Review # Importance of Interactions between Food Types and Feeding Behavior in Diet Formulation for Crustaceans: A Review Mohd Amran Aaqillah-Amr ¹, Ariffin Hidir ¹, Mohamad Nor Azra ¹, Mat Noordin Noordiyana ² and Mhd Ikhwanuddin ^{1,3*} - Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Malaysia - $^{\,2}~$ Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, Malaysia - ³ STU-UMT Joint Shellfish Research Laboratory, Shantou University, China - * Correspondence: ikhwanuddin@umt.edu.my; Tel.: +609-6683501 (AA: aaqillahamr_92@yahoo.com; AH: hidirariffin@gmail.com; MA: azramn@umt.edu.my; NN: diyananoordin@umt.edu.my) **Simple Summary:** Various crustacean species respond differently to both types of food and methods of feeding, with different feeding behaviors, and there is a lack of published literature available to support diet formulation. This review explains the interactions between food, feeding, and diets in crustaceans. Pellet physical characteristics and nutritive values, and feeding behavior, are important to improve production of aquaculture species, especially crustaceans. Updated knowledge of these aspects will enhance future commercialization of seafood production. **Abstract:** A number of studies have investigated different crustacean food stuffs, feeding methods, and feeding behavior, but little attention has been given to the interaction between these aspects in crustaceans. The aim of the present review is to update knowledge, and examine challenges and opportunities in the development of formulated diets, as pelleted feed, which is vital for developing better quality of seed or broodstock in hatcheries, and adaptation of hatchery product to the aquaculture environment, and production systems. **Keywords:** Food; feeding; diets; macro-micronutrients; feeding behavior; pellet-animal performances #### 1. Introduction Interactions between food types, feeding behavior and formulated diets in the crustacean are important to improve the seed production since feeds consumed the largest operational cost in the crustacean hatchery [1]. The development of pellet diets or aquafeed for aquaculture species is of intense, current interest, as pellets offer many advantages in comparison with natural feeds. In terms of nutrient content, artificial feed offers a nutritionally balanced diet with known nutrient content such as total lipid and protein that will promote growth and reproduction in the crustacean. By manipulating the level of protein and lipid important for growth and reproduction of crustacean, a formulated feed can be expected to provide sufficient nutrition to broodstock. Currently, no commercial broodstock diet is available for some crustacean species [2, 3]. So the standard diets for crustacean broodstock were of commercial shrimp pellets [3 – 5]. There are not much published studies focused on formulating a feeding diet, particularly to some crustacean broodstock. This is probably because of the unique feeding behavior of each crustacean species such as carnivorous [6], slow feeder [7], and bottom dweller [8]. Several species are restricted to certain environments, reflected in aquaculture systems that give effect to the type of feeding selection [9 - 12]. The growing demand for animal protein from existing competition between human need and aquaculture feeding resulted in the decreasing of fish landings [13], since fish are the sole provider of n-3 PUFA in the diet. This adds to the existing gap between demand and supply for fish and fish products. Many studies have evaluated adjustments to aquaculture feeding formulation by reducing dependence on fish sources as the source of protein and lipid. Use of terrestrial animal proteins such as meat, poultry by-product, bone meal, and blood meal, as replacement for fish oil and fishmeal, has confirmed their efficiencies of replacements in providing the animals aquaculture species with good protein levels [14]. Use of protein sources from plant-based materials is gaining attention nowadays. Plant protein sources such as camelina meal, canola meal, and soybean meal can be used as substitutes for fish meal without imposing negative effects on growth and feed intake [15]. However, the major setbacks associated with the use of protein source from the terrestrial animals and plant origin include the lack attractants and palatability factors [16]. Compared to feed derived from aquatic animals such as fishmeal, shrimp meal, and squid meal, lack of attractants component may result in poor ingestion of feeds thus reducing the rate of feed intake and retarding growth in the cultured species [17]. In general, the physical form of the pellets will depend on the species being cultured. High moisture contents in the pellets is often associated with nutrient leaching since it dissociates easily upon entering the water. Apparently, low pellet stability and durability resulting from high moisture content may not be suitable for the crustacean, partly because some species are aggressive in handling foods [18]. In addition, the proper storage and handlings of feed products may be difficult to manage, as is the case with wet pellet. Since the wet pellets have high moisture content, rapid spoilage such as mold problems, is unavoidable in long storage period [19, 20]. In this review, we attempt to identify the interaction between food types, feeding behavior and formulated diets in crustacean, by summarizing all the available information on the topic using the title of the review as keywords in the Web of Science Core Collection database. #### 2. Food and Feeding Table 1 summarized the crustacean's feed types with pellet and animal performances. Most studies on feeding of crustacean was done at the juvenile stage, especially for shrimp, crayfish, and crabs, meanwhile lobster and prawn (and some on crab), most studies focused on the adult or broodstock stages (Table 2). There are several types of feed for broodstock used in the hatchery for commercial purposes: the wet feed, dry feed, semimoist feed, and the moist feed. These feeds can be differentiated from each other in terms of moisture content where the moisture levels in each feed falls in the range of 45 – 70%, 7 - 13%, 25 - 45%, and 15 - 25% for wet feeds, dry feeds, moist feeds, and semi-moist feeds respectively [21]. At the same time, water activity (aW) in the pellet defines better protection against bacterial growth where lower aW in the pellets are preferable. The aW differs from the moisture content where aW is defined as the ratio between the vapor pressure of the food in a completely undisturbed balance by the surrounding air media with the vapor pressure of distilled water under identical conditions. In most cases, pellets with aW of lower than 0.79 inhibits the growth of yeast whereas aW of lower than 0.65 successfully stops mold growth [22]. Wet, moist and semi-moist diets are more effective in terms of promoting good growth and feed efficiency owing to their soft texture and palatability. In this review, only two basic types will be considered for intensive farming; the dry feeds and the moist feeds (semi-moist will be included as it falls under the same category with moist feeds). **Table 1:** Crustacean's feed types with pellet and animal performances | Crusta- | | Туре | of feed(s) | | Pellet | performance | | Animal perf | ormance | | Reference | |-----------------|---------------------------------------|--|----------------|---|---|--|---------------------------|---|---------|--|---| | cean's
Group | Type of feed | Shape /
size | Moist /
Dry | Binding
agent | Leaching /
Stability | Acceptability /
Palatability | Digestibility
/ Energy | Growth performance (GP) | PER | Feed Conversion
Ratio (FCR) | | | Prawn | Floating
soft pellet | 4 mm
diameter
strands | Moist | Floating soft
pellet | Diets devel-
oped met
the criteria
of good wa-
ter stability | Diets developed
met the criteria of
good attractive
feed | N/A | Higher survival using formulated diet (fresh ingredient calf liver & artemia enrichment) | N/A | N/A | Marsden et
al. (1997)
[23] | | Shrimp | Commercial pellet | Ground
pellet (i)
300–1200
µm | Dry
pellet | Carbox-
ymethylcellu-
lose (CMC) | N/A | N/A | N/A | Dietary inclusion of
purple non-sulfur
bacteria (PSNB) im-
proved shrimp's GP | N/A | Shrimp fed with
diets containing
PSNB had higher
FCR | Alloul et
al. (2021)
[24] | | | Pressure
(Ex-
truded)
pellet | 2 mm | Dry
pellet | Wheat starch, whole wheat | N/A | All diets readily
consumed with
no indication of
feed rejection | N/A | Shrimp fed without HUFA supplements showed reduction in growth | N/A | FCR values of
shrimp with
HUFA's diet | Samocha
et al. (2010)
[25] | | | Extruded
pellet | N/A | Dry
pellet | Wheat meal,
corn starch | N/A | N/A | N/A | Fast growth (FG) shrimp genotype - higher growth rate than the high re- sistance (HR) shrimp genotype | N/A | Both FG & HR
showed no feed
efficiency differ-
entiation (fed ani-
mal- or vegetable-
based diet) | Gonzalez-
Galavis et
al. (2020)
[26] | | | Extruded pellet | 0.5 mm
diameter | Dry
pellet | Wheat starch,
wheat gluten | Higher feed-
ing rate - | N/A | N/A | High variable feeding
rate provided high
Post-Larvae (PL)
sur-
vival & growth | N/A | FCR of 0.85 with
high variable
feeding rate (VFR-
high) | Velasco et
al. (1998)
[27] | | | Extruded
pellet | 2.4 diameter × 5.0 mm long pellet | Dry
pellet | Wheat whole
hard red win-
ter, wheat
gluten meal | Lower retention; temperature & salinity affects dry matter retention rate | N/A | N/A | N/A | N/A | N/A | Obaldo et
al. (2002)
[28] | | | Extruded
pellet | Noodle-
like | Dry
pellet | Wheat flour,
wheat gluten | Dry matter
loss of the
test feeds | Visible behavioral
differences
among shrimp | N/A | Shrimp fed krill meal
registered maximum
weight gain. >86% | N/A | No difference in
FCR or yield | Suresh et
al. (2011)
[29] | | | 4 - 5 mm
strands | | | ranged from 6.3 to 10.6% | were apparent
immediately after
access to the feed | | survival in all treat-
ments | | among the vari-
ous treatments | | |---------------------------------------|--|-----------------|-------------------|--|--|--|--|-----|--|---| | Extruded
pellet | 3 mm × 5
mm
strand | Dry
pellet | Wheat flour | 5-min leach-
ate of intact
pellet with-
out any krill
meal addi-
tive - strong-
est binder | Feed containing
krill meal (as low
as 1% up to 6%)
enhanced inges-
tion of pellets | N/A | Krill meal effectively
enhance growth (with
chemostimulants -
enhance palatability) | N/A | N/A | Derby et
al. 2016)
[30] | | Extruded
pellet | 1.4 mm
orifices
strands | Dry
pellet | Wheat starch | N/A | N/A | N/A | Final mean weight
significantly higher
when formulated
with 50% fish meal &
50% Spirulina | N/A | N/A | Gamboa-
Delgado et
al. (2019)
[31] | | Commercial extruded compound pellet | Strands
with die
plate -
1.4 mm
in diame-
ter | Dry
pellet | Wheat starch | N/A | N/A | N/A | Growth rates nega-
tively correlated to
dietary pea protein
inclusion | N/A | N/A | Martínez-
Rocha et
al. (2012)
[32] | | Pressure
(ex-
truded)
pellet | 3 mm di-
ameter
pellet | Dry
pellet | Whole wheat | N/A | Diets with fish
meal to soybean
meal replacement
showed good
feed palatability | Non-GM
soy culti-
vars pro-
ducing soy-
bean meal
show higher
digestibility
compared
to white
flakes or
pressed soy
cakes | The diet incorporating ingredient-17 (soybean meal; dehulled, roasted, hexane-extracted and ground) showed largest weight gain | N/A | N/A | Fang et al.
(2016) [33] | | Sinking
pellet | 3 mm
pellets | Steam
pellet | Lignosol,
agar | Higher dry
matter loss
in pellet
with binder
lignosol | All pellets were
readily consumed
by the shrimps | N/A | Weight gain (WG) higher for Palaemon elegans than Palaemon- etes varians fed diets with lignosol added by microbinding diet | | FCR was higher for <i>P. elegans</i> compared to <i>P. varians</i> | Palma et
al. (2008)
[34] | | | | | | through mi-
cro coating | | | | | | | |--------------------|---|---------------|---|--|---|---|--|---|--|--| | Extruded
feed | 3 mm di-
ameter
pellet | Dry
pellet | Aquabind | N/A | Difloxacin was
palatable at the 1×
treatment level
(100 mg/kg of
feed) | N/A | Mean weight gains by
animals receiving di-
floxacin did not cor-
relate with feed con-
sumption | N/A | FCR were higher
in shrimps fed di-
floxacin-medi-
cated diets | Park et al.
(1995) [35] | | Commercial pellet | Bead
form
with a
diameter
of 2 mm | Dry
pellet | Cod oil,
starch
solution (3%),
squid ink-sac
liquid | The melanin
coated with
starch solu-
tion was
strongly
bound in-
side the feed | N/A | N/A | Melanin coated starch
solution and melanin
coated fish oil had
protection rates of
57% and 67% at Day 7
respectively | N/A | N/A | Thang et
al. (2019)
[36] | | Extruded
pellet | N/A | Dry
pellet | Wheat flour,
corn starch | N/A | N/A | N/A | Shrimp fed diets for-
mulated fish meal
(FM) significantly
higher WG & specific
growth rate (SGR) | Shrimp fed diets formulated with FM significantly higher PER | No significant dif-
ference between
protein sourced
from fish meal
and soy meal | Gil-Nunez
et al. (2020)
[37] | | Extruded | 3 mm di-
ameter
pellet | Dry
pellet | Whole wheat,
corn starch | N/A | N/A | Higher apparent digestibility of dry matter, energy, protein | Increased protein & energy digestibility of an ingredient contribute to higher growth performance | N/A | N/A | Galkanda-
Arach-
chige et al.
(2019) [38] | | Steam
pellet | 1 mm di-
ameter
pellet | Dry
pellet | CMC | N/A | Feed consumption was higher in the 50% meat & bone meal with garlic supplementation | N/A | SGR were higher in shrimp fed with supplementation of meat & bone meal with garlic compared to meat & bone meal alone | High PER was
recorded in
feeds supple-
mented with
meat & bone
meal with gar-
lic | Highest FCR was
recorded in feeds
supplemented
with 50% meat &
bone meal with
garlic | Tazikeh et
al. (2019)
[39] | | Steam
pellet | N/A | Dry
pellet | CMC | N/A | N/A | Apparent
digestibility
of feeds &
ingredients
higher in
fish fed the | Shrimp fed the bio-
processed protein
concentrates signifi-
cantly higher growth
performance at 30%
fish meal replacement | Shrimp fed the
bioprocessed
protein concen-
trates showed
significantly
higher PER | Shrimp fed the bi-
oprocessed pro-
tein concentrates
showed signifi-
cantly higher feed
efficiency (FE) | Moniruz-
zaman et
al. (2019)
[40] | | | | | | | | | biopro-
cessed pro-
tein | | | | | |----------|---|---|-----------------------------------|---|---|--|--------------------------------|--|------------------------------------|--|--------------------------------------| | Crayfish | Steam
sinking
pellet | 5 mm di-
ameter
conglom-
erated
struc-
tured | Moist
pellet | Carrageenan,
Cardoxyme-
thyl-cellulose
(CMC), agar
& gelatine | 5% binder
retained
more dry
matter com-
pared to 3%
binder | N/A | N/A | N/A | N/A | N/A | Ruscoe et
al. (2005)
[41] | | | Extruded
pellet | 1 cm di-
ameter
spaghetti
like
structure | Dry
pellet | Carbox-
ymethylcellu-
lose (CMC) | N/A | Some redclaw fed
Diet 3 (0% choles-
terol and 0.5%
lecithin) did not
appear to aggres-
sively consume
the diet efficiently | N/A | Diet 4 containing
menhaden fish meal,
soybean meal, choline
chloride, cod liver oil
& corn oil may satisfy
the lecithin & choles-
terol requirements | N/A | N/A | Thompson et al. (2003) [7] | | | Extruded
Pellet | 1cm × 0.1
cm diam-
eter with
Spaghetti
into cy-
lindrical
from | Dry
pellet | Pectin, algi-
nate & chi-
tosan | Pectin diet
showed
good water
stability | N/A | N/A | Pectin diet showed
highest wet gain | Pectin diet
shows better
PER | Chitosan diet
showed highest
FCR | Volpe et al.
(2012) [42] | | | Extruded
pellet
(Stable
and un-
stable
pellet) | N/A | Dry
pellet | Maize, oat
flour | Stable pellets promote lower leaching rate & faster growth than unstable diets | Marron handled
and ingested the
intact stable pel-
lets, and ingested
unstable pellets
for as long as they
stayed in form of
a pellet | N/A | Crayfish fed stable diets have higher SGR than the unstable diets and control feed | N/A | N/A | Jussila &
Evans
(1998) [43] | | Crab | Steam
pellet | 1 cm di-
ameter;
com-
pounded
feed (ball
form and
pellet
form) |
Semi-
Moist
& dry
pellet | Poly
Methylol
Carbamide | Semi-moist
ball feed
showed
higher dry
matter loss
(30.4%) dur-
ing feeding | Crabs showed ex-
cellent acceptance
of the feeds | N/A | Crab fed with dry
feeds showed highest
weight gain | N/A | Crabs fed formu-
lated diets
showed better
feed gain ratio
(FGR) than the
crabs fed trash
fish | Ahamad-
Ali et al.
(2011) [44] | | Steam
pellet | Strands
pellet
with 3 - 5
mm
length | Dry
pellet | CMC | N/A | N/A | 14.7-17.6
MJ/kg | Crabs grow well
when fed diets con-
taining 32-40% pro-
tein with either 6 or
12% lipid | 20.5-31.1 mg
protein/ kJ | The FCR, intermolt duration and total number of days of feeding test diets were not affected by dietary treatments | Catacutan
(2002) [45] | |--------------------|---|-----------------|-------------------|--|--|--|---|---|--|---| | Extruded
pellet | 4-6 mm
length | Dry
pellet | Tapioca
starch | N/A | Voluntary feed
intake in crabs
may increase the
intake of low-li-
pid diet which
were higher at 6%
lipid | N/A | Maximum SGR is obtained when the diets are supplemented with 6.57% oil | The highest
feed conversion
ratio was ob-
served in crabs
at 6% lipid feed | Lowest protein efficiency ratio was observed in crabs at 6% lipid feed | Zhao et al.
(2015) [46] | | Extruded pellet | 4-6 mm
length | Dry
pellet | Dextrin | N/A | N/A | N/A | Pelleted diet with fish
oil or mixture oil -
higher survival | N/A | N/A | Zhao et al.
(2016) [47] | | Steam
pellet | 1.2 mm
diameter;
4.0 mm
length | Dry
pellet | Guar gum | Pellets
showed
higher water
stability af-
ter 4 hours
of immer-
sion | Crabs showed
good voluntary
feed intake of the
feeds (mixed oil
refer as vegeta-
bles oil + cod liver
oil) | Higher apparent digestibility recorded in diets from mixed oil | Crabs fed with mixed
oil recorded the same
SGR with crabs fed
with cod liver oil
alone | Similar PER
value (1.44 to
1.46) for mixed
oil comparable
with cod liver
oil alone | Similar FCR recorded for crabs fed with mixed oil and cod liver oil alone | Unnikrishnan et al. (2010) [48] | | Steam
pellet | ~1.2 mm
diameter;
4.0 mm
length | Dry
pellet | Guar gum | Pellets
showed
higher water
stability in
all feeds | The crabs fed
with CP-20 (20%
dietary protein)
showed the low-
est voluntary feed
intake (VFI) | Lower apparent digestibility of protein | The best growth per-
formance as well as
the nutrient turn-over
was recorded in crabs
fed with 45% crude
protein in the diet | The highest PER was obtained by feeding the crabs with CP-20, a | The FCR was found to decrease with an increasing dietary protein level up to 45% (CP45) | Unnikrish-
nan &
Paulraj
(2010) [49] | | Steam
pellet | 1×1×0.3
cm jelly
cubes | Moist
pellet | Agar-agar | N/A | N/A | N/A | Crabs fed diets supplemented with 0 and 2% oil mixture had lower weight gain | N/A | N/A | Sheen &
Wu (1999)
[50] | | Steam
pellet | 1×1×0.3
cm jelly
cubes | Moist
pellet | Agar-agar | N/A | N/A | N/A | Crabs fed the diets
containing 0.5 and
0.79% cholesterol had
higher weight gain | N/A | N/A | Sheen
(2000) [51] | | | Steam
pellet | 1×1×0.3
cm jelly
cubes | Moist
pellet | Agar-agar | N/A | N/A | N/A | whereas 1.12% cholesterol had an adverse effect on mud crab growth The weight gain of crabs fed diets containing 22:6n-3 or 20:4n-6 was higher than those fed the diets without supplemented PUFA | N/A | N/A | Sheen &
Wu (2002)
[52] | |---------|-----------------|---|-----------------|---|--|---|---|---|-----|--|-----------------------------------| | Lobster | Steam
pellet | 5 - 9 mm
cylindri-
cal rod
pellet | Moist
pellet | Aquabind | Regression
analysis
showed no
significant
difference in
water stabil-
ity between
pellets | Lobster fed with
pellets from krill
meal had greater
feed intake than
lobster fed with
pellets from fish
meal | Lobsters fed
with pellets
from fish
meal and
krill meal;
had greater
energy than
pellets from
fresh items
homoge-
nized | SGR in lobster fed
with mussel was
higher than other for-
mulated feeds | N/A | N/A | Marchese
et al. (2019)
[53] | | | Steam
pellet | 10 - 20
mm
length
passed
through
4 mm di-
ameter
die | Dry
pellet | Aquabind | N/A | N/A | N/A | Equivalent growth for all trial lobster | N/A | Higher feed sup-
plied conversion
ratios of pellet-fed
treatments | Bryars &
Geddes
(2005) [54] | | | Steam
pellet | 4 mm di-
ameter | Dry
pellet | Tapioca powder, agar, 'stick on' a phytochemical, gum Arabic, guar gum, wheat flour, gelatin, and | Basal diets with binders in per- formed the highest sta- bility com- pared to other binder combination | Lobster showed
good acceptance
of basal diets and
palatability as
recorded through
behavior | N/A | N/A | N/A | N/A | Saleela et
al. (2015)
[8] | | | | | sodium algi-
nate | | | | | | | | |--------|--------|--------|----------------------|-------------|---------------------|--------------|-----|------------------|-----|------------| | Stream | String | Dry | Carbox- | Leaching of | Diets were imme- | Feed with | N/A | Supplement of | N/A | Perera e | | pellet | size | pellet | ymethylcellu- | nutritional | diately ingested | squid meal | | high-quality lo- | | al. (2005) | | _ | | _ | lose | components | by lobster in first | increase nu- | | cal fish / squid | | [55] | | | | | | accrediting | 30 minutes | tritional | | meal increase | | | | | | | | 30 minutes | | value & en- | | protein effi- | | | | | | | | | | hances di- | | ciency | | | | | | | | | | gestive ac- | | | | | | | | | | | | tivity | | | | | ^{*}N/A: Not available Table 2: Crustacean's feeding behaviour and life stages | Crustacean's group | Species | Life history stage | | Feeding behavior | | Reference | |--------------------|--|--------------------|---|---|--|--| | | _ | | Feeding habit | Feeding rate | Feeding time | - | | Shrimp | Litopenaeus vannamei | Juvenile | Ingestion of food is con-
trolled by mouthpart and
esophageal chemorecep-
tors | Up to satiation | Animals were fed once daily in the late afternoon | Derby et al. (2016) [30] | | | Palaemonetes varians and
P. elegans | Juvenile | Shrimps are slow and continuous eaters | 10% body weight | Fed once a day in the morning (10:00 h) | Palma et al. (2008) [34] | | | Penaeus vannamei | Juvenile | N/A | 5% of cumulative animal body weight per tank | Once per day in the morning | Park et al. (1995) [35] | | | Litopenaeus vannamei | Juvenile | N/A | Fed in excess | Animals were fed four times per day | Galkanda-Arachchige et
al. (2019) [38] | | | Litopenaeus vannamei | Juvenile | N/A | 4% of wet body weight in
the first 4 weeks and 3%
in the second 4 weeks,
with apparent satiation | Shrimps were fed four times a day (08:00, 12:00, 16:00, 20:00). | Gamboa-Delgado et al.
(2019) [31]; Moniruz-
zaman et al. (2019) [40] | | | Penaeus vannamei | Juvenile | N/A | Fed initiating with 10% of
total shrimp biomass, ad-
justing it weekly | Fed at satiation three
times a day (08:00, 13:00,
and 18:00 h) | Gil-Núñez et al. (2020)
[37] | | | Litopenaeus vannamei | Juvenile | N/A | 7% average body weight | Fed twice daily (08:00
and 17:00) | Simião et al. (2019) [56] | | Crayfish | Cherax quadricarinatus | Juvenile | Slow feeding response | Fed to excess | Fedthree times daily (0730, 1230, and 1600 h) | Thompson et al. (2003) [7] | | | Cherax albidus | Juvenile | Slow feeder / Manipulate
food using mouth ap-
pendages before inges-
tion | 5% body weight | Animals were fed every
day between 8:00 and
9:00 am | Volpe et al. (2012) [42] | | | Cherax tenuimanus | Juvenile | Slow intake, prolonged
handling,
long intervals
between food intakes | 6.5% body weight | Feed daily | Jussila & Evans (1998)
[43] | | Crab | Scylla serrata | Immature / Mature | Omnivorous scavengers,
opportunistic feeder;
crabs approach and grab
feeds with chelae | 10% body weight | Fed twice; 11 am& 4pm | Ahamad-Ali et al. (2011)
[44] | | | Scylla serrata | Juvenile | Show preference for de- | Fed to satiation (about 2 - | Fed twice daily at satia- | Catacutan (2002) [45] | |---------|---------------------|------------|--|--|---|---| | | C 11 | I | tritus | 3.5% body weight) | tion level | 71 | | | Scylla paramamosain | Juvenile | N/A | Fed with excess diets | Fed twice a day at 8:00 hours and 18:00 hours | Zhao et al. (2016) [47] | | | Scylla serrata | Juvenile | N/A | 6% body weight | Fed twice daily (at 07:00
hrs and 17:00 hrs) | Unnikrishnan et al. (201
[48]; Unnikrishnan &
Paulraj (2010) [49] | | | Scylla serrata | Broodstock | N/A | 1.0% dry matter basis of the crab biomass | Twice daily; half in the morning; half in the af- | Alava et al. (2007) [57] | | Lobster | Panulirus ornatus | Juvenile | Cannibalistic; rely on chemoreception; slow feeder | 50% body weight | ternoon Fed twice daily (morning and afternoon) | Marchese et al. (2019) [5 | | | Panulirus argus | Juvenile | Opportunistic predator | Lobster fed at a rate be-
low that required level to
reach satiation (2% of
lobster wet weight) | Fed twice daily | Perera et al. (2005) [55 | | | Panulirus homarus | Subadult | Bottom dwelling animal; slow intermittent feeder | N/A | Nocturnal ; fed single dose daily (18:00 hours) | Saleela et al. (2015) [8] | | | Jasus edwardsii | Adult | N/A | Lobster fed at rate 2% of
their BW per day, given
two feeds per week of 7%
BW | Feed during daytime | Bryars & Geddes (2005
[54] | | Prawn | Penaeus monodon | Broodstock | N/A | Fed to slight excess | 10.00 and 17.00 daily | Marsden et al. (1997) [2 | ^{*}N/A: Not available ## 2.1. Dry pellet Dry pellets can be used in a variety of forms; dry-sinking pellet, extruded sinking pellet, and extruded floating pellet. Suitable feed ingredient selection, together with proper manufacturing procedures such as the extrusion process ensure good water stability which is the main criteria in producing good quality feeds. The extrusion method is different from the steam pellet in that the extruder does not use any pellet binder to add adhesion to the particles [58]. Extruded pellets are more brittle where they only expand through gelatinization of starch upon cook [59]. Tuber starches such as potato and tapioca are popularly used as binding agents since they are high in amylopectin–amylose [60] and starch enzyme amylase [61] where these starches become activated and absorbs large volumes of water during the gelatinization process. Once cook, the starch containing amylose leaches from the granules which increases viscosity in the dough, aided in the thickening of feed during formulation [60]. The gelatinization of starch helps to improve feed digestibility in animals [62]. Overall, dry-sinking pellets are more practical for bottom feeders such as crustaceans, particularly prawns, lobsters, and crabs [63]. Among the necessary steps in the formulation of water-stable dry pellets included the use of good binding agents and finely ground ingredients to ensure maximum adhesion of the binder molecules. Whereas, extruded floating pellets are more suitable for fish species which predominantly feed in the water column such as tilapia, trout, grouper, sea bass, and carp. The use of floating pellets allows observation on feeding activity other than the fish well-being. # 2.2 Moist pellet Moist pellets, or wet pellets, consist of a combination of high moisture ingredients and dry pulverized ingredients. The use of moist feed is widely accepted amongst aquaculture practitioners for broodstocks maturation [44]. Regardless of their acceptance in the hatcheries, no commercialization of moist feeds has occurred. Due to their high moisture content, moist pellets have low water stability and are prone to mold problems. Meanwhile, the innovation of semi-moist pellets has been successfully developed at laboratory scale. Compared to moist pellets, the moisture content of semi-moist pellets is lower, and under the permissible level to avoid yeast and mold growth, with the addition of chemical agents [21]. ## 2.2.1 Palatability and attractability Optimization of feed intake is determined by a good physical attributes of the pellets, which includes the palatability and acceptability of the feed to animals, taking into consideration species behavior and physiological requirements as well [41]. Priority is given to ensuring that nutrition reaches the animal with minimum leaching to water. Absence of attractants or palatability features in the pellets result in declining feed consumption, hence poor growth in the crustaceans. Palatability and attractability of feeds are thus necessary which will lead to good ingestion and utilization of the prepared nutrients. Palatability is defined as the acceptance of the feed by the animals, and results in the increasing of the body weight, whereas attractability involves the animal's orientation towards the presence of any feed that has been offered [29]. Both palatability and attractability have become a primary factor in the development of cost-effective feed since animals have great sense of smell, taste, and sight geared towards search for food. Both features ensure higher feeding rates in the animals. Diets of low-palatability and attractability may result in crustaceans not being able to meet optimum nutritional requirements. Good palatability is determined through feed intake [65], while low food conversion ratio (FCR) as indicator of the efficiency of the feed design, or feeding strategy [66]. A good attribute in the pellet such as strong smell, or good binding factor will help the crustacean find the pellet as well as reducing the risk of nutrient loss from the pellet, due to leaching. Insufficient levels of attractants can result in low feed intake, and eventually result in poor growth of the organisms. 2.2.2 Type of binder Aquatic feed formulation involve the use of good quality binding agents as a primary ingredient that help in stabilizing feed during exposure to water and to enhance feed floatation time [67]. Many types of binders have been used while formulating high durability pellets to increase the water stability and to minimize nutrient leaching, through added cohesion of the particles, and reduction of void spaces. Binders used include agar, starch, gelatine, carrageenan, and carboxymethylcellulose (CMC). Good binder selection with correct at correct inclusion level in the diet formulation will determine the overall pellet performance against nutrient leaching, water stability and turbidity of the ponds. Practically, binders that can be digested and assimilated are chosen. Polysaccharides such as starch play an important role in the aquafeed, by providing the animals with necessary carbohydrates as well as being a binder responsible for adhesion of the feed components. Extruded pellets depend on the gelatinization in starch since no binders are typically used in the formulation. Starches such as maize, millet, guinea corn, wheat, and cassava, all improve pellet durability, contain high protein levels and make a good binder for extruded feed pellets [15]. These types of binder are capable of generating air traps in formulated feeds thus improving the physical integrity of the feeds in the water. On the other hand, the use of unbranched polysaccharide from the seaweeds such as the agar, sodium alginate, and carrageenan have been widely applied in the field of aquaculture nutrition, mainly as binder [68]. Ruscoe et al. [41] compared the use of carrageenan, CMC, agar, and gelatin as the binders at different concentration in freshwater crayfish and concluded that 5% concentration of both carrageenan and CMC were significantly better than both agar and gelatin. Meanwhile, research carried out by Paolucci et al. [69] regarded agar as performing better when compared to both sodium alginate and carrageenan during feed manufacturing. Agar is usually activated when heated up to 80 – 85 °C, and the binding of feed components generally begins once the solution cools down to gelling temperature of range 32 – 43 °C [69]. ## 2.2.3 Water stability and durability Compared with fish feed pellets, pellet disintegration and nutrient leaching in crustacean feed pellets requires more attention because of the nature of crustaceans as benthic-residing organisms and slow feeders [28]. Physical features such as pellet stability and durability especially are more critical than for feeds for other species where larger pellet sizes are used [41], with longer soaking time and the least possible leaching of nutrients [70]. It is suggested that crustacean pellets must maintain a minimum of 90% dry matter retention after 1 hour exposure in water, thus the use of dry pellets is unsuitable as they do not solve the nutrient leaching problems [71]. Crustaceans especially crabs and crayfish are very robust in terms of handling foods using their cheliped and the mouth appendages to grasp and break up food into smaller bites prior to ingestion [42]. Hence, sinking and water stable pellets are necessary. Pellet water stability is defined as the ability of the pellet to retain both its integrity and nutrients while in water, until consumed by the animal [28]. Meanwhile, durability is defined as the ability of the pellet to maintain its shape during handling, transportation, and inflation upon transmission
to water without breaking into smaller particles [59]. In aquatic pellets, the stability of pellets in water is determined by the type of binding agent that is used to hold the pellet together. Good water stability in pellets defines its effectiveness in optimizing feed intake in crustaceans during harsh handlings and vigorous mastication of the feed so that the nutrients required for growth will be effective. Species behavior factor such as slow feeding rate and external factors such as high water currents and strong aeration in the tank will all tend to accelerate pellet disintegration resulting in nutrient leaching [41, 59] and consequently increase the water clarity and turbidity from the suspended materials will be increased. The use of binders helps to hold feed components together, minimizing void spaces, maintaining pellet integrity thus producing a more compact and durable pellet [41]. For fish, floating feed is fundamental for optimum feed intake since fish are fast swimmers and naturally eat at the water column [72]. The use of different ingredient combinations, in particular binding agent selection is responsible for pellet characteristics such as pellet buoyancy, good water stability, digestibility, minimum wastage of raw materials, and low water pollution [73]. Fish feeds typically require good binding agents that will help in stabilizing the feed and prolong feed floatation period while maintaining nutritional value. Sinking of the uneaten feed to the pond or tank bottom as a result of short floatation time will eventually cause water quality deterioration, and the high nutrient inputs might act as a fertilizer to trigger algal blooms [74]. Additional cost might be incurred while maintaining good water quality due to poor feed performance [75]. Good binding agents contribute to minimization of wastage and provide the fish with optimum nutrient utilization [67]. The use of floating feeds are advantageous as they help the farmer to closely observe feeding activity of fish, meaning that uneaten feed can be discarded immediately thus preventing low water quality problems [76]. Unlike fish, long-term sinking pellets are preferable for bottom feeders and slow eaters, and are characterized by a less expanded structure and high densities. Compared to floatation fish feeds, the sinking pellets offer longer float time which suits slow, bottom feeders such as crayfish [41], shrimp [78, 79] and mud crabs [44, 80]. For these reasons, the moist or dry sinking pellets are more appropriate for these species since the feeds are high in density compared to floating pellets. Experiments on soft shell portunid crabs observed that crabs having difficulty grasping the floating feed with their claws signified that sinking pellets would be more appropriate [80]. #### 3. Diets Table 3 shows macro- and micronutrients at different crustacean life stages. The main group of macronutrients in crustacean related diet studies are protein, carbohydrates, and lipids, while micronutrients include vitamins, minerals, and feed additives (Table 3). Nutrition plays an important role in the development of ovaries [1]. Some crustacean species can survive a period of starvation from insufficient food supply by using lipid reserves to sustain energy metabolic functions which this retards growth and reproduction activities in the crustacean [81]. Selection of feed in the aquaculture may determine time taken for the crustacean to reach sexual maturation. Lipids and proteins are described as the most important component of the nutrient classes, acting as the main source of nutrient for embryonic development [82]. ## 3.1 Protein requirement for crustacean broodstock Protein is one of macronutrients in crustacean feed ingredients that takes part in promoting growth, fattening, and reproductive processes of aquatic animals. Optimum protein levels are especially important in juvenile crustaceans since they actively grow through molting activities. Inadequate amount of protein supply hinders growth [83], sometimes causing mortalities especially in the juveniles during the prolonged intermolt period [49]. Yet, dietary protein surplus results in water deterioration from degradation of protein leftovers which form ammonia or total ammonia nitrogen (TAN) [84]. Table 3: Crustacean's macro and micronutrients | Crusta- | Life stage | | | Macronuti | rients | | | Micron | ıtrients | Feed additives | Reference | |---------|------------|--|----------------|----------------------------|-------------|-------------------------|-------------------------------|---------|----------|---|---| | cean's | · · | Protein | Carbohydrates | | Lipid de | rivatives | | Vitamin | Mineral | _ | | | group | | | | Lipid | Cholesterol | Fatty acids | Carotenoid | | | | | | Prawn | Adult | 54.6% | N/A | 10.7% | 1.1% | ARA = 2.4% | β-carotene | 5.0% | 3.0% | Lecithin | Marsden et al. (1997) [23] | | | | | | | | EPA= 11.2%
DHA=32.9% | 0.004; Astaxan-
thin 0.004 | | | | al. (1997) [23] | | Shrimp | Postlarvae | Isonitrogenous
feed 21% dry
weight | N/A | 77.1 - 85.9% | 3% | N/A | N/A | 2.5% | 2.0% | Soy lecithin, anti-
fungic, antioxi-
dant (ethoxyquin),
Vitamin E | Martínez-Ro-
cha et al.
(2012) [32] | | | Postlarvae | 30% | 42.1% | 6% | 0.5% | N/A | N/A | 1.0% | 4.7% | Lecithin, alpha
cellulose, alginate,
sodium hexameta-
phosphate | Velasco et al.
(1998) [27] | | | Juvenile | 35% | N/A | 8% | 0.2% | DHA: 0.5%
ARA: 0.13% | N/A | 2.0% | 0.5% | Calcium phos-
phate dibasic, leci-
thin, StayC | Samocha et al. (2010) [25] | | | Juvenile | 32.1% | 48.1% | 5.84% | N/A | N/A | N/A | 8.53% | 8.53% | Soybean lecithin,
alginic acid | Gonzalez-
Galaviz et al.
(2020) [26] | | | Juvenile | 40.08 - 42.93% | 33.09 - 36.4% | 7.37 - 8.39% | 0.1% | N/A | N/A | 0.5% | 0.2% | Lecithin, alginate | Suresh et al. (2011) [29] | | | Juvenile | 34.2% to 36.3%
dry weight | 40.5% to 44.3% | 3.9% to 6.0%
dry weight | N/A | N/A | N/A | 1.8% | 0.5% | Choline chloride,
Stay-C 35% active | Galkanda-
Arachchige et
al. (2019) [38] | | | Juvenile | 36% | N/A | 8% | 0.1% | N/A | N/A | 1.8% | 0.5% | Choline chloride,
Stay-C250 mg/kg,
CaP-diebasic, leci-
thin, chromium
oxide | Fang et al.
(2016) [33] | | | Juvenile | 42.2% | N/A | 9.1% | 0.5% | N/A | N/A | 2.0% | 2.0% | Calcium phos-
phate, soya leci-
thin | Palma et al. (2008) [34] | | | Juvenile | 39.7% | 30.7% | 9.45% | 0.16% | N/A | N/A | 0.28% | 0.28% | Krill meal, mono-
calcium phos-
phate, lecithin | Derby et al. (2016) [30] | | | Juvenile | 34.8% protein
in feed with
soy meal and
29.3% protein
in feeds with
fish meal | 38.76% in feed
with soy meal
and 22.45% in
feed with fish
meal | 6.65% in feed
with soy meal
and 5.84% in
feeds with fish
meal | N/A | N/A | N/A | 0.93% in
feed with
soy meal
and 0.85% in
feed with
fish meal | 0.93% in
feed with
soy meal
and 0.85%
in feed
with fish
meal | Soy lecithin, alginic acid, cellulose, antioxidant | Gil-Núñez et
al. (2020) [37] | |----------|----------|--|--|---|---------------------------------|---|--|---|---|---|---| | | Juvenile | 35.8% to 36.6%
dry weight | 34.7% to 38.9% | 7.9% to 8.1% | 0.2% | N/A | N/A | 0.5% | 0.5% | Lecithin-soy, me-
thionine, lysine, ti-
tanium dioxide | Weiss et al. (2019) [85] | | | Juvenile | Isonitrogenous
feed 40% dry
weight | N/A | Isolipidic feed
9.00% dry
weight | 0.02% | N/A | N/A | 1.2% | 1.0% | Lecithin powder 97%, amygluten | Moniruz-
zaman et al.
(2019) [40] | | | Juvenile | Isonitrogenous
feed 35% dry
weight | 31.93-32.78% | 8.18 - 8.63% li-
pid | N/A | ARA:1.68%;
EPA: 2.87%;
DHA: 4.66% | N/A | 15% | 25% | Dicalcium phos-
phate, antifungal,
antioxidant, ly-
sine, methionine,
garlic powder | Tazikeh et al. (2019) [39] | | | Juvenile | Isonitrogenous
feed 36% crude
protein | N/A | 7.9 - 9.00% lipid | 0.11% | N/A | N/A | 0.25% | 0.25% | Antioxidant, anti-
fungic agent, Vita-
min C, choline
chloride, | Gamboa-Delgado et al. (2019) [31] | | | Juvenile | 37% | 38.32 to 38.88% | 10% | 0.5% | N/A | 1.46%
(5% from
29.23% carote-
noid extracted) | 1.0% | 1.0% | Monocalcium
phosphate, cellu-
lose | Simião et al.
(2019) [56] | | Crayfish | Juvenile | Isonitrogenous
with 39.02% to
39.74% dry
weight | 41.38% to
44.00% dry
weight | Isolipidic 7.03%
to 7.53% dry
weight | 12.6% to
12.9% dry
weight | Saturated with 2.52% to 2.72% dry weight and unsaturated with 4.51% to 4.81% dry weight | N/A | N/A | Sodium
(1.4% to
1.5%), Cal-
cium
(3.3%) &
Iron (0.7%
to 1.3%) | N/A | Volpe et al.
(2012) [42] | | | Juvenile | Isonitrogenous
(40% protein
as-fed basis) | 28.33% | 7.03% | 0% | ARA: 1.09%
EPA: 3.58%
DHA: 7.94% | N/A | 2.0% | 0.5% | Lecithin, dical-
cium phosphate,
Vitamin C, choline
chloride | Thompson et al. (2003) [7] | | Crab | Juvenile | 44.85% to
46.73% dry
matter | N/A | 7% and 12% li-
pid | 0.50% | DHA/EPA ratio be- tween 2.2 and 1.2 when sup-
plied with optimal n-3 LC-PUFA at 7% and 12% lipid, re- spectively | N/A | 1.00% | 1.50% | Monocalcium
phosphate, cho-
line chloride, cel-
lulose | Wang et al.
(2021) [86] | |------|------------|---|--------------------------|--|----------------------|--|------------------------|-------|-------|--|---| | | Juvenile | Isonitrogenous
with 43.64 to
46.08% dry
weight | 17.2 kJ g ⁻¹ | Dietary lipid
level of 8.52% –
11.63% (op
timum 9.5%) | 0.8% | ARA: 0.5%;
EPA: 6.9%;
DHA: 6.1% | N/A | 3.00% | 2.00% | Lecithin, sodium
alga acid, squid
paste, cellulose | Zhao et al.
(2015) [46] | | | Juvenile | Isonitrogenous
feed with 45%
crude protein | N/A | Isolipidic diets
containing 9.5%
oil (fish oil,
lard, safflower
oil, perilla seed
oil or mixture
oil | 0.8% | ARA: 0.5%;
EPA: 14.1%;
DHA: 11.7% | N/A | 3.00% | 2.00% | Lecithin, sodium
alga acid, squid
paste, cellulose | Zhao et al.
(2016) [47] | | | Broodstock | Isonitrogenous
with 41.57%
dry weight | 24.94% | Isolipidic feed
81% dry weight | 0.5% | N/A | N/A | 1.00% | 2.00% | Lecithin | Ahamad-Al
et al. (2011)
[44] | | | Broodstock | 42% protein
dry weight | 17.2 MJ kg ⁻¹ | 10% lipid dry
weight | 0.167% dry
weight | ARA:0.15%;
EPA: 0.44%;
DHA:1.11%
dry weight | N/A | 3.0% | 3.0% | Soy lecithin, dical-
cium phosphate,
phoshitan C, al-
pha-tocopheryl
acetate | Alava et al.
(2007) [57] | | | Juvenile | 46.9% to
47.03% dry
weight | N/A | Isolipidic feed
~8% dry weight | 0.50% | N/A | 0.009% β-caro-
tene | 1.50% | 5.00% | Cellulose, dextrin,
lecithin | Unnikrishna
& Paulraj
(2010) [49] | | | Juvenile | Isonitrogenous
with 45% dry
weight | N/A | Isolipidic with
10.8% dry
weight | 0.50% | 0.13% ARA;
0.64-0.66%
EPA & 0.37-
0.38% DHA | 0.009% β-caro-
tene | 1.50% | 5.00% | Cellulose, dextrin,
lecithin | Unnikrishna
et al. (2010)
[48] | | | Juvenile | 32 to 40% dry
weight | 17.2 MJ kg ⁻¹ | 6% or 12% dry
weight | 0.1% | N/A | N/A | 1.50% | 0.50% | Seaweed, soy leci-
thin, dicalphos | Catacutan
(2002) [45] | |---------|----------|-------------------------------------|--------------------------|--------------------------------|--------------------|---|--|-------|-------|---|-----------------------------------| | | Juvenile | Isonitrogenous
48.5% | N/A | 5.3 to 13.8% lipid dry weight | 1.0% | 0.36-0.4%
ARA; 6.54-
7.03% EPA;
2.29-2.81% | 0.01%
Astaxanthin | 4.00% | 4.00% | Taurine, choline
chloride, vitamin
A, Vitamin D3,
Vitamin E | Sheen & Wu
(1999) [50] | | | Juvenile | 46.6% protein
dry weight | N/A | 8.6% lipid dry
weight | 0.51% | N/A | 0.01%
Astaxanthin | 4.00% | 4.00% | Taurine, choline
chloride, vitamin
A, Vitamin D ₃ ,
Vitamin E | Sheen (2000)
[51] | | | Juvenile | 44.0 - 45.7%
dry weight | N/A | 1.1% to 1.08% lipid dry weight | 0.5% dry
weight | 0.2% ALA,
0.2% ARA,
0.2% DHA
dry weight | 0.01%
Astaxanthin | 4.00% | 4.00% | Taurine, choline
chloride, vitamin
A, Vitamin D3,
Vitamin E | Sheen & Wu
(2002) [52] | | Lobster | Juvenile | Isonitrogenous
53% dry
weight | N/A | 10.04% | 2% | N/A | 1% Carophyll pin (8% astaxanthin) | 1.1% | 0.6% | Lecithin, Stay-C | Marchese et
al. (2019) [53] | | | Juvenile | 25% and 35%
protein | 23.75 - 24.73% | 6.2 - 7% | N/A | N/A | N/A | 5% | 5% | Vitamin C, Vita-
min E, Calcium
carbonate, dical-
cium phosphate | Perera et al. (2005) [55] | | | Subadult | 54.5% | 17.6% | N/A | N/A | N/A | N/A | 1% | 1% | Casein, cod liver
oil, sodium chlo-
ride di-sodium
hydrogen ortho-
phosphate and su-
pradin powder | | | | Adult | N/A | N/A | N/A | 0.2% | N/A | 0.15% and
0.25% Caro-
phyll Pink | 0.2% | N/A | Vitamin C, leci-
thin, Banox E | Bryars &
Geddes
(2005) [54] | ^{*}N/A: Not available Information on species-specific dietary protein requirement is of vital importance to ensure good growth and maturation. Many investigations have been carried out to determine the protein requirement of different crustaceans such as prawns, shrimps, swimming crabs, and mud crabs. The results showed that the protein requirements are species specific, ranging from 22% to 60% [45, 49, 84] where the dietary protein intake in juvenile or early life stages of animals are usually higher in comparison with intakes of the matured animals, for most crustacean species. # 3.2 Lipid requirement for crustacean broodstock Lipid encompasses various classes of organic molecules such as triacylglycerols, phospholipids, sterols, waxes, carotenoids, and fatty acids [17, 87]. Lipids, along with proteins and carbohydrates share importance in providing the body with energy. Lipid differs from protein and carbohydrates in the way that it provides energy, which is twice as intensive as both proteins and carbohydrates, serves as structural component of cell membranes, and is an important signaling molecules [88]. Neutral lipids, particularly triacylglycerols or triglycerides are the principal form of energy source found in the adult, egg, and larvae of most crustaceans [57]. Phospholipids primarily functions in the building of the cell membrane [89]. Cholesterol is the best known sterols that serves as a precursor of physiological components including sex hormones, particularly ecdysone that regulates molting activities in crustaceans [51, 90]. Feeds containing dietary cholesterols are essential to ensure good growth and survival in crustaceans. Fatty acids govern a wide range of physiological processes including reproductive performance and egg quality in crustaceans [82]. Studies demonstrated that lipid levels in most crustaceans increase with size with adults having higher lipids levels than the juveniles. Some reserved lipids are catabolized as energy sources, while others are stored in the gonad for structural purposes, such as maturation and eicosanoid synthesis [90]. The information on lipid requirements is very important in the development of formulated feeds to ensure the nutrients suffice for good growth and maturation [17, 87]. Previous studies have shown that the determination of lipid requirements is generally species specific, and are different for different developmental stages. Nevertheless, collective prior studies on crustaceans have concluded that optimum growth can be achieved with a total lipid level from 2% to 10% [47] or from 2% to 12% of diet dry weight [45]. The fatty acids can be divided into several classes; the saturated fatty acids (SAFA), monounsaturated fatty acid (MUFA), and polyunsaturated fatty acids (PUFA). Fatty acids that have no double bond are grouped as SAFA, while MUFA are categorized as fatty acids with a single double bond in their carbon chain. Unlike SAFA and MUFA, polyunsaturated fatty acids (PUFA) contain more than one double bond in their carbon backbone. They act as precursors for animal hormones and play an important role in regulation of cell membranes. PUFA are commonly generated from plant synthesis as plants are the primary producers of carbon in marine ecosystems, including synthesis of various important biological molecules such as carbohydrates, proteins, and lipids [91]. Most animals do not have the ability to synthesize PUFA de novo except for their capacity to convert one form of PUFA to another form through elongation and desaturation. Such fatty acids are termed as the essential fatty acids (EFA) as they must be taken in through the diet. This includes linoleic and linolenic acid since not all animals have the ability to produce these [92]. Meanwhile, the highly unsaturated fatty acids (HUFA) are the subset of PUFA, having 20 or more carbon atoms with 3 or more double bonds. They are responsible for survival, maintaining high growth and reproductive rates and for high food conversion rates in both marine and freshwater organisms [93]. Arachidonic acid (ARA, C20:4n6), eicosapentaenoic acid (EPA, C20:5n3), docosahexaenoic acid (DHA, C22:6n3) are among the derived omega-6 and omega-3 long chain of HUFA (n-3 and n-6 LC PUFA; C \geq 20). The consumption of diets containing EPA and DHA helps to optimize animal growth [92] while ARA functions as the precursor for eicosanoids which regulate reproductive success and sexual behavior of females [94]. In general, EPA and DHA can be obtained from the consumption of plant materials or through a series of elongation and desaturation of α -linolenic acid (ALA, C18:3n3). Whereas, elongation and desaturation of linoleic acid (LA, C18:2n6) will produce ARA. During the desaturation and elongation process, both n-3 and n-6 PUFA from ALA and LA will compete for the same desaturation enzyme to produce LC-PUFA [96, 97]. ## 5. Conclusions The importance of pellet physical characteristics in aquaculture nutrition cannot be overemphasized. The advantages of good quality pellets not only depend on the binding agent, but the attractants that enhance palatability as well as the inclusion of the correct proportion of nutrients to boost animal performance. Knowledge on the possible interactions between food, feeding and diets in crustaceans needs to be updated and improved to increase the quality of seed or broodstock produced in captivity, especially in commercial aquaculture. The studies
performed so far have demonstrated a clear interaction between food types, feeding behavior, and diets, especially for the crustacean group, with reference to the graphical explanation in the graphical abstract. Supplementary Materials: All data was placed along with the published paper **Author Contributions:** Writing—original draft preparation, A.A. and A.H.; writing—review and editing, M.A.; supervision, N.N. and M.I.; funding acquisition, M.I.; conceptualization and methodology, A.A.; validation, A.A., N.N. and M.I.; data curation, M.A.; All authors have read and agreed to the published version of the manuscript. **Funding:** This review was funded by the Ministry of Higher Education under the Higher Institution Center of Excellence (HICoE) grant for development of future food through sustainable shellfish aquaculture. **Acknowledgments:** We acknowledge all the staff at Institute of Tropical Aquaculture and Fisheries, Institute of Marine Biotechnology and Central Laboratory of Universiti Malaysia Terengganu who involved directly or indirectly to this review paper. Special thanks to Mr. David Marioni for providing valuable comments and English-language revisions. **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. #### References - 1. Azra, M.N.; Ikhwanuddin, M. A review of maturation diets for mud crab genus *Scylla* broodstock: Present research, problems and future perspective. *Saudi J. Biol. Sci.* **2016**, 23(2), 257-267; DOI: http://dx.doi.org/10.1016/j.sjbs.2015.03.011 - 2. Simon, C.J. Advancing the nutrition of juvenile spiny lobster, *Jasus edwardsii*, in aquaculture. Doctoral dissertation, University of Auckland, New Zealand. 2009; https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm - 3. Vijayagopal, P. Nutrition, feeds and feed technology for mariculture in India. Winter School on Technological Advances in Mariculture for Production Enhancement and Sustainability, 2015. pp. 244–248. - 4. Millamena, O.M; Quinitio, E. The effects of diets on reproductive performance of eyestalk ablated and intact mud crab *Scylla serrata*. *Aquac*. **2000**, 181, 81–90; DOI: 10.1016/S0044-8486(99)00214-8 - 5. Djunaidah, I.S.; Wille, M.; Kontara, E.K.; Sorgeloos, P. Reproductive performance and offspring quality in mud crab (*Scylla paramamosain*) broodstock fed different diets. *Aquac. Int.* **2003**, 11, 3-15; DOI: 10.1023/A:1024188507215 - 6. Hidir, A.; Aaqillah-Amr, M.A.; Noordiyana, M.N.; Ikhwanuddin, M. Diet and internal physiological changes of female orange mud crabs, *Scylla olivacea* (Herbst, 1796) in different ovarian maturation stages. *Anim. Rep. Sci.* **2018**, 195, 216-229; DOI: https://doi.org/10.1016/j.anireprosci.2018.05.026 - 7. Thompson, K.R.; Muzinic, L.A.; Christian, T.D.; Webster, C.D. Effect on growth, survival, and fatty acid composition of Australian red claw crayfish *Cherax quadricarinatus* fed practical diets with and without supplemental lecithin and/ or cholesterol. *J. World Aquac. Soc.* **2003**, 34(1), 1 10. - 8. Saleela, K.N.; Somanath, B.; Palavesam, A. Effects of binders on stability and palatability of formulated dry compounded diets for spiny lobster *Panulirus homarus* (Linnaeus, 1758). *Indian J. Fish.* **2015**, 62(1), 95 100. - 9. Redzuari, A.; Azra, M.N.; Abol-Munafi, A.B.; Aizam, Z.A.; Hii, Y.S.; Ikhwanuddin, M. Effects of feeding regimes on survival, development and growth of blue swimming crab, *Portunus pelagicus* (Linnaeus, 1758) larvae. *World Appl. Sci. J.* **2012**, 18(4), 472 478; DOI: 10.5829/idosi.wasj.2012.18.04.313 - 10. Abol-Munafi, A.B.; Mukrim, M.S.; Amin, R.M.; Azra, M.N.; Azmie, G.; Ikhwanuddin, M. Histological profile and fatty acid composition in hepatopancreas of blue swimming crab, *Portunus pelagicus* (Linnaeus, 1758) at different ovarian maturation stages. *Turkish J. Fish. Aquat. Sci.*, 2016, 16, 251 258; DOI: http://doi.org/10.4194/1303-2712-v16 2 04. - 11. Taufik, M.; Bachok, Z.; Azra, M.N.; Ikhwanuddin, M. Effects of various microalgae on fatty acid composition and survival rate of the blue swimming crab *Portunus pelagicus* larvae. *Indian J Mar Sci.* **2016**, 45 (11), 1512-1521; DOI: http://nopr.niscair.res.in/bit-stream/123456789/38612/1/IJMS%2045%2811%29%201512-1521.pdf. - 12. Ikhwanuddin, M.; Azmie, G.; Nahar, S.F.; Wee, W.; Azra, M.N.; Abol-Munafi, A.B. Testis maturation stages of mud crab (*Scylla olivacea*) broodstock on different diets. *Sains Malays.* **2018**, 47, 427-432; DOI: http://dx.doi.org/10.17576/jsm-2018-4703-01. - 13. Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. *Animals* **2020**, 10(11), 1-19; DOI: https://doi.org/10.3390/ani10112119 - 14. Pandey, G. Feed formulation and feeding technology for fishes. Int. Res. J. Pharm. 2013, 4(3), 23-30; DOI: 10.7897/2230-8407.04306. - 15. Zettl, S.; Cree, D.; Soleimani, M.; Tabil, L.; Yildiz, F. Mechanical properties of aquaculture feed pellets using plant-based proteins. *Cogent Food & Agriculture* **2019**, 5(1), 1656917; DOI: https://doi.org/10.1080/23311932.2019.1656917. - 16. Al-Souti, A.; Gallardo, W.; Claereboudt, M.; Mahgoub, O. Attractability and palatability of formulated diets incorporated with chicken feather and algal meals for juvenile gilthead seabream, *Sparus aurata*. *Aquac*. *Rep.* **2019**, 14, 100199; DOI: https://doi.org/10.1016/j.aqrep.2019.100199. - 17. Watts, S.A.; Lawrence, A.L.; Lawrence, J.M. Nutrition. Sea Urchins: Biology and Ecology, **2020**, 191–208; DOI: https://doi.org/10.1016/B978-0-12-819570-3.00010-X. - 18. D'Abramo, L.R. Challenges in developing successful formulated feed for culture of larval fish and crustaceans. Memorias del VI Simposium Internacional de Nutricion Acuicila, **2002**, pp: 143-149. - 19. Cuzon, G.; Guillaume, J.; Cahu, C. Review: Composition, preparation and utilization of feeds for Crustacea. *Aquac.* **1994,** 124, 253-267; DOI: https://doi.org/10.1016/0044-8486(94)90387-5 - 20. Nyong, E.B.; Olubunmi, F.J. Effect of storage and anti-nutritional components in stored pelleted fish feed. *Int. J. Sci. Tech. Soc.* **2014**, 2(6), 186-189; DOI: 10.11648/j.ijsts.20140206.14 - 21. Paulraj, R. Handbook on Aquafarming: Aquaculture Feed. Manual, 1993. MPEDA, Cochin. - ADCP (Aquaculture Development and Coordination Programme), 1983. Fish feeds and feeding in developing countries-an interim report on the ADCP Feed Development Programme. UNDP/FAO, Aquaculture Development and Coordination Programme, Rome, ADCP/REP/83/18: pp. 97. - 23. Marsden, G.E.; McGuren, J.J.; Hansford, S.W.; Burke, M.J. A moist artificial diet for prawn broodstock: its effect on the variable reproductive performance of wild caught *Penaeus monodon*. *Aquac*. **1997**, 149, 145 156. - 24. Alloul, A.; Wille, M.; Lucenti, P.; Bossier, P.; Stapen, G.V.; Vlaeminck, S.E. Purple bacteria as added-value protein ingredient in shrimp feed: *Penaeus vannamei* growth performance, and tolerance against Vibrio and ammonia stress. *Aquac.* **2021**, 530, 735788; DOI: doi.org/10.1016/j.aquaculture.2020.735788. - Samocha, T.M.; Patnaik, S.; Davis, D.A.; Bullis, R.A.; Browdy, C.L. Use of commercial fermentation products as a highly unsaturated fatty acid source in practical diets for the Pacific white shrimp *Litopenaeus vannamei*. Aquac. Res. 2010, 41, 961 967; DOI: https://doi.org/10.1111/j.1365-2109.2009.02378.x. - Gonzalez-Galaviz, J.R.; Casillas-Hernández, R.; Flores-Perez, M.B.; Lares-Villa, F.; Bórquez-López, R.A.; Gil-Núñez, J.C. Effect of genotype and protein source on performance of Pacific white shrimp (*Litopenaeus vannamei*). *Ital. J. Anim. Sci.* 2020, 19(1), 289 294; DOI: https://doi.org/10.1080/1828051X.2020.1733444. - 27. Velasco, M.; Lawrence, A.L.; Neill, W.H. Development of a static-water ecoassay with microcosm tanks for postlarval *Penaeus vannamei*. *Aquac*. **1998**, 161, 79 87. - 28. Obaldo, L.G.; Divakaran, S.; Tacon, A.G. Method for determining the physical stability of shrimp feeds in water. *Aquac. Res.* **2002**, 33, 369 377. - 29. Suresh, A.V.; Kumaraguru-vasagam, K.P.; Nates, S. Attractability and palatability of protein ingredients of aquatic and terrestrial animal origin, and their practical value for blue shrimp, *Litopenaeus stylirostris* fed diets formulated with high levels of poultry byproduct meal. *Aquac*. **2011**, 319, 132 140; DOI: https://doi.org/10.1016/j.aquaculture.2011.06.039. - 30. Derby, C.D.; Elsayed, F.H.; Williams, S.A.; González, C.; Choe, M.; Bharadwaj, A.S.; Chamberlain, G.W. Krill meal enhances performance of feed pellets through concentration-dependent prolongation of consumption by Pacific white shrimp, *Litopenaeus vannamei*. Aquac. 2016,
458, 13 20; DOI: http://dx.doi.org/10.1016/j.aquaculture.2016.02.028. - Gamboa-Delgado, J.G.; Morales-Navarro, Y.I.; Nieto-López, M.G.; Villarreal-Cavazos, D.A.; Cruz- Suárez, L.E. Assimilation of dietary nitrogen supplied by fish meal and microalgal biomass from Spirulina (*Arthrospira platensis*) and *Nannochloropsis oculata* in shrimp *Litopenaeus vannamei* fed compound diets. *J. Appl. Phycol.* 2019, 31, 2379 – 2389; DOI: https://doi.org/10.1007/s10811-019-1732-2. - 32. Martínez-Rocha, L.; Gamboa-Delgado, J.; Nieto-López, M.; Ricque-Marie, D.; Cruz-Suárez, L.E. Incorporation of dietary nitrogen from fish meal and pea meal (*Pisum sativum*) in muscle tissue of Pacific white shrimp (*Litopenaeus vannamei*) fed low protein compound diets. *Aquac. Res.* **2012**, 1 13; DOI: https://doi.org/10.1111/j.1365-2109.2011.03083.x. - 33. Fang, X.; Yu, D.; Buentello, A.; Zeng, P.; Davis, D.A. Evaluation of new non-genetically modified soybean varieties as ingredients in practical diets for *Litopenaeus vannamei*. *Aquac*. **2016**, 451, 178 185; DOI: 10.1016/j.aquaculture.2015.08.026 - 34. Palma, J.; Bureau, D.P.; Andrade, J.P. Effects of binder type and binder addition on the growth of juvenile *Palaemonetes varians* and *Palaemon elegans* (Crustacea: Palaemonidae). *Aquac. Int.* **2008**, 16, 427 436; DOI: https://doi.org/10.1007/s10499-007-9155-5. - 35. Park, E.D.; Lightner, D.V.; Williams, R.R.; Mohney, L.L.; Stamm, J.M. Evaluation of difloxacin for shrimp aquaculture: *In vitro* minimum inhibitory concentrations, medicated feed palatability, and toxicity to the shrimp *Penaeus vannamei*. *J. Aquat. Anim. Health* 1995, 7(2), 161 167; DOI: <a href="https://doi.org/10.1577/1548-8667(1995)007<0161:EODFSA>2.3.CO;2">https://doi.org/10.1577/1548-8667(1995)007<0161:EODFSA>2.3.CO;2. - 36. Thang, N.D.; Tu, L.D.; Na, N.T.L.; Trang, N.T.; Nghia, P.T. Melanin-containing feedstuffs protect *Litopenaeus vannamei* from white spot syndrome virus. *Int. Aquac. Res.* **2019**, 11, 303 310; DOI: https://doi.org/10.1007/s40071-019-00240-4. - 37. Gil-Núñez, J.C.; Martínez-Córdova, L.R.; Servín-Villegas, R.S.; Magallon-Barajas, F.J.; Bórques-López, R.A.; Gonzalez-Galaviz, J.R.; Casillas-Hernández, R. Production of *Penaeus vannamei* in low salinity, using diets formulated with different protein sources and percentages. *Lat. Am. J. Aquat. Res.* **2020**, 48(3), 396 405; DOI: https://doi.org/10.3856/vol48-issue3-fulltext-2361. - 38. Galkanda-Arachchige, H.S.C.; Guo, J.; Stein, H.H.; Davis, D.A. Apparent energy, dry matter and amino acid digestibility of differently sourced soybean meal fed to Pacific white shrimp *Litopenaeus vannamei*. *Aquac. Res.* **2019**, 51, 326 340; DOI: https://doi.org/10.1111/are.14378. - 39. Tazikah, T.; Kenari, A.A.; Esmaeili, M. Effects of fish meal replacement by meat and bone meal supplemented with garlic (*Allium sativum*) powder on biological indices, feeding, muscle composition, fatty acid and amino acid profiles of whiteleg shrimp (*Litopenaeus* vannamei). *Aquac. Res.* **2019**, 51, 674 686; DOI: https://doi.org/10.1111/are.14416. - 40. Moniruzzaman, M.; Damusaru, J.H.; Won, S.; Cho, S.J.; Chang, K.H.; Bai, S.C. Effects of partial replacement of dietary fish meal by bioprocessed plant protein concentrates on growth performance, hematology, nutrient digestibility and digestive enzyme activities in juvenile Pacific white shrimp, *Litopenaeus vannamei*. J. Sci. Food Agric. 2019, 100, 1285 – 1293; DOI: https://doi.org/10.1002/jsfa.10141. - 41. Ruscoe, I.M.; Jones, C.M.; Jones, P.L.; Caley, P. The effects of various binders and moisture content on pellet stability of research diets for freshwater crayfish. *Aquac. Nutr.* **2005**, 11, 87 93. - 42. Volpe, M.G.; Varricchio, E.; Coccia, E.; Santagata, G.; Di-Stasio, M.; Malinconico, M.; Paolucci, M. Manufacturing pellets with different binders: Effect on water stability and feeding response in juvenile *Cherax albidus*. *Aquac*. **2012**, 324 325, 104 110; DOI: https://doi.org/10.1016/j.aquaculture.2011.10.029. - 43. Jussila, J.; Evans, L.H. Growth and condition of marron *Cherax tenuimanus* fed pelleted diets of different stability. *Aquac. Nutr.* **1998**, 4, 143 149. - 44. Ahamad-Ali, S.; Syama-Dayal, J.; Ambasankar, K. Presentation and evaluation of formulated feed for mud crab *Scylla serrata*. *Ind. J. Fish.* **2011**, 58(2), 67 73. - 45. Catacutan, M.R. Growth and body composition of juvenile mud crab, *Scylla serrata*, fed different dietary protein and lipid levels and protein to energy ratios. *Aquac.* **2002**, 208, 113 123. - 46. Zhao, J.; Wen, X.; Li, S.; Zhu, D.; Li, Y. Effects of dietary lipid levels on growth, feed utilization, body composition and antioxidants of juvenile mud crab *Scylla paramamosain* (Estampador). *Aquac.* **2015**, 435, 200 206; DOI: http://dx.doi.org/10.1016/j.aq-uaculture.2014.09.018. - 47. Zhao, J.; Wen, X.; Li, S.; Zhu, D.; Li, Y. Effects of different dietary lipid sources on tissue fatty acid composition, serum biochemical parameters and fatty acid synthase of juvenile mud crab *Scylla paramamosain* (Estampador 1949). *Aquac. Res.* **2016**, 47, 887 899; DOI: https://doi.org/10.1111/are.12547. - 48. Unnikrishnan, U.; Chakraborty, K.; Paulraj, R. Efficacy of various lipid supplements in formulated pellet diets for juvenile *Scylla serrata*. *Aquac*. *Res.* **2010**, 41, 1498 1513; DOI: https://doi.org/10.1111/j.1365-2109.2009.02443.x. - 49. Unnikrishnan, U.; Paulraj, R. Dietary protein requirement of giant mud crab *Scylla serrata* juveniles fed iso-energetic formulated diets having graded protein levels. *Aquac. Res.* **2010**, 41, 278 294; DOI: https://doi.org/10.1111/j.1365-2109.2009.02330.x. - 50. Sheen, S.S.; Wu, S.W. The effects of dietary lipid levels on the growth response of juvenile mud crab *Scylla serrate*. *Aquac*. **1999**, 175, 143 153. - 51. Sheen, S.S. Dietary cholesterol requirement of juvenile mud crab Scylla serrata. Aquac. 2000, 189, 277 285. - 52. Sheen, S.S.; Wu, S.W. Essential fatty acid requirements of juvenile mud crab, *Scylla serrata* (Forskål, 1775) (Decapoda, Scyllaridae). *Crustaceana* **2002**, 75(11), 1387 1401; DOI: http://www.jstor.org/stable/20105527. - 53. Marchese, G.; Fitzgibbon, Q.P.; Trotter, A.J.; Carter, C.G.; Jones, C.M.; Smith, G.G. The influence of flesh ingredients format and krill meal on growth and feeding behaviour of juvenile tropical spiny lobster *Panulirus ornatus*. *Aquac*. **2019**, 499, 128 139; DOI: https://doi.org/10.1016/j.aquaculture.2018.09.019. - 54. Bryars, S.R.; Geddes, M.C. Effects of diet on the growth, survival, and condition of sea-caged adult southern rock lobster, *Jasus edwardsii*. N. Z. J. Mar. Freshwater Res. **2005**, 39(2), 251 262; DOI: https://doi.org/10.1080/00288330.2005.9517305. - 55. Perera, E.; Fraga, I.; Carillo, O.; Díaz-Iglesias, E.; Cruz, R.; Báez, M.; Galich, G.S. Evaluation of practical diets for the Caribbean spiny lobster *Panulirus argus* (Latreille, 1804): Effects of protein sources on substrate metabolism and digestive proteases. *Aquac.* **2005**, 244, 251 262; DOI: https://doi.org/10.1016/j.aquaculture.2004.11.022. - 56. Simião, C.D.S.; Colombo, G.M.; Schmitz, M.J.; Ramos, P.B.; Tesser, M.B.; Jr., W.W.; Monserrat, J.M. Inclusion of Amazonian *Mauritia flexuosa* fruit pulp as functional feed in the diet for the juvenile Pacific white shrimp *Litopenaeus vannamei*. *Aquac.Res.* **2019**, 51, 1731 1742; DOI: https://doi.org/10.1111/are.14520. - 57. Alava, V.R.; Quinitio, E.T.; dePedro, J.B.; Orosco, Z.G.A.; Wille, M. Reproductive performance, lipids and fatty acids of mud crab *Scylla serrata* (Forsska°l) fed dietary lipid levels. *Aquac. Res.* **2007**, 38, 1442 1451; DOI: https://doi.org/10.1111/j.1365-2109.2007.01722.x. - 58. Misra, C.K.; Sahu, N.P.; Jain, K.K. Effect of extrusion processing and steam pelleting diets on pellet durability, water absorbtion and physical response on *Macrobrachium rosenbergii*. *Asian Australas J. Anim.* **2002**, 15, 1354–1358; DOI: https://doi.org/10.5713/ajas.2002.1354 - 59. Aas, T.S.; Oehme, M.; Sørensen, M.; He, G.; Lygren, I.; Åsgård, T. Analysis of pellet degradation of extruded high energy fish feeds with different physical qualities in a pneumatic feeding system. *Aquacult. Eng.* **2011**, 44, 25-34; DOI: https://doi.org/10.1016/j.aquaeng.2010.11.002 - 60. Horstmann, S.W.; Lynch, K.M.; Arendt, E.K. Starch characteristics linked to gluten-free products. *Foods*, **2020**, 6(4), 29; DOI: https://doi.org/10.3390/foods6040029 - 61. Mohamad-Yazid, N.S.; Abdullah, N.; Muhammad, N.; Matias-Peralta, H.M. Application of starch and starch-based products in food industry. *J. Sci. Tech.* **2018**, 10(2), 144 174; DOI: https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/3022. - 62. Kumar, S.; Sahu, N.P.; Pal, A.K.; Choudhury, D.; Mukherjee, S.C. Studies on digestibility and digestive enzyme activities in *Labeo rohita* (Hamilton) juveniles: Effect of microbial α-amylase supplementation in non-gelatinized or gelatinized corn-based diet at two protein levels. *Fish Physiol. Biochem.* **2006**, 32, 209-220; DOI: https://doi.org/10.1007/s10695-006-9002-z - 63. Lim. C.; Cuzon, G. Water stability of shrimp pellet: A review. Asian Fish. Sci. 1994, 7, 115-127. - 64. Rokey, G.J.; Plattner, B.; deSouza, E.M. Feed extrusion process description. *Rev. Bras. de Zootec.* **2010**, 39, 510-518; DOI: 10.1590/S1516-35982010001300055. - 65. Nizza, A.; Piccolo, G. Chemical-nutritional characteristics of diets in aquaculture. *Vet. Res. Commun.* **2009**, 33(S1), 25-30; DOI: 10.1007/s11259-009-9240-5. - 66. Hasan, M.R. Nutrition and feeding for sustainable aquaculture development in the third millennium. In Aquaculture in the Third Millennium, Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand, 20-25 February 2000; R.P. Subasinghe, P. Bueno, M.J. Phillips, C. Hough, S.E. McGladdery & J.R. Arthur, eds.; NACA, Bangkok and FAO, Rome, 2001; pp. 193-219. - 67. Solomon, S.G.; Ataguba, G.A.; Abeje, A. Water stability and floatation test of fish pellets using local starch sources and yeast (Saccharomyces cerevisiae). Int. J. Latest Trends Agric. Food Sci. 2011, 1, 1-5. - 68. Jönsson, M.; Allahgholi, L.; Sardari, R.R.R.; Hreggviðsson, G.O.; Karlsson, E.N. Extraction and Modification of MacroalgalPolysaccharides for Current andNext-Generation Applications. *Molecules* **2020**, 25, 930; DOI: https://doi.org/10.3390/molecules25040930 - 69. Paolucci, M.; Fasulo, G.; Volpe, M.G. Employment of marine polysaccharides to manufacture functional biocomposites for aquaculture feeding applications. *Mar. Drugs* **2015**, 13, 2680-2693; DOI: <u>10.3390/md13052680</u>. - 70. Banjac, V.V.; Čolović, R.R.; Pezo, L.L.; Čolović, D.S.; Gubić, J.M.; Đuragic, O.M. Conductometric method for determining water stability and nutrient leaching of extruded fish feed. *Acta Period. Technol.* **2017**, **48**, 1 323; DOI: https://doi.org/10.2298/APT1748015B. - 71. Sudaryono, A. Pellet water stability studies on lupin meal based shrimp (*Penaeus monodon*) aquaculture feeds: Comparison of lupin meal with other dietary protein sources. *J. Coast. Dev.* **2001**, 4(3), 129-140. - 72. Felix, E.; Oscar, E.V. Floating and stability effect on fish feed pellets using different concentration of baobab leaf meal (*Adansonia digitata*). *Asian J. Fish. Aquat. Res.* **2018**, 1(4), 1-6; DOI: https://doi.org/10.9734/ajfar/2018/v1i4348. - 73. Onada, O.; Ogunola, O. Comparative analysis of sinking time index and water stability of different level of inclusion of cassava flour and brewer yeast in a test diet. *Int. J. Eng. Res.* **2019**, 10(5), 1251-1265. - 74. Orire, A.M.; Emine, G.I. Effects of crude protein levels and binders on feed buoyancy. *J. Aquac. Res. Dev.* **2019**, 10(2), 565; DOI: 10.4172/2155-9546.1000565. - 75. Abubakar, M.Y.; Momoh, A.T.; Ipinjolu, J.K. Effect of pelletizing machines on floatation and water stability of farm-made fish feeds. *Int. J. Fish. Aquat. Stud.* **2016**, 4(3), 98-103. - 76. Momoh, A.T.; Abubakar, M.Y.; Ipinjolu, J.K. Effect of ingredients substitution on binding, water stability and floatation of farmmade fish feed. *Int. J. Fish. Aquat. Stud.* **2016**, 4(3), 92-97. - 77. Chivamboa, S.; Mussagyb, M.; Barkic, A. Assessment of interspecific interactions between the invasive red-claw crayfish (*Cherax quadricarinatus*) and the Mozambique tilapia (*Oreochromis mossambicus*). Braz. J. Biol. 2019, 80(4), 717-726; DOI: https://doi.org/10.1590/1519-6984.217868 - 78. Bandyopadhyay, S.; Rout, R.K. Aquafeed extrudate flow rate and pellet characteristics from low-cost single-screw extruder. *J. Aquat. Food Prod. Technol.* **2001**, 10(2), 3 15; DOI: https://doi.org/10.1300/J030v10n02 02. - 79. Ighwela, K.A.; Ahmad, A.; Abol-Munafi, A.B. Water stability and nutrient leaching of different levels of maltose formulated fish pellets. *Glob. Vet.* **2013**, 10(6), 638-642. - 80. Lwin, M.M.N. Development of diets for soft-shell mangrove crabs (*Scylla* spp.). Doctoral dissertation, University of Auburn, Alabama. **2018**; DOI: http://hdl.handle.net/10415/6069. - 81. Holme, M.H.; Zeng, C.; Southgate, P.C. A review of recent progress toward development of a formulated microbound diet for mud crab, *Scylla serrata*, larvae and their nutritional requirements. *Aquac.* **2009**, 286, 164-175; DOI: https://doi.org/10.1016/j.aq-uaculture.2008.09.021. - 82. Islam, M.L.; Yahya, K. Successive reproductive performance and amino acid profiles in the newly hatched larvae of green mud crab (*Scylla paramamosain*) under captive condition. *Int. J. Fish. Aquat. Stud.* **2016**, 4(5), 270-278. - 83. Ayisi, C.L.; Hua, X.; Apraku, A.; Afriyie, G.; Kyei, B.A. Recent studies toward the development of practical diets for shrimp and their nutritional requirements. *HAYATI J. Biosci.* **2017**, 24(3), 109-117; DOI: https://doi.org/10.1016/j.hjb.2017.09.004. - 84. Zheng, P.; Han, T.; Li, X.; Wang, J.; Su, H.; Xu, H.; Wang, Y.; Wang, C. Dietary protein requirement of juvenile mud crab *Scylla paramamosain*. *Aquac*. **2020**, 515, 734852; DOI: https://doi.org/10.1016/j.aquaculture.2019.734852. - 85. Weiss, M.; Rebelein, A.; Slater, M.J. Lupin kernel meal as fishmeal replacement in formulated feeds for the whiteleg shrimp (*Litopenaeus vannamei*). *Aquac. Nutr.* **2019**, 26, 752 762; DOI: https://doi.org/10.1111/anu.13034. - 86. Wang, X.; Jin, M.; Cheng, X.; Hu, X.; Zhao, M.; Yuan, Y.; Sun, P.; Jiao, L.; Betancor, M.B.; Tocher, D.R.; Zhou, Q. Dietary DHA/EPA ratio affects growth, tissue fatty acid profiles and expression of genes involved in lipid metabolism in mud crab - *Scylla paramamosain* supplied with appropriate n-3 LC-PUFA at two lipid levels. *Aquac.* **2021,** 532, 736028; DOI: https://doi.org/10.1016/j.aquaculture.2020.736028. - 87. Aaqillah-Amr, M.A.; Hidir, A.; Noordiyana, M.N.; Ikhwanuddin, M. Morphological, biochemical and histological analysis of mud crab ovary and hepatopancreas at different stages of development. *Anim. Rep. Sci.* **2018**, 195, 274-283; DOI: https://doi.org/10.1016/j.anireprosci.2018.06.005. - 88. Fernandis, A.Z.; Wenk, M.R. Membrane lipids as signalling molecules. *Curr. Opin. Lipidol.* **2007**, 18(2), 121-128; DOI: 10.1097/MOL.0b013e328082e4d5. - 89. Hamre, K.; Yúfera, M.; Rønnestad, I.; Boglione, C.; Conceição, L.E.C.; Izquierdo, M. Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. *Rev. Aquac.* **2013**, 5(s1), S26 S58; DOI: https://doi.org/10.1111/j.1753-5131.2012.01086.x. - 90. Kumar, V.; Sinha, A.K.; Romano, N.; Allen, K.M.; Bowman, M.A.; Thompson, K.R.; Tidwell, J.H. Metabolism and nutritive role of cholesterol in the growth, gonadal development, and reproduction of crustaceans. *Rev. Fish. Sci. Aquac.* 2018, 26(2), 254-273; DOI: https://doi.org/10.1080/23308249.2018.1429384. - 91. Jerez, S; Rodríguez, C.; Cejas, J.R.; Bolaños, A.; Lorenzo, A. Lipid dynamics and plasma level changes of 17 β-estradiol and testosterone during the spawning season of gilthead seabream (*Sparus aurata*) females of different ages. *Comp. Biochem. Physiol. B* **2006**, 143, 180-189; DOI: https://doi.org/10.1016/j.cbpb.2005.11.002. - 92. Jónasdóttir, S.H. Fatty acid profiles and production in marine phytoplankton. *Mar. Drugs* **2019**, 17(3), 151; DOI: 10.3390/md17030151. - Brett, M.T.; Müller-Navarra, D.C. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshw. 1997, 38, 483 499. - 94. Tocher, D.R. Fatty acid requirements of ontogeny in marine and freshwater fish. *Aquacult. Res.* **2010**, 41, 717-732; DOI: https://doi.org/10.1111/j.1365-2109.2008.02150.x. - Anido, R.V.; Zaniboni-Filho, E.; Garcia, A.S.; Baggio, S.R.; Fracalossi, D.M. Characterization of the ovary fatty acids composition of *Rhamdia quelen* (Quoy & Gaimard) (Teleostei: Siluriformes), throughout their reproductive cycle. *Neotrop. Ichthyol*, 2015, 13(2), 453 – 460; DOI: https://doi.org/10.1590/1982-0224-20140139. - 96. Strobel, C.; Jahreis, G.; Kuhnt, K. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products. *Lipids Health Dis.* **2012**, 11(1), 144; DOI: 10.1186/1476-511X-11-144. - 97. Chen, C.; Guan, W.; Xie, Q.; Chen, G.; He, X.; Zhang, H.; Guo, W.; Chen, F.; Tan, Y.; Pan, Q. n-3 essential fatty acids in Nile tilapia, *Oreochromis niloticus*: Bioconverting LNA to DHA is relatively efficient and the LC-PUFA biosynthetic pathway is substrate limited in juvenile fish. *Aquac.* 2018, 495, 513-522; DOI: https://doi.org/10.1016/j.aquaculture.2018.06.023.