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Abstract: (1) Background: The aim of this study is to have an idea on the molecular mechanisms of 
C. albicans resistance to fluconazole in Burkina Faso, by studying the polymorphism of the ERG11 
gene, and its implication in the C. albicans virulence and resistance in vivo according to the Galleria 
mellonella model; (2) Methods: Ten (10) clinical strains including, 5 resistant and 5 susceptible and 1 
virulent and susceptible reference strain SC5314 are used. For the estimation of virulence, the larvae 
were inoculated with 10 μL of C. albicans cell suspension at variable concentrations: 2,5.105, 5.105, 
1.106, and 5.106 CFU/larva of each strain. For the in vivo efficacy study, fluconazole was administered 
at 1, 4 and 16 mg/kg respectively to G. mellonella larvae, after infection by inoculum 5.106 CFU / 
larvae of each strain; (3) Results: Six (6) non-silent mutations in the ERG11 gene (K143R, F145L, 
G307S, S405F, G448E, V456I on ERG11p) were found in 4 resistant isolates. Larval mortality 
depended on fungal burden and strain. The inoculum 5.106 CFU caused 100% mortality in 2 days 
for the 2 CAAL-1 and CAAL-2 strains carrying the F145L mutation, in 3 days for the reference strain 
SC5314, in 4 days for the ensemble of resistant strains, and in 5 days for the ensemble of susceptible 
strains. The comparison of the mortality due to the reference strain SC5314 CFU / larva and the 
average mortality due to the two mutant F145L strains, shows a significant difference (P 
<0.05).Fluconazole significantly protected (P> 0.05) the larvae from infection by susceptible strains 
and the reference strain. However, 100% mortality in 6 days after injection of the resistant strains, 
was observed (4) Conclusions: Certain mutations in the ERG11 gene such as the F145L mutation 
are thought to be a source of increased virulence in Candida albicans. Fluconazole effectively 
protected larvae from infection by susceptible strains in vivo, unlike resistant strain. 
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1. Introduction 

  Candida albicans is the most common opportunistic fungal pathogen in humans. It is a yeast 
responsible for diseases called candidiasis, ranging from infections of the superficial mucous 
membranes to fatal systemic disorders [1, 2, 3]. The treatment of candidiasis requires antifungal 
drugs. Among the available antifungals, azoles, in particular fluconazole (FCL), are commonly used, 
in the treatment of systemic candidiasis, because, their safety of use and the availability in oral and 
intravenous formulations [4, 5]. However, the implementation of long-term azole treatment such as 
for example in the HIV-infected patient with oropharyngeal candidiasis is a favorable situation for 
the development of resistance with various mechanisms [6]. Among the many mechanisms involved 
in C. albicans resistance to azoles, ERG11 gene (coding for sterol 14α-demethylase, azole target 
enzyme) non-silent mutations, is one of the most important mechanisms, both in terms of prevalence 
and in terms of impact on C. albicans susceptibility to these antifungals [6]. Currently, more than 140 
mutations in the ERG11 gene have been reported in the literature and new mutations are regularly 
described illustrating the highly polymorphic nature of this gene [7].                                                                          
    In this study, our objective was to explore the ERG11 gene polymorphism in a C. albicans clinical 
isolates collection presenting different profiles of susceptibility to fluconazole (susceptible and 
resistant strains) in a first part. In a second part it was to know if the resistance found in vitro was also 
found in vivo on the one hand, and on the other hand, if the ERG11 gene mutations would increase 
or would decrease the virulence of the strains, in comparison with a reference strain. For the 
implementation of this second part, we used the insect Galleria mellonella model, the use of which has 
many advantages compared to mammalian models. Indeed, G. mellonella or wax moth is a species of 
lepidoptera (butterflies) found in most parts of the world [8]. The larva (caterpillar) of G. mellonella is 
of practical size (2 to 3 cm long), easy to use for experiments [9]. Its immune system is comparable to 
that of vertebrates because it has both a cellular and humoral immune response to infection. In 
addition [10] the larvae can be kept at temperatures between 15 ° C and 37 ° C [11], which makes the 
larvae well suited for studying pathogens at human body temperature [8]. These advantages make 
G. mellonella an attractive host for studying pathogens and antimicrobial agents [9, 12, 13]. 

2. Materials and Methods  

C albicans strains used and culture media 
A total of 10 clinical strains including 5 FCL susceptible strains and 5 FCL resistant strains were 

used. A reference strain SC5314 ((Institut für Molekulare Infektionsbiologie, Universität Würzburg, 
Würzburg, Germany), virulent and susceptible to FCL, was used as a control strain. The different 
strains were seeded in YPD medium (1% of extract of yeast, 2% peptone and 2% dextrose) + 
Ampicillin, Kanamycin and Chloramphenicol and incubated at 30 °C in a shaking incubator followed 
by subculturing in Sabouraud + chloramphenicol medium. 

 
Antifungal susceptibility test 
Susceptibility to FCL was confirmed for each isolate using the standard broth microdilution 

method recommended by the CLSI (Clinical and Laboratory Standards Institute), document M27-A3 
(National Committee for Clinical Laboratory Standards). Candida krusei ATCC 6258 and Candida 
parapsilosis ATCC 22019 were used as controls. The FCL was purchased from Sigma (Sigma Chemical 
Corporation). The MIC (Minimum Inhibitory Concentration) which is the lowest drug concentration 
resulted in 50% growth inhibition compared to growth in the control well was determined visually 
after 48 hours incubation at 35 ° C. MIC values for FCL were compared to the CLSI interpretative 
guidelines on antifungal susceptibility testing. Thus, MICs ≤8 μg / mL were considered as susceptible 
(S), 16 to 32 μg / mL as susceptible dose-dependent (SDD) and ≥64 μg / mL as resistant (R) to FCL. 

 
Molecular analysis 
The total genomic DNA was obtained from colonies of the C. albicans different strains aged 48 

hours, grown on Sabouraud + Chloramphenicol. The DNA was extracted and purified using the 
NucleoSpin® Tissue kit (Macherey-Nagel) according to the manufacturer's instructions. The open 
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reading frame of the complete ERG11 gene (1451 bp) was amplified with a PTC-100 thermocycler (MJ 
Research, Waltham, MA) using the primers previously described: ERG11ORF-F — 
GAAAGGGAATTCAATCG and ERG11ORF-R— TGTTAATCCAACTAAGTAAC [13 ]. The reaction 
mixtures contained 1 μmol / L of each primer, 10 μL of 5 × buffer, 2 mmol / L of MgCl2, 0.2 mmol / L 
of each deoxyribonucleoside triphosphate, 0.1 U of GoTaq® DNA polymerase (Invitrogen, USA) and 
sterile water to a final volume of 50 μL. The amplification parameters were as follows: initial 
denaturation at 96 ° C for 3 min followed by 35 cycles of annealing at 56 ° C for 1 min, elongation at 
72 ° C for 2 min, and denaturation at 95 ° C for 1 min. The PCR products were purified using 7.5 M 
ammonium acetate (15 μL) and absolute ethanol (74 μL). The sequencing was carried out using a Big 
Dye sequencing kit (Applied Biosystems, United States), followed by purification using a resin of fine 
DNA quality Sephadex G-50 (GE Healthcare, United Kingdom ) in a MultiScreen column loader 
(Merck Millipore, United States), and analyzed by electrophoresis in an ABI3500 automatic sequencer 
(Applied Biosystems, USA) using additional primers [14]. The nucleotide sequences were assembled 
using BioEdit software version 7.2.524, using ClustalW25 and adjusted manually using MEGA 
software, version 626. For each strain, the entire sequence of the open reading frame ERG11 was 
compared to an ERG11 sequence previously described (accession number X13296) and originating 
from a strain sensitive to fluconazole [15]. Silent mutations have not been taken into account. 

In vivo strains virulence estimation   
The larvae of G. mellonella were kindly provided to us by the IRS2 of the University of Nantes 

(France). We then set up and maintained a perennial breeding of G. mellonella within the Parasitology-
Mycology laboratory of the Training and Research Unit in Health Sciences (UFR SDS) of the Joseph 
Ki-Zerbo University of Ouagadougou (Burkina Faso). This breeding allowed us to acquire larvae 
having ideal constant characteristics for a good in vivo infection model. Once grown from the egg, the 
larva is in the growth phase and goes through several stages for two to three weeks before reaching 
the desired weight for the study model. Nutrition is important during this phase. The larvae are 
sorted regularly so that they do not form cocoons too quickly and therefore do not turn into pupae 
too soon. 

Once the desired weight has been reached, the larvae have already partially slowed down their 
nutrition and are sorted in batches of 10 individuals of equal weight and distributed in petri dishes. 
The larvae are then inoculated with 10 μL of C. albicans cell suspension at variable concentrations of 
2,5.105, 5.105, 1.106, and 5.106 colony forming unit (CFU) of each strain (clinical and reference strains). 
The inoculum is prepared with PBS (phosphate-buffered-saline). The required larva weight for the 
experiment is 280 to 350 mg / larva [16]. The injections are made at the last right or left proleg with a 
fine needle insulin syringe. To verify that the volume injected has no negative effect on the larvae, 
we previously studied the survival of the larvae after five repetitive injections of 10 μl phosphate 
buffered saline (PBS) for 2 days, compared to the non-injected larvae. 

The injected larvae are kept in the dark at 37 ° C (temperature close to that of the human body) 
and without food. Mortality as well as melanization (generally occurring as early as 30 minutes after 
inoculation) were observed every 24 hours for 12 days [16]. The larva was considered dead when 
there was no movement following gentle pressure from the cuticle. Dead larvae are removed from 
the Petri dish housing the remaining viable larvae. 

The average of mortality was calculated per day for each type of strain (susceptible strains and 
resistant strains) and for each inoculum. The data obtained were used for the determination of the 
survival curves. A strain is considered to be virulent if it causes 100% mortality of the larvae in 120 
hours maximum and at a given value of CFU inoculated [16]. 

In vivo Study of strains susceptibility to FCL  
Inoculum 5.106 CFU / larva was used for the FCL efficacy tests according to the protocol defined 

by De-Dong et al. in 2013 [16]. This inoculum having caused a mortality of 100% of the larvae in 4 
days concerning our reference strain. The FCL powder, was dissolved in physiological water. It was 
then administered at 1, 4 and 16 mg / kg respectively to the last left proleg, 30 minutes after infection 
in the right proleg, by the inoculum 5.106 CFU / larva [16] of each strain. Physiological water is 
injected into a control lot to ensure that mortality is not due to physical injury, or infection with 
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pathogenic contaminants. A second control group was infected with inoculum 5.106 CFU / larva and 
without receiving subsequent treatment with FCL. As in virulence tests, mortality is monitored every 
24 hours for 12 days [9]. Average of mortality was calculated per day for each type of strain 
(susceptible and resistant strains) for each dose of FCL. The data obtained were used for the 
determination of the survival curves. 

For the study of virulence as for the study of the FLC efficacy, the mortality curves were plotted 
and examined using the Kaplan-Meier method on XLSTAT 2019.1.2 (Addinsoft) for EXCEL. The 
differences were determined using the log-rank test. The difference was considered significant for 
the Pvalue <0.05. 

Ethical considerations 
Patients included for the clinical strains collection, received a clear explanation of the study 

objectives and gave their informed consent before participating in the study. The protocol for this 
thesis work has received the approval of the national ethics committee for health research in Burkina 
Faso (Deliberation No 2015-4-041).  

3. Results 

     A total of 10 clinical strains including 5 FC susceptible strains and 5 FCL resistant strains were 
used. A reference strain SC5314, virulent and FLC susceptible was used as a control strain. 

3.1. Analysis of amino acid substitutions on Erg11p 

     The amplification of the complete ERG11 gene and the search for amino acid substitutions were 
carried out for each of the 10 clinical isolates and for the reference strain. As reported in previous 
studies, we encountered silent mutations in 3 of 10 clinical strains. No mutation was observed with 4 
strains including the reference strain SC5314. The 4 remaining strains carried mutations in the ERG11 
gene and were all resistant to FCL. The number (n) of amino acid substitutions on Erg11p varied 
between the strains, CAAL-1 (n = 2), CAAL-3 (n = 1) and CAAL-6 (n = 3) and CAAL-7 (n = 1). A total 
of 6 distinct types amino acid substitutions have been identified, all of which have been previously 
described as associated with resistance to FCL (MIC> 64 μg / mL). These are: K143R, F145L, G307S, 
S405F, G448E, V456I (Table 1). 

Table 1: Distribution of the different amino acid substitutions at Erg11p in the different strains  

Strains Isolation site FCL MIC(µg/mL) Amino acid substitution 
on Erg11P 

CAAL-1 oral ˃ 64 K143R, F145L, 

CAAL-2  oral ˂0,125 None 

CAAL-3  oral ˃ 64 G307S 

CAAL-4 oral ˂ 0,125 None 

CAAL-5  Fecal ˃ 64 None 

CAAL-6 Fecal ˃ 64  S405F,G448E, V456I 

CAAL-7  Fecale ˃ 64  F145L 
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CAAL-8  Vaginal ˂ 0,125 Silent 

CAAL-9  Vaginal ˂ 0,125 Silent 

CAAL-10 Broncho-alveolar wash fluid ˂ 0,125 Silent 

SC5314 Reference ˂ 0,125 None 

3.2. In vivo virulence estimation 
    All G. mellonella larvae melanized within 30 minutes after strain inoculation regardless of strain 
and inoculated fungal burden (Figure 1). 

  

Figure 1: Evolution of G. mellonella larvae 30 minutes after infection /Source: Laboratory of 
Parasitology-Mycology UJKZ 

   The larvae melanization, evidence of the activation of the immune system in response to the 
infection, occurred independently of the fungal strain injected and the concentration of the inoculum.      

With the PBS injection, we did not observe any melanization or mortality. All larvae receiving the 
PBS injection survived after 12 days of observation (Figure 2).  
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Figure 2: Evolution of G. mellonella larvae after 12 days after PBS injection Source: Photo Laboratory 
of Parasitology-Mycology UJKZ                                                       

  The observed mortality depended on the fungal burden and the strain. Regarding the inoculum 1, 
25.10 5 UFC/larva, 12 days after infection, no mortality was observed. While with the mutant CAAL-
7 strain F145L we observed 10% mortality on the 11th day with the inoculum 1, 25. 10 5. 100% 
mortality of the larvae was observed with inoculum 5.10 6 of the reference strain SC5314 in 72 hours 
(Figure 3 A). For the same inoculum, and concerning the ensemble of the susceptible strains, 
100%mortality was noted in 120 hours (Figure 3B). As for the ensemble of the resistant strains and 
always for the same inoculum, 100% mortality was observed earlier, in 96 hours (Figure 3C) 
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Figure 3: Evolution of larval survival after inoculation of: (A) reference strain SC1453; (B) ensemble 
of susceptible strains (SS); (C) ensemble of resistant strains (RS) 

For all types of strains (SC5314, SS and RS), the comparison of survival was made with the batch of larvae 
which received the injection with PBS (Phosphate - Buffered-Saline). Survival in the batch which received the 
2.5.10 5 CFU / larva inoculum is similar to that in the PBS batch (P = 1.000) regardless of the type of strain. 
Almost identical finding with inoculum 5.10 5 CFU / larva. Concerning inoculum 5.10 6 CFU / larva, the 
difference compared to the PBS batch was significant for all type of strains (P <0.0001). 
 

The two strains CAAL-1 and CAAL-7 carrying the F145L mutation and resistant to FCL appeared to 
be more virulent than the rest of the strains. The evidence of the increased virulence of these two 
mutant F145L strains was especially remarkable with the inoculum 5.10 6 CFU/larva. With this 
inoculum, each of these two strains resulted in 100% mortality of the larvae in 48 hours. 

The comparison of the virulence of the reference strain SC5314 with the other types of strains for the 
inoculum 5.10 6 CFU, showed a non-significant difference in mortality between the reference strain 
SC5314 and the ensemble of susceptible strains (P = 0.139) (Figure 4). The observation is the same 
between the reference strain SC5314 and the ensemble of resistant strains (P = 0.869) (Figure 4). 
However, still with inoculum 5.10 6, the comparison of the mortality due to the reference strain 
SC5314 CFU/larva and the average mortality due to the two mutant F145L, shows a significant 
difference (P = 0.009) (Figure 4 ).  
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Figure 4: Evolution of the survival of the larvae after injection of the reference strain SC5314, of 
ensemble of the susceptible strains (SS), of ensemble of the resistant strains (RS), of ensemble of 
the two resistant mutant F145L strains (SRm) with the inoculum 5.10 6  CFU/larva 

3.1. In vivo different strains susceptibility to fluconazole study 

Inoculum 5.10 6 CFU / larva having led to the death of 100% of the larvae in 3, 4 and 5 days with 
respectively, the reference strain SC5314, the ensemble of the resistant strains and the ensemble of 
the susceptible strains, therefore constituted the ideal inoculum for studying the in vivo strains 
susceptibility to FCL. Our results indicate that FCL significantly protected (P> 0.05) the larvae from 
infection by susceptible strains and the reference strain which is also FCL susceptible. More precisely, 
with the 16 mg/kg dose injected, 30 minutes after infection of the strain SC5314, 80% of the larvae 
survived up to 12 days, our observation period (Figure 5A). With susceptible strains, 90% of the 
larvae survived after 12 days (Figure 5B). Antifungal protection of the larvae against infection was 
dose-dependent. However, the antifungal protection of the larvae after injection of the resistant 
strains proved to be poor. The difference between the number of larvae which survived after FCL 
administration following the inoculation of resistant strains, (whatever the dose) and the number of 
larvae which received the injection of resistant strains without FCL, was not significant (P <0.05). No 
larvae survived after 12 days, 100% mortality in 6 days (Figure 5C).  
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Figure 5: Estimation of the in vivo protective role of FCL after inoculation of the different strains 
with the inoculum 5.106 CFU: (A) in vivo protective role of FCL on the reference strain SC 5314; (B) 
in vivo protective role of fluconazole on the ensemble of susceptible strains; (C) in vivo protective 
role of fluconazole on the ensemble of resistant strains.  

The efficacy of FCL at high doses, 16 mg/Kg on the reference strain SC5314 was compared with its 
efficacy on the clinical strains. The efficacy of FCL on strain SC5314 and on the ensemble of 
susceptible strains (SS) were almost similar (P = 0.591) (Figure 6). However, the FCL was significantly 
less effective on the ensemble of resistant strains compared to the reference strain SC5314 (P <0.0001) 
(Figure 6). 
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Figure 6: Estimation of the in vivo protective role of FCL at a dose of 16 mg/Kg after inoculation of 
the different strains with inoculum 5.106 CFU  

 

4. Discussion 

      In this study, the mechanisms of 10 C. albicans clinical FCL resistant strains obtained from 
various isolation sites in patients of the CHU Yalagado Ouédraogo in Ouagadougou (Burkina Faso) 
were evaluated. This is the first preliminary molecular analysis of the C. albicans resistance to FCL in 
Burkina Faso. Our results indicate for the first time in Burkina Faso punctual mutations in the ERG11 
gene, one of the molecular mechanisms involved in the C. albicans resistance to FCL in our clinical 
strains.                                                                         
    Although most C. albicans clinical isolates are susceptible to triazoles, including FCL, some 
authors have reported an increase in the incidence of invasive infections due to strains resistant to 
FCL[10,11,17].                                                                                                      
The emergence of C. albicans resistance to FCL is a source of preoccupation due, on the one hand, to 
the frequency of often serious infections due to this fungal species, and, on the other hand, to the use 
of FCL as a medicine of first choice in care [18]. Although mutations in the ERG11 gene are 
consistently reported as one of the main mechanisms of resistance in C. albicans, resistance to FLC has 
been shown to be due to a combination of different molecular mechanisms [19, 20, 21]. The literature 
generally describes four mechanisms of C.albicans resistance to FCL and in general, to azoles what 
are:                                                                                                                                                                                                                 

   The modification of the FCL action target, 14-alpha-demethylase that corresponds to amino acid 
substitutions in the protein sequence [18, 22]. These modifications, which are the consequence of 
punctual mutations in the ERG11 gene coding for 14-alphademethylase [23, 24] lead to a decrease of 
FCL affinity for 14-alpha-demethylase, or to changes in conformation, prevent the access of the 
antifungal agent active site [22]. According to Carvalho et al. in 2014, more than 140 resistant 
mutations were described on the C. albicans ERG11 gene [25]. This is why, according to the literature, 
several authors have been particularly interested to this gene in the various studies on the C. albicans 
resistance to azoles;                                                                      

   Overproduction of the action target: By increasing the production of the target enzyme, 14-
alphademethylase, C.albicans may decrease its susceptibility to the azole antifungals activity o [17,19, 
24].                                                                                                       
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Efflux phenomena: To exercise their antifungal activity, azoles must enter the fungal cell and be at a 
sufficient intracellular concentration to inhibit 14-alphademethylase [19]. C. albicans has, naturally, at 
its plasma membrane, transporters called efflux pumps allowing the efflux of different molecules 
[18]. The CDR1, CDR2 and MDR1 genes code for these efflux pumps which are membrane 
transporters which excrete toxic molecules out of the fungal cell. CDR1 and CDR2 code for the ABC 
transporters, and the MDR1 gene codes for the MFS transporters [18]. Increased expression of these 
transporters (efflux pumps) is an important C. albicans clinical strains mechanism of resistance to 
azoles [19];                                                                    

     Alterations in the ergosterol biosynthesis pathway: in the presence of azoles, the inhibition of 
14-alpha-demethylase leads to the accumulation of methylated sterols which are transformed into 
toxic products by delta-5, 6-desaturase, an enzyme encoded by the ERG3 gene [26, 27]. If the ERG3 
gene is mutated, these toxic products are no longer synthesized and the fungal cell can survive and 
thus become resistant to azoles [26]. This resistance mechanism, although uncommon, has been 
demonstrated in certain C. albicans clinical strains [26].                                       

    In this study, four of the five C. albicans isolates with high (resistant) FCL MICs had one or more 
punctual mutations in the ERG11 sequence which led to six amino acid substitutions: K143R, G307S, 
S405F, G448E, V456 and, F145L, compared to the reference strain SC5314. New point mutations in 
the ERG11 gene responsible for resistance have been reported by various authors [6,7]. However, in 
the present case, all the six mutations identified have already been described in the literature [28, 29, 
30].                                                                                                                                            
    In order to verify a possible impact of non-silent mutations, on the virulence of the strains 
concerned, we found that the mutant CAAL-1 and CAAL-7 F145L strains seem more virulent 
compared to the reference strain and other clinical strains (susceptible and resistant) according to the 
C. albicans-G.mellonella infection model. This suggests that the F145L mutation is associated with an 
increase of the virulence of the strain which carries it. Although the F145L mutation has already been 
demonstrated in the literature, its involvement in increasing virulence has never been studied. In 
addition, this finding of increased virulence due to the F145L mutation suggests that certain genetic 
mutations in the ERG11 gene and probably in other genes in C. albicans could not only generate 
resistance, but could also be a source of increased virulence. However, considering the mortalities 
due to the different types of strains as a whole, the average larval mortality was 100% in 3 days with 
the reference strain SC5314, in 4 days with the ensemble of resistant strains, and in 5 days for the 
ensemble of susceptible strains with inoculum 5.10 6 CFU/larva(Figure 3). No significant difference 
in mortality was observed between the different types of clinical strains as a whole compared to the 
reference strain SC5314 (Figure 4). 
    To study the FCL in vivo efficacy, larvae of G. mellonella were infected to assess the response to 
FLC therapy. In vitro Resistance to FCL has been well confirmed in vivo. Resistant strains in vitro 
behaved significantly the same way in vivo, causing the death of all larvae in 4 days despite the FCL 
administration, regardless of the dose administered. As for susceptible strains in vitro, these also 
significantly (P˃0.05) showed their susceptibility in vivo following the administration of fluconazole. 
Several authors having carried out work on the same subject had arrived at the same observation [31, 
32, 33].                                                                 
     In perspective, this study should be continued in order to detect other molecular mechanisms 
involved in the resistance of C. albicans to azoles in general and in particular to FCL. These include 
the overexpression of the ERG11 gene, MDR1 and CDR1. In addition, the implication of certain 
resistant mutations, as one of the sources of increased virulence, must be further elucidated through 
the study of the various determinants of virulence in the strains of C. albicans concerned. 
 

5. Conclusions 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 February 2021                   doi:10.20944/preprints202102.0045.v1

https://doi.org/10.20944/preprints202102.0045.v1


 

 

ERG11 gene mutations are involved in the resistance of C. albicans to FLC. In addition, some of these 
point mutations in the ERG11 gene would increase the virulence of the mutant strains compared to 
the reference and wild-type strains according to the C.albicans-G. mellonella infection model. In our 
study, the observation in this sense was made with the F145L mutation. 
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