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Abstract: This paper deals with a non-standard finite difference scheme defined on a quasi-1

uniform mesh for approximate solutions of the Magneto-Hydro Dynamics (MHD) boundary layer2

flow of an incompressible fluid past a flat plate for a wide range of the magnetic parameter. We3

show how to improve the obtained numerical results via a mesh refinement and a Richardson4

extrapolation. The obtained numerical results are favourably compared with those available in the5

literature.6
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1. Introduction10

The simplest example of the application of the boundary layer theory is related to11

the celebrated Blasius [1] problem. This problem describes the flow around a very thin12

flat plate.13

The first goal of this paper is to solve numerically, with great accuracy, the MHD14

boundary layer equation governing the flow of an incompressible fluid past a flat plate15

by a non-standard finite difference scheme defined on a quasi-uniform mesh. Numerical16

methods for problems like the one considered in this paper can be classified according17

to the numerical treatment of the boundary condition imposed at infinity. The oldest18

and simplest treatment is to replace infinity with a suitable finite value, the so-called19

truncated boundary. However, being the simplest approach this has revealed within20

the decades some drawbacks that suggest not to apply it, especially if we have to face a21

given problem without any clue on its solution behaviour. Several other treatments have22

been proposed in the literature to overcome the shortcomings of the truncated boundary23

approach. In this research area they are worthy of consideration: the formulation of so-24

called asymptotic boundary conditions by de Hoog and Weiss [2], Lentini and Keller [3]25

and Markowich [4,5]; the reformulation of the given problem in a bounded domain26

as studied first by de Hoog and Weiss and developed more recently by Kitzhofer et27

al. [6]; the free boundary formulation proposed by Fazio [7] where the unknown free28

boundary can be identified with a truncated boundary; the treatment on the original29

domain via pseudo-spectral collocation methods, see the book by Boyd [8] or the review30

by Shen and Wang [9] for more details on this topic; and, finally, a non-standard finite31

difference scheme on a quasi-uniform grid defined on the original domain by Fazio and32

Jannelli [10]. This non-standard finite difference scheme has been successively modified33

by Fazio and Jannelli [11]. Moreover, this method has been applied to the numerical34

solution of the perpetual American put option problem of financial markets, see Fazio35

[12].36
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This study concludes by comparing the current numerical results with those given37

by the integral approximation method (ITM) and the non-integral technique (NIT) used38

by Singh and Chandarki [13].39

2. Model Problem40

We consider a steady two-dimensional flow of a viscous fluid on a flat plate in the41

presence of a given transverse magnetic field with small electric conductivity and large42

transverse magnetic field. Introducing appropriate similarity variables, the governing43

equations can be reduced to the following boundary value problem (BVP) [13]44

d3u
dx3 + u

d2u
dx2 + β

(
1− du

dx

)
= 0 (1)

u(0) =
du
dx

(0) = 0 ,
du
dx

(∞) = 1 ,

where β is the magnetic parameter. Let us notice that for β = 0 the BVP (1) reduces to45

the celebrated Blasius problem [1]. For a general class of problems, including (1), results46

on the existence, uniqueness, and boundedness of solutions were obtained by Brighi47

[14].48

3. The Finite Difference Scheme49

Without loss of generality, we consider the class of BVPs50

du
dx

= f(x, u) , x ∈ [0, ∞) ,
(2)

g(u(0), u(∞)) = 0 ,

where u(x) is a d−dimensional vector with `u(x) for ` = 1, . . . , d as components, f :51

[0, ∞)× IRd → IRd, and g : IRd× IRd → IRd. Here, and in the following, we use Lambert’s52

notation for the vector components [15, pp. 1–5].53

In order to solve the problem (2) on the original domain, we discuss first quasi-
uniform grids maps from a reference finite domain and introduce on the original domain
a non-standard finite difference scheme that allows us to impose the given boundary
conditions exactly. Let us consider the smooth strict monotone quasi-uniform maps
x = x(ξ), the so-called grid generating functions, see Boyd [8, pp. 325–326] or Canuto et
al. [16, p. 96],

x = −c · ln(1− ξ) , (3)

and
x = c

ξ

1− ξ
, (4)

where ξ ∈ [0, 1], x ∈ [0, ∞], and c > 0 is a control parameter. So that, a family of uniform
grids ξn = n/N defined on interval [0, 1] generates one parameter family of quasi-
uniform grids xn = x(ξn) on the interval [0, ∞]. The two maps (3) and (4) are referred
to as logarithmic and algebraic maps, respectively. As far as the authors’ knowledge is
concerned, van de Vooren and Dijkstra [17] were the first to use these kinds of maps. We
notice that more than half of the intervals are in the domain with length approximately
equal to c and xN−1 = c ln N for (3), while xN−1 ≈ cN for (4). For both maps, the
equivalent mesh in x is nonuniform with the most rapid variation occurring with c� x.
The logarithmic map (3) gives slightly better resolution near x = 0 than the algebraic
map (4), while the algebraic map gives much better resolution than the logarithmic map
as x → ∞. In fact, it is easily verified that

−c · ln(1− ξ) < c
ξ

1− ξ
,
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for all ξ, but ξ = 0.54

The problem under consideration can be discretized by introducing a uniform grid
ξn of N + 1 nodes in [0, 1] with ξ0 = 0 and ξn+1 = ξn + h with h = 1/N, so that xn is a
quasi-uniform grid in [0, ∞]. The last interval in (3) and (4), namely [xN−1, xN ], is infinite
but the point xN−1/2 is finite, because the non integer nodes are defined by

xn+α = x
(

ξ =
n + α

N

)
,

with n ∈ {0, 1, . . . , N − 1} and 0 < α < 1. These maps allow us to describe the infinite55

domain by a finite number of intervals. The last node of such grid is placed on infinity56

so right boundary conditions are taken into account correctly.57

We approximate the values of the scalar variable u(x) and its derivative at mid-58

points of the grid xn+1/2, for n = 0, · · · , N − 1, using non-standard difference discretiza-59

tions60

un+1/2 ≈ xn+3/4 − xn+1/2

xn+3/4 − xn+1/4
un +

xn+1/2 − xn+1/4

xn+3/4 − xn+1/4
un+1 ,

(5)
du
dx

∣∣∣∣
n+1/2

≈ un+1 − un

2(xn+3/4 − xn+1/4)
.

We emphasize that the key advantage of our non-standard finite difference formulation61

is to overcome the difficulty of the numerical treatment of the boundary conditions at62

the infinity. In fact, the formulae (5) use the value uN = u(∞), but not xN = ∞ and then,63

the boundary conditions at infinity are taken into account in a natural way.64

For the class of BVPs (2), a non-standard finite difference scheme on a quasi-uniform65

grid can be defined by using the approximations given by (5) above, and it can be written66

as follows67

Un+1 −Un − an+1/2f(xn+1/2, bn+1/2Un+1 + cn+1/2Un) = 0 ,

for n = 0, 1, . . . , N − 1 (6)

g(U0, UN) = 0 ,

where68

an+1/2 = 2(xn+3/4 − xn+1/4) ,

bn+1/2 =
xn+1/2 − xn+1/4

xn+3/4 − xn+1/4
, (7)

cn+1/2 =
xn+3/4 − xn+1/2

xn+3/4 − xn+1/4
,

for n = 0, 1, . . . , N − 1. The finite difference formulation (6) has order of accuracy
O(N−2). It is evident that (6) is a nonlinear system of d (N + 1) equations in the
d (N + 1) unknowns U = (U0, U1, . . . , UN)

T . For the solution of (6) we can apply the
classical Newton’s method along with the simple termination criterion

1
d(N + 1)

d

∑
`=1

N

∑
n=0
|∆`Un| ≤ TOL , (8)

where ∆`Un, for n = 0, 1, . . . , N and ` = 1, 2, . . . , d, is the difference between two69

successive iterate components and TOL is a fixed tolerance.70

4. Numerical Results and Comparison71

In this Section, we present the numerical results obtained by solving the mathemati-72

cal model (1) using the non-standard finite difference scheme (6) on the quasi-uniform73
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grid defined by the logarithmic map (3) with control parameter c = 2. Now, let us74

rewrite the model (1) as a first-order system as follows75

d1u
dx

= 2u,

d2u
dx

= 3u, x ∈ (0, ∞) (9)

d3u
dx

= −1u3u− β(1− 2u),

with76

1u(0) = 2u(0) = 0 , 2u(∞) = 1 ,

or, in an equivalent form,77

u = (1u, 2u, , 3u)T ,

f(x, u) =
(

2u, 3u,−1u3u− β(1− 2u)
)T

,

g(u(0), u(∞)) = (1u(0), 2u(0), 2u(∞)− 1)T ,

where u(x) is a three-dimensional vector with components `u(x) for ` = 1, 2, 3, and78

f : [0, ∞)×Rd → Rd and g : Rd ×Rd → Rd, with d = 3.79

For all tests we consider the control parameter c = 2, a fixed tolerance TOL = 10−8
80

and, as a first guess for Newton’s iteration, the following initial data81

1u(x) = 0.5 x , 2u(x) = 1 , 3u(x) = exp(−x).

In Table 1, we report the numerical results obtained for the missing initial data
d2u
dx2 for82

increasing points number N and β = 1.2. Here, “iter ”stands for the number of the83

Newton’s iterations.84

Table 1. Numerical results related to
d2u
dx2 (0) for different values of N.

N iter
d2u
dx2 (0)

10 6 1.1790527
20 6 1.1776846
40 6 1.1773411
80 6 1.1772552

160 6 1.1772336
320 7 1.1772282
640 7 1.1772269

1280 7 1.1772261

In Figure 1, we show the numerical solution obtained for β = 1.2 and N = 80.85

The recovered value of the second order derivative of the solution at the origin is86

d2u
dx2 (0) = 1.177255155089504, obtained in 6 iterations.87
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Figure 1. Numerical solution for the problem (1) for β = 1.2 and N = 80.

The Table 2 lists the obtained numerical results for different values of parameter β,88

with β = 0, 0.2, · · · , 2 and N = 100. For the sake of brevity, we have chosen to report89

only the values of the wall shear stress, that is the second derivative value at the origin.90

Within the same table, we can compare our results with those reported by Singh and91

Chandarki [13]. The problem with β = 0 corresponding to the Blasius problem, and in92

this case, the computed missing initial condition
d2u
dx2 (0) = 0.4695839 can be compared93

with the value 0.469599988361 computed by Fazio [7] by a free boundary formulation of94

the Blasius problem.95

Table 2. Numerical results, related to
d2u
dx2 (0), and comparison.

β DTM [13] NIT [13] FD (this study)

0.0 0.46910 0.46920 0.4695839
0.2 0.66343 0.64819 0.6389912
0.4 0.80009 0.78749 0.7749739
0.6 0.91659 0.90562 0.8917536
0.8 1.01988 1.01002 0.9956343
1.0 1.11362 1.10460 1.0900815
1.2 1.20006 1.19170 1.1772448
1.4 1.28068 1.27285 1.2585668
1.6 1.35652 1.34913 1.3350710
1.8 1.42834 1.42132 1.4075142
2.0 1.49671 1.49002 1.4764751
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In order to improve the accuracy of the computed solution, we apply Richardson’s
extrapolation, using several refinements of the computational domain. On the computa-
tional domain of the problem, we build a quasi-uniform grid with a mesh-points number
equal to N0 and proceed with subsequent grid refinements by constructing meshes
with grid-point numbers Ng for g = 1, 2, · · · , where Ng+1 = rNg with refinement factor
r = 2. On each grid, the numerical solution Ug, g = 0, 1, · · · , G is computed using the
non-standard finite difference method. In order to reduce the calculations, we adopt
a continuation strategy, in fact, we use the final solution Ug obtained on the grid g as
initial guess for calculating the solution Ug+1 on the grid g + 1. where the new grid
values are approximated by linear interpolations. We define the level of the Richardson’s
extrapolation by the index k and, the two numerical solutions related to the grids g and
g + 1 at the extrapolated level k by Ug,k and Ug+1,k. We use the following formula to
calculate a more accurate approximation

Ug+1,k+1 = Ug+1,k +
Ug+1,k −Ug,k

2pk − 1
k = 0, 1, · · · , G− 1 . (10)

In Table 3, we report the extrapolated values with N = 100, 200, 400 grid points for96

β = 1. The last extrapolated value is 3U2,2 = 1.090064908 and can be considered as our97

benchmark value for
d2u
dx2 (0). We can conclude that the reported extrapolated value is98

correct up to 9 decimal places.99

Table 3. Extrapolated values at origin x = 0 for
d2u
dx2 (0) with β = 1.

Ng
3Ug,0

3Ug,1
3Ug,2

100 1.090081494 - -
200 1.090069055 1.090064908 -
400 1.090065945 1.090064908 1.090064908

5. Concluding Remarks100

In this paper, the problem (1), that describes the MHD boundary layer flow of an101

incompressible fluid past a flat plate, is solved by the non-standard finite difference102

method on a quasi-uniform grid for the different magnetic parameters β. The values of103

the second-order derivative of the solution at the origin, for different values of parameter104

β, are reported in the Table 2. In order to verify the accuracy of the proposed method, the105

results are compared with those by Singh and Chandarki [13]. Moreover, in the case of106

the Blasius problem, we compare the missing initial condition with the one computed by107

Fazio [7] by a free boundary formulation of the Blasius problem. The computed values108

are found to be really accurate.109
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