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Abstract: This paper deals with a non-standard finite difference scheme defined on a quasi-
uniform mesh for approximate solutions of the Magneto-Hydro Dynamics (MHD) boundary layer
flow of an incompressible fluid past a flat plate for a wide range of the magnetic parameter. We
show how to improve the obtained numerical results via a mesh refinement and a Richardson
extrapolation. The obtained numerical results are favourably compared with those available in the
literature.
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1. Introduction

The simplest example of the application of the boundary layer theory is related to
the celebrated Blasius [1] problem. This problem describes the flow around a very thin

flat plate.
Citation: Fazio, R.; Jannelli, A. A The first goal of this paper is to solve numerically, with great accuracy, the MHD
Non-Standard Finite Difference Scheme boundary layer equation governing the flow of an incompressible fluid past a flat plate
for Magneto-Hydro Dynamics Bound- by a non-standard finite difference scheme defined on a quasi-uniform mesh. Numerical
ary Layer Flows of an Incompress- methods for problems like the one considered in this paper can be classified according
ible Fluid Past a Flat Plate. Math. to the numerical treatment of the boundary condition imposed at infinity. The oldest
Comput. Appl. 2021, 1, 0. and simplest treatment is to replace infinity with a suitable finite value, the so-called
https://dx.doi.org/ truncated boundary. However, being the simplest approach this has revealed within

the decades some drawbacks that suggest not to apply it, especially if we have to face a
given problem without any clue on its solution behaviour. Several other treatments have
been proposed in the literature to overcome the shortcomings of the truncated boundary
approach. In this research area they are worthy of consideration: the formulation of so-
called asymptotic boundary conditions by de Hoog and Weiss [2], Lentini and Keller [3]
and Markowich [4,5]; the reformulation of the given problem in a bounded domain
as studied first by de Hoog and Weiss and developed more recently by Kitzhofer et
al. [6]; the free boundary formulation proposed by Fazio [7] where the unknown free
boundary can be identified with a truncated boundary; the treatment on the original
domain via pseudo-spectral collocation methods, see the book by Boyd [8] or the review
by Shen and Wang [9] for more details on this topic; and, finally, a non-standard finite
difference scheme on a quasi-uniform grid defined on the original domain by Fazio and
Jannelli [10]. This non-standard finite difference scheme has been successively modified
by Fazio and Jannelli [11]. Moreover, this method has been applied to the numerical
solution of the perpetual American put option problem of financial markets, see Fazio
[12].
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This study concludes by comparing the current numerical results with those given
by the integral approximation method (ITM) and the non-integral technique (NIT) used
by Singh and Chandarki [13].

2. Model Problem

We consider a steady two-dimensional flow of a viscous fluid on a flat plate in the
presence of a given transverse magnetic field with small electric conductivity and large
transverse magnetic field. Introducing appropriate similarity variables, the governing
equations can be reduced to the following boundary value problem (BVP) [13]

d3u d2u du
du du
u(0) = 2(0) =0, Hle)=1,

where f is the magnetic parameter. Let us notice that for f = 0 the BVP (1) reduces to
the celebrated Blasius problem [1]. For a general class of problems, including (1), results
on the existence, uniqueness, and boundedness of solutions were obtained by Brighi
[14].

3. The Finite Difference Scheme

Without loss of generality, we consider the class of BVPs

du =f(x,u), x€]0,0,),

dx (2)

where u(x) is a d—dimensional vector with ¢ u(x) for ¢ = 1,...,d as components, f :
[0, 00) X RY — ]Rd, and g : R x R — R%. Here, and in the following, we use Lambert’s
notation for the vector components [15, pp. 1-5].

In order to solve the problem (2) on the original domain, we discuss first quasi-
uniform grids maps from a reference finite domain and introduce on the original domain
a non-standard finite difference scheme that allows us to impose the given boundary
conditions exactly. Let us consider the smooth strict monotone quasi-uniform maps
x = x(&), the so-called grid generating functions, see Boyd [8, pp. 325-326] or Canuto et
al. [16, p. 96],

x=—-c-In1-29), ©)]

and

¢

1-¢7
where ¢ € [0,1], x € [0,00], and ¢ > 0 is a control parameter. So that, a family of uniform
grids §, = n/N defined on interval [0, 1] generates one parameter family of quasi-
uniform grids x, = x(&,) on the interval [0, co]. The two maps (3) and (4) are referred
to as logarithmic and algebraic maps, respectively. As far as the authors” knowledge is
concerned, van de Vooren and Dijkstra [17] were the first to use these kinds of maps. We
notice that more than half of the intervals are in the domain with length approximately
equal to c and xy_1 = cInN for (3), while xy_1 =~ cN for (4). For both maps, the
equivalent mesh in x is nonuniform with the most rapid variation occurring with ¢ < x.
The logarithmic map (3) gives slightly better resolution near x = 0 than the algebraic
map (4), while the algebraic map gives much better resolution than the logarithmic map
as x — oo. In fact, it is easily verified that

X =cC

4)

g
1-¢’

—-In(1-¢) <c
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forall ¢, but¢ = 0.

The problem under consideration can be discretized by introducing a uniform grid
¢n of N+ 1nodesin [0,1] with {o =0and &, = &, + hwithh =1/N, so that x, is a
quasi-uniform grid in [0, oo]. The last interval in (3) and (4), namely [xy_1, Xx], is infinite
but the point xy_1 7 is finite, because the non integer nodes are defined by

n-+uw
xn—i-a:x(‘:: N )r

withn € {0,1,...,N —1} and 0 < a < 1. These maps allow us to describe the infinite
domain by a finite number of intervals. The last node of such grid is placed on infinity
so right boundary conditions are taken into account correctly.

We approximate the values of the scalar variable u(x) and its derivative at mid-
points of the grid x,, 1,5, forn =0,--- , N — 1, using non-standard difference discretiza-

tions
Xn4+3/4 — Xn4+1/2 Xn4+1/2 — Xn41/4
Upt1/2 R Uy + Up+1,
Xn4+3/4 — Xn+1/4 Xn4+3/4 — Xn4+1/4 )
du N Uy i1 — Uy

dx n+1/2 2(Xy13/4 — Xni1/a)

We emphasize that the key advantage of our non-standard finite difference formulation
is to overcome the difficulty of the numerical treatment of the boundary conditions at
the infinity. In fact, the formulae (5) use the value ux = u(o0), but not x5y = oo and then,
the boundary conditions at infinity are taken into account in a natural way.

For the class of BVPs (2), a non-standard finite difference scheme on a quasi-uniform
grid can be defined by using the approximations given by (5) above, and it can be written

as follows
U1 — Un —ayq10f(%011/2, 0ps1/2U0n41 + cpg1/2Un) =0,
for n=0,1,..., N—1 (6)
g(Up, Uy) =0,
where
Ap+1/2 = Z(xn+3/4 - xn+1/4) ’
bn+]/2 — x?l+l /2 - xn+1/4 (7)

7
Xn4+3/4 — Xn+1/4
Xn4+3/4 — Xn4+1/2

Cnt1/2 = ’
Xn+4+3/4 — Xn+1/4

forn = 0,1,...,N — 1. The finite difference formulation (6) has order of accuracy
O(N72). 1t is evident that (6) is a nonlinear system of d (N + 1) equations in the
d (N +1) unknowns U = (U, Uy, ..., Uy)T. For the solution of (6) we can apply the
classical Newton’s method along with the simple termination criterion

1 d N ‘
- A*U,| < TOL, 8)
d(N+1)[;n§)| nl

where AU, forn = 0,1,...,Nand ¢ = 1,2,...,d, is the difference between two
successive iterate components and TOL is a fixed tolerance.

4. Numerical Results and Comparison

In this Section, we present the numerical results obtained by solving the mathemati-
cal model (1) using the non-standard finite difference scheme (6) on the quasi-uniform
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grid defined by the logarithmic map (3) with control parameter ¢ = 2. Now, let us
rewrite the model (1) as a first-order system as follows

dlu 2

ax "

Pu

i x € (0,00) 9)
du 1,3 2

i wu— B(1—"u),

with

g(u(0),u(e0)) = ("u(0),%u(0), %u(c0) —1)7,

where u(x) is a three-dimensional vector with components ‘u(x) for ¢ = 1,2,3, and
£:0,00) x RY - R¥and g : R? x R — R?, with d = 3.

For all tests we consider the control parameter c = 2, a fixed tolerance TOL = 108
and, as a first guess for Newton's iteration, the following initial data

Lu(x) =05x, 2u(x) =1, Su(x) = exp(—x).

2
u
In Table 1, we report the numerical results obtained for the missing initial data 2 for
increasing points number N and B = 1.2. Here, “iter “stands for the number of the
Newton’s iterations.

2
Table 1. Numerical results related to Z—u (0) for different values of N.

2
d?u

N iter 2 (0)
10 6 1.1790527
20 6 1.1776846
40 6 1.1773411
80 6 1.1772552
160 6 1.1772336
320 7 1.1772282
640 7 1.1772269
1280 7 1.1772261

In Figure 1, we show the numerical solution obtained for § = 1.2 and N = 80.
The recovered value of the second order derivative of the solution at the origin is
2
ZTZ (0) = 1.177255155089504, obtained in 6 iterations.
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du d’u
' dx? dx?

Figure 1. Numerical solution for the problem (1) for B = 1.2 and N = 80.

The Table 2 lists the obtained numerical results for different values of parameter j3,
with § =0,0.2,--- ,2 and N = 100. For the sake of brevity, we have chosen to report
only the values of the wall shear stress, that is the second derivative value at the origin.
Within the same table, we can compare our results with those reported by Singh and
Chandarki [13]. The problem with B = 0 corresponding to the Blasius problem, and in

2
u (0) = 0.4695839 can be compared

this case, the computed missing initial condition

2
with the value 0.469599988361 computed by Fazio%%c] by a free boundary formulation of
the Blasius problem.

. d%u .
Table 2. Numerical results, related to el (0), and comparison.
B DIM[13] NIT[13] FD (this study)
0.0 0.46910 0.46920 0.4695839
0.2 0.66343 0.64819 0.6389912
0.4 0.80009 0.78749 0.7749739
0.6 091659 0.90562 0.8917536
0.8 1.01988 1.01002 0.9956343
1.0 1.11362 1.10460 1.0900815
1.2 1.20006 1.19170 1.1772448
14 1.28068 1.27285 1.2585668
1.6 1.35652 1.34913 1.3350710
1.8 1.42834 1.42132 1.4075142

2.0 1.49671 1.49002 1.4764751
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In order to improve the accuracy of the computed solution, we apply Richardson’s
extrapolation, using several refinements of the computational domain. On the computa-
tional domain of the problem, we build a quasi-uniform grid with a mesh-points number
equal to Ny and proceed with subsequent grid refinements by constructing meshes
with grid-point numbers Ng for g = 1,2, - - -, where N1 = rN; with refinement factor
r = 2. On each grid, the numerical solution Uy, ¢ = 0,1, - - - , G is computed using the
non-standard finite difference method. In order to reduce the calculations, we adopt
a continuation strategy, in fact, we use the final solution Ug obtained on the grid g as
initial guess for calculating the solution Ug 1 on the grid ¢ + 1. where the new grid
values are approximated by linear interpolations. We define the level of the Richardson’s
extrapolation by the index k and, the two numerical solutions related to the grids g and
g +1 at the extrapolated level k by U, x and U, 1. We use the following formula to
calculate a more accurate approximation

Ug i1k — Ugk
Ug+1,k+1 = ug+1,k + % k= 0, 1, s, G-—-1. (10)

In Table 3, we report the extrapolated values with N = 100,200,400 grid points for
B = 1. The last extrapolated value is >Up » = 1.090064908 and can be considered as our
2

benchmark value for dTLZI (0). We can conclude that the reported extrapolated value is

correct up to 9 decimal places.

2

Table 3. Extrapolated values at origin x = 0 for 27;[ (0) with p = 1.

Ng ’ ug,O 3 Ug,l } Ug,2

100  1.090081494 - -
200  1.090069055 1.090064908 -
400 1.090065945 1.090064908  1.090064908

5. Concluding Remarks

In this paper, the problem (1), that describes the MHD boundary layer flow of an
incompressible fluid past a flat plate, is solved by the non-standard finite difference
method on a quasi-uniform grid for the different magnetic parameters . The values of
the second-order derivative of the solution at the origin, for different values of parameter
B, are reported in the Table 2. In order to verify the accuracy of the proposed method, the
results are compared with those by Singh and Chandarki [13]. Moreover, in the case of
the Blasius problem, we compare the missing initial condition with the one computed by
Fazio [7] by a free boundary formulation of the Blasius problem. The computed values
are found to be really accurate.
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the corresponding author upon reasonable request.
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