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1 Abstract: An interesting anomaly of the diffusion process with an apparently negative diffusion
2 coefficient defined through the mean-square displacement in a one-dimensional quantum molecu-
s lar chain model is shown. Nevertheless, the system satisfies the H-theorem, so that the second law
4 of thermodynamics is satisfied. The reason why the “diffusion constant” becomes negative is due
s to the effect of the phase mixing process, which is a characteristic result of the one-dimensionality
6 of the system. We illustrate the situation where this negative “diffusion constant” appears.

7 Keywords: anomalous diffusion; one dimensional quantum system,; irreversibility vs. reversibility

s 1. Introduction

° Due to mathematical simplicity and some unique anomalies, the irreversible trans-
10 port property in one-dimensional (1D) systems has attracted many physicists[1-6,6-9].
In the previous paper, we have analyzed an anomalous diffusion of an exciton as a
quantum Brownian particle in a one-dimensional molecular chain [10]. We have shown
that the momentum space separates into infinite sets of disjoint irreducible subspaces
dynamically independent of one another due to the one-dimensionality. Then, we
have analyzed the hydrodynamic mode of an exciton through a kinetic equation, and
obtained a sound velocity, and a diffusion coefficient, defined in each subspace. Because
of the separation into these subspace, we have shown these transport coefficients have a
momentum dependence. As a result, the phase mixing due to the sound velocity affects
the broadening of the spatial distribution of the exciton in addition to the diffusion
process. Then, we have shown the increase rate of the mean-square displacement of
the exciton increases linearly with time and diverges in the long-time limit. This leads
to a divergence of the phenomenological diffusion coefficient D™*) (t) defined by the
following relation [11]

D) = 3 24x — xp2), <1>

11 where (- - - ); means the average over the distribution function at time .

Nevertheless, based on the microscopic dynamics starting from the Liouville-von
Neumann equation for the density matrix, we have obtained the following convection-
diffusion equation for the Wigner distribution function of an exciton f" (X, P, t) with
the well-defined microscopic momentum dependent diffusion coefficient D(P) and the
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momentum dependent velocity of sound propagation o (P) after the local equilibrium is
achieved [10]:

aZ

%fW(X, p,t) = —U(P)%fw(x, P+ D(P) s

fYX P, @)

In this paper, we will report an interesting anomaly of this one-dimensional system.
As we will show that the anomaly will come from the competition between the time-
symmetric behavior due to the phase-mixing process and the time-asymmetric behavior
due to the diffusion process. Because of the linear divergence in time due to the phase
mixing in the phenomenological diffusion coefficient D(¥)(t) in Eq. (1), it seems that
subtraction of the linear time-dependent term from D) (t) may give an appropriate
phenomenological diffusion coefficient. However, we found that this new definition
of the phenomenological diffusion coefficient has a situation that its value is negative.
Indeed, we have obtained for a general initial condition of the distribution function of
the exciton that [12]

Dioret = DY)~ #{(0(P) = 0)%) , ®)

with
D) = D+ (X — (X)i=0)(@(P) = 0)),_o, )

where the second term of the right-hand side in Eq. (3) comes from the phase mixing in
the sound propagation. As we will show that the second term of the right-hand side in

Eq. (4) may have a negative value. Then, this new definition of the phenomenological
(x)

diffusion constant D, ., may have even a negative value.

This implies that starting with a given mean-square displacement of the exciton,
there is a situation in time where the mean-square displacement of the exciton decreases.
Is this means the second law of thermodynamics is violated? In this paper, we will
show that even in this unexpected situation, our kinetic equation satisfies the H-theorem.
Hence, the second law of thermodynamics is not violated. We will also discuss a physical
meaning of the situation where the mean-square displacement of the exciton decreases.

2. Model and Quantum transport equation

In this section, we introduce one-dimensional quantum molecular chain model.
Moreover, we summarize the characteristics of an exciton propagation in this one-
dimensional system, which we have reported in the previous paper [10].

We consider relaxation dynamics of an exciton which weakly interacts with phonons
of an underlying lattice on a one-dimensional quantum molecular chain. The Hamilto-
nian of this system is given by [10,13]

H=Hy+4V, (5)
Hy = Z£p|p> <P‘ =+ Zhwqa;”q/ (6)
P q

27
gV = \/f%qulp+hq><Pl<aq+a+—q), @)

where the exciton interacts with the phonons with a dimensionless coupling constant
¢ which indicates the order of the interaction, and the momentum of the exciton is
designated by p and its state by |p). The state |p) is normalized by the Kronecker delta.
The notations a; and a, denote creation and annihilation operators of the phonons
with wave vector g, and L denotes the length of the chain. We assume the free particle
dispersion for the exciton and the linear dispersion for acoustic phonons as

2
ep = zp—m wy = clq|, (8)


https://doi.org/10.20944/preprints202102.0131.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 February 2021

where m is an effective mass and c is the speed of sound. Furthermore, we assume a
deformation potential type [14] for the coupling between the exciton and the phonons as

h
8V EgAO‘Wm/ )

where gAg is the coupling constant, and p is the molecular mass density. This Hamilto-
nian (5) has also been used to describe a free electron coupling with acoustic-phonon
field in semiconductors [14].

We impose the usual periodic boundary condition with period L leading to discrete
momenta p/h = 27tj/L and wave numbers g = 27tj' /L with j,j/ = 0,£1,+2,---. We
consider the thermodynamic limit (L — o0), then we should replace summations over
momenta and wave numbers with integrations at an appropriate stage:

? Y- [ap, S = 5P~ P), (10)
P
27 L
Y [dg, ok 6 —q). (11)
q

The time evolution of the total system obeys the quantum Liouville equation

i20(8) = Lrp(t), (12)

where p(t) is the density operator of the total system and the Liouvillian L is defined
by a commutation relation with the Hamiltonian H as Ly = [H, -] /h.

We focus on the time evolution of the reduced density operator of the exciton
defined by

f() = Trpnlp(t)], (13)

where Tr,,, means that the trace is taken over all the phonon modes. The phonons are
assumed to be in thermal equilibrium with a temperature T represented by

p;ll o exp [— Zhwqa;aq /kBT] . (14)
q

We can express the reduced density operator in terms of the Wigner representation
[2,15] in the momentum space of the exciton as

fx(P,t) = (P+hk/2|f(t)|P —hk/2), (15)

where the round bracket is defined by |p) = +/L/27th |p) and normalized by the delta
function in the limit L — oo as

(plp") =6(p—p"). (16)

The Fourier transform of fi (P, t) gives the Wigner distribution function in “phase space”:

(X, P, 1) = % /7 " dk X F (P, 1), (17)

Note that the k = 0 component fy(P, t) is a momentum distribution of the exciton, while
the k # 0 components represent inhomogeneity in space.

The equation of motion of the reduced distribution function fi(P, ) is obtained
from the complex spectral representation of the Liouvillian [15]. In our previous papers,
we have investigated the time evolution of the reduced distribution function f (P, t)
by solving the complex eigenvalue problem of the Liouvillian in a situation where the

d0i:10.20944/preprints202102.0131.v1
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exciton weakly couples to the phonons. Here, we summarize the results for convenience
of the readers. For details, see Refs. [10,13,16].

We found that the resonance condition between the exciton and phonons in the
1D system leads to the separation of the momentum space for the exciton into infinite
sets of disjoint irreducible subspaces. In other words, due to the one-dimensionality,
momentum states of exciton can change only within a subset of discrete momentum
states:

P, = (-1)"(Pp —2vmc), (v=0,£1,%2,---), (18)

where a different choice of Py in the range
—mc < Py < mc (19)

gives a different and disjoint set of momenta. Hence, momentum relaxation occurs
independently within each momentum subspace toward the Maxwell distribution.

In the relaxation process of the momentum distribution fy(P,, t) within a momen-
tum subspace, there exist a stationary mode and decaying modes. Only the stationary
mode remains after a finite relaxation time T,; determined from the eigenvalue problem
for the time evolution of the momentum distribution [See Eq. (A26) in Ref. [10]].

Since the relaxation time T, for the momentum distribution is finite, there exists a
hydrodynamic regime where the wavenumber k is small enough that the characteristic
time for the relaxation of spatial inhomogeneity is much longer than the relaxation time
Trel [17]. In this hydrodynamic regime, the momentum relaxation occurs in a very early
stage. As a result, a local equilibrium is established before any appreciable change in
spacial distribution occurs.

We have obtained the time evolution of the reduced distribution function f(P,, t)
in the hydrodynamic regime at the local equilibrium with transport coefficients [10], a
hydrodynamic sound velocity o(Py) and a diffusion coefficient D(Py), as follows:

Py 1) = e R RIEDE 0 p ) 3 finit(p,), 20)

p=—0o

where the origin of time  is shifted to T, and f{"*(P,) is initial distribution of the exci-
ton. The momentum distribution at local equilibrium follows the Maxwell distribution
in each momentum subspace as

exp[—ep, /kpT]

. 21
Y=o expl—ep, /kpT] =

q)le;;(Pu) =

The transport coefficients o(Py) and D(Py) are obtained, respectively, as the real part
and the imaginary part of the eigenvalues of the Liouvillian [10]. Since the eigenvalue
equation consists only of components with discrete momenta (18) related to a P, the
transport coefficients are defined at each P,. Besides, the momenta in a subset (18) share
the values of the hydrodynamic sound velocity and the diffusion coefficient as

o(Py) = o(P), D(Py) = D(Py), (v=0,41,42,---). (22)

Since the transport coefficients exist in each momentum subspace, they have momentum
dependence in this 1D system [For the explicit forms of the sound velocity ¢ (P) and
diffusion coefficient D(P), see Egs. (63) and (64) in Ref. [10]].
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The discussion later in this paper does not depend on the detailed forms of o (P)
and D(Py). What are important are that they have momentum dependence, and that the
sound velocity can take either positive or negative values depending on Py as

o(Py) <0 for —mc <Py <0;
o(Py) >0 for 0 <Py < mg, (23)

and that the diffusion coefficient is always positive.
D(Py) > 0, forany Py. (24)

The reduced distribution function (20) is a function of the discrete momenta P,.
However, since P, and P, take any real number when P, varies continuously in the
range (19), the function f;(P,t) is defined to be a continuous function of P. Fourier
transform of Eq. (20) gives a Wigner distribution function (17) for the exciton at local
equilibrium. One can easily show that the Wigner distribution function follows the
convection-diffusion equation (2).

3. H-theorem for the quantum transport equation

In this section, we prove that the H-theorem holds with the condition (24) when the
Wigner distribution function follows the convection-diffusion equation (2) . In the proof,
we assume that the Wigner distribution function is normalized as follows:

/_ fz:ox /_ 229 (X, P 1) =1, (25)

and satisfies the boundary conditions:

; W _
: J w —

As is well known, the Wigner distribution function is a quasi-probability distribu-
tion, and unlike distribution functions in classical systems, it can take negative values
[18]. Therefore, if we define a functional in the form of plogp, which is often used
conventionally as the H-function, then this functional has an imaginary part when the
Wigner distribution function has the negative values.

We then introduce a new function which is non-negative at any X and P with a
sufficiently large constant C > 0 as follows:

(X, P,t) = fN(X,P,t)+C >0, (28)

for the case f (X, P, t) is bounded from below. (See the example shown in the next
section.) It is clear that this function also obeys the convection-diffusion equation (2).

Let us introduce a functional with the new function (28) and the Wigner distribution
function as

Hiw(8) = X [P £¥(X,P,0)10g ¥ (X, P,1). 9

Note that we use f(X, P,t) only for the argument of the natural logarithm. This
is because if we replace fW(X, P,t) in Eq. (29) with fw (X, P,t), then the functional
diverges because of the factor C .
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We have

@ Hiju (1) = %/_%(/_2:5 {7, P8 - Chiog (X, P, 1)

/dX/dP{ XPt)}logf (X,P,t) — c/dx/fm

(2 x P02 [ 2Mxp)°
/dPD /dX a’}WXPt) +c{a?}w(m} <o.

(30)

In the transformation from the second line to the third line, we substituted Eq. (2) and
then performed integration by parts over X with the boundary conditions (26) and (27).
It is clear that the inequality in Eq. (30) holds from the conditions (24) and (28). Hence,
this functional satisfies the H-theorem.

In the time derivative of the H function (30), the contribution of the convection
term with o(P) in Eq. (2) disappears and only the contribution of the diffusion term
with D(P) remains. In other words, only the diffusion term in Eq. (2) is essential for the
decrease of the H function.

When we consider the time evolution of the Wigner distribution function of a free
particle which has no interaction with the phonons, there is no diffusion term in the
transport equation. Therefore, the time derivative of the H function (29) is zero. This is
consistent with the fact that free particle propagation is reversible process and there is
no entropy production.

From the above discussion, when the Wigner distribution function obeys the
convection-diffusion equation (2), the H-theorem holds. That is to say, there is no entropy
reduction in the exciton propagation at the local equilibrium in this one-dimensional
quantum system. It should be emphasized that it is essential for the H-theorem that the
diffusion coefficient D(P) derived from the microscopic theory is always positive.

4. Example of the exciton propagation with apparent negative diffusion coefficient

As explained in Sec. I and II, the transport coefficients have momentum dependence
due to the one-dimensionality in this system. Because of the momentum dependence
of the hydrodynamic sound velocity, a wave packet spreads in time not only due to
the diffusion processes but also due to the effect of the phase mixing. As a result, the
phenomenological time-dependent diffusion coefficient D(¥)(t) increases linearly with
time in this 1D quantum system.

Surprisingly, for particular initial distributions, the phenomenological time-independent

diffusion coefficient Dgor)lst can be negative. However, as we proved in the previous
section, the H-theorem holds for any initial distribution since the diffusion coefficient
D(P) is always positive.

In this section, we give an example of the initial distribution with which the constant

(x)

term of the phenomenological diffusion coefficient D

the physical picture of apparent negative diffusion.

First, let us show that the first term D in Eq. (4) is always nonnegative. Although
the Wigner distribution function, which is a quasi-probability function, can take negative
values, when integrated over X, it becomes the true momentum probability distribution

is negative. We also illustrate
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and takes non-negative values [19]. In addition, the diffusion coefficient D(P) is always
positive as shown in Eq. (24). Thus, we obtain

D = (D(P))eq = /;ZOX/;P D(P)fW (X, P,t > 1)
= [dP D(P)fp(t 2 ) 20, (31)
where

Folt) = /;z:gc (X, P,t) > 0. (32)

Therefore, in order for Dgg&st < 0 to be satisfied, the second term in Eq. (4) should
be negative. The reason why the second term in Eq. (4) can be negative is that the
hydrodynamic sound velocity o(P) can take either positive or negative values as shown
in Eq. (23).

As an example of the initial distribution for Dggr)mt < 0 to be satisfied, we consider
the case where the initial state is given as a superposition of two Gaussian wave packets,

as follows:
W’O) = |1/)0;1) + W’O;Z)r (33)
where, for eacha = 1,2,
_ 1 : (X-X3)* | P .
(X|90;0) _N‘X(ZH(AX,XV) eXp[ 4(AX, )2 —i—l?(X X)) |- (34)

The notations X, and P; indicate the coordinate and momentum of the peak position of
the Gaussian wave packet. The normalization constants N satisfy

N? +yN,N; + N3 =1, (35)
where

1 (X=X
4 (AX1)? + (AX2)?

_ 2AX1A X, ?
TE\Bxrax2) 7P

y (PI=Pp)? (AX1AXp)?
P nr o (AX1)2+ (8Xp)?

X — X5) P{(AX1)? + Py(AX7)?
% 2 cos ( 1 2) l( 1) + 2( 2) (36)
h (AX71)? + (AX3)?
The momentum representation of the wave function (34) is written as
$0,(P) = (Plo,a)
1
1 1 (P—P)? ., P
= — —(AX,) P x|, 7
N“(m(APa)Z) eXp[ AXe) 2 e (37)

For simplicity, we assume that both of the two Gaussian wave packets « = 1,2 are the
minimum uncertainty wave packets, which satisfy

AXy - APy = g (38)
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In this case, the Fourier component of the initial Wigner distribution function is
given by (see Eq. (15))

- hk hk
fiM(P) = (P+ 7\1/’0)(‘/’0|P - 7)
hk ik 12 fik hk
= L $0u(P+ 5)¥5a(P = ) + L $0ul(P+ 5 )50 (P—5). (39)
a=1.2 wFo!

By substituting this into Eq. (17), the initial Wigner distribution function is obtained as
follows:

fiIIq]it(X/ P) = Z

NZ (_ (X-X)? (P— P&)2>
a=1,2

7 CP\ T 2(aX,)2 T 2(AR,)2

N NiN, o _1(P=P)* 1(P-Py)?
T/IAXIAP, £ AXAP ] T\ 2 2(AP)2 2 2(APy)?

2 2
[x-Xpe)' gon o)

2(AP)°  2(AP,)?

“EP| T AX 2 (AX,)2 (AX1)2 + (AX,)2

_ XX

P X P-Pj P-P
A 2 L— 2
X 2cos (Xl Xz)h +h(AX1)2+(AX2)2{2(APl)2 Z(APZ)z}

(40)

Each term of the summation in the first term of Eq. (40) represents an isolated Gaussian
wave packet, and the second term comes from the cross term of the two Gaussian wave
packets. It can be seen that the second term can take negative values. We note that the
sign of the initial momentum P, determines the direction of the sound (See Eq. (23)).

By substituting the initial distribution (39) into Eq. (20) and performing the Fourier
transform (17), we obtain the Wigner distribution function at local equilibrium. We then
calculate the average values of the phenomenological diffusion coefficient (1). We have
calculated numerically the transport coefficients o(P) and D(P) using Egs. (63) and (64)
in Ref. [10].

In Fig. 1, we display the time evolution of the phenomenological diffusion coeffi-

(%)

cient D) (t). The constant term of the phenomenological diffusion coefficient D;~) . is

given by D) (t = 0). This figure clearly shows that the constant term Dgist is negative,
and that D™ (t) increases linearly with time, which is consistent with Eq. (3).

To draw this figure, we chose the positions of the two peaks of the Gaussian wave

packet in the initial distribution as (X1, P;) = (0,0.7) and (X, P,) = (40, —0.7). Note
that we have chosen opposite signs for the momenta at the two peaks. This is the
condition for the two peaks to approach each other (See Eq. (23)).
Therefore, the situation where apparent negative diffusion occurs with Dggr)wt <0
can be understood by the physical picture as follows. The width of each Gaussian distri-
bution increases due to the diffusion process and the phase mixing process. Nevertheless,
the width of the entire distribution function decreases because the two Gaussian distri-
butions approach each other. As a result, the mean-square displacement {(X — (X);)?);
decreases in the first stage of the time evolution. After the two Gaussian distributions
pass each other, the variance of the displacement increases monotonically.

In Fig. 1, the value of D) (t) increases linearly with time and changes from
negative to positive value around t = 20. We confirmed by drawing numerically the
time evolution of the Wigner distribution function that the two peaks of the Gaussian
packets approach each other and pass around ¢ = 20.


https://doi.org/10.20944/preprints202102.0131.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 February 2021 d0i:10.20944/preprints202102.0131.v1

We should note that the occurrence of the apparent negative diffusion is because
of the approaching of the peaks each other in the initial distribution rather than the
existence of the negative region in the Wigner distribution function.

We can say that the apparent negative diffusion occurs because of the competition
between the effect of diffusion process and the effect of the phase mixing which leads to
approaching of the two Gaussian wave packets. Because the phase mixing occurs due to
the one-dimensionality of the system, this competition is unique to 1D quantum system.

Even in the presence of the negative phase mixing process which reduces the
mean-square displacement, there is no entropy reduction in this system since the phase
mixing is a reversible process. On the contrary, the entropy in this system monotonically
increases due to the diffusion process.

D(“’)(t)
40

30
20

10

40 60 80 100 t
-10

Figure 1. Time evolution of D) (t) when the constant term D

(x)

const

m=1,c=1h=1kg =1,gA¢ =1, and pp; = 1. The transport coefficients o(P) and D(P) are
calculated at the temperature T = 1. The initial conditions AX,—1, = 3, (X1, P;) = (0,0.7), and
(X,, Py) = (40, —0.7) are chosen. Note that the origin of time # is Ty

is negative in units where

4.1. Summary and Conclusion

We have shown the interesting anomaly of the diffusion process with an apparently
negative diffusion coefficient in a one-dimensional quantum molecular chain model.
Indeed, the usual definition of the phenomenological diffusion coefficient through the
time evolution of the mean-square displacement of the exciton leads to a negative value
of the “diffusion constant.” Nevertheless the system satisfies the H-theorem and hence
the second law of thermodynamics. However, since the Wigner distribution function
may have a negative value because it is a quasi-distribution function and is not the
true probabilisitic distribution function, we have needed a subtle extension of the usual
H-function as shown in Eq. (29).

The reason why the usual phenomenological diffusion coefficient through the
mean-square displacement becomes negative is that the hydrodynamic sound velocity
depends on the momentum, which is a characteristic result of the one-dimensionality
of our system. As a result, there is a process of the phase mixing that leads to both a
positive effect and a negative effect for spreading the total mean-square displacement
of the exciton in addition to the positive true diffusion process. We should emphasize
that this anomaly does not occur in the ordinary convection-diffusion equation with a
similar form to Eq. (2) but with the momentum independent sound velocity.

Then, we have shown an example of the situation where negative value of the
phenomenological diffusion coefficient can be temporally achieved for the initial condi-
tion. This situation is achieved where the two Gaussian wave packets are approaching
each other. For this situation the negative effect of the phase-mixing is larger than the
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positive effect of the spreading of the wave packets due to the diffusion process and the
phase mixing. However, since the H-theorem is satisfies during all time evolution, the
entropy of the system monotonically increases, and the system approach to the thermal
equilibrium state.
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