

A Systematic Review of Literature on Representation of Racial and Ethnic Minority Groups in Clinical Nutrition Interventions

Jaapna Dhillon^{1,2}, Ashley G. Jacobs³, Sigry Ortiz², L. Karina Diaz Rios⁴

1. Department of Nutrition and Exercise Physiology, University of Missouri, Columbia
2. Department of Molecular & Cell Biology, School of Natural Sciences, University of California, Merced
3. Independent researcher
4. Division of Agriculture and Natural Resources, University of California, Merced

KEYWORDS

Health disparities; Underrepresented groups; Diet; Race

RUNNING TITLE

Underrepresentation of Racial and Ethnic Minorities in Nutrition Research

ACKNOWLEDGEMENTS

JD was supported by the National Institute on Minority Health and Health Disparities of the NIH under awards K99MD012815 and R00MD012815 during this work. AGJ expresses gratitude to the Tuskegee University in Alabama for having a profound impact on her career.

CORRESPONDING AUTHOR

Jaapna Dhillon, PhD

Department of Nutrition and Exercise Physiology

School of Medicine

University of Missouri, Columbia

204 Gwynn Hall

Columbia, MO 65211

Email: jdhillon@missouri.edu

ORCID ID: 0000-0003-4798-9111

CONFLICTS OF INTEREST

The authors have no conflicts to disclose.

This manuscript version is not peer-reviewed.

ABSTRACT

There is a disproportionate increase in the incidence of diet-related cardiometabolic disorders in racial and ethnic minority groups. This systematic review examines the extent to which diet-induced changes in health outcomes have been discussed by race or ethnicity in randomized controlled trials recruiting both minority and non-Hispanic White groups. Databases i.e. PubMed, Cochrane library and Web of Science were searched up to November 2019. Studies

that discussed effects of defined dietary interventions on health outcomes by racial or ethnic minority group vs. non-Hispanic Whites (n=29) were included in the review. Most studies were conducted in Black vs. White people testing effects of energy restriction, macronutrient modification, sodium reduction, or variations of the Dietary Approaches to Stop Hypertension (DASH) diet on cardiometabolic outcomes. There was limited focus on other minority groups. Evidence suggests greater blood pressure reduction for Black people compared to Whites particularly on DASH (or similar) diets. Overall, there was limited consideration for group-specific eating patterns and diet acceptability in most studies. Adequately powered studies are needed for accurate interpretation of race by diet effects. With emerging precision nutrition initiatives, it is imperative to ensure adequate representation of racial and ethnic subgroups for addressing nutrition-related health disparities.

INTRODUCTION

Approximately 40% of the US population comprises of non-White racial/ethnic groups¹. The prevalence of major chronic diseases such as coronary heart disease, hypertension, obesity, and diabetes in racial and ethnic minorities is much higher than in Non-Hispanic White groups². For example, Black people are 1.5 times more likely to have hypertension, American Indians are 1.5 times more likely to have coronary heart disease, and most racial and ethnic minority groups (except for Asians Americans) are 1.2-1.8 times more likely to have obesity, and 1.6– 2.9 times more likely to have diabetes than non-Hispanic White individuals. In addition, despite lower body weights, Asian Americans have a higher prevalence of diabetes.

Racial and ethnic groups such as Black, Hispanic, Asian, and American Indian people or Pacific Islanders experience diet-related disparities. High saturated fat and salt intake, and low fruit, vegetable, and whole grain intake, resulting in suboptimal nutrient profiles, are especially evident in these racial and ethnic minority groups compared to Whites ³. Diet-related disparities can arise at the biological, behavioral, environment (physical/built, sociocultural) and systems levels and contribute to chronic disease risk. Although, genetic predisposing factors may contribute to this increased prevalence of cardiometabolic diseases among these groups ⁴, these differences could result more often from interactions of genetic variants with environmental ⁵ and dietary factors, for example, carbohydrate and fiber ⁶ and dietary fat and monounsaturated fatty acids ⁷. Poor diet quality can exacerbate the expression of the genes involved in metabolic dysfunctions such as insulin resistance ⁸. Nutritional status is in part determined by food choices, which in turn are influenced by the environment. It is documented that ethnic and racial minority groups are systematically exposed to physical, socioeconomic, and political environments that hinder their ability to sustain healthful choices, including consistent consumption of nutritious food ⁹⁻¹⁵.

Findings on White groups cannot be assumed to be applicable to other groups and failing to recognize specific contextual factors that distinctively affect the nutritional status of ethnic and racial minorities can perpetuate disparities in their representation in research. Given the disproportionate increase in the incidence of diet-related cardiometabolic disorders in racial and ethnic minority groups, clinical nutrition research on these populations is critical. In fact, one of the stated research priorities of the American Society of Nutrition is to determine the variability in responses to diet and food components by population subgroups, including ethnic and racial minority groups ¹⁶.

The purpose of this review is to report on clinical nutrition research on ethnic and/or racial minority groups in countries with predominantly non-Hispanic White populations. More specifically, the systematic review examines the extent to which diet-induced changes in health outcomes have been studied in randomized controlled trials with ethnic or racial groups vs. non-Hispanic Whites. In the text of this review, we use the same term to describe a specific ethnic or racial group as in the study being referenced.

METHODS

Search strategy

A comprehensive search strategy was developed in accordance with the Cochrane Handbook of systematic reviews¹⁷. This strategy employed a mixture of controlled vocabulary and natural language to reflect the focus of the analysis — to identify dietary studies that included racial and ethnic minority groups in clinical nutrition research trials. The searches were conducted until November 7, 2019. Complete search strategies are available in Supplementary Data (Supplemental Methods: Details of Search Methods). No restrictions were imposed on language, date of publication, or study design.

Study selection

The search was conducted across 3 databases (PubMed, Web of Science, and Cochrane Library) and the results were compiled in Zotero (version 5.0.87). Reference lists of related systematic reviews and meta-analyses were hand-searched to identify additional relevant articles. Three authors (JD, AJ, SO) reviewed the articles in a systematic manner for inclusion in the review. Any discrepancies were resolved via a vote for inclusion.

In the first pass, the titles and the abstracts of articles were independently screened to identify potentially relevant articles based on the criteria. Articles were excluded if the studies 1) were duplicates, 2) were not clinical dietary interventions or the dietary intervention was not defined; 3) included children or pregnant women; 4) did not assess health outcomes; 5) did not have full texts; or 6) were published as conference abstracts. In the second pass, full-text of articles were screened and articles were excluded if the studies 1) recruited exclusively non-Hispanic White groups, 2) did not mention race or ethnicity, or 3) were conducted in countries where the predominant population is not non-Hispanic White. In the third and final pass, only studies that discussed health outcomes by racial or ethnic groups were included in the systematic review. Clinical dietary interventions included in the final pass are defined as studies that manipulate the dietary composition of participants' diets via a specific dietary prescription, foods, but not supplements or drugs. The study selection process is documented in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram (Figure 1).

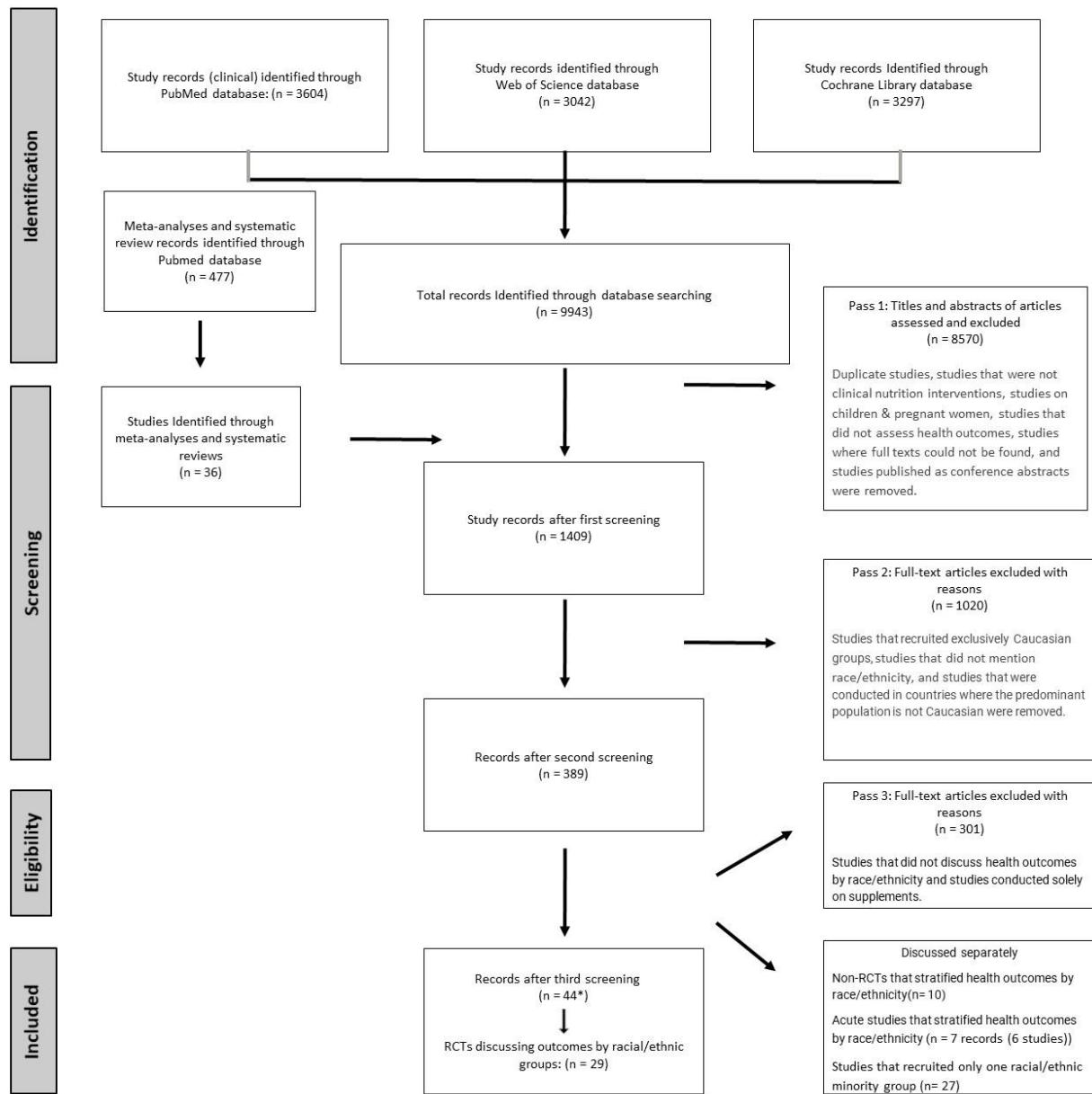


Figure 1: PRISMA flow diagram of included and excluded studies. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

*, Several studies were published as multiple articles. And, one article ³⁴ discussed two studies.

Data extraction

Data collection tables were developed by 1 author (JD) and variables were finalized in discussion with co-authors. Data extraction was completed by 2 authors (AJ, SO) and was reviewed for accuracy by JD. The quality of each study article was assessed using the Oxford Centre for Evidence-Based Medicine Levels of Evidence ¹⁸. The risk of bias was evaluated with use of the Academy of Nutrition and Dietetics Quality Criteria Checklist (QCC) for Primary Research ¹⁹.

RESULTS

In total, 9943 studies were screened for inclusion, 9871 of which were excluded based on the established criteria (Figure 1). Twenty-nine randomized controlled interventions that discussed health outcomes by racial/ethnic group were included in the systematic review. Some studies had multiple publications discussing different outcomes and are grouped together in Table 1. Sixteen pertinent studies that accounted for race and/or ethnicity in their analyses were acute trials (n=6) i.e. not assessing changes in health outcomes over a period of time and non-RCTs (n=10), and hence did not fully align with established criteria for inclusion in the systematic review but are discussed separately. Twenty-seven studies that focused on a single racial/ethnic group are also discussed separately. The detailed inclusion and exclusion criteria are discussed in Figure 1.

Table 1: Characteristics of included studies

Author	Design	Intervention duration	Total participant s (minority participant s) ¹	Racial/ethnic groups	Participant profile ²	Dietary intervention	Main health outcome	Results by ethnicity/race X diet
Black and White people								
Branis et al. 2015 ⁵⁴	Crossover (2 groups)	1 wk	23 (12)	Black, non-Hispanic White	Women (age: 25-45 years, BMI: 25-45 kg/m ²)	High fat vs. low-fat diet	Insulin sensitivity	Black (vs. White) ppl: lower insulin clearance on both diets
King et al. 2007 ⁶⁷	Crossover (2 groups)	3 wk	35 (16)	Black, White	Men and women (age: 18-49 years, BMI: 28 ± 1 kg/m ²)	High-fiber DASH diet vs. fiber-supplemented diet (both 30g/day)	C reactive protein (CRP)	Black (vs. White) ppl: similar DEC in CRP levels on both diets
Gerhard et al. 2000 ⁵⁸	Crossover (2 groups)	4 wk	22 (13)	Black, White	Pre-menopausal women (age: 18-45 years, mean BMI: 34 kg/m ²)	Low-fat, high-fiber diet vs. high-fat, low-fiber diet	Plasma lipids	Black (vs. White) ppl on high-fat, low-fiber diet: similar INC in plasma lipids
Wright et al. 2003 ⁵⁹	Crossover (2 groups)	7 days	199 (99)	Black, White	Women (age: 56 ± 8 years, BMI: 27 ± 4 kg/m ²)	High-salt diet vs. low-salt diet	BP	Black (vs. White) hypertensive ppl: greater mean arterial pressure and SBP INC with salt loading
Furtado et al. 2010 ⁶¹	Crossover (total 4: 3 groups and baseline)	6 wk	162 (89)	Black, White	Men and women (age: 54 ± 11 (SD) years, BMI: 30 ± 6 (SD) kg/m ²)	Carbohydrate-rich vs. protein-rich vs. unsaturated fat-rich diets	Apo C-III-containing lipoproteins	Whites ppl on unsaturated fat and protein diets: DEC in apo C-III and triglyceride
Howard et al. 1995a ⁶³	Crossover (total 5: 4 groups and baseline)	6 wk	63 (34)	Black, White	Hypercholesterolemic men and women (age: 46 ± 10 (SD) years, BMI: 26 ± 4 (SD) kg/m ²)	Baseline diet (37% total fat, 15% saturated) vs. 4 reduced-fat diets (30% fat, 10% saturated fat) of varying PUFA (3%, 6%, 10%, and 14%) and MUFA (17%, 14%, 10%, and 6%) content	Lipid profile	Black (vs. White) ppl: INC in triglycerides on reduced-fat diets ⁶³ but similar DEC in total and LDL cholesterol on reduced-fat diets ⁶³
Howard et al. 1995b ⁶⁵								No significant differences by race in response to varying PUFA/MUFA content of diets ⁶⁵
Erlinger et al. 2002 ³⁰	RCT (2 groups)	8 wk	55 (35)	Black, White	Hypertensive men and women (53 ± 9 (SD) years, BMI: 29 ± 5 (SD) kg/m ²)	DASH diet vs. control (+ Losartan)	Ambulatory BP (ABP), fibrinolysis markers	Black ppl on DASH diet (vs. control) + Losartan: greater DEC in ABP ²⁶
Conlin et al. 2003 ²⁶								No significant effect of race on markers of fibrinolysis ³⁰
Prather et al. 2011 ³⁶	RCT (2 groups for this analysis (originally 3 groups))	4 months	118 (43)	Black, White	Men and women with (SBP: 130-159; DBP: 85-99, age: age ≥ 35 years, BMI: 25-40 kg/m ²)	DASH diet vs. usual diet	BP	Subgroup analyses: Black ppl on DASH diet (vs. control): improvement in SBP dipping postintervention White ppl on DASH diet (vs. control): no change in SBP dipping postintervention

Goree et al. 2011 ⁴⁹	Randomized (2 groups)	8 wk	69 (33)	Black, White	Overweight men and women (premenopausal) (age: 21-50 years, BMI: 25-47 kg/m ²)	Standard diet (STD; 55% carbohydrate, 27% fat) vs. reduced-carbohydrate/higher-fat diet (RED-CHO; 43% carbohydrate, 39% fat)	Insulin sensitivity, β cell responsiveness, ghrelin	Black ppl: lower static β cell response to glucose with RED-CHO diet vs. STD diet ⁴⁹
Ellis et al. 2012 ⁴⁸								White ppl: similar static β cell response to glucose with RED-CHO diet and STD diet ⁴⁹
								No effects of diet x race on ghrelin ⁴⁸ and insulin sensitivity ⁴⁹
Bales et al. 2017 ²⁴	RCT (2 groups)	6 months	78 (30)	Black, White, Other	Obese women (age: 45-78 years, BMI: 37.8 ± 5.9 kg/m ²)	Control weight-loss (C-WL; 0.8 g protein/kg body weight) vs. high-protein weight-loss (HP-WL; 1.2 g protein/kg body weight)	Weight	White (vs. Black) ppl: greater weight loss overall
Vollmer et al. 2001 ⁴⁷								Black vs. White ppl: greater reductions in BP between (lower-higher) sodium intake on control diet ⁴⁷
Bray et al. 2004 ⁴⁶	RCT (2 groups)	12-wk total (30 days each)			Men and women with untreated elevated or hypertensive BP (mean age 48 ± 10 (SD) years, BMI: 29 ± 5 (SD) kg/m ²)	DASH diet vs. control (typical U.S.) diet (12 wk) Three sodium intake levels (30 days/level for each diet)	BP, urinary potassium excretion, metabolites (metabolomics analyses)	Black vs. White ppl on DASH diet: less 24-hour urinary potassium excretion at the highest sodium level ⁴⁵
Turban et al. 2013 ⁴⁵	Crossover (3 groups nested within the 2 main groups)		412 (234)	Black, White				No significant effects of race and diet covariates on changes in metabolomic profiles in response to sodium intakes ⁴³
Derkach et al. 2017 ^{43**}								Black vs. White ppl: Similar strong association of sodium with Systolic BP at lower levels of energy intake ⁴⁴
Murtaugh et al. 2018 ^{44**}								Only Black ppl: Association of sodium and Diastolic BP varied with energy intake ⁴⁴
								Subgroup analyses: No effects of race on change in BP by diet ⁴⁶
Appel et al. 2001 ²³	RCT (2-4 groups)	Up to 3 years	681 (157)	Black, non-Black	Men and women (age: 66 ± 5 years, median BMI: 28 kg/m ²)	Reduced sodium diet vs. usual lifestyle (control)	Urinary sodium excretion	Black (vs. non-Black) ppl: Similar DEC in sodium excretion on reduced sodium diet (vs. control)
								Black ppl: significant relative hazard ratio of endpoints (reduced sodium vs. control) i.e. 0.56

Appel et al. 1997 ²²							No overall significant effects of diet x ethnicity on BP ²² , calcitriol or PTH ³¹	
Svetkey et al. 1999 ³⁹							Black (vs. White) ppl: Greater CHD risk reduction with DASH diet ²⁵	
Sacks et al. 1999 ³⁷							Subgroup analyses: Black men on DASH diet (vs. control): greater reductions in calcitriol and PTH ³¹	
Obarzanek et al. 2001 ^{35**}	RCT (3 groups)	8 wk	459 (303) (Original study cite)	Black, White, Other	Men and women with SBP<160 mm Hg and DBP= 80-95 mm Hg (mean age: 44 years, mean BMI: 28 kg/m ²)	Control diet vs. fruits and vegetables rich diet vs. DASH combination diet	BP, lipids, blood calcitriol and PTH, 10-year CHD risk	
Chen et al. 2010 ^{25**}							Black (vs. White) ppl on DASH diet: Greater reduction in systolic BP ^{37,39}	
Hassoon et al. 2018 ^{31**}							Black (vs. White) ppl on DASH diet (vs. control): Greater reductions in 24-hour SBP ⁴¹	
Tyson et al. 2018 ^{41**}							Black (vs. non-Black) ppl on DASH diet (vs. control): Similar reductions in TC, LDL and HDL ³⁵	
Djuric et al. 2002 ²⁸	RCT (4 groups)	12 wk	86 (32)	Black, White	Women (age: 18- 50 years, BMI: 22-33 kg/m ²)	Low energy (25% reduction in intake) vs. low fat (15% fat) vs. low energy and low fat control	Weight, waist: hip ratio	No overall diet x race effects reported.
The Trials of Hypertension Prevention Collaborativ e Research Group, 1997 ⁴⁰	RCT (4 groups)	36 months	2382 (494)	Black, White, Other	Overweight men and women with SBP < 140 mmHg and DBP: 83-89 mm Hg (age: 30- 54 years)	Intervention groups: weight loss, dietary sodium reduction and combined weight loss and dietary sodium reduction vs. control i.e. usual care	BP	Subgroup analyses: Black (vs. White) ppl on intervention diets: less weight loss but greater waist: hip ratio reduction
Hispanic and non-Hispanic White people								
Herron et al. 2002 ⁶⁸	Crossover (2 groups)	30 days	51 (22)	White, Hispanic	Women (age: 18- 49 years, mean BMI: 29 kg/m ²)	High dietary cholesterol diet (1 egg) vs. placebo diet	Cholesterol	Hispanic (vs. White) ppl: similar INC in LDL-C and HDL-C on high dietary cholesterol diet
Asian and white people								
Garcia et al. 1991 ⁵⁶	Baseline period + Crossover (2 groups)	28 days	20 (6)	White, Asian (Chinese)	Women (age: 19- 35 years, BMI: 18- 25 kg/m ²)	Baseline self-selected diets vs. US74 diet (40% fat, PUFA/Sat fat =0.3) vs. MOD diet (30% fat, PUFA/Sat fat =1.0)	Cholesterol	Asian ppl: US74 diet (vs. MOD and self- selected diet): INC total and VLDL cholesterol White ppl: US74 diet (vs. MOD diet): INC total, LDL and VLDL cholesterol
Hsu et al. 2014 ³²	RCT (2 groups)	16 wk total (8 wk)	50 (28)	Asian, White	Men and women (age: 25-55 years, BMI: 18.5-27)	Traditional Asian diet (TAD, control) vs. typical Western diet (TWD, intervention)	Weight, insulin resistance	Asian (vs White) ppl: smaller weight gain, and greater INC in insulin AUC and HOMA-IR on TWD (vs. TAD)

Hall et al. 2003 ⁶⁹	Original study RCT (2 groups).	6 months	2208 (979)	Non-Hispanic White, Black, Hispanic	Postmenopausal women (mean age: 60 years, mean BMI: 29 kg/m ²)	Low-fat intervention (total fat <20%) vs. control (no intervention)	Anthropometrics, glucose, insulin, BP, weight	White and Black ppl (low-fat vs. control): greater DEC in weight, waist and hips
Howard et al. 2010 ⁵⁰	Randomized (2 groups)	8.1 years	2730 (1401)	White, Black, Hispanic, American Indian/Alaska Native, Asian/Pacific Islander	Postmenopausal women (age: 50-79 years, BMI: <18.5 - >40 kg/m ²)	Low fat diet high in fruits, vegetables, and grains vs. usual diet control	Lipid profile	Hispanic ppl (low-fat vs. control): similar reductions in weight, waist and hips All ppl (low-fat vs. control): greater DEC in Systolic BP, BMI All ppl (low-fat vs. control): similar changes in glucose, insulin, and diastolic BP
Maskarinec et al. 2017 ³⁴ BEAN 1 trial Maskarinec et al. 2009 ^{42**}	RCT (2 groups)	2 years	220 (132)	White, Asian (Japanese, Filipino, Chinese), Native Hawaiian	Pre-menopausal women (mean age: 43 years, mean BMI: 26 kg/m ²)	High-soy diet i.e. 2 servings of soy foods daily (50 mg of isoflavones (aglycone equivalents) vs. low-soy diet i.e. <3 soy food servings per wk	Biomarkers of breast cancer risk, breast density, CRP, IL-6, adiponectin, leptin	No effects of diet x race on triglyceride and HDL-C changes overall. Diabetic White (but not Black) ppl on low-fat diet (vs. control): greater INC in triglyceride Asian ppl: DEC in IGF-1 on low-soy diet and INC on high-soy diet ³⁴
Maskarinec et al. 2011 ⁶⁶ Maskarinec et al. 2017 ³⁴ BEAN 2 trial	Crossover (2 groups)	6 months	96 (48)	White, Asian (Japanese, Filipino, Chinese, Korean), Others (Native Hawaiian/Pacific Islander, Black, American Indian and other)	Pre-menopausal women (age: 39 ± 6 years, BMI: 26 ± 6 kg/m ²)	High-soy diet i.e. 2 servings of soy foods daily vs. low-soy diet i.e. <3 soy food servings per wk	Nipple aspirate fluid (NAF)	Non-Asian ppl: INC in IGF-1 on low-soy diet and high-soy diet ³⁴ No effects of diet x ethnicity (Asian vs. non-Asian) for other breast cancer biomarkers, breast density, IL-6, CRP, adiponectin and leptin ³⁴ Subgroup analyses: Asian (vs. White) ppl: INC in leptin on low-soy diet ⁴² Asian (vs. White) ppl ⁶⁶ and Asian (vs. non-Asian) ppl ³⁴ : Similar effects (i.e. no change) on NAF volume in response to high-soy diet.

Dodson et al. 1983 ²⁰	RCT (2 groups)	1 month	53 (34)	White, West Indian, Asian	Diabetic men and women with mild hypertension (mean age: 54 years)	High fiber, low fat and low sodium dietary regime vs. control diet	BP, urinary sodium excretion	White and West Indian ppl: similar DEC in DBP and urinary sodium excretion on intervention diet. Asian ppl: no changes on intervention diet.
Miketinas et al. 2019 ⁵²	Randomized (4 groups)	6 months	345 (44)	White, Black, Asian, Hispanic	Overweight and obese Men and women (age: 53 ± 9 (SD) years, BMI: 33 ± 4 (SD) kg/m ²)	Low fat, average-protein (20% fat, 15% protein) vs. low-fat, high-protein (20% fat, 25% protein) vs. high-fat, average-protein (40% fat, 15% protein) vs. high-fat, high-protein (40% fat, 25% protein)	Weight	Training model predicted a greater weight loss for White vs. non-White ppl MUFA intake was positively associated with weight loss for White (but not non-White) ppl No diet type x race effects reported
Wolever et al. 2011 ²¹	RCT (5 groups)	4 wk	366 (70)	White, Non-White	Men and women with LDL-C ≥ 3.0 and ≤ 5.0 mmol/L (age: 35-70 years, BMI: 18.5 - 40 kg/m ²)	Wheat bran cereal (control) vs. oat cereal with 3 g high-molecular weight (MW) or 4 g Medium-MW or 3 g Medium-MW or 4 g Low-MW oat β-glucan	LDL-C	White and non-White ppl on oat β-glucan: similar reductions in LDL-C

¹In case of multiple publications from the same study, the total number of participants from the main or first publication are listed.

²Age and BMI ranges presented. If range was not given, then either mean ± SD presented, or overall mean was calculated from individual group means

* One Iranian person not included in analysis

** Subset of original study participants

DEC: decrease, INC: increase; ppl: people

African American was changed to Black, and Caucasian and European was changed to White for consistency purposes.

Multiple publications from one study are grouped together

Study design and duration

Twenty-seven studies were conducted in the US, 1 in the United Kingdom (UK)²⁰ and 1 study was a multi-center trial conducted in Australia, Canada and the UK²¹.

Included studies varied in design, duration, and dietary intervention tested (Table 1). Thirteen studies²¹⁻⁴² were randomized, controlled interventional trials with a parallel design (2-5 arms), of which the longest trial had a duration of 3 years and the shortest trials had a duration of 4 weeks. One study i.e. the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding study was a 12-wk randomized, controlled interventional trial with a 2-arm parallel design and 30-day crossover diets nested within the 2 parallel groups⁴³⁻⁴⁷. Four studies were randomized trials with 2 to 4 dietary interventions (but no clear control group) in a parallel design⁴⁸⁻⁵³. Eleven studies^{34,54-67} followed a crossover design in which participants were exposed to 2-5 dietary interventions, with interventions lasting between 1 week and 6 months.

Effects of dietary intervention on health outcomes by race or ethnicity

Most interventions were designed to modify the macronutrient composition of the diets and health outcomes largely included anthropometric markers (6 studies), blood pressure (BP, 8 studies), markers of glucose metabolism (6 studies), and lipids (10 studies) (Table 1). Study stratification by health outcomes is depicted in Figure 2.

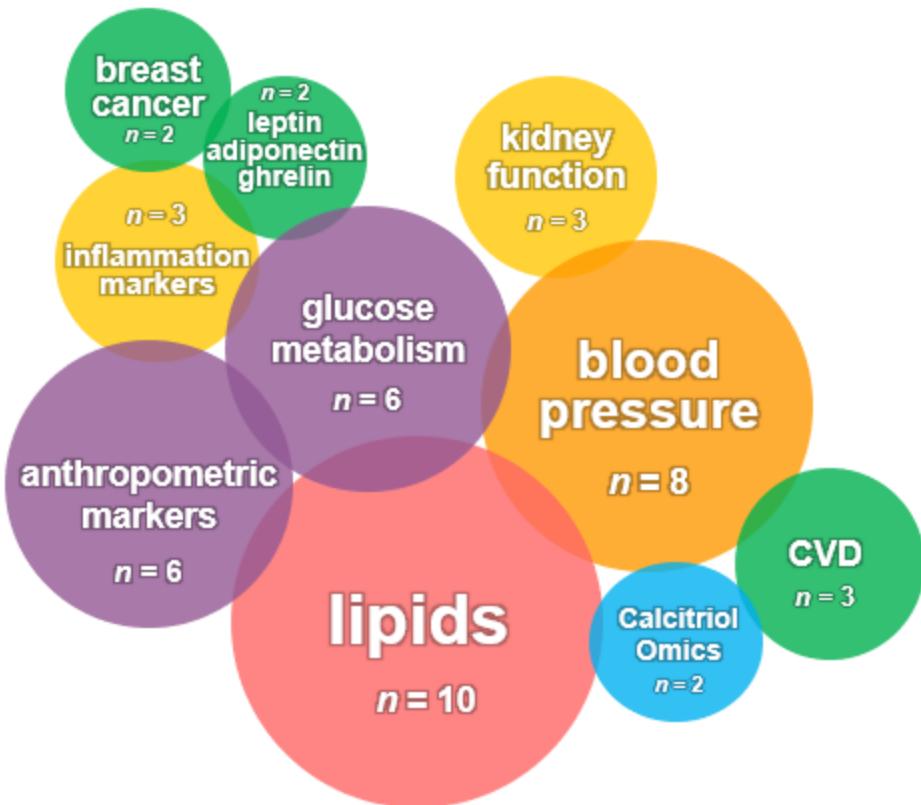


Figure 2: Health outcomes of dietary interventions studied in ethnic and racial groups. Lipids were outcomes in 10 studies, including total lipids, cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, APO-CIII lipoproteins; blood pressure was an outcome in 8 studies; markers of glucose metabolism were outcomes in 6 studies, including blood glucose, glucose tolerance, insulin, insulin sensitivity, insulin resistance, glycated albumin, fructosamine, beta-cell responsiveness; anthropometric markers were outcomes in 6 studies, including, body weight, waist-to-hip ratio; inflammation markers were the outcomes in 3 studies; markers of kidney function were outcomes in 3 studies; leptin, adiponectin, or ghrelin were outcomes in 2 studies; markers of cardiovascular disease were outcomes in 3 studies; markers of breast cancer were main outcomes in 2 studies; markers of calcium metabolism, or metabolomics profiles were outcomes in 2 studies.

Dietary interventions in Black or African American people (vs. Whites) largely examined effects of the DASH diet, or effects of modifying the salt or fat content of the diets on anthropometrics, lipid profiles, insulin sensitivity, and BP (Table 1). Notable results include hypertensive African Americans' having greater mean arterial pressure and systolic BP (SBP) increase with salt loading than Whites⁵⁹. A few studies reported a smaller weight loss in Black people compared to White people on energy-restricted diets^{24,28,38}. Analyses from two major studies i.e. the DASH diet study comparing dietary patterns, and the DASH-sodium study that compared effects of different levels of dietary sodium, in conjunction with the DASH diet reported differential effects of the dietary interventions between Black and White groups. For example, subgroup analyses from the DASH study reveal greater reduction in SBP^{37,39} 24-hour SBP⁴¹, calcitriol (men only)³¹, TC, LDL and HDL³⁵, and CHD risk²⁵ on the DASH diet in Black people compared to Whites. In the DASH-sodium study, the reductions in BP between the lower and higher sodium levels on the control diet were greater in Black people versus Whites⁴⁷. The 24-hour urinary potassium excretion at the highest sodium level on the DASH diet was lower for Black vs. White people⁴⁵.

Studies recruiting Asians, Hispanics or Pima Indians examined the differential effects of race or ethnicity largely on anthropometrics, glucoregulatory and lipid profiles. Asian people had increased total and VLDL while Caucasians had increased total, LDL and VLDL cholesterol on a higher-fat (lower PUFA) diet compared to lower-fat (higher-PUFA)⁵⁶. Moreover, Asian people had smaller weight gain but greater increase in HOMA-IR than Caucasians when transitioning from a traditional Asian diet to a typical Western diet³². In one study, Hispanic and White people had similar increases in LDL and HDL on a high dietary cholesterol diet⁶⁸. In the

Women's Health Trial: Feasibility Study in Minority Populations, Black and White individuals but not Hispanics demonstrated a greater decrease in weight, and waist and hip circumference with a low-fat diet compared to the control ⁶⁹. A study on Pima Indians found that they had a greater increase in plasma lipids compared to Caucasians in response to a high-fat diet but both groups had better glucose-related metabolic indicators when on a traditional Pima diet compared to a high-fat diet ⁵⁵.

A few studies examined responses to dietary interventions in multiple ethnic or racial groups. For example: a high fiber, low fat and low sodium diet resulted in similar decreases in diastolic BP and urinary sodium excretion in West Indian and White individuals, but no changes were observed for these outcomes in Asians ²⁰. Another study which grouped all non-Caucasian people together observed similar reductions in LDL with oat cereal with beta-glucan consumption in both Caucasian and non-Caucasian people ²¹.

Risk of bias and quality of assessment of studies included in systematic review

Characteristics of the included studies are summarized in Table 2. According to the Oxford Centre for Evidence-Based level of evidence, 39 study articles were classified as 1b i.e. high-quality individual RCTs and 6 were classified as 2b i.e. RCTs with less than 80% completion or follow-up. According to the Academy of Nutrition and Dietetics Quality Criteria Checklist for Primary Research risk of bias assessment, 31 articles were rated positive, indicating that they had adequately addressed issues of bias, generalizability, and data collection and analysis. The remaining 14 were found to be neutral, meaning that they were neither exceptionally weak nor exceptionally strong. It should be noted that several of these studies did not report or include diet

by race interaction effects in the statistical model and instead present subgroup analyses for race or diet groups. Two studies adjusted for race or ethnicity in the statistical model but failed to adequately explain how the dietary intervention effects were stratified by race. Only 19 articles report conducting diet by race interaction analyses (Table 2).

Table 2: Risk of bias analysis of included studies

Study	Selection of participants free from bias	Study with > 80% follow-up	Standard/valid/reliable data collection procedures	QCC Rating ¹	Evidence Grade ²	Statistical analyses appropriate for diet x race effect interpretation ³
Randomized studies						
Maskarinec et al. 2017 ³⁴ , BEAN 1 trial	Yes	Yes	Yes	+	1b	Yes
Maskarinec et al. 2009 ⁴²	Yes	Yes	Yes	+	1b	No
Appel et al. 2001 ²³	Yes	Yes	Yes	+	1b	No
Howard et al. 2010 ⁵⁰	Yes	Unknown	Yes	+	2b	Yes
Ellis AC 2012 ⁴⁸	Yes	Yes	Yes	Ø	1b	Yes
Goree et al. 2011 ⁴⁹	Yes	Yes	Yes	Ø	1b	No
Perry et al. 2004 ⁵³	Yes	Yes	Yes	+	1b	No
Hung et al. 2008 ⁵¹	Yes	Yes	Yes	+	1b	Yes
Miketinas et al. 2019 ⁵²	Yes	Unknown	Yes	+	2b	No
Hsu et al. 2014 ³²	Yes	Yes	Yes	Ø	1b	No
Bales et al. 2017 ²⁴	Yes	No	Yes	Ø	2b	No
Erlinger et al. 2002 ³⁰	Yes	Yes	Yes	+	1b	No
Conlin et al. 2003 ²⁶	Yes	Yes	Yes	+	1b	No
Prather et al. 2011 ³⁶	Yes	Yes	Yes	+	1b	No
Dodson et al. 1983 ²⁰	Yes	Yes	Yes	Ø	1b	No
Hall et al. 2003 ⁶⁹	Yes	Yes	Yes	+	1b	No
Samaha et al. 2003 ³⁸	Yes	No	Yes	Ø	2b	No

Vollmer et al. 2001 ⁴⁷	Yes	Yes	Yes	∅	1b	Yes
Bray et al. 2004 ⁴⁶	Yes	Yes	Yes	∅	1b	No
Turban et al. 2013 ⁴⁵	Yes	Yes	Yes	∅	1b	Yes
Derkach et al. 2017 ⁴³	Yes	Yes	Yes	∅	1b	Yes
Murtaugh et al. 2018 ⁴⁴	Yes	Yes	Yes	∅	1b	Yes
Appel et al. 1997 ²²	Yes	Yes	Yes	+	1b	Yes
Hassoon et al. 2018 ³¹	Yes	No	Yes	∅	2b	Yes
Chen et al. 2010 ²⁵	Yes	Yes	Yes	+	1b	Yes
Svetkey et al. 1999	Yes	Yes	Yes	+	1b	No
Sacks et al. 1999	Yes	Yes	Yes	+	1b	No
Tyson et al. 2018 ⁴¹	Yes	No	Yes	+	2b	Yes
Obarzanek et al. 2001 ³⁵	Yes	Yes	Yes	+	1b	Yes
The Trials of Hypertension Prevention Collaborative Research Group, 1997 ⁴⁰	Yes	Yes	Yes	+	1b	No
Djuric et al. 2002 ²⁸	Yes	Yes	Yes	+	1b	No
Wolever et al. 2011 ²¹	Yes	Yes	Yes	+	1b	Yes
Crossover studies						
Branis et al. 2015 ⁵⁴	Yes	Yes	Yes	+	1b	Yes
Swinburn et al. 1991 ⁵⁵	Yes	Yes	Yes	∅	1b	No
King et al. 2007 ⁶⁷	Yes	Yes	Yes	+	1b	No
Gerhard et al. 2000 ⁵⁸	Yes	Yes	Yes	+	1b	Yes
Garcia et al. 1991 ⁵⁶	No	Yes	Yes	∅	1b	No
Herron et al. 2002 ⁶⁸	Yes	Yes	Yes	+	1b	Yes
Wright et al. 2003 ⁵⁹	Yes	Yes	Yes	+	1b	No
Furtado et al. 2010 ⁶¹	Yes	Yes	Yes	+	1b	No
Howard et al. 1995a ⁶³	Yes	Yes	Yes	+	1b	No
Howard et al. 1995b ⁶⁵	Yes	Yes	Yes	+	1b	Yes

Maskarinec et al. 2011 ⁶⁶	Yes	Yes	Yes	+	1b	No
Maskarinec et al. 2017 ³⁴ , BEAN 2 trial	Yes	Yes	Yes	+	1b	Yes
Juraschek et al. 2016 ⁶⁴	Yes	Yes	Yes	+	1b	No

¹QCC Rating¹⁹: +, Report has clearly addressed issues of inclusion/exclusion, bias,

generalizability, and data collection and analysis; Ø, Report is neither exceptionally strong nor exceptionally weak.

²Oxford Centre for Evidence-Based Medicine Levels of Evidence¹⁸.

³The statistical analyses rating is independent of and not accounted for in the QCC rating.

Other pertinent studies not included in systematic review

Acute studies

Six studies that accounted for race or ethnicity in their analyses were acute trials. Four studies assessed the glycemic responses to specific foods (including drinks)⁷⁰⁻⁷³, one examined the effects of a high-fat vs. low-fat meal on cardiovascular outcomes⁷⁴ and one examined the effects of a high-glycemic vs. low-glycemic load meal on appetitive hormones^{75,76}. Although, collectively, these studies do not demonstrate an appreciable difference in the acute responses to foods or meals by ethnicity or race, Woelver et al.⁷¹ report potential differences in the glycemic index of starchy foods by Caucasian vs. non-Caucasian race but no mechanisms were discussed.

Studies with only one diet group or non-RCTs

Ten studies that accounted for race and/or ethnicity in their analyses either examined the pre-post effects of a dietary intervention such as low-fat, high-fiber, fruits, and vegetables diet⁷⁷, very-low calorie diet^{78,79}, high-fat high-calorie diet⁸⁰, or alternate-day fasting⁸¹; or were a post-diet analysis of an individualized diet⁸², crossover studies of sodium dietary restriction (one dietary intervention) with sodium or placebo supplementation^{83,84}, or studies examining one dietary

intervention with different physical activity conditioning^{85,86}. Notably, one of those studies demonstrated greater skeletal muscle mass loss during diet-induced weight loss in European American in comparison to African American women who preserved muscle mass⁸⁵. Another study found different metabolic adaptations for South Asian men compared to European men during energy restriction, i.e., improved glucose disposal rate and decreased shift from glucose to lipid oxidation in South Asians⁷⁹.

Studies with only one ethnic or racial minority group

Twenty-seven studies focused on only one ethnic/racial group. Eleven of such studies included only Black people, 5 studies included Hispanics or people of Mexican origin, 10 studies were on people of Asian origin, and 1 was on Native American people.

Dietary interventions for Black people assessed effects of beetroot juice^{87,88}, the DASH diet^{89,90}, meal plan emphasizing healthy food choices⁹¹, sodium reduction^{92,93}, wheat bran^{94,95}, tomato product⁹⁶, or dairy⁹⁷ on diverse outcomes. Beetroot juice acutely increased blood nitric oxide concentrations^{87,88} and decreased BP⁸⁸ at rest at different levels of exercise in healthy African American women. An 8-week DASH-dinner intervention reduced BP in low-income hypertensive African American adults⁸⁹. Sodium reduction interventions reduced BP⁹³ and identified metabolites associated with sodium reduction⁹² in Black hypertensive people. Moreover, a high dairy diet for 24 weeks decreased adiposity, insulin and BP compared to a low dairy diet in African Americans with obesity, without weight loss⁹⁷.

Dietary interventions for Hispanic people comprised of traditional Mexican diet ⁹⁸, high-fiber, moderate glycemic index Mexican diet ⁹⁹, low-fat traditional diet in Caribbean Hispanics ¹⁰⁰, folate and choline-enriched diets ¹⁰¹, oat bran cereal with beta-glucan ¹⁰². A traditional Mexican diet for 24 days improved insulin sensitivity in healthy Mexican women compared to a common US diet ⁹⁸. In another study ¹⁰⁰, Caribbean Hispanics who were major allele carriers of the LIPC locus had lower HDL cholesterol following a 4-wk traditional diet compared to a Western diet.

Dietary interventions for South Asian people comprised of moderate or high PUFA-diets ^{103,104}, fried karela fruit ¹⁰⁵, and moderately low-carbohydrate energy-restricted diet ¹⁰⁶. The latter decreased insulin resistance, and reduced cardiovascular disease risk factors in overweight, insulin resistant Indian women ¹⁰⁶.

Dietary studies for East Asian people comprised of cereal based diets ¹⁰⁷⁻¹⁰⁹, acute effects of kiwifruit preloads ¹⁰⁷, American heart association step 1 and 2 diets ^{110,111}, and intermittent energy restriction combined with Mediterranean diet (IER+MED) ¹¹². Notable results include improvement in metabolic risk factors when substituting brown rice for white rice for 3 months in pre-diabetic Chinese American population ¹⁰⁸. Moreover, consuming an IER+MED diet for 12 weeks improved indices of liver function more than the DASH diet among East Asians in Hawaii.

Lastly, a flaxseed intervention in hypercholesterolemic Native American women resulted in reduced total and LDL cholesterol ¹¹³.

DISCUSSION

Summary of evidence

Our search revealed that only 3% of peer-reviewed articles on clinical nutrition interventions (records after third screening: records after first screening) had study designs appropriate for discussing health outcomes by race or ethnicity. This stands in striking contrast to the disproportionate burden of diet-related conditions experienced by ethnic and racial minority groups. Most studies were conducted in Black vs. White individuals testing dietary interventions on energy restriction, macronutrient modification, variations of the DASH diet, or sodium reduction protocols. There was limited focus on other ethnic or racial groups.

Evidence from RCTs suggest a smaller diet-induced weight loss for Black people compared to White people ^{24,28,38}. These findings are supported across literature on weight-loss interventions particularly for Black women ^{114,115}. Possible explanations include higher baseline weight ²⁸ and fat-free mass ¹¹⁶ and preservation of skeletal muscle mass during weight loss ⁸⁵. Despite smaller weight-loss, greater improvements in waist-hip ratio ²⁸ were observed. Interestingly, a decrease in adiposity with dietary interventions is also seen independent of weight loss in Black individuals ⁹⁷. Another possible explanation is limited consideration for group-specific eating patterns, cultural preferences, and lifestyle factors in the design of the diet treatment to achieve comparable adherence ¹¹⁷⁻¹²⁰. Many of the studies reviewed did not report whether the diet treatment was tailored for acceptability by all the groups studied.

The high prevalence of high blood pressure among Black individuals has led to the development of several dietary interventions, the most popular being the DASH diet and its reduced sodium version). The DASH approach is a diet rich in fruits, vegetables, and low-fat dairy products with reduced saturated and total fat. Overall evidence supports greater reductions in sodium intake and BP with the DASH diet in Black vs. White people. Several explanations

have been proposed for these differences, such as Black people having increased salt sensitivity, greater body mass, and lower baseline dietary potassium intake. Nonetheless, more research is needed to further characterize the factors contributing to these differences and their potential relevance to other diet-related outcomes and interventions¹²¹.

Because human nutrition is complex and dynamic, factors beyond intake need to be considered when designing research interventions. Thus, future studies need to explore the effectiveness of culturally sensitive interventions, controlling for social, economic, and environmental factors to investigate racial and ethnic disparities in nutritional outcomes. Accounting for the socioecological context that inform intake allows for robust interpretation of findings and can provide key information to ascertain adoption and sustainability in real life circumstances.

Strengths and limitations

This review is unique in that it profiles the representation of racial and ethnic minority groups in clinical nutrition interventions conducted in regions where non-Hispanic Whites are the majority population group. A strength of the systematic review is the large volume of literature considered in the initial search and the diversity of outcomes screened. However, the heterogeneity of dietary interventions and outcomes in the included studies limited the ability to make direct comparisons among studies. We attempted to minimize this limitation by excluding studies that deployed lifestyle interventions where the dietary intervention was not explicitly defined.

Most studies examined the differential effects of dietary interventions by race or ethnicity in subgroup analyses that ignored diet by race interaction effects. There is a need for adequately powered studies for accurate interpretation of race by diet effects. Differences in outcomes by

race and ethnicity cannot be suitably studied with insufficient sample sizes for population subgroups. Factors that help explain variability in responses and those that can offer mechanistic insight, such as omics techniques, and socioecological context, should be included and adequately powered¹¹⁵. Lastly, an added strength of this overall review is that studies of lower evidence quality—for example uncontrolled interventions and acute studies and studies focusing on one ethnic/racial group—were not dismissed but reported separately to provide a more comprehensive review of the available evidence.

Conclusions

A scant proportion of the clinical nutrition research conducted with ethnic and racial groups is robust enough to confidently identify interventions to reduce health disparities and explore their subsequent mechanisms. Most of the few studies with quality designs have been conducted with Black and African American groups to study dietary interventions to improve cardiovascular and weight-related outcomes. With emerging precision nutrition initiatives that aim to optimize metabolic responses in individuals or population subgroups through tailored dietary approaches, it is imperative to ensure adequate representation of racial and ethnic subgroups for understanding and eliminating nutrition-related health disparities. In addition, moving beyond the traditional attribution to genetics, key questions remain on the socioecological mechanisms and contextual factors that contribute to explain intervention success or failure. Characterizing such factors is paramount to establishing replicability in research and feasibility in practice.

The gap in clinical nutrition research with ethnic and racial minorities is large, thus, the possibilities are vast. The parallel nutrition disparities affecting these groups¹²² underscores the urgency of closing such gap. An intentional and joint commitment from all sectors involved in

the clinical nutrition research enterprise—from conception and funding to implementation and dissemination—is required to cogently achieve sufficient representation of ethnic and racial groups in clinical nutrition research.

AUTHOR CONTRIBUTIONS

The authors' responsibilities were as follows—JD designed the study; JD, AJ, SO extracted data; and JD, AJ, KDR wrote the paper. All authors read and approved the final manuscript and take responsibility for the final content.

REFERENCES

1. U.S. Census Bureau QuickFacts: United States. Accessed June 24, 2020.
<https://www.census.gov/quickfacts/fact/table/US/RHI125218>
2. Minority Population Profiles - The Office of Minority Health. Accessed June 27, 2020.
<https://minorityhealth.hhs.gov/omh/browse.aspx?lvl=2&lvlID=26>
3. Satia JA. Diet-related disparities: understanding the problem and accelerating solutions. *J Am Diet Assoc.* 2009;109(4):610-615. doi:10.1016/j.jada.2008.12.019
4. Anderson NB, Bulatao RA, Cohen B, National Research Council (US) Panel on Race E. *Genetic Factors in Ethnic Disparities in Health.* National Academies Press (US); 2004. Accessed September 24, 2017. <https://www.ncbi.nlm.nih.gov/books/NBK25517/>
5. Sultan SE. Developmental plasticity: re-conceiving the genotype. *Interface Focus.* 2017;7(5):20170009. doi:10.1098/rsfs.2017.0009

6. Villegas R, Goodloe RJ, McClellan BE, Boston J, Crawford DC. Gene-carbohydrate and gene-fiber interactions and type 2 diabetes in diverse populations from the National Health and Nutrition Examination Surveys (NHANES) as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study. *BMC Genetics*. 2014;15:69. doi:10.1186/1471-2156-15-69
7. Lee Y-C, Lai C-Q, Ordovas JM, Parnell LD. A Database of Gene-Environment Interactions Pertaining to Blood Lipid Traits, Cardiovascular Disease and Type 2 Diabetes. *J Data Mining Genomics Proteomics*. 2011;2(1). doi:10.4172/2153-0602.1000106
8. Phillips CM. Nutrigenetics and Metabolic Disease: Current Status and Implications for Personalised Nutrition. *Nutrients*. 2013;5(1):32-57. doi:10.3390/nu5010032
9. Krueger PM, Reither EN. Mind the Gap: Race\Ethnic and Socioeconomic Disparities in Obesity. *Curr Diab Rep*. 2015;15(11):95. doi:10.1007/s11892-015-0666-6
10. Darmon N, Drewnowski A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. *Nutr Rev*. 2015;73(10):643-660. doi:10.1093/nutrit/nuv027
11. Cuevas AG, Chen R, Slopen N, et al. Assessing the Role of Health Behaviors, Socioeconomic Status, and Cumulative Stress for Racial/Ethnic Disparities in Obesity. *Obesity (Silver Spring)*. 2020;28(1):161-170. doi:10.1002/oby.22648

12. Anekwe CV, Jarrell AR, Townsend MJ, Gaudier GI, Hiserodt JM, Stanford FC. Socioeconomics of Obesity. *Curr Obes Rep.* 2020;9(3):272-279. doi:10.1007/s13679-020-00398-7
13. Park YM, Kwan M-P. Multi-Contextual Segregation and Environmental Justice Research: Toward Fine-Scale Spatiotemporal Approaches. *Int J Environ Res Public Health.* 2017;14(10). doi:10.3390/ijerph14101205
14. Perreira KM, Pedroza JM. Policies of Exclusion: Implications for the Health of Immigrants and Their Children. *Annu Rev Public Health.* 2019;40:147-166. doi:10.1146/annurev-publhealth-040218-044115
15. Vargas ED, Sanchez GR, Juárez M. Fear by Association: Perceptions of Anti-Immigrant Policy and Health Outcomes. *J Health Polit Policy Law.* 2017;42(3):459-483. doi:10.1215/03616878-3802940
16. Ohlhorst SD, Russell R, Bier D, et al. Nutrition research to affect food and a healthy life span. *J Nutr.* 2013;143(8):1349-1354. doi:10.3945/jn.113.180638
17. Cochrane Handbook for Systematic Reviews of Interventions. Accessed June 29, 2020. /handbook/current
18. Oxford Centre for Evidence-Based Medicine: Levels of Evidence (March 2009) — Centre for Evidence-Based Medicine (CEBM), University of Oxford. Accessed October 29, 2020. <https://www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009>

19. EAL. Accessed October 29, 2020. <https://www.andeal.org/evidence-analysis-manual>
20. Dodson PM, Pacy PJ, Beevers M, Bal P, Fletcher RF, Taylor KG. The effects of a high fibre, low fat and low sodium dietary regime on diabetic hypertensive patients of different ethnic groups. *Postgrad Med J.* 1983;59(696):641-644.
21. Wolever TM, Gibbs AL, Brand-Miller J, et al. Bioactive oat β -glucan reduces LDL cholesterol in Caucasians and non-Caucasians. *Nutr J.* 2011;10:130. doi:10.1186/1475-2891-10-130
22. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. *N Engl J Med.* 1997;336(16):1117-1124. doi:10.1056/NEJM199704173361601
23. Appel LJ, Espeland MA, Easter L, Wilson AC, Folmar S, Lacy CR. Effects of reduced sodium intake on hypertension control in older individuals: results from the Trial of Nonpharmacologic Interventions in the Elderly (TONE). *Arch Intern Med.* 2001;161(5):685-693. doi:10.1001/archinte.161.5.685
24. Bales CW, Porter Starr KN, Orenduff MC, et al. Influence of Protein Intake, Race, and Age on Responses to a Weight-Reduction Intervention in Obese Women. *Curr Dev Nutr.* 2017;1(5). doi:10.3945/cdn.117.000703
25. Chen S, Maruthur N, Appel L. The effect of dietary patterns on estimated coronary heart disease risk: results from the Dietary Approaches to Stop Hypertension (DASH) trial. *Circulation Cardiovascular quality and outcomes.* 2010;3(5):484-489. doi:10.1161/CIRCOUTCOMES.109.930685

26. Conlin PR, Erlinger TP, Bohannon A, et al. The DASH diet enhances the blood pressure response to losartan in hypertensive patients. *Am J Hypertens.* 2003;16(5 Pt 1):337-342. doi:10.1016/s0895-7061(03)00056-6
27. Dallas Hall W, Feng Z, George V, et al. Low-fat diet: effect on anthropometrics, blood pressure, glucose, and insulin in older women. *Ethnicity & disease.* 2003;13(3):337-343.
28. Djuric Z, Lababidi S, Heilbrun LK, Depper JB, Poore KM, Uhley VE. Effect of low-fat and/or low-energy diets on anthropometric measures in participants of the women's diet study. *J Am Coll Nutr.* 2002;21(1):38-46. doi:10.1080/07315724.2002.10719192
29. Dodson PM, Pacy PJ, Beevers M, Bal P, Fletcher RF, Taylor KG. The effects of a high fibre, low fat and low sodium dietary regime on diabetic hypertensive patients of different ethnic groups. *Postgrad Med J.* 1983;59(696):641-644. doi:10.1136/pgmj.59.696.641
30. Erlinger TP, Conlin PR, Macko RF, et al. The impact of angiotensin II receptor blockade and the DASH diet on markers of endogenous fibrinolysis. *J Hum Hypertens.* 2002;16(6):391-397. doi:10.1038/sj.jhh.1001401
31. Hassoon A, Michos ED, Miller ER, Crisp Z, Appel LJ. Effects of Different Dietary Interventions on Calcitriol, Parathyroid Hormone, Calcium, and Phosphorus: Results from the DASH Trial. *Nutrients.* 2018;10(3). doi:10.3390/nu10030367
32. Hsu W, Lau K, Matsumoto M, Moghazy D, Keenan H, King G. Improvement of insulin sensitivity by isoenergy high carbohydrate traditional Asian diet: a randomized controlled pilot feasibility study. *Plos one.* 2014;9(9). doi:10.1371/journal.pone.0106851

33. Lowe M, Butrym M, Thomas G, Coletta M. A randomized, controlled trial of the effect of meal replacement and energy density interventions on weight loss maintenance. *Obesity (silver spring, md)*. 2011;19:S95-. doi:10.1038/oby.2011.226
34. Maskarinec G, Ju D, Morimoto Y, Franke A, Stanczyk F. Soy Food Intake and Biomarkers of Breast Cancer Risk: possible Difference in Asian Women? *Nutrition and cancer*. 2017;69(1):146-153. doi:10.1080/01635581.2017.1250924
35. Obarzanek E, Sacks FM, Vollmer WM, et al. Effects on blood lipids of a blood pressure-lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial. *Am J Clin Nutr*. 2001;74(1):80-89. doi:10.1093/ajcn/74.1.80
36. Prather AA, Blumenthal JA, Hinderliter AL, Sherwood A. Ethnic differences in the effects of the DASH diet on nocturnal blood pressure dipping in individuals with high blood pressure. *Am J Hypertens*. 2011;24(12):1338-1344. doi:10.1038/ajh.2011.152
37. Sacks FM, Appel LJ, Moore TJ, et al. A dietary approach to prevent hypertension: a review of the Dietary Approaches to Stop Hypertension (DASH) Study. *Clin Cardiol*. 1999;22(7 Suppl):III6-10. doi:10.1002/clc.4960221503
38. Samaha FF, Iqbal N, Seshadri P, et al. A low-carbohydrate as compared with a low-fat diet in severe obesity. *N Engl J Med*. 2003;348(21):2074-2081. doi:10.1056/NEJMoa022637
39. Svetkey LP, Simons-Morton D, Vollmer WM, et al. Effects of dietary patterns on blood pressure: subgroup analysis of the Dietary Approaches to Stop Hypertension (DASH)

randomized clinical trial. *Arch Intern Med.* 1999;159(3):285-293.

doi:10.1001/archinte.159.3.285

40. The Trials of Hypertension Prevention Collaborative Research Group. Effects of weight loss and sodium reduction intervention on blood pressure and hypertension incidence in overweight people with high-normal blood pressure. The Trials of Hypertension Prevention, phase II. The Trials of Hypertension Prevention Collaborative Research Group. *Arch Intern Med.* 1997;157(6):657-667.
41. Tyson CC, Barnhart H, Sapp S, Poon V, Lin P-H, Svetkey LP. Ambulatory blood pressure in the dash diet trial: Effects of race and albuminuria. *J Clin Hypertens (Greenwich).* 2018;20(2):308-314. doi:10.1111/jch.13170
42. Maskarinec G, Steude J, Franke A, Cooney R. Inflammatory markers in a 2-year soy intervention among premenopausal women. *Journal of inflammation.* 2009;6. doi:10.1186/1476-9255-6-9
43. Derkach A, Sampson J, Joseph J, Playdon MC, Stolzenberg-Solomon RZ. Effects of dietary sodium on metabolites: the Dietary Approaches to Stop Hypertension (DASH)-Sodium Feeding Study. *Am J Clin Nutr.* 2017;106(4):1131-1141. doi:10.3945/ajcn.116.150136
44. Murtaugh MA, Beasley JM, Appel LJ, et al. Relationship of Sodium Intake and Blood Pressure Varies With Energy Intake: Secondary Analysis of the DASH (Dietary Approaches to Stop Hypertension)-Sodium Trial. *Hypertension.* 2018;71(5):858-865. doi:10.1161/HYPERTENSIONAHA.117.10602

45. Turban S, Thompson CB, Parekh RS, Appel LJ. Effects of sodium intake and diet on racial differences in urinary potassium excretion: results from the Dietary Approaches to Stop Hypertension (DASH)-Sodium trial. *Am J Kidney Dis.* 2013;61(1):88-95. doi:10.1053/j.ajkd.2012.08.036

46. Bray GA, Vollmer WM, Sacks FM, et al. A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: results of the DASH-Sodium Trial. *Am J Cardiol.* 2004;94(2):222-227. doi:10.1016/j.amjcard.2004.03.070

47. Vollmer WM, Sacks FM, Ard J, et al. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. *Ann Intern Med.* 2001;135(12):1019-1028. doi:10.7326/0003-4819-135-12-200112180-00005

48. Ellis AC, Chandler-Laney P, Casazza K, Goree LL, Gower BA. Effects of habitual diet on ethnic differences in serum total ghrelin. *Endocrine.* 2012;42(2):359-365. doi:10.1007/s12020-012-9667-2

49. Goree L, Chandler-Laney P, Ellis A, Casazza K, Granger W, Gower B. Dietary macronutrient composition affects beta cell responsiveness but not insulin sensitivity. *American journal of clinical nutrition.* 2011;94(1):120-127. doi:10.3945/ajcn.110.002162

50. Howard BV, Curb JD, Eaton CB, et al. Low-fat dietary pattern and lipoprotein risk factors: the Women's Health Initiative Dietary Modification Trial. *Am J Clin Nutr.* 2010;91(4):860-874. doi:10.3945/ajcn.2009.28034

51. Hung J, Abratte CM, Wang W, Li R, Moriarty DJ, Caudill MA. Ethnicity and Folate Influence Choline Status in Young Women Consuming Controlled Nutrient Intakes.

Journal of the American College of Nutrition. 2008;27(2):253-259.

doi:10.1080/07315724.2008.10719697

52. Miketinas DC, Bray GA, Beyl RA, Ryan DH, Sacks FM, Champagne CM. Fiber Intake Predicts Weight Loss and Dietary Adherence in Adults Consuming Calorie-Restricted Diets: The POUNDS Lost (Preventing Overweight Using Novel Dietary Strategies) Study. *The Journal of Nutrition.* 2019;149(10):1742-1748. doi:10.1093/jn/nxz117

53. Perry CA, Renna SA, Khitun E, Ortiz M, Moriarty DJ, Caudill MA. Ethnicity and race influence the folate status response to controlled folate intakes in young women. *J Nutr.* 2004;134(7):1786-1792. doi:10.1093/jn/134.7.1786

54. Branis NM, Etesami M, Walker RW, Berk ES, Albu JB. Effect of a 1-week, eucaloric, moderately high-fat diet on peripheral insulin sensitivity in healthy premenopausal women. *BMJ Open Diabetes Research and Care.* 2015;3(1):e000100. doi:10.1136/bmjdrc-2015-000100

55. Swinburn BA, Boyce VL, Bergman RN, Howard BV, Bogardus C. Deterioration in carbohydrate metabolism and lipoprotein changes induced by modern, high fat diet in Pima Indians and Caucasians. *J Clin Endocrinol Metab.* 1991;73(1):156-165. doi:10.1210/jcem-73-1-156

56. Garcia PA, Hanson KB, Kies C, Oh SY, Story JA, Dupont J. Studies of women eating diets with different fatty acid composition. I. Plasma lipoproteins and steroid excretion. *Journal of the American College of Nutrition.* 1991;10(4):315-321. doi:10.1080/07315724.1991.10718158

57. Herron KL, Vega-Lopez S, Conde K, et al. Pre-Menopausal Women, Classified as Hypo- or Hyper-Responders, do not Alter their LDL/HDL Ratio Following a High Dietary Cholesterol Challenge. *Journal of the American College of Nutrition*. 2002;21(3):250-258. doi:10.1080/07315724.2002.10719218

58. Gerhard GT, Connor SL, Wander RC, Connor WE. Plasma lipid and lipoprotein responsiveness to dietary fat and cholesterol in premenopausal African American and white women. *Am J Clin Nutr*. 2000;72(1):56-63. doi:10.1093/ajcn/72.1.56

59. Wright JT, Rahman M, Scarpa A, et al. Determinants of salt sensitivity in black and white normotensive and hypertensive women. *Hypertension*. 2003;42(6):1087-1092. doi:10.1161/01.HYP.0000101687.89160.19

60. Weir MR, Hall PS, Behrens MT, Flack JM. Salt and blood pressure responses to calcium antagonism in hypertensive patients. *Hypertension*. 1997;30(3 Pt 1):422-427. doi:10.1161/01.hyp.30.3.422

61. Furtado JD, Campos H, Sumner AE, Appel LJ, Carey VJ, Sacks FM. Dietary interventions that lower lipoproteins containing apolipoprotein C-III are more effective in whites than in blacks: results of the OmniHeart trial. *Am J Clin Nutr*. 2010;92(4):714-722. doi:10.3945/ajcn.2009.28532

62. Snook JT, Park S, Williams G, Tsai Y-H null, Lee N. Effect of synthetic triglycerides of myristic, palmitic, and stearic acid on serum lipoprotein metabolism. *Eur J Clin Nutr*. 1999;53(8):597-605.

63. Howard BV, Hannah JS, Heiser CC, Jablonski KA. Effects of sex and ethnicity on responses to a low-fat diet: a study of African Americans and whites. *Am J Clin Nutr.* 1995;62(2):488S-492S. doi:10.1093/ajcn/62.2.488S

64. Juraschek S, Miller E, Selvin E, et al. Effect of type and amount of dietary carbohydrate on biomarkers of glucose homeostasis and C reactive protein in overweight or obese adults: results from the OmniCarb trial. *BMJ open diabetes research and care.* 2016;4(1) (no pagination). doi:10.1136/bmjdrc-2016-000276

65. Howard BV, Hannah JS, Heiser CC, et al. Polyunsaturated fatty acids result in greater cholesterol lowering and less triacylglycerol elevation than do monounsaturated fatty acids in a dose-response comparison in a multiracial study group. *Am J Clin Nutr.* 1995;62(2):392-402. doi:10.1093/ajcn/62.2.392

66. Maskarinec G, Morimoto Y, Conroy SM, Pagano IS, Franke AA. The Volume of Nipple Aspirate Fluid Is Not Affected by 6 Months of Treatment with Soy Foods in Premenopausal Women. *J Nutr.* 2011;141(4):626-630. doi:10.3945/jn.110.133769

67. King DE, Egan BM, Woolson RF, Mainous AG, Al-Solaiman Y, Jesri A. Effect of a high-fiber diet vs a fiber-supplemented diet on C-reactive protein level. *Arch Intern Med.* 2007;167(5):502-506. doi:10.1001/archinte.167.5.502

68. Herron KL, Vega-Lopez S, Conde K, et al. Pre-Menopausal Women, Classified as Hypo- or Hyper-Responders, do not Alter their LDL/HDL Ratio Following a High Dietary Cholesterol Challenge. *Journal of the American College of Nutrition.* 2002;21(3):250-258. doi:10.1080/07315724.2002.10719218

69. Hall WD, Feng Z, George VA, et al. Low-fat diet: effect on anthropometrics, blood pressure, glucose, and insulin in older women. *Ethn Dis.* 2003;13(3):337-343.

70. Venn BJ, Kataoka M, Mann J. The use of different reference foods in determining the glycemic index of starchy and non-starchy test foods. *Nutr J.* 2014;13:50. doi:10.1186/1475-2891-13-50

71. Wolever TMS, Jenkins AL, Vuksan V, Campbell J. The glycaemic index values of foods containing fructose are affected by metabolic differences between subjects. *European Journal of Clinical Nutrition.* 2009;63(9):1106-1114. doi:10.1038/ejcn.2009.30

72. Chan HM, Brand-Miller JC, Holt SH, Wilson D, Rozman M, Petocz P. The glycaemic index values of Vietnamese foods. *Eur J Clin Nutr.* 2001;55(12):1076-1083. doi:10.1038/sj.ejcn.1601265

73. Pratt M, Lightowler H, Henry CJ, Thabuis C, Wils D, Guérin-Deremaux L. No observable differences in glycemic response to maltitol in human subjects from 3 ethnically diverse groups. *Nutr Res.* 2011;31(3):223-228. doi:10.1016/j.nutres.2011.02.002

74. Bui C, Petrofsky J, Berk L, Shavlik D, Remigio W, Montgomery S. Acute effect of a single high-fat meal on forearm blood flow, blood pressure and heart rate in healthy male Asians and Caucasians: a pilot study. *Southeast Asian J Trop Med Public Health.* 2010;41(2):490-500.

75. Brownley KA, Heymen S, Hinderliter AL, MacIntosh B. Effect of Glycemic Load on Peptide-YY Levels in a Biracial Sample of Obese and Normal Weight Women. *Obesity (Silver Spring).* 2010;18(7):1297-1303. doi:10.1038/oby.2009.368

76. Brownley KA, Heymen S, Hinderliter AL, Galanko J, Macintosh B. Low-glycemic load decreases postprandial insulin and glucose and increases postprandial ghrelin in white but not black women. *J Nutr.* 2012;142(7):1240-1245. doi:10.3945/jn.111.146365

77. Eastham JA, Riedel E, Latkany L, et al. Dietary manipulation, ethnicity, and serum PSA levels. *Urology.* 2003;62(4):677-682. doi:10.1016/s0090-4295(03)00576-4

78. Hong K, Li Z, Wang H-J, Elashoff R, Heber D. Analysis of weight loss outcomes using VLCD in black and white overweight and obese women with and without metabolic syndrome. *International Journal of Obesity.* 2005;29(4):436-442. doi:10.1038/sj.ijo.0802864

79. Bakker LEH, Guigas B, van Schinkel LD, et al. Middle-aged overweight South Asian men exhibit a different metabolic adaptation to short-term energy restriction compared with Europeans. *Diabetologia.* 2015;58(1):165-177. doi:10.1007/s00125-014-3408-4

80. Gemmink A, Bakker LEH, Guigas B, et al. Lipid droplet dynamics and insulin sensitivity upon a 5-day high-fat diet in Caucasians and South Asians. *Sci Rep.* 2017;7:42393. doi:10.1038/srep42393

81. Varady KA, Hoddy KK, Kroeger CM, et al. Determinants of weight loss success with alternate day fasting. *Obes Res Clin Pract.* 2016;10(4):476-480. doi:10.1016/j.orcp.2015.08.020

82. Song X, Huang Y, Neuhouser ML, et al. Dietary long-chain fatty acids and carbohydrate biomarker evaluation in a controlled feeding study in participants from the Women's

Health Initiative cohort12. *Am J Clin Nutr.* 2017;105(6):1272-1282.

doi:10.3945/ajcn.117.153072

83. MacGregor GA, Markandu ND, Best FE, et al. Double-blind randomised crossover trial of moderate sodium restriction in essential hypertension. *Lancet.* 1982;1(8268):351-355.
doi:10.1016/s0140-6736(82)91389-7
84. He FJ, Marciniak M, Visagie E, et al. Effect of modest salt reduction on blood pressure, urinary albumin, and pulse wave velocity in white, black, and Asian mild hypertensives. *Hypertension.* 2009;54(3):482-488. doi:10.1161/HYPERTENSIONAHA.109.133223
85. Hunter GR, Bryan DR, Borges JH, David Diggs M, Carter SJ. Racial Differences in Relative Skeletal Muscle Mass Loss During Diet-Induced Weight Loss in Women. *Obesity (Silver Spring).* 2018;26(8):1255-1260. doi:10.1002/oby.22201
86. Goodpaster BH, Delany JP, Otto AD, et al. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. *JAMA.* 2010;304(16):1795-1802. doi:10.1001/jama.2010.1505
87. Bond V, Curry BH, Adams RG, Millis RM, Haddad GE. Cardiorespiratory function associated with dietary nitrate supplementation. *Appl Physiol Nutr Metab.* 2014;39(2):168-172. doi:10.1139/apnm-2013-0263
88. Curry BH, Bond V, Pemminati S, et al. Effects of a Dietary Beetroot Juice Treatment on Systemic and Cerebral Haemodynamics— A Pilot Study. *J Clin Diagn Res.* 2016;10(7):CC01-CC05. doi:10.7860/JCDR/2016/20049.8113

89. Rankins J, Sampson W, Brown B, Jenkins-Salley T. Dietary Approaches to Stop Hypertension (DASH) Intervention Reduces Blood Pressure among Hypertensive African American Patients in a Neighborhood Health Care Center. *Journal of Nutrition Education and Behavior*. 2005;37(5):259-264. doi:10.1016/S1499-4046(06)60281-9

90. Juraschek S, Gelber A, Choi H, Appel L, Miller E. Effects of the Dietary Approaches to Stop Hypertension (DASH) Diet and Sodium Intake on Serum Uric Acid. *Arthritis and rheumatology*. 2016;68(12):3002-3009. doi:10.1002/art.39813

91. Ziemer DC, Berkowitz KJ, Panayioto RM, et al. A simple meal plan emphasizing healthy food choices is as effective as an exchange-based meal plan for urban African Americans with type 2 diabetes. *Diabetes Care*. 2003;26(6):1719-1724.
doi:10.2337/diacare.26.6.1719

92. Chen L, He F, Dong Y, Huang Y, Harshfield G, Zhu H. Sodium Reduction, Metabolomic Profiling, and Cardiovascular Disease Risk in Untreated Black Hypertensives. *Hypertension (dallas, tex : 1979)*. Published online 2019;HYPERTENSIONAHA11912880. doi:10.1161/HYPERTENSIONAHA.119.12880

93. Swift P, Markandu N, Sagnella G, He F, MacGregor G. Modest salt reduction reduces blood pressure and urine protein excretion in black hypertensives: a randomized control trial. *Hypertension (dallas, tex : 1979)*. 2005;46(2):308-312.
doi:10.1161/01.HYP.0000172662.12480.7f

94. Switzer BR, Atwood JR, Stark AH, et al. Plasma carotenoid and vitamins a and e concentrations in older African American women after wheat bran supplementation:

effects of age, body mass and smoking history. *J Am Coll Nutr.* 2005;24(3):217-226.

doi:10.1080/07315724.2005.10719468

95. Stark AH, Switzer BR, Atwood JR, et al. Estrogen profiles in postmenopausal African-American women in a wheat bran fiber intervention study. *Nutr Cancer.* 1998;31(2):138-142. doi:10.1080/01635589809514693
96. Park E, Stacewicz-Sapuntzakis M, Sharifi R, Wu Z, Freeman VL, Bowen PE. Diet adherence dynamics and physiological responses to a tomato product whole-food intervention in African-American men. *Br J Nutr.* 2013;109(12):2219-2230. doi:10.1017/S0007114512004436
97. Zemel MB, Richards J, Milstead A, Campbell P. Effects of calcium and dairy on body composition and weight loss in African-American adults. *Obes Res.* 2005;13(7):1218-1225. doi:10.1038/oby.2005.144
98. Santiago-Torres M, Kratz M, Lampe JW, et al. Metabolic responses to a traditional Mexican diet compared with a commonly consumed US diet in women of Mexican descent: a randomized crossover feeding trial12. *Am J Clin Nutr.* 2016;103(2):366-374. doi:10.3945/ajcn.115.119016
99. Jimenez-Cruz A, Turnbull W, Bacardi-Gascon M, Rosales-Garay P. A high-fiber, moderate-glycemic-index, Mexican style diet improves dyslipidemia in individuals with type 2 diabetes. *Nutrition research (new york, NY).* 2004;24(1):19-27. doi:10.1016/j.nutres.2003.09.005

100. Smith CE, Van Rompay MI, Mattei J, et al. Dietary fat modulation of hepatic lipase variant -514 C/T for lipids: a crossover randomized dietary intervention trial in Caribbean Hispanics. *Physiol Genomics*. 2017;49(10):592-600. doi:10.1152/physiolgenomics.00036.2017

101. Solis C, Veenema K, Ivanov AA, et al. Folate intake at RDA levels is inadequate for Mexican American men with the methylenetetrahydrofolate reductase 677TT genotype. *J Nutr*. 2008;138(1):67-72. doi:10.1093/jn/138.1.67

102. Karmally W, Montez MG, Palmas W, et al. Cholesterol-lowering benefits of oat-containing cereal in Hispanic americans. *J Am Diet Assoc*. 2005;105(6):967-970. doi:10.1016/j.jada.2005.03.006

103. Brady LM, Lovegrove SS, Lesavage SVM, et al. Increased n-6 polyunsaturated fatty acids do not attenuate the effects of long-chain n-3 polyunsaturated fatty acids on insulin sensitivity or triacylglycerol reduction in Indian Asians. *Am J Clin Nutr*. 2004;79(6):983-991. doi:10.1093/ajcn/79.6.983

104. Minihane A, Brady L, Lovegrove S, Lesavage S, Williams C, Lovegrove J. Lack of effect of dietary n-6: n-3 PUFA ratio on plasma lipids and markers of insulin responses in Indian Asians living in the UK. *European journal of nutrition*. 2005;44(1):26-32. doi:10.1007/s00394-004-0488-9

105. Leatherdale BA, Panesar RK, Singh G, Atkins TW, Bailey CJ, Bignell AH. Improvement in glucose tolerance due to Momordica charantia (karela). *Br Med J (Clin Res Ed)*. 1981;282(6279):1823-1824. doi:10.1136/bmj.282.6279.1823

106. Backes AC, Abbasi F, Lamendola C, McLaughlin TL, Reaven G, Palaniappan LP. Clinical experience with a relatively low carbohydrate, calorie-restricted diet improves insulin sensitivity and associated metabolic abnormalities in overweight, insulin resistant South Asian Indian women. *Asia Pac J Clin Nutr.* 2008;17(4):669-671.

107. Lubransky A, Monro J, Mishra S, Yu H, Haszard J, Venn B. Postprandial Glycaemic, Hormonal and Satiety Responses to Rice and Kiwifruit Preloads in Chinese Adults: a Randomised Controlled Crossover Trial. *Nutrients.* 2018;10(8). doi:10.3390/nu10081110

108. Wang B, Medapalli R, Xu J, et al. Effects of a whole rice diet on metabolic parameters and inflammatory markers in prediabetes. *e-SPEN Journal.* 2013;8(1):e15-e20. doi:10.1016/j.clnme.2012.11.001

109. Zhang Z, Kane J, Liu AY, Venn BJ. Benefits of a rice mix on glycaemic control in Asian people with type 2 diabetes: A randomised trial. *Nutrition & Dietetics.* 2016;73(2):125-131. doi:10.1111/1747-0080.12158

110. Carr DB, Utzschneider KM, Boyko EJ, et al. A Reduced-Fat Diet and Aerobic Exercise in Japanese Americans With Impaired Glucose Tolerance Decreases Intra-Abdominal Fat and Improves Insulin Sensitivity but not -Cell Function. *Diabetes.* 2005;54(2):340-347. doi:10.2337/diabetes.54.2.340

111. Watson GS, Reger MA, Baker LD, et al. Effects of exercise and nutrition on memory in Japanese Americans with impaired glucose tolerance. *Diabetes Care.* 2006;29(1):135-136. doi:10.2337/diacare.29.1.135

112. Panizza C, Lim U, Yonemori K, et al. Effects of Intermittent Energy Restriction Combined with a Mediterranean Diet on Reducing Visceral Adiposity: a Randomized Active Comparator Pilot Study. *Nutrients*. 2019;11(6). doi:10.3390/nu11061386

113. Patade A, Devareddy L, Lucas EA, Korlagunta K, Daggy BP, Arjmandi BH. Flaxseed reduces total and LDL cholesterol concentrations in Native American postmenopausal women. *J Womens Health (Larchmt)*. 2008;17(3):355-366. doi:10.1089/jwh.2007.0359

114. DeLany JP, Jakicic JM, Lowery JB, Hames KC, Kelley DE, Goodpaster BH. African American women exhibit similar adherence to intervention but lose less weight due to lower energy requirements. *Int J Obes (Lond)*. 2014;38(9):1147-1152. doi:10.1038/ijo.2013.240

115. Wingo B, Carson T, Ard J. Differences in weight loss and health outcomes among African Americans and whites in multicentre trials - Wingo - 2014 - Obesity Reviews - Wiley Online Library. *Obesity Reviews*. Published online 2014. Accessed December 3, 2020. <https://onlinelibrary.wiley.com/doi/full/10.1111/obr.12212>

116. Gallagher D, Visser M, De Meersman RE, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. *J Appl Physiol (1985)*. 1997;83(1):229-239. doi:10.1152/jappl.1997.83.1.229

117. Weaver CM, Miller JW. Challenges in conducting clinical nutrition research. *Nutr Rev*. 2017;75(7):491-499. doi:10.1093/nutrit/nux026

118. Katzmarzyk PT, Martin CK, Newton RL, et al. Weight Loss in Underserved Patients - A Cluster-Randomized Trial. *N Engl J Med.* 2020;383(10):909-918. doi:10.1056/NEJMoa2007448

119. Blackman Carr LT, Samuel-Hodge C, Ward DS, Evenson KR, Bangdiwala SI, Tate DF. Racial Differences in Weight Loss Mediated by Engagement and Behavior Change. *Ethn Dis.* 2018;28(1):43-48. doi:10.18865/ed.28.1.43

120. Frerichs L, Bess K, Young TL, et al. A Cluster Randomized Trial of a Community-Based Intervention Among African-American Adults: Effects on Dietary and Physical Activity Outcomes. *Prev Sci.* 2020;21(3):344-354. doi:10.1007/s11121-019-01067-5

121. Lackland DT. Racial Differences in Hypertension: Implications for High Blood Pressure Management. *Am J Med Sci.* 2014;348(2):135-138. doi:10.1097/MAJ.0000000000000308

122. Min J, Goodale H, Xue H, Brey R, Wang Y. Racial-Ethnic Disparities in Obesity and Biological, Behavioral, and Sociocultural Influences in the United States: A Systematic Review. *Advances in Nutrition.* 2021;(nmaa162). doi:10.1093/advances/nmaa162