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Abstract: Activation of the NLRP3 inflammasome plays a crucial role in innate immune response. 
During cell division, the NLRP3 inflammasome activation must be strictly controlled. Here, we 
discovered the anaphase promoting complex subunit 10 (Anapc10, APC10), a substrate recognition 
protein of the anaphase promoting complex/cyclosome (APC/C), is a critical mediator of the NLRP3 
inflammasome activation. APC10 protein interacts with NLRP3, and co-localizes with NLRP3 
protein in the cytoplasm. During interphase, APC10 interacts with NLRP3 to promote the NLRP3 
inflammasome activation. During mitosis, APC10 disassociates from the NLRP3 inflammasome to 
inhibit the inflammatory responses. This study reveals a distinct mechanism by which APC10 serves 
as a switch of the NLRP3 inflammasome activation during cell cycle.   
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1. Introduction 

 

The innate immune system is the first line of host defense which sense the signals including 
pathogenic microbes and cell stresses [1]. Pattern-recognition receptors (PRRs) start the innate 
immune system from detecting pathogen-associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs) [2]. Several types of PRRs have been identified, including 
the Toll-like receptor (TLR), the RIG-I-like receptor (RLR), the NOD-like receptor (NLR), and the 
C-type lectin receptor (CLR). One of the best-characterized inflammasomes consists of the NLR 
family is the PYRIN domain containing-3 (NLRP3), which contains a C-terminal leucine-rich repeat 
(LRR), a NACHT-associated domain (NAD), and a N-terminal PYRIN domain (PYD) [3]. The LRR 
domain is involved in sensing ligands and auto-regulation. After the activation of NLRP3 
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inflammasome, the NAD domain modified the NLRP3 oligomerization. The PYD domain of NLRP3 
interacts with the PYD domain of the adaptor protein, apoptosis-associated speck-like protein with 
CARD domain (ASC) [4]. NLRP3 recruited ASC and pro-Caspase-1 to promote the cleavage of pro-
Caspase-1, which in turn regulates the maturation of IL-1β [5]. The NLRP3 inflammasome has been 
reported related to several inflammatory disease named cryopyrin-associated periodic syndromes 
(CAPS) [6], such as Muckle-Wells syndrome, gout, and Alzheimer’s disease [7,8,9]. 

The anaphase-promoting complex/cyclosome (APC/C) is a E3 ubiquitin ligase that controls cell 
cycle progression by combining specific cell cycle-related proteins, such as Securin and Cyclin B 
[10,11]. APC/C activity is strictly dependent on its co-activators: Cdc20 and Cdh1, which are 
encoded by all known eukaryotic genomes [12]. The APC/CCdc20 activates the APC/C during early 
mitosis to promote the cell cycle from metaphase to anaphase, whereas Cdh1 activity is low due to 
its Cdk-dependent phosphorylation. The APC/CCdh1 regulates the exit from mitosis [13, 14]. The 
APC10 is the processivity factor of the APC/C, which promotes the substrates recognition by the 
destruction box [15]. Research suggested that APC10 stimulates processivity by limiting substrate 
dissociation, which enforces the ubiquitination stability [16]. 

This study demonstrated that APC10 interacts with NLRP3 to promote the assembly and the 
activation of the NLRP3 inflammasome. Notably, APC10 binds to NLRP3 tightly during interphase, 
whereas in mitosis, APC10 participates in APC/C assembly and disassociates from the NLRP3 
inflammasome to release the activation of the NLRP3 inflammasome. Overall, we discovered a 
distinct mechanism by which APC10 orchestrates the activation of the NLRP3 inflammasome during 
cell cycle control.  

 

Results 

 

2.1 APC10 protein interacts directly with NLRP3 protein 

In order to reveal the molecular mechanism underlying the regulation of the NLRP3 
inflammasome activation, we initially screened cellular proteins interacting with NLRP3 PYD 
domain using yeast two-hybrid system. The interaction was verified by co-immunoprecipitation (Co-
IP) in human embryonic kidney (HEK293T) cells. Co-IP results showed that APC10 interacted with 
NLRP3 (Figure 1A) and NLRP3 interacted with APC10 (Figure 1B). We also noted that endogenous 
APC10 interacted strongly with endogenous NLRP3 in mouse mononuclear/macrophage (J774A.1) 
cells (Figure 1C). Yeast two-hybrid results showed that APC10 interact with NLRP3 PYD domain 
directly (Figure 1D). And APC10 interacted with NLRP3 and its all domains LRR, NAD, and PYD 
(Figure 1E). Moreover, confocal microscopy demonstrated that NLRP3 and APC10 were colocalized 
and mainly distributed in cytoplasm (Figure 1F and Figure 1G). Collectively, these results 
demonstrated that APC10 protein interacts directly with NLRP3 protein. 
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Figure 1. NLRP3 interacts with APC10 through the LRR, NAD and PYD domains. (A and B) HEK293T 
cells were transfected with HA-APC10 plasmid and Flag-NLRP3 plasmid. Lysates were either analyzed 
directly by immunoblotting using anti-Flag and anti-HA antibody (WCL) or immunoprecipitated (IP) using 
control IgG and anti-Flag antibody (A) or control IgG and anti-HA antibody (B) and then analyzed by 
immunoblotting using anti-Flag and anti-HA antibody. (C) J774A.1 cell lysates were either analyzed directly 
by immunoblotting using anti-NLRP3 ana anti-APC10 antibody (WCL) or immunoprecipitated (IP) using 
control IgG and anti-NLRP3 antibody and then analyzed by immunoblotting using anti-NLRP3 and anti-
APC10 antibody. (D) Yeast strain Y2HGold was cotransformed with combination of binding domain (BD) 
and activation domain (AD) plasmid. Transfected yeast cells were grown on SD-minus Trp/Leu double 
dropout (DDO) plates, and colonies were transfered onto SD-minus Trp/Leu/Ade/His plates containing 
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Aureobasidin A and X-α-gal (QDO/A/X). (E) HEK293T cells were transfected with Flag-APC10 plasmid 
along with plasmids encoding HA-Vector, HA-NLRP3, HA-LRR, HA-NAD, or HA-PYD. Lysates were 
either analyzed directly by immunoblotting using anti-Flag and anti-HA antibody (WCL) or 
immunoprecipitated (IP) using anti-HA antibody and then analyzed by immunoblotting using anti-Flag and 
anti-HA antibody. (F) HEK293T cells were co-transfected with plasmid encoding Flag-APC10 and plasmid 
expressing HA-NLRP3. Subcellular localizations of Flag-APC10 (green), HA-NLRP3 (red) and nucleus 
marker DAPI (blue) were analyzed with Immunofluorescence microscopy. (G) Hela cells were co-transfected 
with plasmid encoding Flag-APC10 and plasmid expressing HA-NLRP3. Subcellular localizations of Flag-
APC10 (green), HA-NLRP3 (red) and nucleus marker DAPI (blue) were analyzed with Immunofluorescence 
microscopy. 

 

2.2 Anapc10 promotes the activation of the NLRP3 inflammasome 

The effect of APC10 on the regulation of the NLRP3 inflammasome activity was determined by 
over-expression of APC10 and knock-down of APC10 in a reconstructed NLRP3 inflammasome cell 
system. HEK293T cells were co-transfected with plasmids encoding the three components (NLRP3, 
ASC, and pro-Casp-1) of the NLRP3 inflammasome along with plasmid encoding the substrate pro-
IL-1β to generate a NLRP3 inflammasome cell system as described previously [17, 18]. The 
HEK293T-NLRP3 inflammasome system cells were transfected with plasmid encoding APC10. The 
results showed that the secretion of mature IL-1β in the supernatants was significantly enhanced by 
APC10 (Figure 2A) and the production of mature IL-1β (p17) was facilitated in the presence of 
APC10 (Figure 2B). In addition, the HEK293T-NLRP3 inflammasome system cells were transfected 
with shAPC10 (a shRNA specific to APC10). Notably, the secretion of mature IL-1β in the 
supernatants was significantly repressed in the presence of shAPC10 (Figure 2C) and the production 
of mature IL-1β (p17) was suppressed in the presence of shAPC10 (Figure 2D). Collectively, these 
results demonstrated that over-expression of APC10 leads to promoting the NLRP3 inflammasome 
activation, and knock-down of APC10 results in attenuating the NLRP3 inflammasome activation, 
and therefore, APC10 plays a positive role in promoting the NLRP3 inflammasome activation.  

 

 

Figure 2. APC10 promotes the activation of NLRP3 inflammasome in HEK293T cells. (A and B) 
HEK293T cells were transfected with plasmids encoding Flag-NLRP3, Flag-pro-IL- 1β, Flag-pro-caspase-1, 
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Flag-ASC and with (+) or without (-) APC10. Supernatants of the cell cultures were analyzed by ELISA for 
the detection of IL-1β secretion (A). Cell lysates were normalized for protein content and then analyzed by 
immunoblotting using antibodies for IL-1β, NLRP3, Caspase-1, ASC, APC10, and GAPDH (B). (C and D) 
HEK293T cells were transfected with plasmids encoding Flag-NLRP3, Flag-pro-IL-1β, Flag-pro-caspase-1, 
Flag-ASC, with (+) or without (-) shAPC10#2. Supernatants of the cell cultures were analyzed by ELISA for 
the detection of IL-1β secretion (C). Cell lysates were normalized for protein content and then analyzed by 
immunoblotting using antibodies for IL-1β, NLRP3, Caspase-1, ASC, APC10, and GAPDH (D). Data shown 
are means ± SD, *p<0.05, **p<0.01, ***p<0.0001. 

 

2.3 Lack of Anapc10 inhibits the endogenous NLRP3 inflammasome activation in macrophage 

Next, the role of endogenous APC10 in regulating the NLRP3 inflammasome activation was 
further evaluated in mice (J774A.1) cells transfected with siRNA specific targeting APC10 
(siAnapc10). Initially, we generated three siRNAs target mouse APC10, mouse siAPC10#1, mouse 
siAPC10#2, mouse siAPC10#3, and mouse siNC (as a negative control). The results showed that the 
most effective condition for the knock-down the endogenous APC10 expression was transfecting 
with siAPC10#3 at 50 nM (Figure 3A–C).  

Next, mice J774A.1 cells were transfected with siNC or siAPC10#3 and then primed with LPS 
and treated with Nigericin. We noted that IL-1β secretion was induced by Nigericin and Nigericin-
induced IL-1β secretion was attenuated in the presence of siAPC10#3 (Figure 3D). TNF- was also 
induced by LPS, however, LPS-induced TNF- was relatively unaffected by siAPC10#3 (Figure 
3E). These results suggested that APC10 specifically promotes IL-1β activation and secretion.  

The role of APC10 in regulating the NLRP3 inflammasome activation was further investigated 
in THP-1 cells. Lentivirus expressing three pairs of shRNA specific targeting APC10, shAPC10#1, 
shAPC10#2, and shAPC10#3, as well as shNC (as a negative control) were generated, respectively. 
THP-1 cells were transduced with the lentiviruses to generate THP-1 cells stably expressing shNC, 
shAPC10#1, shAPC10#2, and shAPC10#3, respectively. We noted that the level of Anapc10 protein 
was significantly attenuated by shAPC10#2 (Figure 3G), indicating that shAPC10#2 is the most 
effective shRNA in the knock-down of APC10. Next, THP-1 cells were transduced with the 
lentiviruses to generate THP-1 cells stably expressing shNC or shAPC10#2. The stable cells were 
differentiated into macrophages, which were then primed with LPS and treated with Alum or 
Nigericin. The results showed that the secretion of IL-1β in the cell supernatant was induced by 
Alum or Nigericin, whereas Alum- or Nigericin-induced IL-1β secretion was repressed by 
shAPC10#2 (Figure 3H). Similarly, the productions of IL-1β (p17) and Caspase-1 (p20) were 
induced by Alum or Nigericin, whereas Alum- or Nigericin-induced mature IL-1β (p17) and mature 
Caspase-1 (p20) productions were repressed by shAPC10#2 (Figure 3I). These results confirmed that 
APC10 promotes the production and secretion of mature IL-1β and mature Caspase-1, and thus 
playing a critical role in the activation of the NLRP3 inflammasome.  
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Figure 3. Lack of APC10 will inhibits the activation of NLRP3 inflammasomes in macrophages. (A–C) 
J774A.1 cells were transfected with siNC, siAPC10#1, siAPC10#2, or siAPC10#3 with 10 nM (A), 30 nM 
(B), and 50 nM (C). APC10 and GAPDH mRNAs were determined by quantitative RT-PCR (top), APC10 
and GAPDH proteins were detected by Western blot analyses (bottom). (D–F) J774A.1 cells were transfected 
with mouse siNC (50 nM) or siAPC10#3(50 nM) which were treated with LPS for 6 h and Nigericin for 1 h. 
Supernatants of the cell cultures were analyzed by ELISA for the detection of IL-1β secretion (D) and TNF-α 
secretion (E). Cell lysates were normalized for protein content and then analyzed by immunoblotting using 
antibodies for APC10 and GAPDH (F). (G) THP-1 cells were transduced with lentiviruses stably expressing 
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shRNA (shNC) and shRNA against Anapc10 (shAPC10#1, shAPC10#2, and shAPC10#3) and selected with 
puromycin for 2 wks. APC10 and GAPDH proteins were detected Western blot analyses. (H and I) TPA-
differentiated THP-1 cells stably expressing shNC or shAPC10#2 were treated with LPS for 6 h and Alum 
(400 µg/ml) for 6 h, or LPS for 6 h and Nigericin (10 µM) for 1 h. Supernatants of the cell cultures were 
analyzed by ELISA for the detection of IL-1β secretion (H). Cell lysates were normalized for protein content 
and then analyzed by immunoblotting using antibodies for IL-1β, Caspase-1, APC10, NLRP3, and GAPDH 
proteins (I). Data shown are means ± SD, *p<0.05, **p<0.01, ***p<0.0001. 

 

2.4 APC10 promotes the assembly of the NLRP3 inflammasome  

NLRP3 forms inactive preassembled complex under normal conditions, whereas it undergoes 
conformational changes to form active complex in association with ASC and pro-Caspase-1 upon 
stimulations. Next, the mechanism by which APC10 promotes the NLRP3 inflammasome activation 
was assessed. HEK293T cells were transfected with pFlag-APC10 along with pHA-vector, pHA-
NLRP3, pHA-ASC, or pHA-Caspase-1. Co-IP results showed that APC10 interacts with NLRP3, 
ASC, and pro-Caspase-1 (Figure 4A), suggesting that APC10 is tightly associated with the NLRP3 
inflammasome. In addition, HEK293T cells were co-transfected with pFlag-NLRP3 and pHA-ASC 
along with or without pFlag-APC10. Co-IP analyses indicated that APC10 promotes the interaction 
between ASC and NLRP3 (Figure 4B).  

In addition, THP-1 cells were transduced with the lentivirus-shNC and lentivirus-shAPC10#2 to 
generate THP-1 cells stably expressing shNC or shAPC10#2. The stable cells were differentiated in 
to macrophages, which were then primed with LPS and treated with Nigericin. We noted that ASC 
oligomerization was induced by Nigericin stimulation, whereas Nigericin-induced ASC 
oligomerization was attenuated by shAPC10#2 (Figure 4C). Immunofluorescence microscopy further 
confirmed that ASC oligomerization was induced by Nigericin stimulation, but Nigericin-induced 
ASC oligomerization was reduced by shAPC10#2 (Figure 4D, E). Collectively, these data 
demonstrated that APC10 interacts with the components of the NLRP3 inflammasome to promote 
the assembly of the inflammasome complex. 
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Figure 4. APC10 interacts with NLRP3 inflammasome to promote its assembly. (A) HEK293T cells were 
transfected with Flag-APC10 plasmid along with plasmids encoding HA-Vector, HA-NLRP3, HA-ASC, or 
HA-Caspase-1. Lysates were either analyzed directly by immunoblotting using anti-Flag and anti-HA 
antibody (WCL) or immunoprecipitated (IP) using anti-HA antibody and then analyzed by immunoblotting 
using anti-Flag and anti-HA antibody. (B) HEK293T cells were transfected with plasmids encoding HA-ASC, 
Flag-NLRP3 and with (+) or without (-) APC10. Lysates were either analyzed directly by immunoblotting 
using anti-APC10, anti-Flag and anti-HA antibody (WCL) or immunoprecipitated (IP) using control IgG and 
anti-Flag antibody and then analyzed by immunoblotting using anti-APC10, anti-Flag and anti-HA antibody. 
(C) ASC oligomerization in TPA-differentiated THP-1 cells stably expressing shNC or shAPC10#2 which 
were treated with LPS for 6 h and 10 μM Nigericin for 1 h. (D and E) TPA-differentiated THP-1 cells stably 
expressing shNC or shAPC10#2 which were treated with LPS for 6 h and 10 μM Nigericin for 1 h. 
Representative confocal immunofluorescence images (D) and quantification of endogenous ASC specks (E). 
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After stimulation, cells were fixed and stained for ASC (Green) and nucleus marker DAPI (Blue). Data shown 
represent results from three combined independent experiments in which more than 100 cells were counted in 
each experiment. Data shown are means ± SD, *p<0.05. 

 

2.5 The NLRP3 inflammasome activation is blocked during mitosis 

As the NLRP3 inflammasome activation is strictly controlled during mitosis [19], we thus 
investigated the effect of APC10 on the NLRP3 inflammasome activation during mitosis and 
interphase of the cell cycle. Chemical arrest by double-thymidine block (DTB) was used to 
synchronize J774A.1 cells at the G2/M phase border and released to synchronously enter different 
phases of cell cycle (Figure 5A). Notably, the highest intensity of the APC10/NLRP3 interaction was 
detected at 2 h of DTB release or at interphase and then gradually decreased as mitotic cells 
increased from 10 h to 20 h of DTB release or at mitosis (Figure 5B), indicating that a dynamic 
interaction between APC10 and NLRP3 was occurred during different cell cycle phases. Moreover, 
we noted that after LPS and Nigericin treatments, the level of secretion of IL-1β in synchronized 
mitotic cells was lower than that in unsynchronized cells (Figure 5C). These results suggested that 
APC10-NLRP3 complex exits in the interphase, which may promote the NLRP3 inflammasome 
activation.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 February 2021                   doi:10.20944/preprints202102.0112.v1

https://doi.org/10.20944/preprints202102.0112.v1


10 

 

 

Figure 5. NLRP3 inflammasome activation is inhibited during mitosis. (A–C) J774A.1 cells were arrested 
at the G2/M phase by treating with double-thymidine block (DTB), then release from arrest for different time 
periods before analysis. J774A.1 cells were treated with DTB release and were harvested at indicated times (A 
and B). Flow cytometric analysis of phosphorylated histone H3-positive mitotic cells (A). Lysates were either 
analyzed directly by immunoblotting using anti-APC10 and anti-NLRP3 antibody (WCL) or 
immunoprecipitated (IP) using control IgG and anti-NLRP3 antibody and then analyzed by immunoblotting 
using anti-APC10 anti-NLRP3 antibody (B). ELISA analysis of IL-1β in the culture supernatants of J774A.1 
cells primed with LPS and stimulated with nigericin (C). Release from DTB arrest at indicated times (grey) or 
concurrent with nigericin stimulation (black). The first bar was the supernants of J774A.1 cells without any 
treatments. The 2-6 bars were the supernants of J774A.1 cells stimulated with LPS for 6 hours and Nigericin 
for 1 hour. The second bar was the supernants of J774A.1 cells cultured without double thymidine block. The 
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third bar was the supernants of J774A.1 cells blocked by double thymidine release continuously. The 4-6 bars 
were the supernants of J774A.1 cells blocked by DTB release, and final release from G1 arrest into normal 
growth medium for 2 hours,10 hours, and 20 hours respectively. Data shown are means ± SD, *p<0.05. 

 

Taken together, we discover that APC10 is a critical regulator of the NLRP3 inflammasome 
activation. APC10 protein interacts and co-localizes with NLRP3 protein in the cytoplasm. During 
interphase, APC10 interacts with NLRP3 to promote the NLRP3 inflammasome activation, whereas 
during mitosis, APC10 disassociates from the NLRP3 inflammasome, and thus releasing the 
inflammatory responses (Figure 6). 

 

 

Figure 6. A hypothetical mechanism clarifying the Anapc10 mediates the NLRP3 inflammasome 
activation during cell cycle. During the interphase, APC10 directly binds with NLRP3 inflammasome to 
facilitate the assembly of NLRP3 inflammasome complex, which finally promotes the production and 
secretion of IL-1β and Caspase-1. When cell start mitotic division, the APC/C start to assembly, leading to the 
disparate of APC10 from NLRP3 inflammasome complex, which eventually inhibits the NLRP3 
inflammasome activation.  

 

2. Discussion 

 

Cell cycle requires the coordinated post-translational modification of the mitotic regulators like 
Securin and Cyclins, in which APC/C plays an irreplaceable role as an E3 ubiquitin ligase. In this 
study, we revealed that APC10 interacts with NLRP3 with different approaches including Co-IP and 
Immunofluorescence microscopy, revealing that APC/C complex and NLRP3 inflammasome 
complex mutual correlations. Substrates of the APC/C generally contain conserved sequence 
elements called the destruction box (D-box) and KEN-box [20]. Through the protein comparison, we 
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found there is no D-box or KEN-box in NLRP3, ASC and Caspase-1. To our knowledge, there was 
no report describing a direct interaction between APC10 and its substrate without D-box and KEN-
box. Moreover, Cdc20 and Cdh1 were co-activators of the APC/C, so that we postulate that APC10 
might recruit Cdc20 or Cdh1 to NLRP3, which need to be investigated in the future. The former 
study demonstrated that the carboxy terminus of APC10 anchors APC10 to the APC/C while the 
other region is required for the APC10 to enhance substrate binding to the APC/C [15]. To further 
demonstrate the APC10 function in NLRP3 inflammasome activation, we need to construct the 
truncation of APC10 to verify which domain binds to NLRP3. Interaction between NLRP3 and ASC 
is critical process of inflammasome assembly [21, 22]. The interaction of NLRP3 and ASC is 
promoted by APC10, indicating that APC10 enhances inflammasome assembly. In APC10 knock-
down THP-1 cells, the induction of ASC oligomer was attenuated after Nigericin stimulation. Taken 
together, we demonstrate that APC10 promotes the assembly and activation of the NLRP3 
inflammasome.  

Due to APC/C is a multi-subunits E3 ligase. Here, we conducted several experiments to 
demonstrate whether APC10 increases or decreases the ubiquitination of NLRP3. However, the 
results showed that APC10 had no influence on the ubiquitination of NLRP3. Cell cycle is a complex 
process that involves many regulatory proteins to guide the cell to product two daughter cells. The 
center of cell cycle are the cyclin-dependent kinases (CDKs), and cyclin proteins [23]. During 
mitosis, the nucleus membrane dissociation, the Golgi and ER membrane restructure. These 
processes may inhibit NLRP3 inflammasome activation, because the induction of IL-1β can induce 
the production of reactive oxygen species (ROS), which is capable of damaging DNA [24]. 
Activation of the NLRP3 inflammasome needs to be strictly controlled during mitosis. With the 
percentage of mitosis cells growth, the interaction between APC10 and NLRP3 decrease. Previous 
research showed that Cdc20 was localized in cell nucleus [25], Cdh1 located in cytoplasm and Golgi 
apparatus [26], and NLRP3 was thought localized in cytoplasm [27]. We speculate that due to the 
switch of Cdc20 and Cdh1, the substrate binding to APC/C is also changed. During mitosis, the 
APC/CCdc20 shows low affinity to NLRP3, the interaction between APC10 and NLRP3 is reduced. 
Moreover, previous study showed that NIMA-related kinases 7 (NEK7), a serine/threonine kinase 
previously implicated in mitosis also acts downstream of potassium efflux to regulates NLRP3 
inflammasome activation [28]. NEK7 binds to NLRP3 directly and the interaction is necessary for 
NLRP3-ASC formation, ASC oligomerization, and Caspase-1 activation [18]. We propose that 
NEK7 interacts with APC10, which clarify the mutual influence of cell cycle and inflammasomes 
completely.  

In summary, we discovered a distinct mechanism to control NLRP3 inflammasome, which 
involved in APC10 as a switch of both cell cycle and inflammatory responses. In interphase cells, 
APC10 binds to NLRP3 and enhances its assembly to promote NLRP3 inflammasome activation. 
When cell start to division, APC10 disassociates from NLRP3 inflammasome to repress its activation 
to keep cell maintenance. 

 

3. Materials and Methods 

 

4.1 Cell lines and cultures 

Human embryonic kidney cell line (HEK293T) and Hela cells was purchased from American 
Type Culture Collection. Mouse mononuclear/macrophage J774A.1 cell line was purchased from 
China Center for Type Culture Collection. Human monocytic cell line (THP-1) was a gift from Dr. 
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Bing Sun of Institute of Biochemistry and Cell Biology, Shanghai Institute for Biologic Sciences, 
Shanghai, China. J774A.1 cells, Hela cells and HEK293T cells were maintained in DMEM 
purchased from Thermo Fisher Scientific supplemented with 10% fetal bovine serum (FBS), 100 
U/ml penicillin, and 100 mg/ml streptomycin sulfate. THP-1 cells were maintained in RPMI 1640 
medium supplemented with 10% FBS, 100 U/ml penicillin, and 100 mg/ml streptomycin sulfate. 
Cells were maintained in an incubator at 37°C in 5% CO2. 

 

4.2 Antibodies and Reagents 

LPS, phorbol-12-myristate-13-acetate (TPA), dansylsarcosine piperidinum salt (DSS), and 
Thymidine were purchased from Sigma-Aldrich (St Louis, MO, USA). Nigericin and Alum were 
purchased from InvivoGen Biotech (San Diego, CA, USA). X-a-Gal was purchased from Gold 
Biotechnology (St. Louis, MO, USA). Aureobasidin A was obtained from Clontech Laboratories 
(Mountain View, CA, USA).Complete, EDTA-free Protease Inhibitor Cocktail Tablets provided in 
EASYpacks was purchased from Roche (Basel, Switzerland). Normal rabbit IgG, normal mouse IgG 
and Lipofectamine 2000 were purchased from Invitrogen Corporation (Carlsbad, CA, USA). 
PepMute siRNA Transfection Reagent was purchased from SignaGen Laboratories (Frederick, MD, 
USA). Fixation/Permeabilization Solution Kit was purchased from BD Biosciences (Franklin Lakes, 
NJ, USA).  

Monoclonal mouse anti-Flag (F3165), polyclonal rabbit anti-HA (H6908), and monoclonal 
mouse anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH; G9295) antibodies were 
purchased from Sigma. Polyclonal Rabbit anti-NLRP3 (15101), polyclonal rabbit anti-APC10 
(14807), polyclonal rabbit anti-IL-1β (12703) and polyclonal rabbit anti-Caspase-1 (3866) were 
purchased from Cell Signaling Technology (Beverly, MA, USA). Monoclonal mouse anti-ASC (sc-
271054) was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Cy3-conjugate 
donkey anti-rabbit IgG (A22220) and FITC-conjugate donkey anti-mouse IgG (A22120) antibodies 
were purchased from Abbkine (California, USA). Anti-Histone H3-phosphorylated (Ser28) antibody 
(641006) and Rat IgG2a, κ Isotype Ctrl antibody (400526) were purchased from BioLegend (San 
Diego, CA, USA). 

 

4.3 Yeast 2-hybrid screening  

Saccharomyces cerevisiae strain Y2HGold, control vectors pGBKT7, pGADT7, pGBKT7-p53, 
pGBKT7- Lamin A, pGADT7-T, and some reagents were purchased from Clontech Laboratories. 
All experimental procedures were done following the Matchmaker Gold Yeast 2-Hybrid System 
User Manual. 

 

4.4 Western blot analysis  

For Western blot analysis, cells were lysed in lyses buffer (50 mM Tris-HCl, pH7.4, 150 mM 
NaCl, 1% NP-40, 5 mM EDTA, and 10% glycerol). Protein concentration was determined by 
Bradford assay (Bio-Rad). Cell lysates were separated by 5–12% SDS-PAGE and then transferred to 
a nitrocellulose membrane (Millipore Sigma). The membranes were blocked in PBS containing 5% 
nonfat dried milk before incubation with specific antibodies. Blots were detected with the Clarity 
Western ECL substrate (BioRad) and protein bands were detected using a Luminescent Image 
Analyzer (Fujifilm LAS-4000). 
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4.5 Co-immunoprecipitation assays  

The whole-cell lysates were prepared by lysing cells with buffer (50 mM Tris-HCl, pH7.5, 150 
mM NaCl, 1% NP-40, 5 mM EDTA, and 10% glycerol). Lysates were immunoprecipitated with 
control mouse immunoglobulin G (IgG) or indicated primary antibodies at 4°C overnight and were 
incubated with ProteinA/G Sepharose (GE Healthcare) for 2–3 h. The beads were washed 3-5 times 
by washing buffer (50 mM Tris-HCl, pH7.5, 300 mM NaCl, 1% NP-40, 5 mM EDTA, and 10% 
glycerol) and resuspended with the same volume 2 x SDS loading buffer before immunoblot 
analysis. 

 

4.6 Quantitative PCR 

Total RNA was extracted with TRIzol reagent (Thermo Fisher Scientific) following the 
manufacturer’s instructions. Real-time quantitative RT-PCR was performed using the Roche LC480 
and ChamQ SYBR qPCR Master Mix (Vazyme) in a reaction mixture of 10 µl ChamQ SYBR qPCR 
Green MasterMix, 1 µl cDNA diluted template, 1 µl real-time PCR primers, and RNase free water to 
complete the 20 µl volume. All real-time PCR primers were designed in Nucleotide of National 
Center for Biotechnology Information (Bethesda, MD, USA). All primers were as follows: GAPDH 
(Mouse) forward, 5’-AGGTCGGTGTGAACGGATTTG-3’, GAPDH (Mouse) reverse, 5’-
TGTAGACCATGTAGTTGAGGTCA-3’; APC10 (Mouse) forward,5’-
ATGACCACACCGAACAAGACA-3’, APC10 (Mouse) reverse,5’-
TCCCGTAATTGATCCACTCCAA-3’. 

 

4.7 Lentiviral production and infection 

A pLKO.1-encoding short hairpin RNA (shRNA) vector for a scrambled (MilliporeSigma) or a 
specific-target molecule (MilliporeSigma) was transfected along with pMD2.G (an envelope 
plasmid) and psPAX2 (a packaging plasmid) into HEK293Tcells. Change fresh culture medium at 12 
h after transfection. HEK293T cells culture supernatants were harvested at 36 h and 48 h after 
transfection. Filtering the culture supernatants through a 0.45 µm filter to remove the cells. THP-1 
cells and HEK293T cells were infected with collected culture supernatants plus 8 µg/ml Polybrene 
(Millipore Sigma) for 24 h. Then, 1.5 µg/ml puromycin (Selleck) was added into lentiviral-infected 
cells for selection. Knockdown efficiency of each shRNA-targeted molecule was identified by RT-
PCR and immunoblot analysis. The targeting sequences of shRNA for human APC10 are as follows: 
sh-APC10#1, 5’-ACAACAGTGAAGACATTATGT-3’; sh-APC10#2, 5’-
ACAAGGCATCCGTTATATCTA-3’; and sh-APC10#3, 5’-CCCTTAACTGACAATCATAAG-3’.  

 

4.8 RNA interference 

Mouse APC10 siRNA and non-targeting control siRNA were obtained from RioboBio and 
resuspended in DEPC water at 100 µM. siRNA were transiently transfected using PepMute siRNA 
Transfection Reagent according to the manufacturer’s protocol. All mouse small interfering RNAs 
(siRNAs) were synthesized as follows: siM-APC10#1, 5’-TCAGGGAAATTGGGTCTCA-3’; siM-
APC10#2, 5’-CTCAGCCTCACTTAGTGAA-3’; siM-APC10#3, 5’-
CTAGAAACTTACTGGCAAT-3’. 
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4.9 Reconstitution of the NLRP3 inflammasome in HEK293T cells 

HEK293T cells grown at 60–80% confluence were seeded into 6-cm plates overnight and then 
transfected with plasmids encoding NLRP3 inflammasome component proteins and pro-IL-1β, 
including 1 µg NLRP3, 100 µg ASC, 400 µg proCaspase-1 and 1 µg pro-IL-1β. The cells were 
washed with culture medium 24 h after transfection and were incubated for 12 h. Cell pellets were 
collected and lysed in cell lysis buffer for immunoblot analysis and cell culture medium were 
collected for ELISA to detect mature IL-1β. 

 

4.10 Immunofluorescence microscopy 

All cells were washed 3 times with PBS, and cells were fixed with 4% paraformaldehyde for 15 
min at room temperature, washed 3 times with PBS, permeabilized with PBS containing 0.5% Triton 
X-100 for 5 min, washed 3 times with PBS, and finally blocked with PBS containing 5% BSA for 1 
h at room temperature. The cells were then incubated with the primary antibody at 4°C followed by 
incubation with FITC-conjugate donkey anti-mouse IgG (Abbkine) and Dylight 649-conjugate 
donkey anti-rabbit IgG (Abbkine) for 1 h. After they were washed 3 times with PBS, cells were 
incubated with DAPI (Vector Laboratories) for 5 min at room temperature, and then washed three 
more times with PBS. Finally, the cells were analyzed using a confocal laser scanning microscope 
(FluoView FV 1000; Olympus). 

 

4.11 Measurement of activated Casp-1 and mature IL-1β 

One milliliter medium from each well was mixed with 3 ml acetone, vortexed, stored at -20°C 
for 2 h and then centrifuged for 5 min at 340g. Remove the supernatants, and pellets were dried for 5 
min at room temperature. The pellets were dissolved in 50 µl PBS and mixed with SDS loading 
buffer for western blotting analysis. 

 

4.12 Cytokine measurements 

The concentrations of human IL-1 in culture supernatants were measured by commercially 
available ELISA kits (BD Biosciences). The concentrations of mouse IL-1 in culture supernatants 
were measured by ELISA kits (R&D Systems). The concentrations of mouse TNF-α in culture 
supernatants were measured by ELISA kits (R&D System).  

 

4.13 ASC oligomerization 

The TPA-differentiated THP-1 cells were lysed by buffer (50 mM Tris, pH7.5, 150 mM NaCl, 
1% Nonidetp40, 5 mM EDTA, and 10% glycerol) at 4oC. Lysates were centrifugated at 6000 rpm for 
15 min. The supernatants of the lysates were mixed with SDS loading buffer for western blot 
analysis with antibody against ASC. The pellets of the lysates were washed with PBS for three times 
and cross-linked using fresh DSS (2 mM, sigma) at 37oC for 30 min. The cross-linked pellets were 
then spanned down and mixed with SDS loading buffer for western blotting analysis.  
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4.14 Cell synchronization and cell cycle arrest 

J774A.1 cells were synchronized by DTB arrest. Briefly, sub-confluent J774A.1 cells were 
cultured in the presence of thymidine (2 mM) for 20 h before washing with PBS three times and 
change into normal growth medium for 9h. Cells were then cultured in the presence of thymidine (2 
mM) for another 20 h before final release from G1 arrest into normal growth medium. Cells were 
then collected at indicated times for subsequent analysis. 

Cells were collected and washed by PBS containing 2%FBS for three times, and then fixed in 
Fixation/Permeanilization solution (BD Biosciences) for 20min at room temperature. After washed 
by PBS containing 2% FBS for two times, stained with Alexa Fluor 647-conjugated phosphorylated 
(Ser28) histone H3 antibody in 100µl 2%FBS PBS. Cells were analyzed by flow cytometry and 
further analysis.  

 

4.15 Statistics 

All experiments were repeated at least 3 times with similar results. All results were expressed as 
the mean ± SD. Statistical analysis was carried out using the unpaired, two-tailed Student’s t test for 
2 groups and 1-way ANOVA for multiple groups (Prism5; GraphPad Software). 
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