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Abstract: Table grape quality is of importance for consumers and thus for producers. The objective 

quality determination is usually destructive and very simple with the assessment of only a couple 

of parameters. This study proposed to evaluate the possibility of hyperspectral imaging to charac-

terize table grapes quality through its sugar, total flavonoid and total anthocyanin contents. Differ-

ent pre-treatments (WB, SNV, 1st and 2nd derivative) and different methods were tested: PLS with 

full spectra, then Multiple Linear Regression (MLR) were realized after selecting the optimal wave-

lengths thanks to the regression coefficients ( -coefficients) and the Variable Importance in Projec-

tion (VIP) scores from the full spectra. All models were good showing that hyperspectral imaging 

is a relevant method to assess sugar content and global phenolic content. The best model was de-

pendent on the variable. The best models were from the full spectra and with the 2nd derivative 

pre-treatment for TSS; from VIPs optimal wavelengths using SNV pre-treatment for Total Flavonoid 

and total Anthocyanin content. Thus, relevant models were proposed using the full spectra, as well 

as specific windows and wavelengths in order to reduce the data sets and limit the data storage to 

enable an industrial use. 

Keywords: hyperspectral imaging, phenolics, anthocyanin, table grapes, total soluble solid, PLS, 

MLR, model. 

 

1. Introduction 

Grapes are one of the most diffuse fruits in the world both as fresh fruit and when pro-

cessed into wine, grape juice and raisins. According to the International Organization of 

Vine and Wine statistics, approximately 36% of world grape production is used as fresh 

fruit. In Europe, the production of table grapes (∼1,9 million tons) remains concentrated 

in Mediterranean areas, and the four main producers are Italy (61%), Greece (16%), Spain 

(15%) and France (1,5%) [1]. The French production of table grapes is mainly placed in 

Vaucluse and Tarn-et-Garonne, and three cultivars represent about 80% of the production: 

Alphonse Lavallée, Chasselas and Muscat de Hambourg. French table grape production 

(∼30,000 tons) accounts for approximately 40% of the national consumption, while the 

remainder is mainly imported from Spain and Italy.  

Several studies have shown that the ripening indices such as the changes in skin color, 

softening, titratable acidity, soluble solids content, flavonoids and aromatic compounds 

are traditionally utilized to judge the right commercial harvest ripeness of table grape 

[2,3]. Visual attributes of table grapes, such as intensity and uniformity of color, large size 

of berries and brightness are the main characteristics that influence consumer choice [4,5]. 

Color is considered one of the most important physical properties of agro-food products 

and it plays a fundamental role in the assessment of external quality in food industries [6]. 

Furthermore, some studies have found clear evidences that a greater consumption of fresh 
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grapes decreases the risk of cardiovascular diseases and cancer [7,8]. This beneficial effect 

is mainly related to the presence of minerals, fibers, vitamins and phytochemical com-

pounds including flavonoids and anthocyanins [9,10]. However, these quality attributes 

change during postharvest storage and thus influence the hedonistic and nutritional value 

of table grapes.  

Several analytical methods have been used to evaluate the quality parameters of table 

grapes [11-13]. Nevertheless, conventional analytical methods are sample-destructive, 

time-consuming, need laborious sample preparation steps, and generate chemical waste, 

thereby limiting their utility in online/in-line quality monitoring [14-16]. Despite being 

time consuming and expensive, the destructive analytical approach provide data for a 

limited number of samples, and, thus, their statistical relevance could be limited [17]. Sev-

eral studies in the field of post-harvest are focused on non-destructive analytical tech-

niques which are fast, reliable, and allow to analyze a higher number of samples and rep-

etitions of the same batch in real time.  

Recently, the research has focused on the development of non-destructive techniques suit-

able to increase the number of samples analyzed, thus providing real-time information of 

quality attributes of fruits and a most robust statistical data analysis [18]. Infrared spec-

troscopy (FT-NIR; ATR-FTIR) has been applied for the prediction of procyanidins [19], 

total polyphenol content [20], malvidin-3-O-glucoside, pigmented polymers and tannins 

[21] in cocoa, green tea and wine, respectively. This technology has also been employed 

to determine, pH, total soluble solids, glycerol and gluconic acid in grape juice [22] and to 

measure condensed tannins and the dry matter in homogenized red grape berries [23]. 

Hyperspectral imaging spectroscopy (HIS) is a non-destructive spectroscopic technique 

that records hundreds of narrow-wavelength bands and spatial positions [24]. This tech-

nique provides a new detection method that integrates imaging and spectral techniques 

into a single system [25, 26], providing information on spectral response values and spa-

tial location for each pixel in the hyperspectral image [25, 27]. A hyperspectral image is a 

three-dimensional (3D) hyperspectral cube that includes two-dimensional spatial infor-

mation (of x rows and y columns) and one-dimensional spectral information (of λ wave-

lengths) [28]. The hyperspectral image cube 'hypercube' consists of a series of sub-images 

at small interval wavelengths ranging from 400 to 2500 nm in VIS and NIR spectral re-

gions. 

 Over the last decade, HIS has been applied for fruit and vegetable quality assessment 

[24, 27], food safety control [29 - 31] and classification tool [32, 33]. Likewise, total acidity, 

pH, solid soluble content, technological maturity, total anthocyanin concentration, anti-

oxidant activity, and total phenolic compounds in grapes were determined using VIS−NIR 

hyperspectral imaging of few fruits [34, 35] but a lack of study appeared for table grapes. 

The spectroscopic method has a great drawback compared with the HSI due to it acquires 

the spectral information from a small portion of the tested fruit [35, 36]. Moreover, HSI is 

advantageous with respect to conventional RGB techniques, which can be poor identifiers 

of surface features and chemical composition of the fruit sensitive to wavebands other 

than RGB [37]. The HIS has also advantages of receiving spatially distributed spectral re-

sponses at each pixel of a fruit image. Another advantage is once appropriate calibration 

models are developed, they can be re-inserted in the hypercube to create chemical map-

ping images. 

The objective of this study was to determine if hyperspectral imaging would be able to 

predict the sugar content and the concentration of total flavonoids and anthocyanins of 

white and red table grapes. As keeping whole spectra for all samples would generate big 

data to manage and a higher time to analyze in a potential on-line tool, the second objec-

tive was to define if it was possible to reduce the number of wavelengths with still good 
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models of prediction. Thus, this study developed calibration models based on hyperspec-

tral imaging to predict some quality attributes of table grape: 

I. Developing partial least square (PLS) models to quantitatively predict total anthocy-

anins (TA), total flavonoids (TF) and total soluble solids content (SSC), using the visible 

and short-wave near-infrared region;  

II. Selecting the lowest number of optimal wavelengths, based on regression coefficient 

(RC) and Variable Importance in Projection (VIPs) algorithms, which gave the highest cor-

relation between the spectral data and the three selected quality parameters;  

III. Developing Multiple Regression Models (MLR) using spectral responses from only 

the optimal wavelengths and then test and validate the prediction accuracy of the devel-

oped calibration models. 

2. Materials and Methods 

 2.1 Chemicals 

The following chemicals were used: ethanol, hydrochloric acid, (Merck-France SA); 

malvidin-3-glucoside (Extrasynthese, France) and (+)-catechin (Sigma–Aldrich, France). 

All the chemicals were at least of analytical grade. Ultrapure water was prepared from 

deionized water obtained a Milli-Q system (Millipore Filter Corp., USA). 

 2.2 Samples 

Three white table grapes (Sugarone Superior Seedless, Thompson Seedless and Vic-

toria) and four red/black table grapes (Sable Seedless, Alphonse Lavallée, Lival and Black 

Magic) were purchased from local fruit markets at commercial harvest ripeness. Alphonse 

Lavallée and Lival were chosen because they represented French cultivars produced in 

the south-east of France and mostly consumed throughout the country. The other 5 culti-

vars were chosen because they are largely diffused around the world. Approximately 5 

kg of clusters randomly selected were sampled for each cultivar. Once in the laboratory, 

for each variety a subsample of 50 berries with short attached pedicels was collected from 

different bunch parts (shoulders, middle, and bottom) and stored at 4°C until the HIS 

acquisitions. 

 2.3 Hyperspectral imaging system (HIS) 

The hyperspectral images of the samples were acquired by a hyperspectral system in 

reflectance mode. 

The system is composed of the following components (Figure 1): (a) a hyperspectral 

imaging camera (Pika L, Resonon, USA) coupled with an objective lenses (Xenoplan 

1.4/23, Schneider-Kreuznach, Germany); (c) an illumination unit which consists of four 35 

W quartz tungsten halogen (QTH) MR16 35W lamps adjusted at angle of 45° to illuminate  

the  camera’s  field  of  view; (3) a mounting tower; (d) and a transport stage (PS-12-

20-1.0, Servo Systems Co., USA), with motor (DMX-J-SA-17, Arcus Technology Inc., USA). 

The sensor has 900 spatial channels each with 281 spectral channels covering a spectral 

range from 387 to 1026 nm. The maximum spectral resolution is 2.1 nm. The target was 

placed at a distance of 450 mm from the camera. The spectral images were collected in a 

dark room where only the halogen light source was used. The HIS was controlled by a PC 

with the software SpectrononPRO (Resonon, USA) for image acquisition. 
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Figure 1. Hyperspectral imaging system: (a) a CCD camera, (b) a spectrograph with a standard 

C-mount zoom lens, (c) QTH lighting unit, (d) translation stage, and (e) a PC with image acquisition 

software. 

2.4  Image acquisition 

The samples were kept at room temperature (20°C) for 1 h prior to the imaging ac-

quisition. The hyperspectral image of each sample (one berry) was recorded in three dif-

ferent berry positions corresponding to berry rotations of approximately 120° between 

positions. The berries reflectance measurement was made along the berry “equator” when 

considering the pedicel to be the “pole”. This is a common practice reported by several 

articles [38, 39]. The hyperspectral images were recorded by the SpectrononPRO software 

(Resonon, USA) using an exposure time of 12 ms and a stage speed of 11 mm s-1 with a 

gain of 10. The spectral data in the wavelength range of 411–1000 nm was used in the data 

analysis for removing noise and reducing data redundancy out of this range. For each 

sample were collected three reflectance spectrums, corresponding to the berry rotations, 

and averaged over the spatial dimension. 

 2.5 Preprocessing of hyperspectral images 

All the acquired images were processed and analyzed using SpectrononPro 5.1 Hy-

perspectral Imaging System software (Resonon, USA). The hyperspectral images were 

firstly corrected with a white and a dark reference. The dark reference was used to remove 

the effect of dark current of the CCD detectors, which are thermally sensitive.  

The corrected image (R) is estimated using the following equation (1): 

                    𝑅 =
𝑆 − 𝐷

𝑊 − 𝐷
∗ 100                                                                               (1) 

where S is the intensity of an image; W is the intensity of the white reference image 

(Teflon white board with 99% reflectance); and D is the intensity of the dark reference 

image (with 0% reflectance) recorded by turning off the lighting source with the lens of 

the camera completely covered. The corrected images were the basis for the subsequent 

image analysis to extract the spectral response of each fruit, selection of effective wave-

lengths and predict physicochemical parameters. 

2.6  Data analysis 

 2.6.1 Determination of reference parameters: Soluble Solid Content (SSC) and Total 

Anthocyanin (TA) and Total Flavonoids (TF) 

Immediately after image acquisition, each berry was subjected to the determination 

of soluble solid content (SSC), total flavonoids (TF) and total anthocyanins (TA). Each 

berry was weighed, manually peeled and the juice was collected separately. Soluble solid 

content was measured by a portable refractometer (Mettler Toledo Refracto 30PX). The 

a

b

c c

d

e
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skins were separately weighed and, extracted four times with 7.5 mL of hydrochloride 

ethanol solution (ethanol / water / hydrochloric acid 70/30/1 v/v/v). The samples were 

shaken for 60’ with a horizontal shaker VXR vibrax (IKA-Werke, Germany) at 1500 rpm, 

centrifuged at 5000 rpm for 5’ and, the supernatant was collected a volumetric flask. The 

supernatants were collected together, brought to the volume of 25 mL and, stored at -80°C 

until analyses. The quantification of TA and TF was carried out spectrophotometrically 

by recording the UV-visible spectra in the range 220 to 700 nm using a Safas UV mc2 spec-

trophotometer (Safas, Monaco) and measuring the absorption values at 280 nm and 520 

nm, as previously reported [40]. The results were expressed as mg (+)-catechin equiva-

lents/kg fresh grape and mg malvidin-3-O-glucoside equivalents/kg fresh grape for the 

flavonoids and anthocyanins respectively. 

 2.6.2 Spectral analysis for predicting quality attributes 

● Collecting spectral data 

Hyperspectral image extraction was performed by SpectrononPro 5.1 Hyperspectral 

Imaging System software (Resonon, USA). The samples were separated from the back-

ground as the regions of interest (ROIs) to reduce redundancy. To collect the spectral re-

sponses referred of each berry, the flood fill method [41] was used to isolate the ROI from 

the background in the score images. Then, an average reflectance spectrum was calculated 

by averaging the relative reflectance spectra of all the pixels selected. In total, 350 average 

spectra representing all the tested berries were recorded and stored in the PC for calibra-

tion model development and wavelengths selection. 

● Spectra pre-treatments 

To overcome or reduce unwanted spectral variation, base-line shifts, and various 

noise, a series of pre-treatment methods was applied on the mean spectral data to decrease 

the influence of high-frequency random noises, the nonuniformity in samples and the sur-

face scattering. Before building the prediction model, different equations (2, 3 and 4) were 

used for spectral pre-treatments [42]: 

 SNV: Standard Normal Variate (SNV). The average intensity (Amean) and standard 

deviation (ASD) of the spectrum are calculated and inserted in the following equation (2): 

                   𝐵𝑖 =
𝐴𝑖 − 𝐴𝑚𝑒𝑎𝑛

𝐴𝑆𝐷

                                                                         (2)  

 1st derivative: The first derivatives A’i   was calculated using the symmetric difference 

quotient 1st derivative (3): 

                    Ai
′ =

𝐴𝑖+1 −  𝐴𝑖−1  

2𝛥𝜆
                                                                      (3) 

 2nd derivative: The second derivate A’’i was calculated using the symmetric differ-

ence quotient 2nd derivate (4): 

                   Ai
′′ =

𝐴′𝑖+1 − 𝐴′𝑖−1

2𝛥𝜆
                                                                  (4)  

 2.6.3 Hyperspectral imaging calibration 

● Model establishment 

The use of chemometrics in modeling spectral data is widely employed, being con-

sidered as a standard procedure for building predictive models in the analysis of hyper-

spectral images. The partial least squares (PLS) analysis between one attribute (TA; TF or 

SSC) and the spectral data (average spectra with 276 wavelengths in the range from 411 

to 1000 nm) was conducted using XLStat software (Addinsoft 2019).  

A total of 350 reflectance mean spectra were obtained from 350 berries. The calibra-

tion and validation sets were established by ordering the fruit samples according to their 

physicochemical references. The two highest and two lowest values were assigned to the 
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calibration set. Afterward, two-thirds of the samples were selected as calibration data and 

one-third of the samples were defined as validation data in a 2:1 leave-one-out procedure.  

PLS regression used to develop calibration models for the prediction of the quality 

attributes, was carried out with two calibration sample sets: (i) N = 234 samples for TF & 

SSC; (ii) N = 133 samples for TA. The building of PLS models for the prediction of TF and 

SSC took into account both the white and red table grape cultivars, while for the predic-

tion of TA was considered only the red grape cultivars since white grapes do not have 

anthocyanins. To reduce the probability of an over fitting of the experimental data [43], 

PLS models with 1-15 latent variables (LVs) were fitted, and the model with a number of 

PLS factors that maximized the coefficient of determination (R2cal) for the calibration and 

minimized the root mean square error of calibration (RMSEC) was selected. These two 

parameters would allow the evaluation of the models. 

● Hyperspectral imaging model validation 

Two validation sets (N = 116 samples for TF & SSC; N = 67 samples for TA), were 

used to calculate the root mean square error of prediction (RMSEP), the coefficient of de-

termination (R2val), the Bias and the Ratio Performance Deviation (RPD) of the PLS models 

as follow (Picouet al., 2018): 

RMSEC = √
1

𝑁−1−𝑅
 𝑥 ∑ (𝑦𝑖

𝑟𝑒𝑓
− 𝑦𝑖)

2
 𝑁

𝑖=1                         (5) 

RMSEP = √
1

𝑁
 𝑥 ∑ (𝑦𝑖

𝑟𝑒𝑓
− 𝑦𝑖)

2
𝑁
𝑖=1                                                                (6) 

Bias =  
∑ (𝑦𝑖

𝑟𝑒𝑓
−𝑦𝑖)

𝑁

𝑖=1

𝑁
                                   (7) 

RPD =  
𝑆𝐷 (𝑦𝑖

𝑟𝑒𝑓
:𝑦𝑖+1

𝑟𝑒𝑓
)

𝑅𝑀𝑆𝐸𝑃
                                    (8) 

where N: is the number of samples; R: is the number of PLS factors; 𝑦𝑖
𝑟𝑒𝑓is the refer-

ence value for sample i;  𝑦𝑖 is the predicted value for sample i. 

● Selection of optimal wavelengths  

Spectral wavelengths in hyperspectral images are characterized by their large degree 

of dimensionality with collinearity and redundancy. Researchers are often interested in 

finding most important wavelengths which contribute to the evaluation of quality param-

eters and eliminate wavelengths having no discrimination power. After proving the good 

performance of the PLS models on predicting the chemical references, the next step was 

to select only the wavelengths that showed the maximum spectral information.  

The regression coefficients (RC), also called β-coefficients, and the Variable Im-

portance in Projection (VIP) scores, were applied to select the most informative optimal 

wavelengths corresponding to the best full-spectrum PLS calibration model with full spec-

tral variables. The wavelengths that corresponded to the highest absolute values of β-

coefficients were considered optimal wavelengths [44]. Based on the studies conducted by 

Olah et al. [45], all wavelengths at which the VIP scores were above a threshold of 1.0 

(highly influential) were selected and compared with those identified using β-coefficients. 

In this study, only the wavelength with highest β-coefficient (absolute values) from one 

side and highest VIP scores (above the threshold of 1.0) on another side were selected to 

establish Multiple Linear Regression (MLR) models, instead of using the whole spectral 

range. Moreover, all the wavelengths with VIP score above 1 (spectral windows) were 

also used to improve the performance of PLS regression models. 

2.6.4 Statistical analyses 
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One way ANOVA on quality attributes of table grapes was performed with XLSTAT 

2019.1 software (Addinsoft, France). Mean values were separated with Tukey’s test 

(p<0.05) to present the significant differences between varieties. 

3. Results 

3.1. Grape composition 

Berries from each grape variety were characterized from their sugar content (Soluble solid 

content SSC), their Total Flavonoid content (TF) and Total Anthocyanin content (TA) for 

red varieties only. Table 1 shows that the selected varieties had different total flavonoid 

content, from 201 mg kg-1 FM for Victoria grapes to 1642 mg kg-1 FM for Lival grapes, 

white grapes presenting the lowest phenolic concentration as expected. That agrees with 

Mikulic-Petkousek et al. [46] which showed that Victoria grapes were among the lower 

total phenolic content varieties. Similarly, a large range of total anthocyanin content was 

observed from 217 mg kg-1 FM for Alphonse Lavallée to 590 mg kg-1 FM for Sable seedless. 

Their sugar concentration was between 14.0 g/100g (Victoria) to 24.8 g/100g (Alphonse 

Lavallée) corresponding to ripening level [2]. Statistics showed that TF, TA and SSC were 

significantly dependent on the grape cultivar. 

Table 1. Grape composition. Total Anthocyanins (TA), Total Flavonoids (TF), and Soluble Solid 

Content (SSC) of table grapes. a b c & d letters within the same column indicate significant differences 

among table grape cultivars according to Tukey-b test (p<0.05). FM: fresh matter. 

Grape cultivars Origin 
TF 

(mg kg-1 FM) 

TA 

(mg kg-1 FM) 

SSC 

(g 100g-1) 

Sable Seedless South Africa 1131 ± 267 c 590 ± 163 a 19.0 ± 1.8 b 

Alphonse Lavallée South Africa 829 ± 153 d 217 ± 61 c 24.8 ± 1.1a 

Lival France 1642 ± 374 a 588 ± 222 a 15.0 ± 1.7cd 

Black Magic Italy 1279 ± 259 b 399 ± 132 b 15.4 ± 0.9c 

Sugarone Superior Seedless South Africa 162 ± 43e 0 14.7 ± 1.0 d 

Thompson Seedless Egypt 826 ± 136 d 0  15.5 ± 1.9 c 

Victoria Italy 201 ± 28e 0  14.0 ± 1.5e 

  P<0.001 P<0.001 P<0.001 

3.2. Spectral profiles 

The mean reflectance spectra profile of each grape variety is presented in Figure 2. These 

spectra obtained by HIS showed clear differences between the grape varieties, as already 

reported by Baiano et al. [47] on 7 other varieties. White grapes exhibited important re-

flectance from about 500 to 650 nm on the contrary of reds. Chlorophyll pigments absorb 

indeed around 540 nm giving the green-yellow color to these varieties as hypothesized by 

dos Santos et al. (2019). All grapes presented much higher reflectance percentage between 

700 and 950 nm, with a mix of intensity between reds and whites but varieties showed 

similar trends depending on the variety color: whites had higher intensity around 700-720 

nm which decreased to 950 nm; reds showed flattened bell curve with a maximum around 

820 nm. Absorption band at 840 nm is mainly due to sugar [47] and more than 960 nm to 

water [48, 49].  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 February 2021                   



 

 

 

Figure 2. Mean reflectance spectra profiles obtained by hyperspectral imaging spectroscopy. Sable 

Seedless (dark blue), Seedless Sugraone (red), Alphonse Lavallée (green), Thompson Seedless (pur-

ple), Lival (turquoise), Black Magic (orange) and Vittoria (clear blue) table grapes samples. 

3.3 Modelisation of table grape composition using the whole spectral range of 411 – 1000 nm 

PLSR were developed to establish the relationship between the spectral data extracted 

from the ROI of the samples and the corresponding TA, TF and SCC content analyzed by 

conventional chemical method. The whole dataset was employed to select the best pre-

treatment for each quality parameter. The results of the models obtained for each quality 

attribute are reported in Table 2. To select the pre-treatment generating the best model, 

over the R² evaluation, 4 parameters were considered: LVs, RMSE and Bias, which have 

to be minimized, and RPD, which has to be maximized [48]. All determination coefficients 

(R²cal and R²val) were upper than 0.89 (Table 2) showing that modelising total flavonoids, 

total anthocyanins and sugar content from HIS data was relevant [49]. Thus, for the mod-

elisation of TF, the best pre-treatments were SNV and WB using 9 and 12 LVs, respec-

tively. The SNV pre-treatment and raw data without pre-treatment (RD) leading to R²cal = 

0.9423; R²val = 0.9326 with RMSEP = 144.9 mg/kg and R²cal = 0.9451; R²val = 0.9351 with 

RMSEP = 142.0 mg kg-1, respectively. For Total Anthocyanins, the best model was obtained 

from the SNV data pre-treatment with 3 components only. TA content was predicted with 

R²cal = 0.9419 and R²cal = 0.9457 and RMSEP = 54.2 mg/kg. The best model for SSC was 

obtained using RD and SNV pre-treatments. The RD pre-treatment, thanks to 15 latent 

variables, generated a R²cal =0.9671 and a R²val = 0.9313 with RMSEP = 1.02 g/100g, while 

the SNV, using 10 LVs, showed a R²cal = 0.9472 and a R²val = 0.9292 with RMSEP = 1.03 

g/100g. As for residual prediction deviation (RPD), both SNV and RD pre-treatments gen-

erated values close to 4, that suggest the capability of the models to provide a good quan-

tification and satisfactory prediction of TF, TA and SSC [50, 51].The relatively low number 

of LVs of the models generated by SNV pre-treatment, compared to the others, and the 

fact that the models were built using grape berries of seven different cultivar contributed 

to the robustness of the models. And according to the results, the SNV mathematical pre-

treatment was selected for predicting quality attributes in table grapes. In order to go fur-

ther, measured data versus predicted data were plotted for the three models selected (Fig-

ure 3). These graphs validated the selected models proving the ability of hyperspectral 

imaging data to predict TF, TA and SSC in table grapes. 
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Table 2. Performance of PLS models depending on data pre-treatments for predicting TF, TA and 

SSC, using full spectra (400-1000 nm). TF: Total Flavonoids, TA: Total Anthocyanins and SSC: Solid 

Soluble Content. RD: row data, der: derivative, SNV: Standard Normal Variate. LVs: number of 

latent variables. 

Variable 
Pre-treat-

ment 
LVs 

 Calibration Set  Validation Set 

 R2
c RMSEC  R2

val RMSEP Bias RPD 

TF SNV 9  0.9423 134.6  0.9326 144.9 9.37 3.85 

TF 1st DER 9  0.9505 121.2  0.9208 156.7 3.81 3.56 

TF WB 12  0.9451 132.1  0.9351 142.0 8.09 3.93 

TF 2nd DER 5  0.9298 147.0  0.9188 158.9 13.72 3.51 

TA SNV 3  0.9419 53.1  0.9457 54.2 17.36 4.05 

TA 1st DER 4  0.9314 57.9  0.9211 63.6 10.44 3.45 

TA WB 6  0.9275 60.1  0.9209 63.5 11.53 3.46 

TA 2nd DER 4  0.9169 63.8  0.8942 74.6 9.38 2.94 

SSC SNV 10  0.9472 0.92  0.9292 1.03 0.01 3.77 

SSC 1st DER 6  0.9334 1.02  0.9118 1.16 0.06 3.35 

SSC WB 15  0.9671 0.73  0.9313 1.02 0.01 3.81 

SSC 2nd DER 5  0.9110 1.18  0.8897 1.29 0.08 3.01 
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Figure 3. Performance of PLS model using the spectral data pre-treated by SNV. Calibration and 

external validation for total flavonoids using nine factors (A), for Total Anthocyanins using three 

factors (B) and for solid soluble content using ten factors (C). Blue dots indicate calibration set and 

red dots represent predicted set. R2: determination coefficient, RMSE: root mean squared error. 

3.4 Modelisation of table grape composition from optimal wavelengths obtained by -coeffi-

cients 

Hyperspectral data with hundreds of contiguous wavelengths for each pixel of image is a 

great issue for data processing. Therefore, the selection of optimal wavelengths is very 

important to reduce the computation time, to simplify the prediction model and further 

to satisfy the real-time inspection [52]. In this section, regression coefficients (RC) resulting 

from full-spectrum PLS models, were employed to select the key wavelengths aiming to 

establish the Multiple Linear Regression (MLR) models. Figure 4 shows the values of -

coefficients for the variables Total Flavonoids, Total Anthocyanins and SSC from the HIS 

data. The optimal wavelengths are those having the highest absolute values of -coeffi-

cients (framed in the figure). Thus 17 specific wavelengths were selected for TF: 434.3; 

485.5; 501.9; 543.4; 608.2; 631.4; 648.3; 675.9; 688.7; 707.9; 779; 792; 805; 807.2; 829; 905; and 

945.9 nm; 8 for TA: 434.3; 543.4; 604; 616.6; 669.5; 796.3; 943.6 and 952.5 nm; and 23 for SSC: 

418; 434.3; 485; 501.9; 539.2; 543.4; 585.1; 646.2; 661; 678; 697.2; 716.5; 792; 802; 805; 807.2; 

829; 833; 905.9; 910.3; 939.2; 945.9 and 952.5 nm. Table 3 presents the accuracy and robust-

ness of RC-MLR models built using the selected wavelengths for the prediction of chemi-

cal references. The model for the prediction of TF showed R² = 0.9525 and 0.9305 for the 

calibration and validation set respectively and RMSEP = 147.5 mg/kg. For TA, the model 

had R² of 0.9429 and 0.9490 for the calibration and the validation set respectively with 

RMSEP = 52.0 mg/kg and the model for predicting SSC presented a value of R² = 0.9504 

and 0.9257 for the calibration and the validation set respectively, and RMSEP = 1.06 

g/100g. To visualize these models, measured data vs predicted data was plotted (Figure 

5). The correlation between the spectra data and the Total Flavonoid content (R²val = 0.9305, 
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Figure 5A), that of Total Anthocyanin content (R²val = 0.9490, Figure 5B), and that of SSC 

(R²val = 0.9257, Figure 5C) were good with points concentrated on the line y=x and narrow 

scattering of data showing the low error of the model. Thus, our models for TF, TA and 

SSC showed good quantification and good prediction potential due to their RER and RPD 

values (Table 3) [49, 50, 51]. However, the values of Bias are rather important for TF and 

TA but that could be improved. Although the elimination of variables was approximately 

92.0%, the MLR model had higher performance in prediction in terms of RMSE and de-

termination coefficient compared to full-spectrum PLSR models. This is attributed to the 

fact that MLR models only use the optimal wavelengths and neglect unnecessary wave-

lengths, mitigating the problems of collinearity and overfitting [53]. Therefore, it could be 

demonstrated that RC algorithm is useful and effective for the selection of key wave-

lengths in predicting TF, TA and solid soluble content in table grape. 

Table 3. MLR model performance for Total Flavonoids (TF), Total Anthocyanins (TA) and Solid 

Soluble Content (SSC) from optimal wavelengths selection based on coefficient of the best PLS 

full spectra analysis. 

Variable Optimal wavelengths (nm) 
 Calibration Set  Validation Set 

 R2
c RMSEC  R2

val RMSEP Bias RPD 

TF 

434.3; 485.5; 501.9; 543.4; 608.2; 

631.4; 648.3; 675.9; 688.7; 707.9; 

779; 792; 805; 807.2; 829; 905; 945.9 

 

0.9525 119.5 

 

0.9305 147.5 12.66 3.78 

TA 
434.3; 543.4; 604; 616.6; 669.5; 

796.3; 943.6; 952.5 

 
0.9429 52.0 

 
0.9490 52.0 14.31 4.22 

SSC 

418; 434.3; 485; 501.9; 539.2; 543.4; 

585.1; 646.2; 661; 678; 697.2; 716.5; 

792; 802; 805; 807.2; 829; 833; 

905.9; 910.3; 939.2; 945.9; 952.5 

 

0.9504 0.87 

 

0.9257 1.06 -0.05 3.68 
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Figure 4. Values of -coefficients for all wavelengths for predicting quality attributes in table 

grape for the variable, Total Flavonoids (A), Total Anthocyanins (B) and Sugar content SSC (C). 
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Figure 5. Performance of MLR models using only the optimal wavelengths extracted from -coef-

ficients of PLS analysis. Calibration and external validation using SNV pre-treated data: (A) for 

Total Flavonoids, (B) for Total Anthocyanins and (C) for SSC. Blue dots indicate calibration set and 

red dots represent predicted set.  

3.5. Modelisation of table grape composition from optimal wavelengths obtained by VIPs score 

The VIP scores resulting from the best preprocessing PLS regression model were used to 

develop a robust model by selection of feature-related wavelengths for TF, TA and SSC of 

table grapes. The performance of the developed model by MLR depended largely on the 

cut-off value of the VIP scores. Generally, the “greater-than-one” rule is used to identified 

optimal wavelengths [54]. Only the wavelengths with highest value of VIP scores, above 

the threshold of 1.0, were selected to establish MLR models, whereas the wavelengths 

with VIP scores above 1 (spectral windows) were selected to improve PLS model perfor-

mance. As shows Figure 6 the optimal wavebands selected from all 283 wavebands were 

ten (434.3; 543.4; 610.3; 633.5; 697.2; 781.1; 785.5; 805; 905.9 and 910.3 nm), three (710; 785.5 

and 943.6 nm) and eight (434.3; 501.9; 543.4; 610.3; 656.8; 686.5; 802.8 and 809.4 nm) for TF, 

TA and SSC, respectively. Table 4 presents the accuracy and robustness of MLR models 

for the prediction of TF, TF and SSC based on VIP score. The model for the variable TF 

leading to R² of 0.9032 and 0.8971 respectively for the calibration and the validation set 

and with RMSEP = 178.3 mg/kg. The model for predicting TA content showed R² of 0.9374 

and 0.9432 respectively for the calibration and the validation set with RMSEP = 55.1 

mg/kg. For the sugar content (SSC), the VIPs-MLR model had R² equal to 0.8689 and 0.8277 

for the calibration and the validation sets respectively with RMSEP = 1.61 g/100g. The 

MLR models based on the VIPs wavelengths selection showed values of RPD close or 

higher to 2.5, which indicated that these models were good enough to have a high utility 

value model [52]. However, these results showed a declined prediction accuracy of TF 

and SSC models comparing to the prediction ability of full-spectrum PLSR and RC-MLR 

models. Once more, to check the quality of the models, the measured data vs predicted 
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data was plotted (Figure 7). All graphs showed that predicted data fitted with measured 

data. The model is particularly good for TA with more narrow spread of the data. 

 
Figure 6. Values of VIP scores for all wavelengths for predicting quality attributes in table grape 

for the variable, Total Flavonoids (A), Total Anthocyanins (B) and Sugar content SSC (C). 

Table 4. Performance of MLR models for predicting Total Flavonoids (TF), Total Anthocyanins 

(TA) and the Solid Soluble Content (SSC) using the optimal wavelengths extracted from VIPs 

(Variable Importance in the Projection) of the best PLS full spectra analysis. 

Variable 
Optimal wavelengths 

(nm) 

 Calibration Set  Validation set 

 R2
c RMSEC  R2

val RMSEP Bias RPD 

TF 

434.3; 543.4; 610.3; 

633.5; 697.2; 781.1; 

785.5; 805; 905.9; 

910.3 

 

0.9032 170.7 

 

0.8971 178.3 -7.16 3.13 

TA 710; 785.5; 943.6  0.9374 54.5  0.9432 55.1 17.27 3.98 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 February 2021                   



 

 

Brix° 

434.3; 501.9; 543.4; 

610.3; 656.8; 686.5; 

802.8; 809.4 

 

0.8689 1.41 

 

0.8277 1.61 -0.03 2.41 

 

 
Figure 7. Performance of MLR model using the optimal wavelengths extracted from VIPs score of 

the best full-spectrum PLS analysis. Calibration and external validation from SNV pre-treated data 

for (A) Total Flavonoids, (B) Total Anthocyanins and (C) Solid Soluble Content. Blue dots indicate 

calibration set and red dots represent predicted set.  

The last trial was to select all the wavelengths with VIP score above 1 (spectral windows). 

New VIPs-PLS models were then build (Table 5). The VIPs-PLS model to predict TF (spec-

tral windows: 434.3; 539.2 - 543.4; 608.2 - 610.3; 620.8 - 639.8; 690.8 - 796.3; 829 and 835.5 - 

943.6 nm) generated a R²cal = 0.9560, R²val = 0.9438 and RMSEP = 131.8 mg/kg, using 14 

LVs. The model for predicting TA content (spectral windows: 697.2 - 802.8 and 842.1 - 957 

nm) was fed by 8 LVs, and generated R²cal = 0.9617, R²val = 0.9480 and RMSEP = 52.8 

mg/kg. For SSC (spectral windows: 420.1; 424.1; 428.2 - 432.3; 436.3; 479.3 - 481.4; 535.1 - 

541.3; 545.4; 555.9; 560; 564.2; 585.1 - 639.8; 673.8 - 688.7; 716.5 - 720.8; 864; 881.6; 890.5 - 

892.7; 899.3; 912.5 - 914.8; 921.4 - 934.7; 939.2 and 954.8 – 957 nm), the VIPs-PLR model 

leading to R²cal = 0.9360, R²val = 0.9134 and RMSEP = 1.14 g/100g, using 14 LVs. RPD values 

suggested that all three models were good enough to quantify and predict the correspond-

ing TF, TA and SSC values [55]. Figure 8 shows the curves measured data vs predicted 

data for these best models. Again, the models fitted well with the measured data since the 

data spread is rather narrow for all three parameters, suggesting good prediction models 

from specific windows HIS data. The simplified VIPs-PLSR model performed slightly 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 February 2021                   



 

 

increase prediction accuracy of TF and TA comparing to the prediction ability of full-spec-

trum PLSR models, in term of determination coefficient, RMSE and RPD values. However, 

the best prediction model for SSC was built using the whole spectral data. 

Table 5. Performance of PLS models for predicting Total Flavonoids (TF), Total Anthocyanins (TA) 

and the sugar content (SSC) using only the optimal wavelengths windows extracted from VIPs (Var-

iable Importance in the Projection) of PLS full spectra analysis. 

Variable Spectral windows (nm) 
No. 

LVs 

 Calibration Set  Validation Set 

 R2
c RMSEC  R2

val RMSEP Bias RPD 

TF 

434.3; 539.2 - 543.4; 608.2 - 

610.3; 620.8 - 639.8; 690.8 - 

796.3; 829; 835.5 - 943.6 

14 

 
0..956

0 
118.9 

 

0.9438 131.8 -6.44 4.23 

TA 697.2 - 802.8; 842.1 - 957 8  0.9617 44.1  0.9480 52.8 13.30 4.16 

Brix° 

420.1; 424.1; 428.2 - 432.3; 

436.3; 479.3 - 481.4; 535.1 - 

541.3; 545.4; 555.9; 560; 564.2; 

585.1 - 639.8; 673.8 - 688.7; 

716.5 - 720.8; 864; 881.6; 890.5 

- 892.7; 899.3; 912.5 - 914.8; 

921.4 - 934.7; 939.2; 954.8 - 957 

14 

 

0.9360 1.02 

 

0.9134 1.14 -0.05 3.40 

 

 

Figure 8. Performance of PLS model using the optimal wavelength windows extracted from VIPs 

score (> 1) of PLS analysis. Calibration and external validation for (A) Total Flavonoids, (B) Total 
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Anthocyanins and (C) Solid Soluble Content. Blue dots indicate calibration set and red dots repre-

sent predicted set. 

4. Discussion 

 

The possibility to use the full spectra from HIS to generate a relevant PLS-model to 

predict the sugar content was indeed reported by Baiano et al. [47] using the same device. 

These authors developed a calibration models able to predict SSC of white and red table 

grape with R2val of 0.94 and 0.93, respectively. Our method was however valid for all grape 

varieties, with all reds and whites, which would be easier to manage in an industrial point 

of view. In addition, the results of the present study were comparable to those of another 

work carried out by Gomes et al. [56], in which the prediction of SSC in wine grape was 

performed using two different model development techniques i.e., PLS regression and 

Neural Networks. The obtained values of R2 of prediction were 0.92 for both PLS regres-

sion and Neural Networks with RMSEP of 0.94°Brix and 0.96°Brix, respectively. Hence, a 

good capacity of correlation was achieved in numerous other works on prediction of SSC 

for table and wine grapes [24, 38, 57, 58]. 

Other authors have also reported good performance of linear models to predict the 

total anthocyanin content, with R2CV > 0.94 using spectral data in Vis-NIR [59] and NIR 

ranges [60] or total phenols content, with R2CV = 0.89 using the spectral data in Vis-NIR 

range [57, 61]. Moreover, several studies also reported very good performance of nonlin-

ear models to predict the TA content in whole Port and Cabernet sauvignon wine grape 

using the hyperspectral imaging device in Vis-NIR range [38, 56, 62]. Thus, our results 

were at least as good at those of other works but for the first time showed the relevance 

of HIS on red and white table grapes.  

Our results highlighted that not only hyperspectral imaging is a relevant method to 

predict TA, TF and SSC content, but also the reduction of data is possible using MLR 

method with -coefficients or variable importance in the projection VIP. RC methods were 

already reported to be relevant to predict sugar content in the case of lychee fruit [55] and 

the total polyphenols concentration in cocoa beans [60, 63]. Sen and co-workers [64] have 

also applied VIP selection to build OPLS models for the prediction of chemical parameters 

of wine by combined use of visible and mid-infrared (MIR) spectroscopies. These authors 

have built models able to predict anthocyanin compounds, total phenol content and SSC 

of red wine with R2val ranging between 0.77 and 0.96. 

The use of VIP in a PLR model (specific windows) were applied by Sen and co-work-

ers [64] to build OPLS models for the prediction of chemical parameters of wine by com-

bined use of visible and mid-infrared (MIR) spectroscopies. These authors have built mod-

els able to predict anthocyanin compounds, total phenol content and SSC of red wine with 

R2val ranging between 0.77 and 0.96. Our work is thus in adequation with the previous 

studies and showed for the first time that reducing data thanks to VIP or -coefficients 

from HIS is suitable for table grapes. No similar results have been found in table grapes 

for the control of Total Flavonoids and the Total Anthocyanins, although they have been 

found in wine grapes and other matrices with errors of the same order of magnitude [24, 

59, 60, 65].  

Hyperspectral imaging is a tool, which could provide relevant on-line information 

about Total Flavonoid, Total Anthocyanins and Total Soluble Solid contents through the 

use of consistent prediction models. The models from the full spectra generated by SNV 

pre-treatment and the fact that the models were built using grape berries of seven different 

cultivar contributed to the robust-ness of our models. The possibility to use the same pre-

treatment for all parameters and all varieties is interesting and could limit the complexity 

of the method and avoid mistakes in a professional use. 

The reduction of data using only the wavelength with highest β-coefficient (absolute 

values) from one side, and spectral windows obtained from all the wavelengths with VIPs 

> 1 on another side, would allow an industrial use needing less computer data memory 
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and quicker answers. That method could be used also as quality control. Database has 

first to be expanded not only to strength our current models but also to test new non-

linear models. Another step would be to implement hyperspectral imaging on an indus-

trial conveyor belt to take into accounts elements such as vibration on the conveyor but 

also analytical speed to provide real time information. Nonetheless, that tool could any-

way be used for a rapid table grape characterization in producer or industry places. 
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