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Abstract: An interesting anomaly of the diffusion process with an apparently negative diffusion1

coefficient defined through the mean-square displacement in a one-dimensional quantum molecu-2

lar chain model is shown. Nevertheless, the system satisfies the H-theorem, so that the second law3

of thermodynamics is satisfied. The reason why the “diffusion constant” becomes negative is due4

to the effect of the phase mixing process, which is a characteristic result of the one-dimensionality5

of the system. We illustrate the situation where this negative “diffusion constant” appears.6

Keywords: anomalous diffusion; one dimensional quantum system; irreversibility vs. reversibility7

1. Introduction8

Due to mathematical simplicity and some unique anomalies, the irreversible trans-9

port property in one-dimensional (1D) systems has attracted many physicists[1–6,6–9].10

In the previous paper, we have analyzed an anomalous diffusion of an exciton as a
quantum Brownian particle in a one-dimensional molecular chain [10]. We have shown
that the momentum space separates into infinite sets of disjoint irreducible subspaces
dynamically independent of one another due to the one-dimensionality. Then, we
have analyzed the hydrodynamic mode of an exciton through a kinetic equation, and
obtained a sound velocity, and a diffusion coefficient, defined in each subspace. Because
of the separation into these subspace, we have shown these transport coefficients have a
momentum dependence. As a result, the phase mixing due to the sound velocity affects
the broadening of the spatial distribution of the exciton in addition to the diffusion
process. Then, we have shown the increase rate of the mean-square displacement of
the exciton increases linearly with time and diverges in the long-time limit. This leads
to a divergence of the phenomenological diffusion coefficient D(x)(t) defined by the
following relation [11]

D(x)(t) ≡ 1
2

d
dt
〈(X− 〈X〉t)2〉t, (1)

where 〈· · · 〉t means the average over the distribution function at time t.11

Nevertheless, based on the microscopic dynamics starting from the Liouville-von
Neumann equation for the density matrix, we have obtained the following convection-
diffusion equation for the Wigner distribution function of an exciton f W(X, P, t) with
the well-defined microscopic momentum dependent diffusion coefficient D(P) and the
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momentum dependent velocity of sound propagation σ(P) after the local equilibrium is
achieved [10]:

∂

∂t
f W(X, P, t) = −σ(P)

∂

∂X
f W(X, P, t) + D(P)

∂2

∂X2 f W(X, P, t). (2)

In this paper, we will report an interesting anomaly of this one-dimensional system.
As we will show that the anomaly will come from the competition between the time-
symmetric behavior due to the phase-mixing process and the time-asymmetric behavior
due to the diffusion process. Because of the linear divergence in time due to the phase
mixing in the phenomenological diffusion coefficient D(x)(t) in Eq. (1), it seems that
subtraction of the linear time-dependent term from D(x)(t) may give an appropriate
phenomenological diffusion coefficient. However, we found that this new definition
of the phenomenological diffusion coefficient has a situation that its value is negative.
Indeed, we have obtained for a general initial condition of the distribution function of
the exciton that [12]

D(x)
const ≡ D(x)(t)− t

〈
(σ(P)− σ̄)2

〉
eq

, (3)

with
D(x)

const = D̄ + 〈(X− 〈X〉t=0)(σ(P)− σ̄)〉t=0, (4)

where the second term of the right-hand side in Eq. (3) comes from the phase mixing in12

the sound propagation. As we will show that the second term of the right-hand side in13

Eq. (4) may have a negative value. Then, this new definition of the phenomenological14

diffusion constant D(x)
const may have even a negative value.15

This implies that starting with a given mean-square displacement of the exciton,16

there is a situation in time where the mean-square displacement of the exciton decreases.17

Is this means the second law of thermodynamics is violated? In this paper, we will18

show that even in this unexpected situation, our kinetic equation satisfies the H-theorem.19

Hence, the second law of thermodynamics is not violated. We will also discuss a physical20

meaning of the situation where the mean-square displacement of the exciton decreases.21

2. Model and Quantum transport equation22

In this section, we introduce one-dimensional quantum molecular chain model.23

Moreover, we summarize the characteristics of an exciton propagation in this one-24

dimensional system, which we have reported in the previous paper [10].25

We consider relaxation dynamics of an exciton which weakly interacts with phonons
of an underlying lattice on a one-dimensional quantum molecular chain. The Hamilto-
nian of this system is given by [10,13]

H = H0 + gV, (5)

H0 = ∑
p

εp|p〉〈p|+ ∑
q

h̄ωqa†
q aq, (6)

gV =

√
2π

L ∑
p,q

gVq|p + h̄q〉〈p|(aq + a†
−q), (7)

where the exciton interacts with the phonons with a dimensionless coupling constant
g which indicates the order of the interaction, and the momentum of the exciton is
designated by p and its state by |p〉. The state |p〉 is normalized by the Kronecker delta.
The notations a†

q and aq denote creation and annihilation operators of the phonons
with wave vector q, and L denotes the length of the chain. We assume the free particle
dispersion for the exciton and the linear dispersion for acoustic phonons as

εp =
p2

2m
, ωq = c|q|, (8)
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where m is an effective mass and c is the speed of sound. Furthermore, we assume a
deformation potential type [14] for the coupling between the exciton and the phonons as

gVq ≡ g∆0q

√
h̄

4πρMωq
, (9)

where g∆0 is the coupling constant, and ρM is the molecular mass density. This Hamilto-26

nian (5) has also been used to describe a free electron coupling with acoustic-phonon27

field in semiconductors [14].28

We impose the usual periodic boundary condition with period L leading to discrete
momenta p/h̄ = 2π j/L and wave numbers q = 2π j′/L with j, j′ = 0,±1,±2, · · · . We
consider the thermodynamic limit (L→ ∞), then we should replace summations over
momenta and wave numbers with integrations at an appropriate stage:

2πh̄
L ∑

P
→
∫

dP,
L

2πh̄
δKr

P,P′ → δ(P− P′), (10)

2π

L ∑
q
→
∫

dq,
L

2π
δKr

q,q′ → δ(q− q′). (11)

The time evolution of the total system obeys the quantum Liouville equation

i
∂

∂t
ρ(t) = LHρ(t), (12)

where ρ(t) is the density operator of the total system and the Liouvillian LH is defined29

by a commutation relation with the Hamiltonian H as LH · ≡ [H, ·]/h̄.30

We focus on the time evolution of the reduced density operator of the exciton
defined by

f (t) ≡ Trph[ρ(t)], (13)

where Trph means that the trace is taken over all the phonon modes. The phonons are
assumed to be in thermal equilibrium with a temperature T represented by

ρ
eq
ph ∝ exp

[
−∑

q
h̄ωqa†

q aq/kBT

]
. (14)

We can express the reduced density operator in terms of the Wigner representation
[2,15] in the momentum space of the exciton as

fk(P, t) ≡ (P + h̄k/2| f (t)|P− h̄k/2), (15)

where the round bracket is defined by |p) ≡
√

L/2πh̄ |p〉 and normalized by the delta
function in the limit L→ ∞ as

(p|p′) = δ(p− p′). (16)

The Fourier transform of fk(P, t) gives the Wigner distribution function in “phase space”:

f W(X, P, t) ≡ 1
2π

∫ ∞

−∞
dk eikX fk(P, t). (17)

Note that the k = 0 component f0(P, t) is a momentum distribution of the exciton, while31

the k 6= 0 components represent inhomogeneity in space.32

The equation of motion of the reduced distribution function fk(P, t) is obtained33

from the complex spectral representation of the Liouvillian [15]. In our previous papers,34

we have investigated the time evolution of the reduced distribution function fk(P, t)35

by solving the complex eigenvalue problem of the Liouvillian in a situation where the36
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exciton weakly couples to the phonons. Here, we summarize the results for convenience37

of the readers. For details, see Refs. [10,13,16].38

We found that the resonance condition between the exciton and phonons in the
1D system leads to the separation of the momentum space for the exciton into infinite
sets of disjoint irreducible subspaces. In other words, due to the one-dimensionality,
momentum states of exciton can change only within a subset of discrete momentum
states:

Pν = (−1)ν(P0 − 2νmc), (ν = 0,±1,±2, · · · ), (18)

where a different choice of P0 in the range

−mc ≤ P0 ≤ mc (19)

gives a different and disjoint set of momenta. Hence, momentum relaxation occurs39

independently within each momentum subspace toward the Maxwell distribution.40

In the relaxation process of the momentum distribution f0(Pν, t) within a momen-41

tum subspace, there exist a stationary mode and decaying modes. Only the stationary42

mode remains after a finite relaxation time τrel determined from the eigenvalue problem43

for the time evolution of the momentum distribution [See Eq. (A26) in Ref. [10]].44

Since the relaxation time τrel for the momentum distribution is finite, there exists a45

hydrodynamic regime where the wavenumber k is small enough that the characteristic46

time for the relaxation of spatial inhomogeneity is much longer than the relaxation time47

τrel [17]. In this hydrodynamic regime, the momentum relaxation occurs in a very early48

stage. As a result, a local equilibrium is established before any appreciable change in49

spacial distribution occurs.50

We have obtained the time evolution of the reduced distribution function fk(Pν, t)
in the hydrodynamic regime at the local equilibrium with transport coefficients [10], a
hydrodynamic sound velocity σ(P0) and a diffusion coefficient D(P0), as follows:

fk(Pν, t) = e−{ikσ(P0)+k2D(P0)}t ϕ
eq
P0
(Pν)

∞

∑
µ=−∞

f init
k (Pµ), (20)

where the origin of time t is shifted to τrel, and f init
k (Pµ) is initial distribution of the exci-

ton. The momentum distribution at local equilibrium follows the Maxwell distribution
in each momentum subspace as

ϕ
eq
P0
(Pν) ≡

exp[−εPν /kBT]
∑∞

µ=−∞ exp[−εPµ /kBT]
. (21)

The transport coefficients σ(P0) and D(P0) are obtained, respectively, as the real part
and the imaginary part of the eigenvalues of the Liouvillian [10]. Since the eigenvalue
equation consists only of components with discrete momenta (18) related to a P0, the
transport coefficients are defined at each P0. Besides, the momenta in a subset (18) share
the values of the hydrodynamic sound velocity and the diffusion coefficient as

σ(Pν) = σ(P0), D(Pν) = D(P0), (ν = 0,±1,±2, · · · ). (22)

Since the transport coefficients exist in each momentum subspace, they have momentum51

dependence in this 1D system [For the explicit forms of the sound velocity σ(P0) and52

diffusion coefficient D(P0), see Eqs. (63) and (64) in Ref. [10]].53
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The discussion later in this paper does not depend on the detailed forms of σ(P0)
and D(P0). What are important are that they have momentum dependence, and that the
sound velocity can take either positive or negative values depending on P0 as

σ(P0) ≤ 0 for −mc ≤ P0 ≤ 0;

σ(P0) ≥ 0 for 0 ≤ P0 ≤ mc, (23)

and that the diffusion coefficient is always positive.

D(P0) > 0, for any P0. (24)

The reduced distribution function (20) is a function of the discrete momenta Pν.54

However, since Pν and Pµ take any real number when P0 varies continuously in the55

range (19), the function fk(P, t) is defined to be a continuous function of P. Fourier56

transform of Eq. (20) gives a Wigner distribution function (17) for the exciton at local57

equilibrium. One can easily show that the Wigner distribution function follows the58

convection-diffusion equation (2).59

3. H-theorem for the quantum transport equation60

In this section, we prove that the H-theorem holds with the condition (24) when the
Wigner distribution function follows the convection-diffusion equation (2) . In the proof,
we assume that the Wigner distribution function is normalized as follows:∫ ∞

−∞
dX

∫ ∞

−∞
dP f W(X, P, t) = 1, (25)

and satisfies the boundary conditions:

lim
X→±∞

f W(X, P, t) = 0, (26)

lim
x→±∞

∂

∂X
f W(X, P, t)|X=x = 0. (27)

As is well known, the Wigner distribution function is a quasi-probability distribu-61

tion, and unlike distribution functions in classical systems, it can take negative values62

[18]. Therefore, if we define a functional in the form of ρ log ρ, which is often used63

conventionally as the H-function, then this functional has an imaginary part when the64

Wigner distribution function has the negative values.65

We then introduce a new function which is non-negative at any X and P with a
sufficiently large constant C ≥ 0 as follows:

f̃ W(X, P, t) ≡ f W(X, P, t) + C ≥ 0, (28)

for the case f W(X, P, t) is bounded from below. (See the example shown in the next66

section.) It is clear that this function also obeys the convection-diffusion equation (2).67

Let us introduce a functional with the new function (28) and the Wigner distribution
function as

H[ f̃ W ](t) ≡
∫ ∞

−∞
dX

∫ ∞

−∞
dP f W(X, P, t) log f̃ W(X, P, t). (29)

Note that we use f̃ W(X, P, t) only for the argument of the natural logarithm. This68

is because if we replace f W(X, P, t) in Eq. (29) with f̃ W(X, P, t), then the functional69

diverges because of the factor C .70
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We have

d
dt

H[ f̃ W ](t) =
d
dt

∫ ∞

−∞
dX

∫ ∞

−∞
dP
{

f̃ W(X, P, t)− C
}

log f̃ W(X, P, t)

=
∫ ∞

−∞
dX

∫ ∞

−∞
dP
{

∂

∂t
f̃ W(X, P, t)

}
log f̃ W(X, P, t)− C

∫ ∞

−∞
dX

∫ ∞

−∞
dP

∂
∂t f̃ W(X, P, t)
f̃ W(X, P, t)

= −
∫ ∞

−∞
dP D(P)

∫ ∞

−∞
dX

{ ∂
∂X f̃ W(X, P, t)}2

f̃ W(X, P, t)
+ C

{
∂

∂X f̃ W(X, P, t)
f̃ W(X, P, t)

}2
 ≤ 0.

(30)

In the transformation from the second line to the third line, we substituted Eq. (2) and71

then performed integration by parts over X with the boundary conditions (26) and (27).72

It is clear that the inequality in Eq. (30) holds from the conditions (24) and (28). Hence,73

this functional satisfies the H-theorem.74

In the time derivative of the H function (30), the contribution of the convection75

term with σ(P) in Eq. (2) disappears and only the contribution of the diffusion term76

with D(P) remains. In other words, only the diffusion term in Eq. (2) is essential for the77

decrease of the H function.78

When we consider the time evolution of the Wigner distribution function of a free79

particle which has no interaction with the phonons, there is no diffusion term in the80

transport equation. Therefore, the time derivative of the H function (29) is zero. This is81

consistent with the fact that free particle propagation is reversible process and there is82

no entropy production.83

From the above discussion, when the Wigner distribution function obeys the84

convection-diffusion equation (2), the H-theorem holds. That is to say, there is no entropy85

reduction in the exciton propagation at the local equilibrium in this one-dimensional86

quantum system. It should be emphasized that it is essential for the H-theorem that the87

diffusion coefficient D(P) derived from the microscopic theory is always positive.88

4. Example of the exciton propagation with apparent negative diffusion coefficient89

As explained in Sec. I and II, the transport coefficients have momentum dependence90

due to the one-dimensionality in this system. Because of the momentum dependence91

of the hydrodynamic sound velocity, a wave packet spreads in time not only due to92

the diffusion processes but also due to the effect of the phase mixing. As a result, the93

phenomenological time-dependent diffusion coefficient D(x)(t) increases linearly with94

time in this 1D quantum system.95

Surprisingly, for particular initial distributions, the phenomenological time-independent96

diffusion coefficient D(x)
const can be negative. However, as we proved in the previous97

section, the H-theorem holds for any initial distribution since the diffusion coefficient98

D(P) is always positive.99

In this section, we give an example of the initial distribution with which the constant100

term of the phenomenological diffusion coefficient D(x)
const is negative. We also illustrate101

the physical picture of apparent negative diffusion.102

First, let us show that the first term D̄ in Eq. (4) is always nonnegative. Although
the Wigner distribution function, which is a quasi-probability function, can take negative
values, when integrated over X, it becomes the true momentum probability distribution
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and takes non-negative values [19]. In addition, the diffusion coefficient D(P) is always
positive as shown in Eq. (24). Thus, we obtain

D̄ ≡ 〈D(P)〉eq ≡
∫ ∞

−∞
dX

∫ ∞

−∞
dP D(P) f W(X, P, t & τrel)

=
∫ ∞

−∞
dP D(P) fP(t & τrel) ≥ 0, (31)

where

fP(t) ≡
∫ ∞

−∞
dX f W(X, P, t) ≥ 0. (32)

Therefore, in order for D(x)
const < 0 to be satisfied, the second term in Eq. (4) should103

be negative. The reason why the second term in Eq. (4) can be negative is that the104

hydrodynamic sound velocity σ(P) can take either positive or negative values as shown105

in Eq. (23).106

As an example of the initial distribution for D(x)
const < 0 to be satisfied, we consider

the case where the initial state is given as a superposition of two Gaussian wave packets,
as follows:

|ψ0) = |ψ0;1) + |ψ0;2), (33)

where, for each α = 1, 2,

(X|ψ0;α) ≡ Nα

(
1

2π(∆Xα)2

) 1
4

exp
[
− (X− X′α)2

4(∆Xα)2 + i
P′α
h̄
(X− X′α)

]
. (34)

The notations X′α and P′α indicate the coordinate and momentum of the peak position of
the Gaussian wave packet. The normalization constants Nα satisfy

N2
1 + γN2N1 + N2

2 = 1, (35)

where

γ ≡
(

2∆X1∆X2

(∆X1)2 + (∆X2)2

) 1
2

exp

[
−1

4
(X′1 − X′2)

2

(∆X1)2 + (∆X2)2

]

× exp

[
−
(P′1 − P′2)

2

h̄2
(∆X1∆X2)

2

(∆X1)2 + (∆X2)2

]

× 2 cos

(
(X′1 − X′2)

h̄
P′1(∆X1)

2 + P′2(∆X2)
2

(∆X1)2 + (∆X2)2

)
. (36)

The momentum representation of the wave function (34) is written as

ψ0;α(P) ≡ (P|ψ0;α)

= Nα

(
1

2π(∆Pα)2

) 1
4

exp
[
−(∆Xα)

2 (P− P′α)2

h̄2 − iX′α
P
h̄

]
. (37)

For simplicity, we assume that both of the two Gaussian wave packets α = 1, 2 are the
minimum uncertainty wave packets, which satisfy

∆Xα · ∆Pα =
h̄
2

. (38)
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In this case, the Fourier component of the initial Wigner distribution function is
given by (see Eq. (15))

f init
k (P) = (P +

h̄k
2
|ψ0)(ψ0|P−

h̄k
2
)

= ∑
α=1,2

ψ0;α(P +
h̄k
2
)ψ∗0;α(P− h̄k

2
) +

1,2

∑
α 6=α′

ψ0;α(P +
h̄k
2
)ψ∗0;α′(P− h̄k

2
). (39)

By substituting this into Eq. (17), the initial Wigner distribution function is obtained as
follows:

f W
init(X, P) = ∑

α=1,2

N2
α

πh̄
exp

(
− (X− X′α)2

2(∆Xα)2 −
(P− P′α)2

2(∆Pα)2

)

+
N1N2

π
√

h̄{∆X1∆P2 + ∆X2∆P1}
exp

(
−1

2
(P− P′1)

2

2(∆P1)2 −
1
2
(P− P′2)

2

2(∆P2)2

)

× exp

−
{

X− X′1+X′2
2

}2

(∆X1)2 + (∆X2)2 +

h̄2

4

{
P−P′1

2(∆P1)2 −
P−P′2

2(∆P2)2

}2

(∆X1)2 + (∆X2)2


× 2 cos

(X′1 − X′2)
P
h̄
+ h̄

X− X′1+X′2
2

(∆X1)2 + (∆X2)2

{
P− P′1

2(∆P1)2 −
P− P′2

2(∆P2)2

}.

(40)

Each term of the summation in the first term of Eq. (40) represents an isolated Gaussian107

wave packet, and the second term comes from the cross term of the two Gaussian wave108

packets. It can be seen that the second term can take negative values. We note that the109

sign of the initial momentum P′α determines the direction of the sound (See Eq. (23)).110

By substituting the initial distribution (39) into Eq. (20) and performing the Fourier111

transform (17), we obtain the Wigner distribution function at local equilibrium. We then112

calculate the average values of the phenomenological diffusion coefficient (1). We have113

calculated numerically the transport coefficients σ(P) and D(P) using Eqs. (63) and (64)114

in Ref. [10].115

In Fig. 1, we display the time evolution of the phenomenological diffusion coeffi-116

cient D(x)(t). The constant term of the phenomenological diffusion coefficient D(x)
const is117

given by D(x)(t = 0). This figure clearly shows that the constant term D(x)
const is negative,118

and that D(x)(t) increases linearly with time, which is consistent with Eq. (3).119

To draw this figure, we chose the positions of the two peaks of the Gaussian wave120

packet in the initial distribution as (X̄1, P̄1) = (0, 0.7) and (X̄2, P̄2) = (40,−0.7). Note121

that we have chosen opposite signs for the momenta at the two peaks. This is the122

condition for the two peaks to approach each other (See Eq. (23)).123

Therefore, the situation where apparent negative diffusion occurs with D(x)
const < 0124

can be understood by the physical picture as follows. The width of each Gaussian distri-125

bution increases due to the diffusion process and the phase mixing process. Nevertheless,126

the width of the entire distribution function decreases because the two Gaussian distri-127

butions approach each other. As a result, the mean-square displacement 〈(X− 〈X〉t)2〉t128

decreases in the first stage of the time evolution. After the two Gaussian distributions129

pass each other, the variance of the displacement increases monotonically.130

In Fig. 1, the value of D(x)(t) increases linearly with time and changes from131

negative to positive value around t = 20. We confirmed by drawing numerically the132

time evolution of the Wigner distribution function that the two peaks of the Gaussian133

packets approach each other and pass around t = 20.134
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We should note that the occurrence of the apparent negative diffusion is because135

of the approaching of the peaks each other in the initial distribution rather than the136

existence of the negative region in the Wigner distribution function.137

We can say that the apparent negative diffusion occurs because of the competition138

between the effect of diffusion process and the effect of the phase mixing which leads to139

approaching of the two Gaussian wave packets. Because the phase mixing occurs due to140

the one-dimensionality of the system, this competition is unique to 1D quantum system.141

Even in the presence of the negative phase mixing process which reduces the142

mean-square displacement, there is no entropy reduction in this system since the phase143

mixing is a reversible process. On the contrary, the entropy in this system monotonically144

increases due to the diffusion process.145

Figure 1. Time evolution of D(x)(t) when the constant term D(x)
const is negative in units where

m = 1, c = 1, h̄ = 1, kB = 1, g∆0 = 1, and ρM = 1. The transport coefficients σ(P) and D(P) are
calculated at the temperature T = 1. The initial conditions ∆Xα=1,2 = 3, (X̄1, P̄1) = (0, 0.7), and
(X̄2, P̄2) = (40,−0.7) are chosen. Note that the origin of time t is τrel.

4.1. Summary and Conclusion146

We have shown the interesting anomaly of the diffusion process with an apparently147

negative diffusion coefficient in a one-dimensional quantum molecular chain model.148

Indeed, the usual definition of the phenomenological diffusion coefficient through the149

time evolution of the mean-square displacement of the exciton leads to a negative value150

of the “diffusion constant.” Nevertheless the system satisfies the H-theorem and hence151

the second law of thermodynamics. However, since the Wigner distribution function152

may have a negative value because it is a quasi-distribution function and is not the153

true probabilisitic distribution function, we have needed a subtle extension of the usual154

H-function as shown in Eq. (29).155

The reason why the usual phenomenological diffusion coefficient through the156

mean-square displacement becomes negative is that the hydrodynamic sound velocity157

depends on the momentum, which is a characteristic result of the one-dimensionality158

of our system. As a result, there is a process of the phase mixing that leads to both a159

positive effect and a negative effect for spreading the total mean-square displacement160

of the exciton in addition to the positive true diffusion process. We should emphasize161

that this anomaly does not occur in the ordinary convection-diffusion equation with a162

similar form to Eq. (2) but with the momentum independent sound velocity.163

Then, we have shown an example of the situation where negative value of the164

phenomenological diffusion coefficient can be temporally achieved for the initial condi-165

tion. This situation is achieved where the two Gaussian wave packets are approaching166

each other. For this situation the negative effect of the phase-mixing is larger than the167
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positive effect of the spreading of the wave packets due to the diffusion process and the168

phase mixing. However, since the H-theorem is satisfies during all time evolution, the169

entropy of the system monotonically increases, and the system approach to the thermal170

equilibrium state.171
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