Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

Article
Stateless One-time Authenticated Session Resumption in TLS
Handshake Using Paired Token

Byoungcheon Lee *4(20000-0002-1741-4192

1 Department of Information Security, Joongbu University, 305 Dongheon-ro, Goyang-si, 10279 Korea;

sultan@joongbu.ac.kr

Abstract: Transport Layer Security (TLS) is a cryptographic protocol that provides communications
security between two peers and it is widely used in many applications. To reduce the latency
in TLS handshake session resumption using pre-shared key (PSK) had been used. But current
methods in PSK mode handshake uses a fixed session key multiple times for the lifetime of session
ticket. Reuse of fixed session key should be very careful in the point of communications security.
It is vulnerable to replay attacks and there is a possibility of tracking users. Paired token (PT) is a
new secondary credential scheme that provides pre-shared key in stateless way in client-server
environment. Server issues paired token (public token and secret token) to authenticated client.
Public token represents signed identity of client and secret token is a kind of shared secret between
client and server. Once client is equipped with PT, it can be used for many symmetric key based
cryptographic applications such as authentication, authorization, key establishment, etc. It was
also shown that it can be used for one-time authenticated key establishment using the time-based
one-time password (TOTP) approach. In this paper we apply the PT and TOTP approach to TLS
to achieve stateless one-time authenticated session resumption. Server executes full handshake
of TLS 1.3 and issues PT to authenticated client. Then client and server can execute one-time
authenticated session resumption using PT in stateless way in server side. In every runs of session
resumption distinct session keys are established that the same PT can be used safely for longer
lifetime. If anonymous PT is used with renewal issuing, user privacy, untraceability and forward
security can be achieved easily. It will provide a huge performance gain in large-scale distributed
services.

Keywords: Transport Layer Security; Handshake; Session resumption; Paired token; Stateless;
One-time authenticated session resumption; Privacy; Untraceability

1. Introduction

Transport layer security (TLS) [1] is a cryptographic protocol that provides end-
to-end communications security and it is widely used in many applications in the real
world. The main design goal of TLS is providing authentication, confidentiality, and
integrity in end-to-end communications. It consists of two sub-protocols; handshake
protocol and record protocol. In handshake protocol client and server authenticate each
other and establish a secure session key, and then in record protocol all end-to-end
communications are encrypted with the secure session key.

The full handshake protocol of TLS is computationally expensive due to certificate-
based authentication and Diffie-Hellman key exchange. In recently released TLS 1.3
(RFC8446) [1] reducing latency in handshake protocol was a hot issue. Main approaches
for reducing latency in handshake were reducing round trip time (RTT) and using
session resumption with pre-shared key (PSK). If PSK mode is enabled in TLS 1.3, server
issues NewSessionTicket to authenticated client at the end of a successful full handshake
and client stores session key and NewSessionTicket. In subsequent connection requests
client sends NewSessionTicket in PSK extension, then server can recover the previous
session key and can skip the heavy full handshake.

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


https://www.mdpi.com
https://orcid.org/0000-0002-1741-4192
https://doi.org/10.3390/electronics1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://doi.org/10.20944/preprints202102.0102.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

20f13

NewSessionTicket contains PSK identity, either session identifier in session cache or
self-encrypted PSK in session ticket. Session cache approach is not practical in large-scale
distributed service, since it requires the management of session cache and the session
key retrieval is a stateful operation. Self-encrypted PSK in session ticket [2] approach
has the advantage that it does not require server-side state, but it reuses a fixed session
key multiple times during the lifetime of the session ticket. Reuse of fixed session key
should be very careful in the point of communications security. It is also vulnerable to
replay attacks [3] and denial of service (DOS) attack. There is a possibility of tracking
users [13].

Quick UDP Internet Connections (QUIC) is Google’s transport layer security pro-
tocol that provides secure connections over UDP [8]. To enhance the performance of
handshake protocol it provides quick session resumption using public key cryptography.
Recently there is an approach to combine TLS 1.3 and QUIC together, i.e., replace the
handshake of QUIC with the TLS handshake and PSK-based session resumption [9-12].

Paired token (PT) is a new secondary credential scheme that provides stateless
PSK in client-server environment [15,16,19]. Assume that there is an independent
authentication system using some primary credential. Server authenticates the client
with the primary credential and then issues paired token (public token and secret token)
to authenticated client as a secondary credential. Public token has the role of signed
identity that represents the authenticated state of client. Secret token is a kind of shared
secret between client and server with a special property that server can compute secret
token anytime from a given public token, thus server does not need to store issued client
tokens. This feature provides the stateless management of client credential in server side.
PT can be applied to many symmetric key based cryptographic applications such as
authentication, authorization, secure communications, etc. Specially it was shown that it
can be used for one-time authenticated key establishment using the time-based one-time
password (TOTP) approach. PT can provide identification of client (with public token),
time-based one-time authentication of client and key establishment (with secret token)
in a single logical step. This feature was applied to achieve stateless re-association in
WPAS3 [17,18].

In this paper we apply the PT-based one-time authenticated key establishment to
TLS 1.3 to achieve stateless one-time authenticated session resumption. In our approach
server issues PT to authenticated client after the full handshake is finished successfully,
and then in subsequent connection requests client uses PT for session resumption.
The resulting session resumption protocol establishes distinct session keys for every
connections that the same PT can be used multiple times for longer period of lifetime.
We show that the proposed session resumption protocol can improve the performance
of TLS a lot. The proposed scheme has the following distinguished features.

1. It provides time-based one-time authenticated key establishment in session resump-
tion in stateless way:.

2. The same PT can be used multiple times for session resumption for longer period
of lifetime.

3. It satisfies essential security features such as replay resistance, denial of service
(DQOS) resistance.

4. With the use of anonymous PT and secure renewal of PT, session resumption
protocol can provide privacy, untraceability, and forward security.

5. In large-scale distributed environment it provides huge performance gain and
scalability with the help of stateless service property.

This paper is organized as follows. Section 2 reviews TLS 1.3 and paired token.
Section 3 presents the proposed stateless session resumption protocol in TLS. Section 4
provide security and performance analysis. Finally section 5 concludes the paper.


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

30f13

2. Related Works
2.1. TLS1.3

Secure channel establishment protocols such as Transport Layer Security (TLS) are
one of the most important cryptographic protocols that enables the security of Internet
traffic. TLS provides authentication, confidentiality, and integrity in end-to-end com-
munications. It consists of two sub-protocols; handshake protocol and record protocol.
In handshake protocol client and server authenticate each other and establish a secure
session key, and then in record protocol all end-to-end communications are encrypted
with the secure session key. There are two handshake protocols; full handshake protocol
for the first time connection and session resumption protocol for the efficient handshake
with revisiting clients.

The full handshake protocol of TLS is computationally expensive due to certificate-
based authentication and Diffie-Hellman key exchange. In recently released TLS 1.3
(RFC8446) [1] reducing latency in handshake protocol was a hot issue. Main approaches
for reducing latency in handshake were reducing round trip time (RTT) and using
session resumption with pre-shared key (PSK) [2].

Figure 1 shows the full handshake protocol in TLS 1.3. Full handshake consists of 3
parts; key exchange, server parameter transport, and authentication. Key exchange is the
first part of the protocol which enables to generate fresh session key using Diffie-Hellman
key agreement. Server parameter transport is used to send necessary server parameters
to client. Authentication part is used to provide mandatory server authentication and
optional client authentication by exchanging certificates and digital signatures. Itis a
heavy handshake due to public key computations in certificate verification, signature
verification, and DH key agreement, and required round trip time is 2. Heavy full
handshake is inevitable in initial handshake, but repeating it for every connections is not
a good idea.

Client Server

Initial Handshake:
ClientHello
+ key share = -------- >
ServerHello
+ key_ share
{EncryptedExtensions}
{certificateRequest*}
{Certificatex}
{CertificateVerify*}
{Finished}
<-—------ [Application Datax]
{certificate*}
{CertificateVerify*}
{Finished} @ —------- >
R [NewSessionTicket]
[Application Data] <-----— > [Application Data]

Figure 1. Full handshake and issuing NewSessionTicket in TLS 1.3 [1].

Subsequent Handshake:

ClientHello
+ key share*
+ pre_shared key = -------- 2
ServerHello
+ pre_shared key
+ key_ sharex*
{EncryptedExtensions}
{Finished}
<-—------- [Application Data*]
{Finished} ———————— >
[Application Data] <—------ > [Application Datal

Figure 2. Session resumption using PSK in TLS 1.3 [1].


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

40f13

2.2. Session Resumption

If PSK mode is enabled in TLS 1.3, efficient session resumption can be used. Figure
2 shows the session resumption protocol using PSK. In figure 1 note that server issues
NewSessionTicket to client at the end of a successful full handshake and client stores
session key and NewSessionTicket. In subsequent connection requests client sends
NewSessionTicket in PSK extension, then server can recover the previous session key
and can skip the heavy full handshake. NewSessionTicket contains PSK identity, either
session identifier in session cache or self-encrypted PSK in session ticket.

In session cache approach server stores resumption secrets of recent sessions and
issues their unique lookup keys to clients. It requires stateful management of PSKs in
the form of database or cache. Session cache approach is not practical in large-scale
distributed service, since it requires the management of session cache and the session
key retrieval is a stateful operation.

In session ticket approach server has a long-term symmetric encryption key called
the session ticket encryption key (STEK). Instead of storing client’s resumption secret
in a local database, the server encrypts it with the STEK to create a session ticket and
gives it to client [2]. If client requests session resumption with the session ticket, server
can decrypt it to retrieve the resumption secret, thus local management of PSK is not
necessary. Session ticket approach has the advantage that it does not require server-side
state, but it reuses a fixed session key multiple times during the lifetime of the session
ticket. Reuse of fixed session key should be very careful in the point of communications
security. It is also vulnerable to replay attacks [3] and denial of service (DOS) attack.
There is a possibility of tracking users [13].

2.3. Stateless One-time Authenticated Key Establishment Using Paired Token

In OAuth 2.0 bearer token [4,5] and JSON web token (JWT) [6] server issues static
bearer token to authenticated client. If a client presents a valid bearer token to the server
in subsequent requests, server verifies the token, accepts the authenticated state of client
and provides proper services. In this case the same static token is sent to the server
multiple times during the lifetime of token and it is considered as a kind of credential.
So it is subject to eavesdropping and replay attack that the whole web service should be
protected with secure communication channel such as https [7].

Paired token (PT) [15,16,19] was originally proposed to solve the static nature
of bearer token authentication and secure channel requirement in web environment.
PT is a new secondary credential scheme that provides stateless pre-shared key (PSK)
more efficiently in a client-server environment. It can be used for time-based one-time
authenticated key establishment multiple times without requiring secure communication
channel. Assume that there is an independent authentication system between client
and server using some primary credentials. The server authenticates the client using a
primary credential and then issues a paired token (public token and secret token) to the
authenticated client as a secondary credential. The public token has the role of signed
identity of the client that represents the authenticated state of the client. A secret token
is a kind of shared secret between the client and server with a special property such
that the server can compute secret token any time from a given public token; thus, the
server does not need to save issued client tokens. Here, we describe the scheme in the
following two stages.

2.3.1. Initial Authentication and Issuing Paired Token

Let’s consider a simplified authentication model between client and server. Client
is registered to the server and has some primary credential for initial authentication.
Assume that server has a master secret key K which is used for issuing tokens. It is used
only inside the server and never exposed outside.


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

50f13

In initial authentication client logs into the server using primary credential, for
example, using ID and password. If initial authentication is successful, server computes
two tokens as follows.

1. Public token T, = Gjwr(K,Info) : a normal JSON web token (JWT) on user’s
authorization information I fo.
2. Secrettoken T; = G ]WT(K, Tp) : arecursive JWT on the above public token T),.

Here Gy (K, Info) is an abstract notation of issuing process of a JWT [4-6,19]. It
represents that server prepares user-specific authorization information Iz fo and puts it
in the Payload, prepares proper Header, and generates a Signature, a HMAC value of
the Header and Payload using the server’s secret K,

Signature = HMAC(K, Header||Payload).

Then Token = [Header.Payload.Signature] is a valid JWT issued to the user by the server.
Infois a JSON object prepared by the server that server can decide which information
is included in Info according to its policy. To issue JWT with limited lifetime, Info can
have information on issuing time and expiration time. If T}, is used after its lifetime has
passed, it will be invalidated. Ts is computed from T, and it will be computed frequently
in the server in later authentication stages. Therefore no time information is included
in the computation of T; to make these repeated computations be easy with no lifetime
check. < Ty, Ts > is a paired token that T; is valid only if T} is valid.

Server sends < Tp, Ts > to client through a secure communication channel. In
the issuing stage of PT, secure communication channel is required to send PT to client
securely. Note that initial authentication requires secure communication channel to send
the password securely and issuing paired token can use the same secure communication
channel. As a secure communication channel we can use https, or other custom secure
channel. Client stores paired token securely in application or key storage. In web security
environment paired token can be stored in browser storage such as local storage.

Public token T}, represents a signed identity of the user and will be sent to the server
to provide identification of client. Note that its validity can be verified only by the server
who has issued it, since the master secret key K is needed in verification. Secret token T
is a kind of shared secret between client and server, and it will never be sent to server
directly. Server does not need to save < Ty, Ts > in DB, since T, will be presented by the
client and Ts can be computed anytime from T,. Therefore T; is an inherently shared
secret with the server in a stateless way. Maybe server can decide to store T), for logging
purpose, but it will not be used in later authentication and key establishment stage.

2.3.2. One-Time Authenticated Key Establishment Using Paired Token

If client is equipped with PT as shown above, single message quick one-time
authenticated key establishment is possible using PT. Now client equipped with <
Ty, Ts > wants to establish a fresh session key with the server.

Client gets current time ¢, computes a time-based one-time authentication value
auth, computes one-time authenticated key k as follows.

k = HMAC(T;, t|| T, || “key”). @)

Here “key” is a pre-agreed label for key generation. Client sends < Tj, t, auth > to the
server.
Upon receiving < Ty, t, auth >, server first verifies the validity of auth as follows.

1. Verifies the validity of T, and identifies who is requesting authentication.
2. Getsits own current time and checks that client’s request time f is within allowed
limit (checking liveness of request to defend against replay attack).


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

6 of 13

3. Computes the secret token Ts = Gy (K, Ty) from T, and then verifies the validity

auth = HMAC(T,, #||T,). ®)

If it is valid, server computes the same one-time authenticated key k in (2) using Ts.
Here auth is a time-based one-time authentication of client and proves the possession of
Ts. It is an application of time-based one-time password (TOTP) scheme [14] to paired
token scenario to prove the possession of T; without exposing it. Thus the same PT can
be used multiple times for one-time authenticated key establishment.

PT is a fully hash-based secondary credential scheme that its use in authentication
protocol is very efficient. It is specially designed credential that can be used in 1-to-1
communication in client-server environment. It cannot be used in other communication
channels with other servers.

3. Stateless One-Time Authenticated Session Resumption Using Paired Token

Since PT is a secondary credential scheme that provide stateless PSK in client-server
environment and it can be used for one-time authenticated key establishment, it is a
perfect solution for efficient session resumption in TLS. We apply the stateless PSK
feature of PT to TLS handshake protocol to achieve efficient session resumption. In TLS
1.3 there are two handshake protocols; full handshake and session resumption. We will
modify TLS 1.3 protocols in the following ways.

1. In the full handshake protocol PT is issued to authenticated client in NewSes-
sionTicket.
2. In the session resumption protocol session key is established using PT.

3.1. Full Handshake and Issuing PT

Basically this stage is the same as the full handshake in TLS 1.3 except that PT
is issued in NewSessionTicket message. Full handshake contains mandatory server
authentication using server certificate and optional client authentication using client
certificate. Key exchange in the first two moves are used to compute fresh shared session
key between client and server, and it is used to send NewSessionTicket (PT) securely to
client. Server computes public token and secret token as follows.

1. Public token T, = Gywr(K, Info).
2. Secret token Ts = Gywr (K, Tp).

Server encrypts < Tj, Ts > using the shared session key and sends it to client. Then
client decrypts it to recover < Ty, Ts > and saves it in client system.

In public token server can include any client-specific information such as IP address,
OS information, browser information, issuing time, lifetime of the token, etc, according
to its policy. It is signed by the server with the master secret key K and its validity is
verifiable only by the server who knows K. Secret token is generated by recursively
signing the public token with no lifetime information. It can be generated only by the
server.

Since the same PT will be used multiple times for session resumption during the
lifetime of PT, this process of issuing PT is executed very infrequently only in full
handshake. If client is equipped with a valid PT, session resumption using PT will be
used more dominantly.

3.2. Stateless One-Time Authenticated Key Establishment Using Paired Token

If a client is equipped with PT, secure session key can be established very quickly
in stateless way using PT. This process is executed in every resumption requests and
produces different session keys though the same PT is used repeatedly. Here we mainly
focus on how PSK is computed from the protocol in client and server. Then PSK-based
real session key establishment and extra services can rely on the underlying TLS 1.3 PSK


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

7 of 13

functions. According to the requirement of forward security we consider the following 2
protocols.

3.2.1. Model 1: PSK from Authenticated Key Transport

Client and server already share the same secret token in stateless way, thus they can
establish PSK in any pre-agreed manner. For example, client prepares current time t and
computes

auth = HMAC(Ts, t|[Ty), 4)

PSK = HMAC(T, || T, || “key”). (5)

Client sends < T, t, auth > to server.
Upon receiving < Tp, t,auth >, server verifies the validity of auth in the following
steps.

1. Verifies the validity of T; using K and identifies who is requesting session resump-
tion.

2. Gets his own current time and checks that the time difference from client’s request
time ¢ is within certain allowed limit (checking liveness to defend against replay
attack).

3. Computes the secret token Ts = Gy (K, Ty) from T, and then verifies the validity

auth = HMAC(T,, #||T,). 6)

If all the above verifications are successful, server computes the PSK using the same
equation 5.

Here auth is a time-based one-time authentication (proof of knowledge of Ts) of
client. It can be generated only by the client who knows T and its validity can be verified
only by the server who knows K. Any eavesdropping and replay of the protocol at
another time will be determined to be invalid. Eavesdropping attacker cannot compute
PSK, since it does not have T.

Now client and server share the same PSK and it can be used to compute secure
session key for record protocol using the underlying PSK-mode functions of TLS 1.3.
Note that real session keys will be distinct depending on client’s request time . This is a
real 0-RTT handshake, since client can send encrypted application level data in the first
request message.

This is a single message, one-way, deterministic key establishment. It will be very
useful for lightweight client and intermittent communications such as IoT applications.

3.2.2. Model 2: PSK from Authenticated Key Establishment and DH

The above key establishment protocol does not provide forward security. If an
attacker gets access to T in any way, he can compute all the previous PSKs during the
lifetime of PT. Here we incorporate ephemeral Diffie-Hellman key exchange to achieve
forward security.

Client prepares current time f and ephemeral DH key share ¢* and computes

authl = HMAC(Ts, || T, ||g%). @)

Client sends < Tp, t, ¢*, authl > to server.
Upon receiving < Ty, t,g*,authl >, server verifies the validity of authl in the
following steps.

1. Verifies the validity of T, and identifies who is requesting authentication.

2. Gets his own current time and checks that the time difference from client’s request
time t is within certain allowed limit (checking liveness to defend against replay
attack).


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

8 of 13

3. Computes the secret token Ts = Gy (K, Ty) from T, and then verifies the validity

authl = HMAC(T,, || T,||gY). ®)

If all the above verifications are successful, server prepare its ephemeral DH key
share ¢¥ and computes
auth2 = HMAC(Ts, t||Ty||g™Y), )

PSK = HMAC(Ts, ]| T, ||g*||“key”). (10)

Server sends < Tj, t, g%, ¢¥, auth2 > to client.

Then client can compute ¢*¥ and verify the validity of auth2. If it is valid, client
computes the same PSK using the same equation (10). Now client and server share the
same PSK and compute secure session key for record protocol using the underlying
PSK-mode functions of TLS 1.3. This key establishment protocol provides forward
security with one round of extra communication.

If client wants to send encrypted application level data in the first request message,
it can do it by using a temporal PSK’

PSK’' = HMAC(Ts, t|| Ty ||g*||“key”). (11)

Server can compute the same PSK’ and decrypt it. Thus, it can provide 0-RTT handshake,
though the first message does not provide forward security.

3.3. Model 3: Privacy and Untraceability using One-Time Anonymous PT

In the proposed scheme public token is sent to the server in plain communication
channel as an identification of client, therefore eavesdropping network attacker can
identify the client from the communication traffic. If privacy of client is a prime concern,
server can issue anonymous PT with no client-specific information in public token. If
server needs to identify the client from the anonymous public token, server can keep
the record of the relation between client and issued anonymous public token inside the
server. It will depend on server’s policy.

If a fixed anonymous PT is used for long period of time, network attacker can
try to trace the activity of the same client. To provide untraceability, server can renew
anonymous PT in every connections; i.e., server issues new anonymous PT to the same
client and it is used only once. Issuing renewed PT to already authenticated client
through an already established secure channel is not heavy in performance and it can be
managed in automatic way. Server can trace the identity of client if it keeps the record of
renewed PTs, but network attacker cannot trace the renewed PTs. Note that anonymous
PTs issued by the server have no inter-relation. Therefore if one-time anonymous PTs
are used and previous PTs are discarded, forward security can be achieved very easily.

3.4. Discussion on Further Extensions

We consider further extension scenarios according to service requirements.

Renewal of session key. To improve the security of symmetric key cryptography,
session key needs to be renewed periodically. In the proposed scheme renewal of session
key is very easy. Server can request renewal of session key to client, and then client can
start new key establishment using new current time. It can be executed automatically
between client and server. Renewal of session key will not be exposed to network
attackers, since it is executed inside the previously established secure communication
channel.

Per-request secure communications. If service is provided in intermittent manner,
managing a secure session like https can be a burden. For example, normal UDP based
services such as DNS has intermittent nature. Transactions between IoT devices and
IoT server are quite intermittent. Current DTLS is a UDP security protocol, but it still
uses session-based TLS handshake, so it is not best suited in this scenario. If we apply


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

90f13

the Model 1 key establishment protocol, it is very efficient that we don’t need to keep
the session information. It is a real per-request secure communication ready for use in
intermittent connection.

Delayed full authentication. Assume that client and server quickly resumed a secure
communication channel using PT, but want to check the authenticity of peers again at
later time. Then they can execute full authentication again inside the already established
secure channel. If a party cannot be successful in this delayed full authentication, the
secure connection is stopped and new full handshake will be requested. Full hand-
shake is computationally heavy since it requires secure session establishment, but full
authentication inside a secure communication channel is not heavy.

Rotation of server’s master secret key K. To improve the security of service, server
can renew master secret key K periodically. If K was renewed and client has PT issued
by using old K, then client’s PT is invalid and client will be requested to execute full
handshake again. If K is renewed while client was communicating with the server in a
previously established secure session, then server can temporarily use two master secret
keys, issue new PT using new master secret key, and then guide the client to restart the
session. All this renewal process can be done automatically inside previously established
secure communication channel.

Scalability in distributed multiple server environment. Distributed multiple server
environment is common in large scale services with huge number of concurrent clients.
In this case it is a hot issue how to provide TLS secure communication service in scalable
way. In the proposed scheme scalable TLS service is possible if the master secret key K is
shared among multiple servers. Since multiple servers are normally managed by the
same entity, sharing K securely in the pool of TLS servers is a reasonable assumption.

Backward compatibility of TLS. TLS 1.3 provides session ticket-based session re-
sumption and the proposed scheme provides PT-based session resumption. These
two handshakes can be implemented independently and one of them can be selected
according to choice. So, backward compatibility can be achieved easily.

Separation of key establishment from full handshake. If PT-based key establishment
is acceptable due to its efficiency, separation of key establishment function from full
handshake can be a better choice, though it is a significant change in protocol compared
with TLS 1.3. In this case the role of full handshake is limited to authenticating peers
and issuing PT safely to authenticated client. Key establishment function is executed
in separate protocol using PT. In this scenario full handshake will be executed very
infrequently. In most lifetime of TLS usage, PT-based stateless key establishment will
be used dominantly. More in-depth discussion will be required on this matter in the
research community.

Integration with application level authentication. TLS is a transport layer security
protocol and it normally provides communications security which is independent from
application layer security. In TLS server authentication is mandatory, but client authenti-
cation is optional. Client authentication using certificate is hard to manage in the real
world.

PT is a secondary credential that is issued to client by the server after a primary
authentication is successful. This authentication scenario is very similar to application
level authentication. If any proper API can be provided that can connect TLS handshake
with application level authentication such as ID and password, then TLS handshake can
be integrated with more explicit application level authentication and client authentication
can be used more easily.

4. Analysis
4.1. Comparison of Features

We compare the features of the proposed PT-based session resumption with the
session ticket-based session resumption.


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021

doi:10.20944/pre

10 of 13

In the session ticket-based session resumption, the session key itself is a credential
and the same session key is used again in the resumed session. Thus reuse of the fixed
session key multiple times in different sessions should be very careful. When client
requests session resumption by sending session ticket, there is no explicit authentication
mechanism that server cannot distinguish replay attacks or forged requests. Therefore it
is subject to replay attack and denial of service (DOS) attack. If the same session key is
reused multiple times, attackers can trace the activities of clients and forward security
cannot be achieved [13].

On the other hand, the proposed PT-based session resumption provides explicit
identification of client (by verifying T),), explicit one-time authentication auth (proof of
knowledge of T), and establishment of one-time session key in a single logical step. In
this case credential is the secret token and session keys are computed from the secret
token. Every resumed sessions will have distinct session keys because of the time
information. Thus the same PT can be used for session resumption multiple times
for longer period of lifetime. Since every session resumption requests contain explicit
one-time authentications of client, it cannot be reused at later time. Any trial of DOS
attack with forged request will be detected and stopped in earliest time. If renewal
issuing of anonymous PT is used like in Model 3, privacy and untraceability of client
is guaranteed. If anonymous PT is used only once and previous PT is discarded, then
forward security is achieved easily.

Both approaches provide 0-RTT secure communication feature, but the proposed PT-
based session resumption provides 0-RTT with distinct session keys in every connected
sessions.

Table 1: Comparison of features; session ticket-based vs. PT-based session resumptions.

rints202102.0102.v1

] Features || Session ticket | PT-based (Model 3) |
Credential session key secret token
Session key fixed one-time
Multiple usage Yes Yes
Authentication No auth one-time auth
Anti-replay No Yes
Anti-DOS No Yes
Anti-tracing No Yes
Forward security No Yes
0-RTT Yes Yes

Table 2: Comparison of features; Model 1 - 3.

] Features | Model 1 | Model 2 | Model 3 |
Forward security No Yes Yes
Anti-tracing No No Yes
Performance High Low Low

Now we compare the features of the proposed 3 models of session resumption.

Model 1 is the simplest and most efficient key establishment scheme. It cannot
provide forward security and anti-tracing, but it is a single message one-way key es-
tablishment started by client. If the server can accept the trustworthiness of client, or
if the server normally checks the authenticity of client in other ways, then this kind of
one-way key establishment is very useful. If the communication model is intermittent
rather than requiring continuous connection, this is best suited secure communication
model. For example, in IoT applications communications between IoT end devides and


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

11 0of 13

IoT server is quite intermittent that keeping session is heavy. In this case per-request
secure communication is possible using Model 1 session resumption.

Model 2 provides forward security by using extra exchange of DH key shares. It
requires computation of modular exponentiations and 1 additional round of communi-
cation. If the communication model requires stable session connection for longer time
and forward security is a prime concern, this is a reasonable session resumption model.
Since the same PT is used multiple times, it cannot provide anti-tracing.

Model 3 provides both forward security and anti-tracing by using one-time anony-
mous PT, i.e. anonymous PT is used only once and renewed in every resumed sessions.
PT is issued and managed in server and client automatically by the software and this
renewal process is executed safely inside the already established secure session. Thus
this kind of renewal of PT is not heavy in performance. If the server needs to trace the
client from the anonymous PTs, it has to keep the records of renewal history, which will
require stateful operation in server side.

4.2. Security Analysis

Unforgeability. Public token is a publishable information and it is sent to server over
plain communication channel, while secret token is assumed to be kept secret in client.
Server can compute secret token anytime from given public token using the master secret
key K. Network attackers can try to collect client’s public token and protocol messages,
and then try to compute the secret token or even server’s secret key K. Attackers can try
to forge another session resumption request without having secret token. The security of
this kind of attacks will depend on the security of the underlying HMAC function. Note
that JWT contains a HMAC value signed by server. A successful forgery of JWT will be
reduced to a successful forgery of the underlying HMAC without having master secret
key.

Resistance to replay attack. Any kind of eavesdropping and replaying attack will be
difficult since time-based one-time authentication auth is sent to the server in the first
move of request, and the server will check its validity. If auth is not valid, server will
stop the session resumption protocol and will require full handshake. Simple replay
attack will not work at another time. Network attackers can try to concurrently replay
other client’s session resumption request, but they do not have any advantage since they
cannot compute the real session key without the secret token.

Resistance to DOS attack. Attackers can try to attack the availability of service by
sending incorrect requests to the server. But the server can detect this kind of attacks in
the earliest time. Client’s request message in the first move message contains time-based
one-time authentication auth and the verification process is very efficient with just a few
hash computations. Server can detect and stop invalid session resumption requests from
attackers very early and the attackers will be requested to start from the full handshake
again.

Resistance to MITM attack. Man-in-the-middle (MITM) attack is an issue related with
the full authentication. Client has to be able to verify the mandatory server authentication
and the server has to issue PT only to authenticated client. Once client is equipped
with PT correctly issued by the server, client and server have a special 1-to-1 secure
communication channel. If server issued PTs correctly with different Info at different
time, every clients will have different PTs. Any attacker in the middle cannot intrude
into the secure communication channel established using PT between client and server.

Resistance to session hijacking attack. Any trial of simple session hijacking will not
be successful, since attacker cannot continue the protocol without knowing the secret
token and established session key is never exposed over the communication network.

Secrecy of messages. In PT-based session resumption protocol, client sends <
Ty, t,auth > to server in plaintext to start the session resumption. This is the only
message exposed to network attackers. All other messages can be sent in encrypted form
using the 0-RTT feature of the proposed protocol.


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

12 of 13

Forward security. Since PT is a secondary credential that is intended to be used
multiple times during its lifetime, providing forward security is important. We have
shown that Model 2 and Model 3 provide forward security with different approaches.

Privacy and untraceability. = We have shown that Model 3 provides privacy and
untraceability by using one-time anonymous PT and renewal of anonymous PT.

Systems security. As described above network attackers who do not have the secret
token cannot do many things. Considering the fact that the same PT is used multiple
times for longer period of lifetime, attackers will be more interested in system attacks
that can get PT itself; such as OS hacking, malicious software, hacking browser, hacking
application, hacking storage systems for tokens, etc.

If attacker is successful in hacking the system and get the PT itself, then every
attacks are possible, such as sniffing or spoofing the attacked clients. Since secret token
is a secondary credential that has to be stored and used in the client system, its security
will highly depend on the system security, key storage security, and application security.
Therefore, client system has to be kept secure using the best practice in the point of
system security. This is a common system security argument in which credential is
stored and used in the system itself.

4.3. Performance Analysis

Session ticket-based session resumption and Model 1-3 session resumption schemes
have different features as shown in previous section that direct comparison of perfor-
mance is difficult. Session ticket-based session resumption has limitations since the same
session key is reused multiple times in different sessions. It can be used together with
DH key exchange, which will result different session keys in different sessions.

The proposed Model 1-3 schemes provide session resumption service in stateless
way and the same PT can be used multiple times for session resumption during the
lifetime of PT. Because of the time-based one-time authenticated key establishment each
session will have different session keys. Model 1-3 have different features and different
performances that proper choice is necessary.

In large scale distributed server environment, scalability is a prime issue. In the
proposed PT-based session resumption protocol scalability can be achieved very easily if
the master secret key K is shared among the multiple servers.

5. Conclusion

Paired token is a useful secondary credential scheme that can provide stateless PSK
between client and server. It looks like a useful cryptographic ticket that is issued by a
server to an authenticated VIP client. In this paper we modified TLS 1.3 protocol such
that server issues PT to authenticated client in full handshake protocol, and then stateless
time-based one-time authenticated session resumption using PT is used dominantly.
It can replace the traditional session ticket-based session resumption. It can provide
forward security and anti-tracing with enhanced performance and scalability. It is
conceptually simple since the same PT can be used multiple times in safe way to establish
secure sessions that are distinct depending on time.

We think that the proposed session resumption schemes can be used in TLS 1.3
to improve security and performance. More in-depth discussions on various practical
matters are required in the TLS research community.

Funding: This research received no external funding.

Acknowledgments: This work was conducted while the author visited the University of Alabama
at Birmingham as a sabbatical research fellow with the support of Joongbu University in 2020.
Special thanks to professor Yulian Zheng for the favor of invitation and many helpful discussions
on this work.

Conflicts of Interest: The authors declare no conflict of interest.


https://doi.org/10.20944/preprints202102.0102.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 d0i:10.20944/preprints202102.0102.v1

13 of 13

References

1. EricRescorla, The Transport Layer Security (TLS) Protocol Version 1.3, RFC8446, 2018. Available online https://tools.ietf.org/html/rfc8446

2. Joseph Salowey, Hao Zhou, Pasi Eronen, Hannes Tschofenig, Transport Layer Security (TLS) Session Resumption without
Server-Side State, RFC5077, 2008. Available online https://tools.ietf.org/html/rfc5077

3. Nimrod Aviram, Kai Gellert, and Tibor Jager, Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT,
Eurocrypt 2019, Pages 117-150, Cryptology ePrint Archive: Report 2019/228, 2019. https:/ /eprint.iacr.org/2019/228

4. Dick Hardt, The OAuth 2.0 authorization framework, RFC6749, 2012. Available online https:/ /tools.ietf.org/html/rfc6749

5. Michael B. Jones and Dick Hardt, The OAuth 2.0 authorization framework: bearer token usage, RFC6750, 2012. Available online
https:/ /tools.ietf.org /html/rfc6750

6.  Michael B. Jones, John Bradley, and Nat Sakimura, JSON web token (JWT), RFC7519, 2015. Available online https:/ /tools.ietf.org/html/rfc7.

7. Eric Rescorla, HTTP over TLS, RFC2818, 2000. Available online https:/ /tools.ietf.org/html/rfc2818

8.  A.Langley, W.T. Chang, QUIC crypto, 2014. Available online https://docs.google.com/

9. J. Iyengar and M. Thomson, QUIC: A UDP-based multiplexed and secure transport, June 2020. Available online
https:/ /tools.ietf.org /html/draft-ietf-quic-transport-29.

10. M. Thomson, S. Turner, Using TLS to Secure QUIC draft-ietf-quic-tls-34, Available online https://tools.ietf.org/html/draft-ietf-
quic-tls-34.

11.  Robert Lychev, Samuel Jero, Alexandra Boldyreva, Cristina Nita-Rotaru, How Secure and Quick is QUIC? Provable Security and
Performance Analyses, Cryptology ePrint Archive: Report 2015/582, 2015. Available online https:/ /eprint.iacr.org/2015/582

12.  Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva, and Cristina Nita-Rotaru, Secure Communication Channel
Establishment: TLS 1.3 (over TCP Fast Open) vs. QUIC, ESORICS 2019, Cryptology ePrint Archive: Report 2019/433, 2019.
https:/ /eprint.iacr.org/2019/433

13. E.Sy, C. Burkert, H. Federrath, and M. Fischer, Tracking Users across the Web via TLS Session Resumption, ACSAC "18, December
3-7,2018, San Juan, PR, USA.

14. D.M'Raihi, S. Machani, M. Pej, J. Rydell, TOTP: Time-Based One-Time Password Algorithm, RFC6238, 2011. Available online
https:/ /tools.ietf.org /html/rfc6238

15. Byoungcheon Lee, Strengthening of token authentication using time-based randomization, Journal of Security Engineering, vol.
14, no. 2, 2017, pp. 103-114.

16. Byoungcheon Lee, Stateless Randomized Token Authentication for Performance Improvement of OAuth 2.0 MAC Token
Authentication, Journal of The Korea Institute of Information Security & Cryptology, VOL.28, NO.6, 2018, pp. 1343-1454.

17.  Byoungcheon Lee, Efficient Wi-Fi Security Protocol Using Dual Tokens, Journal of The Korea Institute of Information Security &
Cryptology, Vol. 29, No. 2, 2019, pp. 417-429.

18. Lee, B. Stateless Re-Association in WPA3 Using Paired Token. Electronics 2021, 10, 215. https:/ /doi.org/10.3390/ electronics10020215

19. Lee, B. Paired Token: A New Secondary Credential Providing Stateless Pre-Shared Key. Int. J. Inf. Secur. 2020. submitted.


https://doi.org/10.20944/preprints202102.0102.v1

	Introduction
	 Related Works 
	 TLS 1.3 
	 Session Resumption 
	 Stateless One-time Authenticated Key Establishment Using Paired Token 
	 Initial Authentication and Issuing Paired Token 
	 One-Time Authenticated Key Establishment Using Paired Token 


	 Stateless One-Time Authenticated Session Resumption Using Paired Token 
	 Full Handshake and Issuing PT 
	 Stateless One-Time Authenticated Key Establishment Using Paired Token 
	 Model 1: PSK from Authenticated Key Transport 
	 Model 2: PSK from Authenticated Key Establishment and DH 

	 Model 3: Privacy and Untraceability using One-Time Anonymous PT 
	 Discussion on Further Extensions 

	 Analysis 
	 Comparison of Features 
	 Security Analysis 
	 Performance Analysis 

	 Conclusion 
	References

