): is the elapsed repair time of unit B being repaired at time t. Q(t) = {S3, Sg}.

State space is a following: Q" = {(0,u),(1,¥),(2,%),3,(4,x),(5,2),(6,2),(7,2),(8,y)}
where u,z,xand yare explanatory values of X;(t),X,(t),Y;1(t) and Y,(t), respectively.
Indicate to:

Qo(tw) = p(Q(1) = 0,X, (1) <), Qu(t,2) = p(Q(E) = i, X,(8) < 2), (i = 5,6,7),

Qi(t,%) = p(Q(E) = i, Yy (1) < %), (i = 24), Qi(6,Y) = p(QD) = §, ¥, (£) < ¥), (i = 1,8).
where p(E) is probability of event E.
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pl(tw)—— Q;(t,w), (i =0,1,2,4,5,6,7,8).

@;(t) =p(s(t) =1),({=0124,5,6,78).
From the above, we can formulation the differential equations that represent this system
by using the probability arguments and limiting transitions as following.
po(t + At,u + At) = po(t,u)(1 — (A1 + 1,1y + p(w))AL) + 0At
When At tend to zero, we get

a0
(E * u A+ Apr, + (,i)(u)) po(t,u) =0, 1)

The same style, we get the following;:

(4 55+ Aam + 1)) P2 (63) = 0, 2)
(% ai + Aoy + ul(x)) p2(t,x) =0, ©)

(5 + hm + Aamy) 03(8) = [ po(u,6) p(u)du, (4)
(54 2+ 1) palt x) = AoTop, (8,%), ®)
(% e O a(z)) ps(t,z) =0, (6)
(% ai + Aoy + a(z)) pe(t,z) =0, @)
(% +24 a(z)) p7(t,2) = A1y ps(t, 2) + Aa1ope(t, 2), 8)

(3 + 35 + 1)) a(6,9) = Lamipa (&, 7), ©)

The boundary conditions are:

po(t,0) = [ p1 (&, Mz Ny + [ p2 (£, X)ps (X)dx + £(2), (10)
p1(t,0) = f: Aaapo(t, w)du + fom Ppa(t, x)py (x)dx + f:ps(t, z)a(z)dz, 11)
p2(t,0) = f: Air1po(t, w)du + fom ps(t, Y)u2(y)dy + f: pe(t, z)a(z)dz, 12)
ps(t,0) = A;m295(0), (13)
pe(t,0) = 441193(0), (14)
p7(t,0) =0, (15)
m&@=%&®=fm@@ﬂ@ﬂ (16)
o fy pitm)dm + @s(6) + Ty f) pi(tm)dm =1L, m=w,x,y,2
(17)

The initial conditions are:

1 u=0

pOw = ={; 1o

po(0,m) =0, m#0m=ux,y,zi=1,...8.¢5(0) =0.

Laplace transform can be defined as a following:

k*(s) = L{k(x)} = fmk(x)e‘s"dx,s > 0.
0
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The ergodicity of the investigation process guarantees the presence of the following
steady-probability: ¢; = lim;,.. @;(t),i=1,...,8. 8;(m) = limy,, p; (t, M), i =
1,2,4,5,6,7,8. which follows the following relations: ¢; = [ Om 0;(m) dm, i=
1,2,4,5,6,7,8.

Taking the limit ¢t — o in the equations (1) — (17), the following equations are obtained:

(o Am + 2emy + 6 (w)) 8 (w) = 0, (18)
(% tan i, (y)) 6:(y) =0, (19)
(2 + 2am + 1 (1)) 8,(6) = 0, (20)
(Amy + A1) 5 = fom 6o(w) p(W)du, (21)
(5 + 1.(0) 04 () = 2,7,0,(x), (22)
(£ +un +a@)65(2) = 0, (23)
(5 + A1, + 2(2)) 65(2) = 0, (24)
(% + a(z)) 0,(2) = 1,105(2) + A,1,04(2), (25)
(% + Uy (Y)) 0s(y) = 41116.(y), (26)
00(0) = [, 6120y + J; 6,0y (x)dlx, (27)
6,(0) = f: A1y 0o (w)du + f: 0, () pq (x)dx + f: 0s(z)a(z)dz, (28)
02(0) = [, Lm0 (w)du + [ 05N ()dy + f, 0(2)a(2)dz, (29)
05(0) = A,12003, (30)
86(0) = 4111903, (31)
6,(0) =0, (32)
64(0) = 65(0) = [, 6,()a(2)dz, (33)
2o, ;(m)dm + @3 + 3, [T 6;(m)dm = 1,m = u,x,y,2.
(34)

4. Reliability Characteristics
According to the results derived from the analysis of the system in the
previous section, the reliability index of the system is obtained as follows:
4.1. Steady-state availability is
Av(=) = Xiopi + X5 ¢
(35)
4.2. Steady-state probability that the repairman is on vacation is
Prepv = @3+ Lizs @i
(36)
4.3. Steady-state probability that the system is waiting for repair is

Prepw = P7-
(37)
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4.4. Steady-state failure frequency is

fof = 4r(@1+ @s5) + A212(02 + @6).
(38)

where,

The steady-state probabilities can be obtained as follows from ¢; = fow 0;(m) dm, for all
i=124,56,78.

@0 = CoVi (s + A513),

@1 = {CoH3 (r ) (i Aymy + 127”2)(127”2(? +q+qhi(Ar) (M) - D - (p+q—

Dv; (117”1))

+4, rl(p +q-(p+q 71)\);(12 7 )+hf(/12 rz)((q 71)1/;(2.2 7 )7q )))7(11r1+/12r2)(11r17/12r2

(hi1(12 Tz)—l))Vf(l1T1+lsz)))

((117‘1 +2212) (R (ar1)—hi (A2r2) (R} (11T1)—1))),

bo=—{CofT; (r2 2) (5 (i 22m) (2o (p+a —(p+a =13 (A )+ (20 ) (P =13 (4071 )= p))
+11r1(p +q+phy(Ar)(W;(Ar) =) = +q — 1)17;(127”2))) + (U + ) (4 — A7,

(h;(/117"1)—1))‘71* (A171 +/127"2)))

((/117"1 +/12T2)(h§ (A272) (h’i(/lﬂl)—l)—h;(iﬂl)))’

_ Covi(A1r1+Aa1p)
3 A1ri+27m5) 7
_ Co(=pvi(A171+2212) (Aa12 (05 (A171)— D) +2A171 (v5(A2712)—1)) 1
4 (A1r1+2212) 1 h1(A212) (M5 (A171)=1)=h3(A171)

(:ulﬁl*(ﬂ’ZFZ)_I)(v;(ﬂlrl+ﬂ“2r2)(ﬂ’2r2(p+q_(p+q_1)v;(ﬂ“lrl)_h;(ilrl)(qu(ﬂlrl)-‘—p))
+11r1(p +q+ph;(Air)(W;(Ar) — 1) —(p+q— 1)17;(127’2))) + (U + ) (4 — Aoy

(5 0um) = D)5 (i +427))),

05 = Coda12vi (171 +2272)V5 (A171)
5 A1+ 2212)

7

— Cod1m1vi (171 +2A272)V5 (A272)
(A171+2272)

Pe

7

0, = Covi(llrl+/12r2)(12r2(1—al72*(11r1))+/11r1(l—aVz"(Azrz)))
;=

a(A111+2272) !

_ Co {_qvf(/llﬁ + /127‘2)(127’2 (i) =D + 41 (v;(Ae12) — 1)) +
(M + 4,73) Uy

(i—@umﬂ

Psg

Uz
hi(/lzrz)(l — I (/117"1)) + hy (A1)

(vf(/lﬂ"l + /127”2)(/127"2(17 +q+ qhi(/lzrz)((vé‘(/hn) - 1))
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—(p +q - Dv;(4iny))

2073 (p + 0 = 0+ 0 = Dvi(n) + i (m)(= + (g = D3 (am)))

(A + /121"2)(—/121‘2 + ir (M (A1) — 1))171*(/117”1 + /127"2))/

o 2o 5 (2 2 ) ) ) i o s s s )

(hy(4m) — 1) — h;@ﬂ&)) + (= + Qa(uy + 1) — (pa + p)dpzhi (A1) + (uy (qar +
U2)
(M1 (Apr) = 1) + Paﬂzhz(lzrz))h3(11r1) + a(ﬂz(_l +p+q = phy(A,r) (hy(Agmy) — 1)) +

ﬂ1(_1 +p+q+hi(Ar2) — q(hy (A1) — 1)@@1"1))) VE@zQ)))
+ (4 + ) (A (-, +
( 1+h; (l ))) A rz(/‘l TH, :uzh;(/ilrl))"'/‘l luz(_hr(ﬂzrz)"'(h;(lzrz)_l)h;(ﬂzrz))

Vi (A + Aom2)}.
5. Mean Time to the First Failure (MTTFF)

In this section, we deduce the mean time to the first failure (MTTFF) of the system.
We assumed that t be the time to the first failure of the system, therefore the reliability
function of this system is calculated as followsR(t) = P(r > t). To obtain the reliability
function, we consider the failure states {4, 7, 8} of the system are absorbing states.
Let:

Lo(tu) = <-p[S(6) = 0,%,(t) <u],  Li(tw) ==p[S(®) = i, %,(t) < z],i = 56.

Lt = p[SO) =210 7], Lty =5plS© =1LHO <], Li® =

pl5® =3].
In the same manner as previously mentioned in Section 4, we conclude reliability

function as following:

(5 + o0 a7y + 57, + () Lo(t,u) = 0, 39)
(% ai + 4+ uz(y)) Li(t,y) =0, (40)
(5 + a0+ Aoy + 1 () Ly(8,2) = 0, (41)
(54 r + Aoy ) La(0) = [ Lo, 6) p(u)du, (42)
(Z+a+hn +a@)Ls(t2) =0, (43)
(5 2+ Aoy + a(2)) Lo(£,2) = 0, (44)

The boundary conditions are:
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Lo(£,0) = [T Li(t, )0 dy + [ Lo (6, )py (x)dx + £(8), (45)
Ly(t,0) = [ A;myLo(t, w)du + [ Ls(t, 2)a(z)dz, (46)
Ly(t,0) = [ A Lo(t,Wdu + [ Le(t, 2)a(z)dz, (47)
Ls(t,0) = 2,13 L3(2), (48)
Le(t,0) = 111 L3(2), (49)

The initial conditions are:

1 u=0

RoOwy =ew ={; 20

Taking the Laplace transform of the equations (39-49), as well as initial conditions, we

have:

(5o + 5+ Aamy + Ay + 9(W)) Ly(s,1) =0, (50)
(G+s+an+m0)Licy =0, (51)
(% + 5+ Ay + ,ul(x)) Ly(s,x) =0, (52)
(s +Am + Ar)L3() = [ Ly(u,5) p(w)du, (53)
(% +s+ 4+ a(z)) Li(s,z) =0, (54)
(% + 5+ A + a(z)) Lg(s,z) =0, (55)
Ly(s,0) = fi Li(s, ) (dy + [, Ly (s, x)py (x)dx + (b), (56)
Li(s,0) = f: A1 Ly (s, w)du + f: Li(s,z)a(z)dz, (57)
L5(s,0) = [ Am; L (s, u)duy, (58)
Ly(s,0) = 2,1, L5(s), (59)
Lg(s,0) = A1 L5 (S). (60)

From previous equations, we defined the reliability function as follows:

R*(s) = [ Lo(s,w)du+ [ Li(s,y) dy + [ Ly(s,x) dx + X0_g [, Li(s,2) dz + L3(s).
(61)

and the mean time to the first failure of the system (MTTFF) is given by

MTTFF = limR*(s). (62)
Nd

where,
Ly(s) = [ Ly(s,w) du = Ly(s, 0075 (s +1ydy +1,45), L5(s) = [ Li(s,y) dy =
Li(s, 0)Hz(s +114y), Ly(s) = fow Ly(s,x) dx = Ly(s,0)H; (s + 1,4,), L3(s) =

Ly(5,0)v1(s+1141+71213)

7

S+T12.1+T22.2
t(s) = fooo Ly(s,z) dz = Ls(s,0)V; (s + 11 Ay), Li(s) = [ Li(s,2) dz = Li(s, 0)V,(s +
1242),
Ly(s,0) = (T straditradz)) + 1A (=1 + hi(s + rA)vi(s +

{—s+r212(—1+h; (547112101 (54711 +71242)v; (s+r111))

1Ay + 1) 05(s +1345)) + (s + 1Ay + 1A,) (A By (s + 124,),
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+r, 4, h;(s *th ﬂ,l))V_l* (s +n At /12)}> Li(s,0) = 1,4,L5(s, 0) {‘71*(5 +nd +1d) +

{v{ (s+71121+71222)v5 (s+r2/12)}
(541121 +7215) 4

Ly (s,0)=r A, L (s,O){V_l* (s+r 2+ )+ (s 47 2 4 ) w3 (s + 7 2, ) (s 47 4,47, /12)}}

L,g (S, 0) _ {rz/lzLB(S,O)vi(s+r1/11+r2/12)}l

(s411A1+72232)

{r1A1L5(s,0)vi (s+r1A147242)}
(5+1r141+1313)

Le(s,0) =

6. Special Case

In this section, we present the following special cases, which confirm the results of
the previous sections.
Case 1: 13 =15, ¢(u) = 1, then it means any shock will cause the active units to fail and
the repairman is in the system.
Case 2: 1, > 1y, p(u) = 1, then it means the unit A failure is faster than unit B failure and
the repairman is in the system.
Case 3: 1, > 1y, ¢(u) = 1, then it means the unit B failure is faster than unit A failure and
the repairman is in the system.

Corresponding results can easily get for the previous particular cases.

7. Numerical Illustration

This section shows the usefulness of the proposed system by examining the
impact of the repairman and other parameters on the system through the following
numerical illustrations taking into consideration that:
V(o) = {1 _§_¢ o RACE {1 _g_a o o Hi(®) = {1 _g_”it s 0V =
1,2,
At first, we show Illustrative numerical examples comparing the reliability metrics for
the above special cases when the repairman is present in the system. Figs (1-3) we can
observe the effect of a when it has the values of {1,7,14,21,28}on steady-state
availability when; € [0,1]. From the curves of Figs (1-3), we conclude that the
steady-state availability for this system increases very slowly whena > 7. Fig.4 illustrates
the effect of both r; and r, on steady-state availability whenAd, € [0,1]. In curve of Fig.4,
we deduce that the steady-state availability is increasing when r; > r,. The idea is also
clear when examining Figs. (5-7). In these Figs.(5-7) the impact of @ when it has the
values of {1,7,14,21,28}on mean time to system failure whena; € [0,1]. The curves of
Figs.(5-7) show that the mean time to system failure is more stable when a > 7. The
curve of Fig.8 shows that the mean time to system failure increases when r <1, in
interval A, € [0,0.35]as it is increases also when r; > r, inintervall, € [0.35,1].

The steady-state availability and the mean time to system failure are

examined, when A; and a change, as shown in Tables (1-6). We vary the values of A,
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and aand note their cross-impact on the steady-state availability and the mean time to
system failure. It shows that increasing A; can greatly decrease the steady-state
availability and the mean time to system failure; however, increasing a seldom affects

the values of steady-state availability and the mean time to system failure.

Sleady—date avalahility
(=]

0.0 L) o4 0.6 0.8 10

Bilurs ;e 4; =[0,1]

Fig. 1. Steady-state availability versus rate A;when 17 = 7,and parametera = 1,7,14,21,28

100 F

=

=}

L
T

ogo [

Steady - e vl dlity

=]

5]

=]
T

o0 02 0.4 0.6 0.8 1.0

filure rate Ay =[0,1]

Fig. 2. Steady-state availability versus rate A;when 1; < 7and parametera = 1,7,14,21,28
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100 FY

[=]

L=l

Lh
T

Steacly—stat s vl abil ity
[=1

[=]

(=]

L
T

0.0 02 0.4 0.0 0.8 10

&ilure rate Ay =[0,1]

Fig 3. Steady-state availability versus rate A; when 17 > T,and parametera = 1,7,14,21,28

1.00
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000

0.85

0.80

Stendy—state vl dility

04 0.6 03 1.0
Bilure rate 37 =[0,1]

=
sE
(=]
b

Fig 4. Steady-state availability versus rate A;when a = 7

mezn tie to system failue
%
=
T

10

oo oz 04 L1 K] 0.8 1.0

Bilurs mmate A7 =[0.1]

Fig. 5. Mean time to the first failure versus rate A;when 7; = ryand parametera = 1,7,14,21,28
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40 |

30k

meaitime to systan falore

10

0.0 o2 o4 0.6 0.8 10

wmilure rate Ay =[0,1]

Fig. 6. Mean time to the first failure versus rate A;when 77 < r,and parametera = 1,7,14,21,28

mextime to systan fahre
.

0.0 02 0.4 0.6 0.8 10

Silure rate A7 =[0,1]

Fig. 7. Mean time to the first failure versus rate A;when 1; > 1yand parametera = 1,7,14,21,28.
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Fig 8. Mean time to the first failure versus rate A;when a = 7
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Table 1. Steady-state availability for differentaand 7; = 0.3 <1, = 0.7when 4, = 0.4,p = 0.3,9 = 0.7, 4, = 04,4, = 0.5

A4 a=1 a=17 a=14 a=21 a =28 a =35 a =42 a =49
0.1 0.945163 0.955857 0.956584 0.956819 0.956935 0.957004 0.95705 0.957083
0.2 0.900995 0.918948 0.92018 0.920579 0.920776 0.920893 0.920971 0.921026

0.3 0.864701 0.887634 0.889219 0.889732 0.889986 0.890137 0.890237 0.890309
0.4 0.834379 0.860735 0.862568 0.863161 0.863454 0.863629 0.863745 0.863827
0.5 0.808691 0.83738 0.839385 0.840034 0.840355 0.840546 0.840673 0.840763
0.6 0.786666 0.816913 0.819037 0.819724 0.820064 0.820266 0.820401 0.820497
0.7 0.767587 0.798832 0.801034 0.801747 0.802099 0.802309 0.802449 0.802548
0.8 0.75091 0.782743 0.784994 0.785723 0.786083 0.786297 0.78644 0.786541

Table 2. Steady-state availability for differentaand r, = 0.7 > r, = 0.3when A, = 0.4,p = 0.7,9 = 0.3,4, = 0.4,u; = 0.5

A a=1 a=17 a=14 a=21 a =28 a =35 a =42 a =49
0.1 0.94198 0.959523 0.960715 0.961101 0.961292 0.961405 0.961481 0.961535
0.2 0.904875 0.931008 0.932854 0.933453 0.93375 0.933927 0.934045 0.934129
0.3 0.879432 0.909885 0.912099 0.912822 0.91318 0.913393 0.913535 0.913637
0.4 0.861099 0.893637 0.89606 0.896853 0.897246 0.897481 0.897638 0.897749
0.5 0.847388 0.88077 0.883306 0.884137 0.88455 0.884797 0.884962 0.885079
0.6 0.836832 0.87034 0.872928 0.873779 0.874202 0.874455 0.874623 0.874743
0.7 0.82851 0.861724 0.864325 0.865182 0.865608 0.865864 0.866034 0.866155
0.8 0.821822 0.854491 0.85708 0.857935 0.858361 0.858617 0.858786 0.858908

Table 3. Steady-state availability for differenta and 7, =1, = 0.6when A, =0.4,p = 0.5,q = 0.5, 4, = 0.4,; = 0.5

A a=1 a=17 a=14 a=21 a =28 a =35 a =42 a =49
0.1 0.909832 0.927946 0.929189 0.929592 0.92979 0.929909 0.929988 0.930044
0.2 0.849187 0.875919 0.877782 0.878386 0.878684 0.878862 0.87898 0.879064

0.3 0.805794 0.836605 0.838777 0.839481 0.839829 0.840037 0.840174 0.840272
0.4 0.773317 0.805862 0.808177 0.808927 0.809298 0.809519 0.809666 0.809771
0.5 0.748162 0.781169 0.783533 0.7843 0.784679 0.784904 0.785055 0.785161
0.6 0.728147 0.760904 0.763264 0.764029 0.764408 0.764634 0.764784 0.76489
0.7 0.711866 0.743977 0.746302 0.747056 0.747429 0.747652 0.747799 0.747905
0.8 0.698382 0.729627 0.731899 0.732637 0.733002 0.733219 0.733364 0.733467

Table 4. Mean time to the first failure for differenta and r; = 0.3 <1, = 0.7when 1, = 0.4,p = 0.5,q = 0.5, 4, = 0.4, 4, =

0.5
A a=1 a=7 a=14 a=21 a =28 a =35 a =42 a =49
0.1 48.3086 54.3999 55.1436 55.4034 55.5357 55.6158 55.6696 55.7081
0.2 25.3126 28.4357 28.8173 28.9506 29.0184 29.0596 29.0871 29.1069
0.3 17.6815 19.8073 20.0674 20.1584 20.2047 20.2327 20.2515 20.265
0.4 13.8895 15.5115 15.7104 15.78 15.8154 15.8369 15.8513 15.8616
0.5 11.6318 12.9476 13.1095 13.1662 13.195 13.2125 13.2242 13.2327

0.6 10.14 11.249 11.386 11.4339 11.4583 11.4732 11.4831 11.4902
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0.7 9.08501 10.0442 10.1631 10.2048 10.2261 10.2389 10.2476 10.2538
0.8 8.30235 9.1475 9.25282 9.28974 9.30855 9.31996 9.32762 9.33311

Table 5. Mean time to the first failure for differenta and r; = 0.7 > r, = 0.3when A, = 0.4,p = 0.7,q = 0.3,u, = 0.4, 4, =

0.5
A a=1 a=7 a=14 a=21 a =28 a =35 a =42 a =49
0.1 35.8646 42.5894 43.3861 43.6633 43.8042 43.8894 43.9466 43.9876
0.2 21.3104 24.7677 25.181 25.3249 25.3982 25.4425 25.4722 25.4935
0.3 16.6047 18.9434 19.2262 19.3249 19.3752 19.4056 19.426 19.4406
0.4 14.3401 16.104 16.3201 16.3957 16.4342 16.4575 16.4732 16.4844
0.5 13.0387 14.4495 14.6247 14.6861 14.7174 14.7363 14.7491 14.7582
0.6 12.2105 13.3813 13.5286 13.5804 13.6068 13.6228 13.6335 13.6412
0.7 11.6469 12.6439 12.771 12.8157 12.8385 12.8524 12.8617 12.8684
0.8 11.2448 12.1102 12.2218 12.2612 12.2813 12.2935 12.3017 12.3076

Table 6. Mean time to the first failure for differenta and r; = r, = 0.6when A, = 0.4,p = 0.5,q = 0.5, 4, = 0.4,u;, = 0.5

A a=1 a=7 a=14 a=21 a =28 a =35 a =42 a =49
0.1 27.171 30.8908 31.341 31.4981 31.5781 31.6265 31.659 31.6822
0.2 15.074 17.0007 17.235 17.3169 17.3585 17.3837 17.4007 17.4128
0.3 11.1095 12.4238 12.5849 12.6412 12.6698 12.6872 12.6989 12.7072
0.4 9.17023 10.1699 10.2935 10.3368 10.3589 10.3722 10.3812 10.3876
0.5 8.03594 8.84161 8.9423 8.97761 8.99561 9.00652 9.01384 9.0191
0.6 7.30062 7.97369 8.05874 8.08862 8.10386 8.1131 8.11931 8.12376
0.7 6.79076 7.36705 7.4407 7.46662 7.47985 7.48788 7.49327 7.49714
0.8 6.42001 6.9224 6.98732 7.01021 7.02191 7.02901 7.03378 7.0372

8. Conclusion

In this article, we deduced the reliability measurements of a system consisting of
two dissimilar parallel units and a single repairman. The repairman might take a vaca-
tion or not at the beginning of the system operation and the active units might be at-
tacked from successive shocks. Such a system can be considered as an evolution of a
general repairable Industrial system and is also difficult to theoretically analyze the ex-
istence of many random variables with general distributions. The numerical illustration
explains the relationship between the derived reliability measurements and system pa-
rameters.
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