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Abstract: In this paper a novel and flexible solution for fault prediction based on data col-1

lected from Supervisory Control and Data Acquisition (SCADA) system is presented. Generic2

fault/status prediction is offered by means of a data driven approach based on a self-organizing3

map (SOM)and the definition of an original Key Performance Indicator (KPI). The model has4

been assessed on a park of three photovoltaic (PV) plants with installed capacity up to 10 MW,5

and on more than sixty inverter modules of three different technology brands. The results indi-6

cate that the proposed method is effective in predicting incipient generic faults in average up to7

7 days in advance with true positives rate up to 95%. The model is easily deployable for on-line8

monitoring of anomalies on new PV plants and technologies, requiring only the availability of9

historical SCADA data, fault taxonomy and inverter electrical datasheet.10

Keywords: PV plants; Self-Organizing Maps; Fault Prediction; Inverter Module; Key Perfor-11

mance Indicator; Lost Production12

1. Introduction13

1.1. Motivation14

The implementation of accurate and systematic preventive maintenance strategies15

is emerging nowadays as an essential tool to maintain high technical and economic16

performance of solar PV plants over time [? ]. Analytical monitoring systems have17

been installed worldwide to timely detect possible malfunctions through the assess-18

ment of PV system performance [2–5]. However, in addition to high customization19

costs and the need of collecting and transmitting a large number of physical variables,20

there appears to be a lack of automatic, non-supervised and accurate methodologies21

to perform such maintenance strategies. Due to the abundance of relevant data, and22

the difficulty in modeling many complex aspects of PV plants, statistical methods23

based on data mining and machine learning algorithms are recently emerging as a24

very promising approach both for fault prediction and early detection. However, few25

works can be found for this topic, and especially in the field of power generation from26

renewable sources most papers focus on equipment level failures in wind farms [6,7],27

while the counterpart for PV plants is not as developed [8].28

1.2. Paper contribution29

The present paper describes a novel and flexible solution for inverter level fault pre-30

diction based on a data-driven approach. In particular, its ability to predict or to rec-31

ognize anomalous patterns and faulty operating conditions is here validated off-line32

for three different PV plants located in Romania and Greece, for a nominal power of33

up to 10 MW and a testing window of one year. As we show, the proposed approach34

has been used in the different plants of different sizes and technologies in the same35
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Figure 1. Location of the three considered PV plants. The size of the marker is proportional to
the installed capacity.

fashion, and in each case it has proven to provide valuable and accurate failure predic-36

tions.37

2. Case Studies and Methods38

In the paper we shall consider three PV plants, called in the following as plants A,39

B, and C, respectively, with an installed capacity ranging between 3 and 10 MW,40

equipped with two different inverter technologies, labelled as 1 and 2, as shown in Ta-41

ble 1. Plant A is located in Romania, whereas plants B and C are in Greece, as shown42

in Fig. 1. Globally, 67 inverter devices have been analysed. More details are given in43

the following subsections.44

2.1. PV plants details45

Plant A is located in Romania and has an installed capacity of around 10 MW, corre-46

sponding to 35 inverter modules with a rated output power either of 385 kW AC or47

55 kW AC. In the plant both polycristalline and thin film solar panels are installed.48

The operating facility is able to produce around 15 million kWh per year, correspond-49

ing to the annual energy needs of more than 7,500 households, thereby avoiding the50

emission of over 6,800 tonnes of CO2 into the atmosphere per year.51

Plants B and C are located in Greece. Plant B is in the Xanthi region and is composed52

by strings of thin film solar panels connected to seven inverter modules with a rated53

ouput power of 385 kW AC, which globally corresponds to an installed capacity of54

2.8 MW. On average, it is able to produce about 3.6 kWh per year. The last considered55

PV facility is located in the Ilia region and it consists of polycristalline solar panels56

producing around 6.15 million kWh annually. It is equipped with 25 inverter modules57

with a rated output power of 183.4 kW AC, which corresponds to an overall installed58

capacity of 4.9 MW.59

Plant Number of Inverter Max Active Plant
Name Inverter Manufacturer Power Nominal

Modules Number [KW] Power [MW]
A 35 1 385 9.8
B 7 1 385 2.8
C 25 2 183.4 4.9

Table 1: List of considered PV plants: plant A is located in Romania, whereas plants B
and C in Greece.
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2.2. SCADA Data and Alarm Logbooks60

The datasets of plants A and B consist of 10 measured signals, as explained in Table 2,61

with a sampling time ν of 5 minutes. Measured signals include both electrical (DC and62

AC sides) and environmental quantities (such as the solar irradiance that is acquired63

by pyranometers, and temperatures). For plant C, also the internal inverter tempera-64

ture (Tint) is available. The signals, collected by sensors installed in the PV facility, are65

stored in a Supervisory Control And Data Acquisition (SCADA) system. Data are then66

transmitted to two higher supervision centers: the Local Control Room of the coun-67

try of the PV plant, and the World Monitory Room at the headquarters of the power68

company managing the plant under investigation.69

The lengths of the historical datasets are different for the three considered plants, as it70

is summarized in Table 3. In particular, it is possible to note that the testing period is71

always at least six months long, and in one case one year long, which is convenient to72

evaluate the performance of the proposed strategies over different seasons. As it will73

be described in the greater detail in the following sections, a careful pre-processing74

stage is required to clean the available data and make them more informative for the75

training stage.76

In addition to the SCADA data, we also exploit the availability of Operation and Main-77

tenance (O&M) logs. In this case, the relevant information consists of the start and78

end times at which single failure events have been experienced, as well as the specific79

fault type, and inverter device suffering the failure. Depending on the plant, this infor-80

mation was available either through automatic SCADA logbooks, or through manual81

logbooks where plant operators manually provided the relevant information. Accord-82

ingly, in our model we have also considered the O&M logs, together with the fault83

taxonomy which is required to associate the manufacturer code with the correspond-84

ing failure type, description and severity, which have been used a posteriori to assess85

the performance of the proposed strategies. In particular, the logbook has been embed-86

ded in our model by matching the fault classes listed in the fault taxonomy file to the87

fault occurrences recorded in the logbooks and associating them with the timestamp88

Signal Number Signal Type Signal Name Variable Name
1 Electrical DC Current IDC
2 Electrical DC Voltage VDC
3 Electrical DC Power PDC
4 Electrical AC Current IAC
5 Electrical AC Voltage VAC
6 Electrical AC Power PAC
7 Environmental Internal Tint

Inverter
Temperature

8 Environmental Panel Tmod
Temperature

9 Environmental Ambient Tamb
Temperature

10 Environmental Global GTI
Tilted

Irradiance
11 Environmental Global GHI

Horizontal
Irradiance

Table 2: List of electrical and enviromental signals used as input tags. Tint is only avail-
able for plant C.
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Plant Name Training Period (dd/mm/yyyy) Test Period (dd/mm/yyyy)
A from 20/03/2014 to 30/09/2014 from 01/10/2014 to 30/09/2015
B from 27/10/2014 to 31/03/2015 from 01/04/2015 to 29/02/2016
C from 01/02/2015 to 31/01/2016 from 01/02/2016 to 27/07/2016

Table 3: Temporal extension of the data-sets and data used for training and for testing
for each PV plant.

of SCADA data. More specifically, a fault of the k-th type is assigned to timestamp tn if89

the following condition occurs:90

tstart,k ≤ tn ≤ tend,k (1)

where tstart,k (tend,k) are the initial (final) instant of the fault event. Once the O&M logs91

have been discretized consistently with the SCADA data time line, each timestamp tn92

has been labelled according to the fault code occurring in that instant. Simultaneous93

fault events at instant tn have been handled according to a prioritization rule, i.e., by94

labelling tn with the most severe fault code occurring at that instant and, if necessary,95

the most frequent fault in the day D, with tn ∈ D. As a consequence, the resulting96

time line is labelled with an integer number, one for each timestamp, corresponding97

to nominal behaviours (label equal to 0) or faulty events (label larger than 0). While in98

principle, the information of the specific occurred fault was available, yet in this work99

we only focus on a binary classification problem where the objective is to discrimi-100

nate faulty and correct working conditions. Thus, we have trained our algorithms to101

recognize faulty working conditions, and not the specific type of occurred failure.102

2.3. Data pre-processing103

Due to the heterogeneity of the considered physical quantities, the pre-processing104

stage has been customized specifically for each tag. In particular, the AC power (PAC)105

depends mainly on the solar irradiance (GTI) striking on the PV panel plane and on106

the environmental temperature (Tamb). Statistical outliers corresponding to values107

of PAC significantly larger than 0 despite low values of the GTI, or viceversa, have108

been removed by implementing a first-order regression of the unknown underlying109

function PAC = PAC(GTI) and removing instances that lied far from a linear approxi-110

mation:111

| PAC − (GTI ·m + b) |
GTI ·m + b

> η, (2)

where m and b are the slope and the intercept, respectively, of the linear approxima-112

tion computed by means of a least-squares fitting, and η is the threshold set by a trial113

and error process, to identify unrealistically far samples. In addition, many signals114

exhibit a significant number of not regular data, such as missing or “frozen” samples115

(i.e., instances where the signal measured by the sensor does not change in time), or116

values out of physical or operative limits, or spikes. Accordingly, a classic procedure117

of data cleaning has been carried out to avoid training the algorithms with obviously118

wrong data. In particular, as many electrical and environmental signals exhibit daily119

patterns, days having a large percentage of missing data have been removed as a120

whole.121

2.4. SCADA imputation122

Since the model, once deployed in practice on-site, must be obviously able to work123

also in situations of missing online instances, in a “best-effort” fashion (i.e., as well as124

possible given the obvious difficulties of wrong measurements or wrong data trans-125

mission), missing test samples have been imputed according to the classical k-Nearest126

Neighbors (k-NN) algorithm. More in detail, the training set has been used as the127
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reference dataset, replacing missing data with the nearest neighbors according to the128

Euclidean distance. [9,10]129

2.5. Data detrending and scaling130

As different electrical (e.g., PAC) and environmental (e.g., GTI) signals exhibit seasonal131

trends, it is convenient to remove such seasonality trends to prevent biased predic-132

tions from occurring. In order to remove the season-dependent variability from input133

data, a detrending procedure has been applied by following tailored approaches for134

each variable. In particular, the training data of Tmod have been deseasonalized by135

means of the least-squares fitting method to infer the best line Tf it against Tamb and136

selecting only low samples with low GTI to remove the effect of the panel heating due137

to sunlight:138

T̃mod =
Tmod − Tf it

Tf it

∣∣∣∣∣
GTI≤GTIthr

, (3)

where139

Tf it = mT · Tamb + bT (4)

is the fitting temperature, mT is the regression slope, bT is the intercept and GTIthr =140

100 W/m2 is a heuristically dermined threshold for the solar irradiance to identify141

“low values of the GTIs” that do not give rise to relevant panel heatings effects.142

All the remaining input variables, apart from DC and AC voltages, have been de-143

trended according to a classical Moving Average (MA) smoothing method to compute144

the seasonal trend component and applying an additive model for time series decom-145

position [11,12].146

Finally, input data normalization is performed to avoid unbalance between heteroge-147

neous quantities.148

3. Methodology149

The proposed approach consists in training a self-organizing map (SOM) [13,14] neu-150

ral network with the aim to create a model of the nominal behaviour of the system.151

For this scope we use an historical dataset, that we denote as training dataset, contain-152

ing only nominal observations, where faulty instances have been removed. The mo-153

tivation under this choice is that, as is commonly the case in monitoring applications,154

most of the measured data correspond to nominal behaviours, and very few cases of155

faulty patterns are usually measured. The usage of supervised learning methodolo-156

gies, such as Feed-Forward Neural Networks or Support Vector Machine methods,157

is not advisable in the case of strongly unbalanced distributions of correct and faulty158

patterns. On the other hand, unsupervised learning methods are more suitable to159

represent the structure and the distribution of nominal data. Among unsupervised160

learning methods, that include clustering and vector quantization algorithms, SOMs161

are very convenient as they operate a map from the original multi-dimensional space162

to a two-dimensional space preserving the same topology of the original data (i.e.,163

points that were close to each other in the input space correspond to cells that are still164

close to each other in the two-dimensional output space). Accordingly, SOMs are an165

excellent candidate when it is necessary to provide an accurate model of a multivari-166

ate distribution of data, and the nonlinear map towards the output space allows us to167

introduce a number of very useful tools for data analysis, such as the measurement of168

cell occupancy that has been proposed in this work.169

In fact, SOMs have been widely used for condition monitoring applications in other170

contexts [15,16]. In this manuscript, an original KPI based on the frequency of cells171

occupancy has been introduced on purpose for our specific application of interest.172
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In particular, the trained SOM is used to calculate a parameter for each cell of the map,173

denoted as probability of cell occupancy, which represents the number of training174

points that are mapped to that particular cell, normalized with respect to the total175

number of points. During the monitoring stage, new state observations are presented176

to the SOM and are classified as “in control" or “out-of-control". For this purpose, we177

calculate the probability of cell occupancy for all the instances measured during the178

last 24 hours, and we compare it against the previously computed probability of cell179

occupancy. The procedure is now illustrated in more detail.180

3.1. Self-Organizing Map neural network based Key Performance Indicator: monitoring of cell181

occupancy182

The SOM output space consists of a fixed and ordered bi-dimensional grid of cells,183

identified by an index in the range 1, . . . , D, where a distance metric d(c, i) between184

any two cells of index c and i is defined [13]. Each cell of index i is associated with a185

model vector mi ∈ R1×n that lies in the same high-dimensional space of the input186

patterns r ∈ ∆, where the matrix ∆ ∈ RN×n represents the training dataset to be187

analyzed, containing N observations of row vectors r ∈ R1×n. After the training, the188

distribution of the model vectors resembles the distribution of the input data, with the189

additional feature of preserving the grid topology: model vectors that correspond to190

neighbouring cells shall be neighbours in the high-dimensional input space as well.191

When a new input sample r is presented to the network, the SOM finds the best match-192

ing unit (BMU) c, whose model vector mc has the minimum Euclidean distance from193

r:194

c = argmini{‖r−mi‖}.

In this case we say that the input pattern r is mapped to the cell c. In order to assess195

the condition of newly observed state patterns to be monitored, we introduce the196

following KPI:197

KPI(d) =
D

∑
i=1

pi,d
1− |pi,TRAIN − pi,d|
1 + |pi,TRAIN − pi,d|

(5)

where d denotes a test day index, and the probability of cell occupancy during day d is198

defined as199

pi,d =
Ni,d

Nd
, i = 1 . . . D,

where Nd = 24 · 60/ν is the total number of samples in a day, and Ni,d is the number of200

samples, within day d, that were mapped to cell i. In the same fashion the probability201

of cell occupancy in the training phase is defined as202

pi,TRAIN =
Ni,TRAIN

N
, i = 1 . . . D

where Ni,TRAIN represents the number of training patterns that were mapped to cell i,
while N is the total number of training samples. It is straightforward that

0 ≤ pi,d ≤ 1, ∀i = 1 . . . D

and
0 ≤ pi,TRAIN ≤ 1, ∀i = 1 . . . D.

As a result, the KPI(d) value defined in equation (5) is calculated once a day, based on203

the analysis of the measurements of the previous 24 hours.204

If the test samples of the day d being monitored represent mainly nominal observa-205

tions, then the corresponding pi,d values shall be close to pi,TRAIN values, that were206
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Warning level Thresholds KPI derivative Persistence
1 KPI < µ− 3σ < 0 1 day
2 KPI < µ− 3σ < 0 ≥ 2 days
3 KPI < µ− 5σ < 0 1 day
4 KPI < µ− 5σ < 0 ≥ 2 days

Table 4: Logic for the generation of the warning levels.

calculated using nominal historical observations. In this case the resulting value of the207

KPI in eq. (5) tends to 1. Conversely, if the patterns of day d contain abnormal condi-208

tions, then the cell occupancy will be mainly altered, leading to a situation where for a209

significant number of cells |pi,TRAIN − pi,d| tends to 1 (pi,d close to 1 and pi,TRAIN close210

to 0 or viceversa). In this case the resulting KPI value tends to 0.211

From a physical point of view, the proposed KPI is a robust indicator that is able to212

detect changes in the underlying non-linear dynamics of the plant. The normal sta-213

tus is represented by KPI = 1, while decreasing values represent a deviation from214

healthy conditions. In particular, we have accurately tuned a set of rules and thresh-215

olds based on the KPI values, in order to generate warning levels of different severity,216

as summarized in table 4. The following two thresholds are defined as lower control217

limits:218

thr1 = µ− 3σ,

and219

thr2 = µ− 5σ,

where µ and σ represent, respectively, the mean value and the standard deviation of220

the KPI values calculated as in eq. (5) using all the training patterns.221

The logic of the generation of the warnings takes into account the crossing of the222

thresholds, the persistence of the KPI values below the thresholds and the derivative223

of the KPI. In particular, a negative derivative, representing a progressive degradation224

of the health state of the plant, is a necessary condition for the generation of a warn-225

ing. This choice has the effect to avoid the generation of warnings during the positive226

derivative of KPI, that usually correspond to a period where the plant is gradually227

returning to a normal state after a maintenance intervention. In this way the number228

of false positives is greatly reduced.229

4. Results230

The proposed model has been trained on the training set as specified in Table 3, and in231

this section we discuss the outcome of the testing stage. In particular, our system has232

been able to identify a significant amount of failure events, which we could validate233

using the available data, and a selection of the most interesting ones is discussed in234

more detail in this section.235

Fault name Severity (1 to 5) Start date (dd/mm/yyyy) End date (dd/mm/yyyy)
AC Switch Open 2 10/10/2014 11/10/2014
AC Switch Open 2 03/11/2014 28/11/2014

DC Insulation Fault 2 09/12/2014 10/12/2014
DC Voltage High 2 11/06/2015 23/06/2015
AC Switch Open 2 24/08/2015 25/08/2015

Table 5: Main failures occurred on inverter A.2 of plant A in the historical period.
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Figure 2. Historical case studies for inverter A.2 of plant A. Top plot - Left axis: KPI, as well as
the warning levels and the upper and lower thresholds are shown as a function of datetime;
Right axis: time series of daily number of faults. Bottom plot: TPR, FNR and FPR as a function
of datetime.

4.1. Plant A236

Table 5 lists the most relevant faults occurred on the inverter module A.2 of plant A237

in the test period 01 October 2014 to 30 September 2015, i.e., 1 year long. For each238

failure, the table reports the specific fault, the time interval until the problem was239

fixed, and its severity in a scale from 1 (most critical) to 5 (least critical), as defined by240

the inverter manufacturer. According to the alarm logbook, this plant experienced a241

number of thermal issues on several different devices which lead to a non-correct heat242

dissipation. Such damages led to a production loss estimated in some thousands of243

euros and required the replacement of many components of the inverter of plant A in244

August-September 2015.245

Figure 2 illustrates, on the top part, the curve of the proposed daily KPI (in blue), as246

well as the warning levels triggered by the KPI, with different colours depending on247

the severity of the warning, ranging from green (warning level 1 - least critical), to red248

(warning level 4 - the most critical). In order to evaluate the ability of the proposed249

KPI to detect anomalous working conditions, we also show in black the normalized250

number of the true faulty instances N̂ f ault that were registered on each day. In partic-251

ular, the normalized number of true faulty instances on the d−th day is computed252

as:253

N̂ f ault(d) =
number of faulty instances in day d− 1

Nd
· 100%, , (6)

Roughly speaking, Eq. (6) may give rise to value between 0, i.e., no fault observed in254

the day, up to 100 %, indicating abnormal days with all the Nd instances labelled as255

faulty. The two thresholds thr1 and thr2 are also represented by dashed and dotted256

black curves, respectively.257

Additionally, in order to make a quantitative performance evaluation, in the bottom of258

Figure 2, it is possible to observe the True Positive Rate (TPR), the False Negative Rate259

(FNR), and the False Positive Rate (FPR), as a function of the date. In particular, the260

TPR is defined as the ratio of the true positive (faults) with respect to the actual faults261

(i.e., TPR= TP/P); the FNR is defined as the ratio of the false negatives (i.e., faults that262

were not recognized as faults) with respect to the actual faults, so that FNR= FN/P;263
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Figure 3. Pac of inverter A.2 (top) and GTI (bottom) as a function of datetime in the period 20
October 2014 - 30 November 2014 (plant A). The warning levels are superimposed for conve-
nience.

Figure 4. Left axis: energy ratio with respect to the ideal case with and without the application
of the SOM based model for inverter A.2 of Plant A. The green area represents the maximum
energy gain achievable by enabling it. Right axis: time series of daily number of faults.
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and FPR, which is defined as the ratio of the False Positives with respect to the non-264

faults cases (i.e., it corresponds to the rate of false alarms). In practice, a faulty sample265

has been classified as a TP if at least one warning is triggered in the previous 7 days,266

otherwise it is classified as FN. On the other hand, if an alert is raised and no faults oc-267

cur in the following week, the corresponding sample is taken as a FP. As can be seen,268

a clear correlation between the warning alerts and the actual faults is observed, with269

the most severe warnings triggered in correspondence of the most critical days, i.e.,270

those having a higher percentage of registered faulty instances. Additionally, although271

the daily generated KPI may introduce a delay in the generation of predictive alerts, it272

is effective in minimizing the amount of generated false positives and false negatives273

instances, thanks also to the monitoring of the trend derivative.274

In particular, the first critical failure (AC Switch Open), that gives rise to almost 60%275

of device faults in a day, is observed on October 10, 2014. The model anticipates the276

failure triggering warnings of level 1 on both October 4 and on October 9, with a sig-277

nificant degradation of the KPI in correspondence of the fault. The same failure occurs278

again on November 3, 2014 for a more prolonged number of days (until November 28,279

2014), and for 26 consecutive days the SCADA registers almost 100% of daily faults of280

the device, and almost no power generation at all. The SOM early detects the anomaly281

with a remarkable drop of the KPI from November 4, triggered by an unexpected282

zero power generation for an almost fully sunny day, as shown in Figure 3. However283

the first sign of abnormal behaviour had been predicted almost 10 days before with284

warnings of level 1 occurring on the 24-th and 25-th of October, and with the KPI well285

below the first warning threshold thr1. Furthermore, during the prolonged fault, the286

KPI notifies the operators with a degree of criticality that progressively increases up287

to the maximum level 4, thus strongly advising the plant operator to proceed with the288

reactive maintenance action. In particular, as can be seen in Figure 4, application of the289

proposed method and timely maintenance interventions could have led to an energy290

gain up to roughly 20%.291

Conversely, it is interesting to note that the proposed method does not trigger any292

alert in correspondence of the DC Insulation fault, i.e., an overvoltage across the DC293

capacitors, that occurs on December 9, due to the positive value of the KPI derivative.294

However, the last warning of level 4 activated on December 4 would have allowed295

the O&M team to plan a maintenance intervention and solve this issue in time. Then,296

from the beginning of year 2015 the overall trend of the KPI exhibits a slow but almost297

constant increase, with some alerts up to level 2 that occur in correspondence, or even298

ahead, of some minor, yet actual, faulty events.299

The second most severe failure starts on the June 11, 2015 due to an overvoltage across300

the bulk capacitors of the DC/DC converter. Remarkably, also in this case the SOM301

realizes of the anomalous behaviour already on June 6, and triggers a first warning302

of level 1. Additionally, a sudden KPI drop is observed in correspondence of the fail-303

ure, with warnings generated up to level 4. After this failure, the nominal behaviour304

is restored and the model does not generate any alert until the end of August 2015,305

when the model predicts an anomaly on August 23, which is followed by an actual306

registered fault that occurs the following day.307

The performance over the whole test set are remarkable, with a TPR exceeding 93%308

(FNR < 7%) and a FPR of almost 13%.309

4.2. Plant B310

Table 5 lists the most critical failures occurred on inverter B.1 installed in plant B in311

the test period of interest from April 1, 2015 to February 29, 2016, whereas in Figure 5312

the proposed KPI, the warning levels, as well as the daily number of faults are plotted313

as a function of time for the same device. In the first part, the KPI is almost always314

above the safety threshold and does not detect the DSP communication error between315

the inverter internal control devices that occurs on July 16, 2015. After that, the KPI316
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Figure 5. Historical case studies for inverter B.1 of plant B. Top plot - Left axis: KPI, as well as
the warning levels and the upper and lower thresholds are shown as a function of datetime;
Right axis: time series of daily number of faults. Bottom plot: TPR, FNR and FPR as a function
of datetime.

starts to decrease and realizes of an incoming failure on July 26, generating alerts up to317

level 2. A real failure occurs indeed on August 6, due to an internal sensor error in the318

measurement of the leakage current on the DC side. A consequent maintenance action319

is then scheduled to verify the issue.320

Then a new fault is predicted on August 10, with warnings triggered up to level 2. An321

overvoltage across the bulk capacitors on the DC side occurs indeed on August 13,322

and it lasts almost 13 days, causing also the replacement of the inverter. The warnings323

triggered by the indicator during the failure are thus explained with the lack of data in324

these days.325

From August 24, the KPI starts signaling new faulty conditions, with alerts that pro-326

gressively become more critical, up to level 4, in correspondence of an internal sensor327

fault that is registered by the system on September 7. The consequent inspection of328

the O&M operators confirmed the fault and caused the replacement of a cooling fan329

in the inverter. Similarly, from September 14, the KPI starts again progressively to de-330

crease with new warnings that get up to level 4, when a failure is again registered on331

September 23. On that day, a new corrective intervention is scheduled which causes332

the substitution of the inverter cooling pump. Then the KPI recovers safe values, with333

Fault Severity Start date End date Notes
name (1 to 5) (dd/mm/yyyy) (dd/mm/yyyy)

Communi- 2 16/07/2015 16/07/2015 None
cation Error

Internal 2 06/08/2015 07/08/2015 Fault Log
sensor fault downloading
DC Voltage 2 13/08/2015 25/08/2015 Device B.1

High replaced
Internal 2 07/09/2015 07/09/2015 Cooling fan

sensor fault replaced
Internal 2 23/09/2015 23/09/2015 Cooling pump

sensor fault replaced

Table 6: Main failures occurred on inverter B.1 of plant B during the testing period.
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Figure 6. Historical case studies for inverter 3.5 of plant C. Top plot - Left axis: KPI, as well as
the warning levels and the upper and lower thresholds are shown as a function of datetime;
Right axis: time series of daily number of faults. Bottom plot: TPR, FNR and FPR as a function
of time.

some alerts generated in correspondence of minor faulty events, with very few missed334

detections or misdetections.335

Also for the second PV plant, the KPI performs in an accurate fashion, with a TPR336

exceeding 98% (FNR < 2%) and a FPR equal to about 18%.337

Figure 7. From top to bottom: Pac, GTI and Tint of inverter 3.5 of plant C as a function of date-
time in the period 8 May - 7 June 2016. The warning levels are superimposed for convenience.

4.3. Plant C338

Table 7 lists the most severe failures registered for inverter 3.5 of plant C in the testing339

period, from February 1 to July 27, 2016. As in the previous cases, Figure 6 shows340

the proposed KPI, the warning levels and the daily number of faults as a function of341

time for the same module. As can be seen in Table 5, the device does not experience342

particularly important failures until the last decade of May. Indeed, the registered343

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 January 2021                   doi:10.20944/preprints202101.0632.v1Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 January 2021                   doi:10.20944/preprints202101.0632.v1

https://doi.org/10.20944/preprints202101.0632.v1
https://doi.org/10.20944/preprints202101.0632.v1


Version January 28, 2021 submitted to Sensors 13 of 15

Fault Severity Start date End date Notes
name (1 to 5) (dd/mm/yyyy) (dd/mm/yyyy)

AC Voltage 3 07/03/2016 07/03/2016 Grid fault
out of range
AC Voltage 3 09/03/2016 09/03/2016 Grid fault
out of range
AC Voltage 3 12/04/2016 12/04/2016 Grid fault
out of range
AC Voltage 3 15/05/2016 15/05/2016 Scheduled
out of range maintenance
AC Switch 2 21/05/2016 07/06/2016 Inverter 3.5

Open replaced

Table 7: Main failures occurring on inverter 3.5 of plant C during the testing period.

Test case TPR FNR FPR
Plant A, inv. A.2 93% 7% 13%
Plant B, inv. B.1 98% 2% 18%
Plant C, inv. 3.5 92% 8% 1%

Table 8: Summary of the performance results on the three case studies.

failures are mainly due either to some parameters outside of the standard values or by344

scheduled maintenance actions.345

Accordingly, the model does not detect any relevant issue until May 21 (see Figure346

6), when the KPI suddenly drops triggering alerts up to level 4. Looking at the single347

signals (Figure 7), an obvious anomaly is given by the power generation that is equal348

to zero irrespectively of the sunny weather conditions. Similarly, an unmotivated drop349

in the internal inverter temperature occurs. The technical inspection on the plant con-350

firms the issue, which was caused by an IGBT stack fault and led to a production loss351

estimated roughly in 16 MWh. The whole inverter is then replaced after the failure.352

Then the KPI comes back to take safe values, generating only some alerts around June353

27, in correspondence of minor grid failures caused by mains parameters out of range.354

The KPI works in an accurate way also for plant C, as can be seen in the bottom plot of355

Figure 6. In fact, the TPR is almost 92% (FNR = 8%) and FPR is just roughly 1%.356

Test case
Date of fault
occurrence

(dd/mm/yyyy)

Date of fault
prediction

(dd/mm/yyyy)

Time in advance
of prediction

Plant A, inv. A.2 10/10/2014 4/10/201 6 days
Plant A, inv. A.2 3/11/2014 24/10/2014 10 days

Plant A, inv. A.2 09/12/2014
last warning on

04/12/2014

(5 days)
fault occurs during
plant maintenance

Plant A, inv. A.2 11/06/2015 06/06/2015 5 days
Plant A, inv. A.2 24/08/2015 23/08/2015 1 day

Plant B, inv. B.1 16/07/2015 not detected
-

minor fault
Plant B, inv. B.1 06/08/2015 26/07/2015 10 days
Plant B, inv. B.1 13/08/2015 10/08/2015 3 days
Plant B, inv. B.1 07/09/2015 24/08/2015 14 days
Plant B, inv. B.1 23/09/2015 14/09/2015 9 days
Plant C, inv. 3.5 21/05/2016 21/05/2016 0 days

Table 9: Summary of the predictive performance of the proposed method.
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5. Discussion357

In table 8 we summarize the performance results of the proposed method obtained in358

the three case studies. In particular, excellent performances are obtained in terms of359

TPR values, and good results are also achieved in terms of FPR for all the case studies.360

The predictive capacity of the proposed method is summarized in table 9 reporting361

the dates of the occurrence of the faults, and the dates when such faults had been pre-362

dicted by the proposed KPI. On average, the KPI predicts incipient faults between 6363

and 7 days before they are observed in practice. Also, in addition to being able to pre-364

dict the faults, the KPI also exhibits excellent early detection capabilities, by signaling365

with increasing warning levels as the faults evolve and reach more severe conditions.366

The proposed SOM-based monitoring system is now being installed in PV plants for367

online condition monitoring and the preliminary feedback from plant operators is368

very positive. A full evaluation of the online system will be the subject of our future369

work. Also we are currently developing a supervised fault-classification tool that we370

plan to integrate in the system in order to predict the specific class of fault, in addition371

to recognizing a generic faulty condition, as in our presented work.372
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