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Abstract: The aim of this paper is to examine the beneficial impact of feedback information in the 
dynamics of production-inventory control systems. Two production-inventory control system 
models are analyzed: APIOBPCS and 2APIOBPCS models. The simulation-based experiment de-
signs were conducted by using the state-space equations of the two models. The bullwhip effect as 
measured by the variance ratio between the order rate and the consumption rate, and inventory 
responsiveness as measured by the Integral of Absolute Error between the actual and the target 
levels of inventory, are two metrics used to evaluate the performance of the production-inventory 
control system in response to a random customer demand. To ensure that both models work under 
optimal performance, multi-objective particle swarm optimization (MOPSO) is employed to ad-
dress the problem of tuning the controller’s parameters. The simulation results show the 
2APIOBPCS model outperforms the APIOBPCS model at achieving the desired bullwhip effect and 
being able to provide better inventory responsiveness. The improvement in the inventory respon-
siveness becomes more significant when the system operates under mismatched lead time and/or 
an initial condition.  
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1. Introduction 
Achieving balance between conflicting objectives in a production-inventory control 

system is a challenging problem. Companies need to reduce their inventories to the 
minimum level while keeping the customer service within acceptable levels [1].  For 
example, Cisco encountered $2.2 billion in overstocked inventory due to an imbalance 
between supply and demand in May 2001 [2]. Sony Electronics faced an excessive pro-
duction cost because of an over-anticipation of the demand for PlayStation®3 [3]. On the 
other hand, there is a bullwhip problem which is the scenario where orders to the sup-
pliers tend to have larger fluctuations than sales to the buyers [4]. For instance, Holweg et 
al. [5] found that the actual demand signal from the customers in the supermarket for a 
soft drink is amplified many times before it reaches the soft drink supplier. Industry 
sometimes has to cope with real-world bullwhip, measured not just in terms of a 2:1 
amplification which is bad enough, but a 20:1 amplification and even higher has been 
observed [6]. Production-inventory control systems are also subject to a variety of sources 
of uncertainties [7]. The combined impacts of various uncertainties have potentially se-
vere impacts on the dynamic performance of production-inventory control systems. 
Therefore, studying the dynamic performance of production-inventory control systems 
under various uncertainties has been generally overlooked by academics in the literature. 
Ho [8] categorized them into two streams: environmental uncertainty and system un-
certainty. In terms of environmental uncertainty, it could be demand uncertainty and 
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supply uncertainty. For example, demand uncertainty is a continuing problem that has a 
negative impact in terms of lower productivity and reduced customer satisfaction. Sys-
tem uncertainty refers to uncertainties within the production process, such as breakdown 
of the production system. As an example of this type of uncertainty, a major fire in a local 
Royal Philips Electronics plant in March 2000 halted the supply of microchips for Erics-
son. Ericsson subsequently lost its market share leadership in the mobile phone market 
[9]. As a result, academic researchers have conducted several studies to assess whether 
new operation strategies within production-inventory control systems would improve 
the operational and financial performances of manufacturing companies [2]. 

Among various methods and tools that have been developed in order to improve 
the performance of production-inventory control systems, control theory with feedback 
mechanisms provides sufficient mathematical tools (such as Laplace transforms, 
Z-transforms, transfer functions, block diagrams and frequency analysis) to analyze and 
simulate production-inventory systems, based on dynamic models [10]. The first works 
in this field were developed as early as the 1950s. Simon [11] made the first attempt to use 
control theory, utilizing block diagram representation in applying continuous-time 
modeling theory to the production-inventory system problem. Vassian [12] extended 
Simon’s work to apply discrete-time modeling theory based on Z-transforms to the 
production-inventory system problem. For a continuous time domain model, the Laplace 
transformation is used to convert differential equations into s-domain transfer functions. 
On the other hand, the z-transform is used to convert the difference equations into 
z-domain transfer functions in the discrete time domain model [13]. These close form 
transfer functions provide general guidelines for systems design such as the ability to 
guarantee stability of the system and tuning the controller parameters in order to make 
the system respond according to a specific behavior [14]. 

The Inventory and Order Based Production Control System (IOBPCS) model pro-
posed by Towill [15] is well-recognized as a base framework for modeling the produc-
tion-inventory control system [16]. John et al. [17] made an important extension of the 
IOBPCS model by including the work-in-process (WIP) feedback and proposed the Au-
tomatic Pipeline, Inventory and Order Based Production Control System (APIOBPCS). 
Mason-Jones et al. [18] showed that WIP feedback made a significant improvement in 
overall dynamic performance of a production-inventory control system. Motivated by 
this result of adding a WIP feedback element, AL-Khazraji et al. [19] introduced the Two 
Inventory and Order Based Production Control System (2APIOBPCS) model by incor-
porating a new feedback element, completion production rates, to the produc-
tion-inventory control system. A comprehensive literature review on the applications of 
classical and modern control theory to production-inventory problems can be found in 
[20] [21] and [22]. Recently, Lin et al. [16] presented a systematic review on various as-
pects of IOBPCS models including how the IOBPCS archetypes have been developed, 
expanded and become suitable to study the dynamics behavior of production-inventory 
control systems. 

In order to evaluate different ordering strategies on the dynamics performance of 
the production-inventory system, a number of comparative studies have been published. 
For example, Aggelogiannaki and Sarimveis [23] evaluated the efficiency of adaptive 
APIOBPCS (AAPIOBPCS) with two alternative control systems, namely APIOBPCS and 
Estimated Pipeline Variable Inventory and Order Based Production Control System 
(EPIOBPCS) that was introduced by [6].  Cannella and Ciancimino [24] investigated how 
different smoothing parameters of the APIOBPCS model impact on the performance of 
the system under progressive information sharing strategies. Tosetti et al. [25] assessed 
the performance of adding the Proportional, Integrative and Derivative (PID) controller 
to the APIOBPCS model. AL-Khazraji et al. [26] used simulation experiments to investi-
gate the impact of applying two classical controller strategies on the performance of the 
production-inventory control system based on the state space approach. However, the 
majority of these studies used the recommended parameter settings that lead to ‘opti-
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mum’ behavior. Only a few studies have used optimization techniques to select appro-
priate system parameters such as [9].   

The purpose of this work is to examine the dynamic implications of two feedback 
control mechanisms to optimize inventory levels and reduce negative consequences such 
as order amplification of a single-product, single-stage, small-scale production-inventory 
system. Two models are analyzed: APIOBPCS and 2APIOBPCS models. To ensure a re-
alistic scenario, the performance of the two models is investigated under different sce-
narios including mismatched lead time, production capacity constraints and initial con-
dition. The methodology of conducting this study was addressed via control theory and 
simulation. The continuous closed-loop state space equations of the two models are used 
to design and perform the simulation-based experiments.  

Simulation is a well-established methodology that has a wide range of applications 
in the manufacturing process [27]. To overcome the inconveniences and limitations of the 
analytic methods, simulation has been used in modeling and evaluating a wide range of 
different strategies in production-inventory control systems [28]. However, the tri-
al-and-error of the tuning process in the simulation to obtain the desired performance is 
considered time consuming [29]. This limitation can be overcome by employing an op-
timization techniques such as particle swarm optimization (PSO) to perform the tuning 
process and search for the best system configuration. Therefore, the produc-
tion-inventory problem was formulated in this research as a multiple objective optimi-
zation problem and a multi-objective particle swarm optimization (MOPSO) algorithm 
developed by AL-Khazraji et al. [30] was employed to tune the model’s parameters to 
achieve the best performance of the system.  

The rest of this study is organized as follows. Section 2 provides an overview of the 
theory of the research in terms of mathematical modeling, performance metrics and the 
optimization procedure. Section 3 explains how the simulation based experiments is 
conducted. Section 4 discusses the results. Section 5 summarizes the main findings of this 
study.  

2. Overview of the production and inventory control system 

2.1. Mathematical modelling   
The practical production-inventory control system models investigated in this study 

are the Automatic Pipeline Inventory and Order Based Production Control System 
(APIOPBCS) coined by [17] as shown in Figure 1 and the Two Automatic Pipeline In-
ventory and Order Based Production Control System (2APIOPBCS) introduced by [19] as 
shown in Figure 2. Disney et al. [31] listed some of the advantages of using the generic 
models that belong to the IOBPCS family. These include, for example, the ability to rep-
resent order-up-to (OUT) systems and the many variants of production planning strate-
gies such as ‘level scheduling’ (i.e. lean production) right through to ‘pure chase’ (i.e. ag-
ile manufacture).  

AL-Khazraji et al. [26] restructured the models that belong to the IOBPCS family as 
an integrated system consisting of three main components as shown in Figure 3 and these 
can be described as:  

 Forecasting mechanism: the forward loop designed to provide an estimate 
of average sales. 

 Lead time: represents the total time required between placing an order and 
receiving it as a finished item in the inventory.  

 Controller strategy: represented by a controller strategy that utilizes the 
forward and feedback information to generate a sophisticated decision to 
place production orders for production-inventory systems. 
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Figure 1. Block diagram of APIOBPCS model 

 
Figure 2. Block diagram of 2APIOBPCS model 

 

Figure 3. General structure of IOBPCS models family 

Basically, the two models (APIOBPCS and 2APIOBPCS) can be described as an or-
der-up-to (OUT) policy with a forecasting mechanism and proportional feedback con-
trollers. In order to keep the models aligned with the paradigm of the IOBPCS family, the 
lead time delay for both models in this paper is modeled as an exponential lag where 
time constant   T୮  represents production lead-time. In the same way, the forecasting 
method is an exponential smoothing where time constant Tୟ represents the smoothing 
time constant [15] [17] [30]. The APIOBPCS model utilizes three policies (demand, in-
ventory level, pipeline policies) to determine the Order Rate (ORATE) [25]. The average 
consumption rate AVେ୓୒ୗ  based on exponential smoothing forecasts with time con-
stant Tୟ is the forward control policy. The feedback consists of two control polices, the 
fraction 1

T୧
ൗ  of the difference between the desired inventory D୧୬୴ and the actual in-
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ventory A୧୬୴, and the fraction 1
T୵

ൗ  of the difference between the desired WIP D୵୧୮ and 

the actual WIP A୵୧୮. An additional feedback, the fraction 1
Tୡ

ൗ  of the difference between 
the desired completion production rates Dେ୓୑୔ and the actual completion production 
rates Aେ୓୑୔ was added to the 2APIOBPCS model in comparison with the APIOBPCS 
model. 

The state space equations required to model the two control systems in the simula-
tions are given in Eqs. (1) and (2) for the 2APIOBPCS model and Eqs. (3) and (4) for the 
APIOBPCS model. The complete formulation and explanation of these state space equa-
tions is not presented in this study due to space restrictions but it can be found in [19]. 
The continuous closed-loop state space representation of the 2APIOBPCS model is given 
by: 
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The continuous closed-loop state space representation of the APIOBPCS model is 

given by: 
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 2.2.  Performance metrics 
According to Neely et al. [32], performance measurement could be described as a 

systematic process of effectively and efficiently quantifying an action. In general, the 
performance metrics that are used to evaluate the performance of production-inventory 
systems should have implications on total costs (inventory related costs and productions 
related costs) and customer service level [33]. In this study, the production-inventory 
control system performance is evaluated by the variance ratio (Var୓) between the order 
rate and the consumption as given in Eq. (5) and the Integral of Absolute Error 
(IAE) between the actual and the target levels of inventory as given in Eq. (6). The Var୓ 
index is used as a metric to measure bullwhip effect, whereas the IAE index is used as a 
metric to measure inventory responsiveness. The bullwhip effect and inventory respon-
siveness are two objectives that have direct impacts on the nature of the basic trade-offs 
between maintaining the order rates at the optimal performance, in order to avoid the 
impact of high amplification of orders, and maintaining stocks at a desired level to im-
prove the Customer Service Level (CSL). 

 
    Var୓  =

஢ో౎ఽ౐ు
మ

஢ిోొ౏
మ                                                              (5)                                    

 
where σ୓ୖ୅୘୉

ଶ  refers to variance of the orders placed to the manufacturer and σେ୓୒ୗ
ଶ  

represents the consumption variance. In this criterion, there is zero bullwhip if Var୓ = 1; 
the system is amplified if  Var୓ > 1; the system is smoothed when Var୓ < 1. 
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IAE = ∫ |E|

୲

଴
 dt                                                                   (6)    

 
where t denotes the period and E refers to the error in the inventory levels measured as 
the deviation of the A୧୬୴ level from the D୧୬୴ level. The IAE measures positive and nega-
tive errors equally. The minimum IAE indicates that the system has a better CSL.  

2.3. Optimisation procedure  
Optimizing methods in the area of production-inventory systems fall into two cat-

egories: cost-based and non-cost based approaches. Cost-based approaches use the costs 
of inventory versus production costs in order to optimize the system. In contrast, 
non-cost based approaches optimize the dynamic performance of the system. The opti-
mization procedure selected here is the non-cost approach and is based on optimizing the 
dynamic performance of the system. It is well-known that the common problem in pro-
duction-inventory systems is the trade-off between the customer service level and cost. 
Therefore, the production-inventory problem could be formulated as a multiple objective 
optimization problem. PSO has been applied successfully into multi-objective problems. 
In order to solve the multi-objective problem, a Pareto optimal concept is used. A Pareto 
optimal solution can be described as all the solutions that improve one particular objec-
tive without disadvantaging any of the other objectives [34].  

 

 
Figure 4. Optimization procedure 

AL-Khazraji et al. [30] recently developed a multi-objective particle swarm optimi-
zation (MOPSO) algorithm by incorporating the Pareto optimality into PSO. Figure 4 
summarizes the optimization procedure. The inputs to the algorithm are the lead time 
required for the orders and the demand pattern. The outputs of the dynamic optimiza-
tion are combinations of solutions representing the best choice of the system’s configu-
ration that provides optimal performance in terms of improving the inventory target 
tracking (system responsiveness) and reducing demand amplification (bullwhip effect). 
More details about this optimization approach can be found in [30]. 

3. Simulation experiment 
This section illustrates how the simulation based experiments were conducted. The 

major assumptions in all simulations are: 
 The demand rate was generated by a sum of sin and cos terms with different 

frequencies as shown in Figure 5.  
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 Single product, single-retailer and single-factory operations with small pro-
duction scale are considered.  

 The paper concentrates on the case where the physical production/distribution 
lead time period is four units of time (T୮ = 4).  

 Backorders (negative inventory) are permitted.  
 The desired inventory is set to zero (D୧୬୴ = 0).  
 Day is the basic time unit in the model.  
 The simulation was run for 180 days for each scenario.  
 The production process can only produce a single unit at a time. 

 

 
Figure 5. Demand pattern 

The simulations were designed in MATLAB software. Simulation based experi-
ments were developed based on the state space equations of the 2APIOBPCS and the 
APIOBPCS models. The MOPSO was utilized to choose system parameters that reduce 
the bullwhip effect and improve the inventory responsiveness. The optimization process 
calculates Var୓  and IAE. The multi-objective optimization problem for the produc-
tion-inventory control system was defined as:   

 
                  minimise {Var୓(p), IAE(p)}                                     (7) 

 
where Var୓ and IAE are the two conflicting objective functions that need to be minimised. 
The decision vector is p = { Tୟ, T୧ and T୵} for the APIOBPCS model, whereas it is p =

{ Tୟ, T୧, T୵ and Tୡ} for the 2APIOBPCS model. A heuristic method (such as PSO) does 
not ensure finding a global optimal solution [35] and different results can occur de-
pending on the randomness of the parameters chosen. The MOPSO algorithm parame-
ters used in the simulation were:  

 The maximum number of iterations (t) is set 100. 
 The number of particles in the swarm (N) is set to 50. 
 The learning coefficients for local (cଵ) and global (cଵ) search are both set to 2.  
 The inertia weight (θ) is set as 0.6. 
 The size of the archive (A) is set to 20. 

The performance of the two models was examined by simulating them by the de-
mand pattern under a normal scenario (matched lead time, no capacity constraint and no 
initial conditions) first. Three operation designs were selected to plot the Pareto curve of 
each model. The selection was performed by assuming the target of Var୓ in the range of 
0.8 to 1.3 and calculating the corresponding IAE achieved by each model.  The Var୓ in 
the range of 0.8 to 1.3 represents three different responses: 

 Design1: Smoothing is when 0.8 < Var୓ < 1.  
 Design 2: Bullwhip avoidance is when Var୓ = 1.  
 Design3: Small bullwhip is when 1 < Var୓ < 1.3.  

The performance of the 2APIOBPCS model was then compared with the perfor-
mance of the APIOBPCS model under three different scenarios as illustrated in Figure 6. 
The three different cases are explained below: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2021                   doi:10.20944/preprints202102.0073.v1

https://doi.org/10.20944/preprints202102.0073.v1


 

 

 Lead Time: In the matched scenario, the actual lead time and the estimated lead 
time were assumed to be matched through the operation. On the other hand, in 
the mismatch scenario it was considered that the mismatch may come from two 
different sources: production-side (i.e. machine breakdown), and supplier-side 
(i.e. material shortage). In such situations, the lead time of the system is in-
creased, resulting in a mismatch with the estimated lead time. These simula-
tion-based experiments in the mismatched scenario evaluate the robustness of 
the two control strategies by measuring how the systems recover from such 
disruptions and get back to the normal level. In these simulations, the lead time 
starts at the nominal value (T୮ = 4), but the lead time value suddenly changes 
to (T୮ = 6) for a period of time and goes back to the normal (T୮ = 4).  

 Production Capacity: In the flexible capacity strategy, overtime working and 
extra resources were assumed to be available when the production required is 
above the capacity limit. In the inflexible capacity strategy, when the produc-
tion capacity in a period is insufficient to complete production for an order, 
then the next period’s capacity is used to continue the production of this order. 
The order in the time period t is given as: 
 

ORATE୲ = ൜
ORATE୲,                    ORATE୲ < C 

C,                               Othwise
                              (8) 

 
where C refers to production capacity that was set equal to 110 items per day.  

 Initial Condition: It was assumed in the first case that the simulation runs with 
no initial condition, which means that no inventory existed before the opera-
tion. In the second case, it was assumed that there is an initial condition and it 
was considered the system starts with 1000 items as initial stock. 

 

 
Figure 6. Different cases assumed in the simulation 

4. Simulation results and discussion 
The results of each of the eight cases are discussed below. Note the optimal param-

eters for the simulation are resulted from MOPSO under the known demand pattern and 
lead time (Tp) that are the same for all cases simulated in this study. As a result, the val-
ues for these parameters are the same for all eight cases simulated. To make comparisons 
between close cases easier, we group the figures and tables of the two cases under the 
same Capacity and Initial Condition but different in lead time together in our discussion. 

4.1. Case 1: Lead Time: Matched, Capacity: Flexible, Initial Condition: No 
Figure 7a plots the Pareto optimality curves of the two models under matched lead 

time scenarios. In this case, it can be seen from Figure 7a that the Pareto curve of the 
2APIOBPCS model is located below the Pareto curve of the APIOBPCS model, which 
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means that the 2APIOBPCS model is able to achieve less IAE than the APIOBPCS model 
while being able to achieve the same Var୓. Table 1a gives the optimal system configura-
tion with the corresponding performance of both models under matched lead time sce-
narios. It can also be seen form Table 1a that the improvement becomes more significant 
if the desired Var୓ was more than 1. For example, as shown in Table 1a, the percentage 
of improving inventory responsiveness (IR) is increased from 3% to 9% if the desired 
Var୓ changes from 1 to 1.25. The simulations of Design 2 (bullwhip avoidance scenario) 
of the two models under matched lead time are shown in Figure 8a. 

 

 
 

Figure 7. Pareto optimality curves for flexible capacity without initial condition of the two models 

a . Matched lead time   b. Mismatched lead time 

Table 1 Optimal system configuration with the corresponding performance for flexible capacity without initial condition of the two 
models under matched and mismatched lead time 

a. Operation: Matched, Capacity: Flexible, Initial Condition: No  

APIOBPCS 2APIOBPCS  

𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐕𝐚𝐫 𝐈𝐀𝐄 𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐓𝐜 𝐕𝐚𝐫 𝐈𝐀𝐄 IR 

3.91 0.55 6.71 0.85 3.57E+04 2.65 0.53 7.8 10 0.85 3.46E+04 3% 

5 1.13 5.66 1 3.07E+04 1.14 0.37 8.94 21.9 1 2.97E+04 3% 

3.5 1.2 6 1.25 2.84E+04 1.2 0.5 7.3 2 1.25 2.59E+04 9% 

b. Operation: Mismatched, Capacity: Flexible, Initial Condition: No  

APIOBPCS 2APIOBPCS  

𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐕𝐚𝐫 𝐈𝐀𝐄 𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐓𝐜 𝐕𝐚𝐫 𝐈𝐀𝐄 IR 

3.91 0.55 6.71 0.85 7.60E+04 2.65 0.53 7.8 10 0.85 6.32E+04 17% 

5 1.13 5.66 1 5.56E+04 1.14 0.37 8.94 21.9 1 4.76E+04 14% 

3.5 1.2 6 1.23 4.44E+04 1.2 0.5 7.3 2 1.23 3.93E+04 12% 

4.2. Case 2: Lead Time: Mismatched, Capacity: Flexible, Initial Condition: No 
Figure 7b plots the Pareto optimality curves of the two models under mismatched 

lead time scenarios. Table 1b gives the optimal system configuration with the corre-
sponding performance of both models under mismatched lead time scenarios. In this 
case, it is seen from Table 1b (mismatched case) in comparison to Table 1a (matched case) 
that Var୓ for both models is not affected, whereas IAE for both models is increased. This 
means that, under mismatched lead time, the inventory responsiveness for both models 
is reduced. In spite of that, it can be seen from Figure 7b that the Pareto curve of the 
2APIOBPCS model is located below the Pareto curve of the APIOBPCS model, and this 
indicates that the 2APIOBPCS model is able to achieve less IAE than the APIOBPCS 
model at the same Var୓ under uncertainties. It can also be observed from Table 1a in 
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comparison to Table 1b that the percentage of IR increases from 3% in the case of 
matched lead time to 14% in the case of mismatched lead time to achieve a de-
sired Var୓ = 1. This means that the 2APIOBPCS model offers better inventory respon-
siveness under uncertainties. The simulations of Design 2 (bullwhip avoidance scenario) 
of the two models under mismatched lead time are shown in Figure 8b. 

 

 

a 

 

𝑏 

Figure 8. Simulation for flexible capacity without initial condition of the two models 
a . Matched lead time   b. Mismatched lead time 

4.3. Case 3: Lead Time: Matched, Capacity: Inflexible, Initial Condition: No 
Figure 9a plots the Pareto optimality curves of the two models under matched lead 

time scenarios. Table 2a gives the optimal system configuration with the corresponding 
performance of both models under matched lead time scenarios. In general, it can be seen 
from Table 2a in comparison to Table 1a that, after introducing the capacity constraints, 
the order amplification Var୓ for both models is reduced. For example, in the case of 
matched lead time under flexible capacity, the system configuration for Design 2 for the 
APIOBPCS and 2APIOBPCS models that generates a bullwhip avoidance response 
( Var୓ = 1) becomes a smoothing response with  Var୓ = 0.51 for both models when the 
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capacity constraint is introduced. The second observation is that the inventory respon-
siveness for both models does not change. This finding is aligned with the conclusions of 
[24] that showed that capacity constraints lead to reduced bullwhip effect, but this does 
not mean improved inventory responsiveness. The last observation is that no superiority 
is seen for either model in regard to this case. The simulations of Design 2 (bullwhip 
avoidance scenario) of the two models under matched lead time are shown in Figure 10a. 

 

 
Figure 9. Pareto optimality curves for inflexible capacity without initial condition of the two models 

a . Matched lead time   b. Mismatched lead time 
 

Table 2 Optimal system configuration with the corresponding performance for inflexible capacity without initial condition of the 
two models under matched and mismatched lead time 

a. Operation: Matched, Capacity: Inflexible, Initial Condition: No  

APIOBPCS 2APIOBPCS  

𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐕𝐚𝐫 𝐈𝐀𝐄 𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐓𝐜 𝐕𝐚𝐫 𝐈𝐀𝐄 IR 

3.91 0.55 6.71 0.38 3.57E+04 2.65 0.53 7.8 10 0.38 3.46E+04 3% 

5 1.13 5.66 0.47 3.07E+04 1.14 0.37 8.94 21.9 0.45 2.97E+04 3% 

3.5 1.2 6 0.54 2.84E+04 1.2 0.5 7.3 2 0.54 2.59E+04 9% 

b. Operation: Mismatched, Capacity: Inflexible, Initial Condition: No  

APIOBPCS 2APIOBPCS  

𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐕𝐚𝐫 𝐈𝐀𝐄 𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐓𝐜 𝐕𝐚𝐫 𝐈𝐀𝐄 IR 

3.91 0.55 6.71 0.38 7.60E+04 2.65 0.53 7.8 10 0.38 6.32E+04 17% 

5 1.13 5.66 0.47 5.56E+04 1.14 0.37 8.94 21.9 0.45 4.76E+04 14% 

3.5 1.2 6 0.54 4.44E+04 1.2 0.5 7.3 2 0.54 3.93E+04 12% 

4.4. Case 4: Lead Time: Mismatched, Capacity: Inflexible, Initial Condition: No 
Figure 9b plots the Pareto optimality carves of the two models under mismatched 

lead time scenarios. Table 2b gives the optimal system configuration with the corre-
sponding performance of both models under mismatched lead time scenarios. In this 
case, it is seen from Table 2b in comparison to Table 2a that Var୓ for both models is the 
same which is the same finding as in the case of flexible capacity. However, the Var୓ is 
less in comparison to the flexible capacity case as shown in Table 1b due to the capacity 
constraint.  For instance, the system configuration of Design 2 for APIOBPCS and 
2APIOBPCS models that generates a bullwhip avoidance response ( Var୓ = 1) becomes a 
smoothing response ( Var୓ = 0.47) for both models when the capacity constraint is in-
troduced. The same findings with regard to the matched lead time was obtained re-
garding inventory responsiveness, and IAE was the same for both flexible and inflexible 
strategies for both models. In spite of that, it can be seen from Figure 9b that the Pareto 
curve of the 2APIOBPCS model is located below the Pareto curve of the APIOBPCS 
model, which indicates that the 2APIOBPCS model is still able to achieve less IAE than 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2021                   doi:10.20944/preprints202102.0073.v1

https://doi.org/10.20944/preprints202102.0073.v1


 

 

the APIOBPCS model at the same Var୓ under uncertainties and capacity constraint. The 
simulations of Design 2 (bullwhip avoidance scenario) of the two models under mis-
matched lead time are shown in Figure 10b. 

 

 
a 

 
b 

Figure 10. Simulation for inflexible capacity without initial condition of the two models  
a . Matched lead time   b. Mismatched lead time 

4.5. Case 5: Lead Time: Matched, Capacity: Flexible, Initial Condition: Yes 
Figure 11a plots the Pareto optimality curves of the two models under matched lead 

time scenarios. Table 3a gives the optimal system configuration with the corresponding 
performance of both models under matched lead time scenarios. In general, it can be seen 
from Table 3a in comparison to Table 1a that, after introducing the initial condition, the 
order amplification Var୓  for both models is increased. For example, in the case of 
matched lead time and flexible capacity, the system configuration Design 2 for the API-
OBPCS and 2APIOBPCS models that generates a bullwhip avoidance response ( Var୓ =

1)  becomes amplified responses with  Var୓ = 1.23  for the APIOBPCS model and 
 Var୓ = 1.16 for the 2APIOBPCS model after the initial condition is introduced. It can 
also be seen that the 2APIOBPCS model is less affected. The second observation is that 
the inventory responsiveness IAE of both models is reduced which is reasonable because 
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of the initial stock that was added. It can be observed by comparing Table 1a and Table 3a 
that the percentage of IR increases from 3% in the case of no initial condition to 12% in the 
case of the initial condition for system configuration Design 2. Therefore, the superiority 
of the 2APIOBPCS model in comparison to the APIOBPCS model is that the inventory 
responsiveness is increased with the initial condition. The simulations of Design 2 
(bullwhip avoidance scenario) of the two models under matched lead time are shown in 
Figure 12a. 

 

 
Figure 11. Pareto optimality curves for flexible capacity with initial condition of the two models  

a . Matched lead time   b. Mismatched lead time 
 

Table 3 Optimal system configuration with the corresponding performance for flexible capacity with initial condition of the two 
models under matched and mismatched lead time 

a. Operation: Matched, Capacity: Flexible, Initial Condition: Yes  

APIOBPCS 2APIOBPCS  

𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐕𝐚𝐫 𝐈𝐀𝐄 𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐓𝐜 𝐕𝐚𝐫 𝐈𝐀𝐄 IR 

3.91 0.55 6.71 0.93 2.89E+04 2.65 0.53 7.8 10 0.90 2.56E+04 11% 

5 1.13 5.66 1.23 2.82E+04 1.14 0.37 8.94 21.9 1.16 2.49E+04 12% 

3.5 1.2 6 1.5 2.67E+04 1.2 0.5 7.3 2 1.46 2.33E+04 13% 

b. Operation: Mismatched, Capacity: Flexible, Initial Condition: Yes  

APIOBPCS 2APIOBPCS  

𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐕𝐚𝐫 𝐈𝐀𝐄 𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐓𝐜 𝐕𝐚𝐫 𝐈𝐀𝐄 IR 

3.91 0.55 6.71 0.96 6.60E+04 2.65 0.53 7.8 10 0.95 5.04E+04 24% 

5 1.13 5.66 1.23 5.24E+04 1.14 0.37 8.94 21.9 1.16 4.07E+04 22% 

3.5 1.2 6 1.48 4.27E+04 1.2 0.5 7.3 2 1.44 3.28E+04 23% 
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a 

 
b 

Figure 12. Simulation for inflexible capacity without initial condition of the two models  
a . Matched lead time   b. Mismatched lead time 

4.6. Case 6: Lead Time: Mismatched, Capacity: Flexible, Initial Condition: Yes 
Figure 11b plots the Pareto optimality curves of the two models under mismatched 

lead time scenarios. Table 3b gives the optimal system configuration with the corre-
sponding performance of both models under mismatched lead time. In this case, it is seen 
from results in Table 3b that the Var୓ for both models is not significantly affected in 
comparison to the results of the matched scenario in Table 3a, whereas IAE for both 
models is increased. This means that, under mismatched lead time, the inventory re-
sponsiveness for both models is reduced. In spite of that, it can be seen from Figure 11b 
that the Pareto curve of the 2APIOBPCS model is located below the Pareto curve of the 
APIOBPCS model, and this means that the 2APIOBPCS model is able to achieve less IAE 
than the APIOBPCS model at the same Var୓ under uncertainties and with the initial 
condition. Also in this case, the percentage of IR for system configuration Design 2 be-
comes 22% which is more than the percentage of IR in the case of mismatched lead time 
with no initial condition as given in Table 1b. Therefore, the superiority of the 
2APIOBPCS model in comparison to the APIOBPCS model in terms of inventory re-
sponsiveness is considerably increased if considering the initial condition under the 
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mismatched scenario. The simulations of Design 2 (bullwhip avoidance scenario) of the 
two models of each scenario for mismatched lead time are shown in Figure 12b.  

4.7. Case 7: Lead Time: Matched, Capacity: Inflexible, Initial Condition: Yes 
Figure 13a plots the Pareto optimality curves of the two models under matched lead 

time scenarios. Table 4a gives the optimal system configuration with the corresponding 
performance of both models under matched lead time scenarios. The combination of the 
capacity constraint (decrease Var୓) with the initial condition (increase Var୓) cancels each 
other out in terms of Var୓ with the advantage of improving IAE. For example, by com-
paring Table 4a with Table 3a, it can be seen that introducing the capacity constraint re-
duces the Var. For more illustration to this case, the system configuration for Design 2 for 
the APIOBPCS and 2APIOBPCS models that generates a bullwhip avoidance response 
( Var୓ = 1) becomes a smoothing response with  Var୓ = 0.62 for the APIOBPCS model 
and  Var୓ = 0.59 for the 2APIOBPCS as given in Table 4a. However, by comparing Table 
4a with Table 2a, it can be seen that with initial condition there is slightly increase in 
the Var୓. The inventory responsiveness in this case is also better than the inventory re-
sponsiveness in the case with inflexible capacity with no initial condition. The simula-
tions for design 2 (bullwhip avoidance scenario) of the two models under matched lead 
time are shown in Figure 14a. 

 

 
a                                                                          b 

Figure 13. Pareto optimality curves for flexible capacity with initial condition of the two models  
a . Matched lead time   b. Mismatched lead time 

4.8. Case 8: Lead Time: Mismatched, Capacity: Inflexible, Initial Condition: Yes 
Figure 13b plots the Pareto optimality curves of the two models under mismatched 

lead time scenarios. Table 4b gives the optimal system configuration with the corre-
sponding performance of both models under mismatched lead time scenarios. In this 
case, it is seen from the results in Table 4b that Var୓ for both models is not affected in 
comparison to the results from the matched scenario in Table 4a, whereas IAE for both 
models is increased which means that, under mismatched lead time, the inventory re-
sponsiveness for both models is reduced. In spite of that, it can be seen from Figure 13b 
that the Pareto curve of the 2APIOBPCS model is located below the Pareto curve of the 
APIOBPCS model, and this indicates that the 2APIOBPCS is able to achieve less IAE 
than the APIOBPCS model at the same Var୓ under uncertainties associated with capacity 
constraint and initial condition. No superiority for either model is seen regarding this 
case. The simulations for Design 2 (bullwhip avoidance scenario) of the two models un-
der mismatched lead time are shown in Figure 14b. 

 
Table 4 Optimal system configuration with the corresponding performance for flexible capacity with initial condition of the two 

models under matched and mismatched lead time 
a. Operation: Matched, Capacity: Inflexible, Initial Condition: Yes  
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APIOBPCS 2APIOBPCS  

𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐕𝐚𝐫 𝐈𝐀𝐄 𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐓𝐜 𝐕𝐚𝐫 𝐈𝐀𝐄 IR 

3.91 0.55 6.71 0.48 2.89E+04 2.65 0.53 7.8 10 0.45 2.56E+04 11% 

5 1.13 5.66 0.62 2.82E+04 1.14 0.37 8.94 21.9 0.59 2.49E+04 12% 

3.5 1.2 6 0.76 2.67E+04 1.2 0.5 7.3 2 0.72 2.33E+04 13% 

b. Operation: Mismatched, Capacity: Inflexible, Initial Condition: Yes  

APIOBPCS 2APIOBPCS  

𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐕𝐚𝐫 𝐈𝐀𝐄 𝐓𝐢 𝐓𝐰 𝐓𝐚 𝐓𝐜 𝐕𝐚𝐫 𝐈𝐀𝐄 IR 

3.91 0.55 6.71 0.48 6.60E+04 2.65 0.53 7.8 10 0.45 5.04E+04 24% 

5 1.13 5.66 0.62 5.24E+04 1.14 0.37 8.94 21.9 0.59 4.07E+04 22% 

3.5 1.2 6 0.76 4.27E+04 1.2 0.5 7.3 2 0.72 3.28E+04 23% 

 

 
a 

 
b 

Figure 14. Simulation for flexible capacity with initial condition of the two models  
a . Matched lead time   b. Mismatched lead time 

4. Conclusions 
In this paper, the advantages of adopting a new feedback element in produc-

tion-inventory control systems are examined when the system is subjected to a random 
customer demand. The state space equations of the 2APIOBPCS and APIOBPCS models 
were used to model a single stage single product production-inventory control system. 
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The dynamic performance of the two models is investigated in eight cases under differ-
ent conditions for assessing the performance of the systems in terms of reducing bull-
whip effect and improving inventory responsiveness.  

In order to ensure that the models operate under optimal configurations, MOPSO 
was used. The conclusions of the paper can be summarized as follows: 

 In the normal operation condition, the 2APIOBPCCS model was able to improve 
inventory responsiveness at the same bullwhip.  

 Under mismatched lead time operation, the inventory responsiveness for both 
models was affected negatively. However, the 2APIOBPCS model was able to 
offer a better inventory responsiveness to achieve the same bullwhip. 

 Under production capacity constraint, the bullwhip effect for both models was 
reduced, but the inventory responsiveness was the same. Neither models show 
any superiority.  

 Under an initial condition (inventory stock available upon start up), the bullwhip 
effect for both models was increased, and the inventory responsiveness was im-
proved. The 2APIOBPCS model was able to provide a better inventory respon-
siveness. 

 Under combinations of the capacity constraint and initial condition, the effect of 
the capacity constraint (decrease bullwhip) cancelled out the effect of the initial 
condition (increase bullwhip) in terms of bullwhip but with the advantage of 
improving inventory responsiveness. If the system works under mismatched 
lead time operation, the inventory responsiveness for both models was affected 
negatively. However, the 2APIOBPCS model was able to offer a better inventory 
responsiveness to achieve the same bullwhip. 

The superior production-inventory control system exhibited by the 2APIOBPCCS 
model, and its ability to provide a systematically better inventory responsiveness per-
formance to achieve a desired bullwhip, make the 2APIOPBCS a good choice for com-
panies that place an emphasis on inventory on costs and service levels. 
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