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Abstract: Satellite Image Time Series (SITS) is a data set which includes satellite images across several
years with a high acquisition rate. Radiometric normalization is a fundamental and important
preprocessing method for remote sensing applications using SITS due to the radiometric distortion
caused by noise between images. Normalizing the subject image based on the reference image is
a general strategy when using traditional radiometric normalization methods to normalize multi-
temporal imagery (usually two scenes or three scenes in different time phases). However, these
methods are not suitable for calibrating SITS because they cannot minimize the radiometric distortion
between any pair of images in SITS. The existing relative radiometric normalization methods for SITS
are based on linear assumptions which cannot effectively reduce nonlinear radiometric distortion
caused by continuously changing noise in SITS. To overcome this problem and obtain a more accurate
SITS, this study proposed a Nonlinear Radiometric Normalization Model (named NMAG) for SITS
based on Artificial Neural Networks (ANN) and Greedy Algroithm (GA) . In this method, GA was
used to determine the correction order of SITS and calculate the error between the image to be
corrected and normalized images, which avoided the selection of a single reference image. ANN was
used to obtain the optimal solution of error function, which minimized the radiometric distortion
between different images in SITS. SITS composed of 21 Landsat-8 images in Tianjin City from
October 2017 to January 2019 were selected to test the method. We compared NMAG with other
two contrasting method (refered as CM1 and CM2), and found that the average of root mean square
error (yirpmse) of NMAG (497.22) was significantly smaller than those of CM1 (641.39) and CM2
(543.47), and the accuracy of normalized SITS obtained by using NMAG has increased by 22.4% and
8.5% toward CM1 and CM2, respectively. These experimental results confirmed the effectiveness of
NMAG in the reduction of radiometric distortion caused by continuously changing noise between
images in SITS.

Keywords: Satellite Image Time Series; Radiometric Normalization; Nonlinear Radiometric Distor-
tion; Artificial Neural Networks

1. Introduction

Satellite Image Time Series (SITS) can provide abundant information to describe
temporal changes of the generation and development of ground features in an area. It
was used as an important data source in many fields such as environmental monitoring,
land cover change monitoring, crop growth monitoring and so on [1-3]. However, the
temporal information extracted from SITS is inevitably disturbed by noise unrelated to
ground features, such as atmospheric absorption and scattering, sensor-target illumination
geometry, sensor calibration, etc., which will lead to inaccurate results of remote sensing
applications [4]. Thus, radiometric normalization is required prior to any applications
using SITS.

Radiometric calibration can be classified into absolute radiometric calibration and
relative radiometric calibration (also named relative normalization). Because it is usually
difficult to obtain atmospheric properties, a relative radiometric calibration based on the
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inherent radiometric information of images is alternative when absolute surface radiances
are not needed [5]. In early research methods, global image statistics were utilized to
derectly establish the gray value mapping relationship between the subject image and the
reference image, such as Histogram Matching (HM), Mean-Standard deviation (MS) and
so on [6,7]. However, these methods reduce the radiometric difference resulted from the
variation of ground features while reducing the radiometric distortion caused by noise.
Therefore, these methods are only suitable for image mosaicking due to the ambiguous
result of the physical meaning of normalized images [8]. In order to address this issue
effectively, methods based on regression model are developed, which is established by
using a set of invariant pixels [9] (named pseudo-invariant features or PIFs) from the
subject and reference images.

Linear regression models are simple and effective so that they have been widely
used to minimize the radiometric distortion, such as simple linear regression model (SR),
principal component analysis (PCA), Theil-Sen regression model and so on [10,11]. How-
ever, relative normalization methods based on linear assumptions are inappropriate for
dealing with complex nonlinear radiometric distortions between the subject image and the
reference image. The development of artificial intelligence technology, such as artificial
neural network, genetic algorithms etc., provides an effective tool to deal with this problem
[12,13].

The relative radiometric methods mentioned above are not suitable for calibrating SITS,
because they are based on the reference image to implement the radiometric normalization
of the subject image, which cannot minimize the radiometric distortion between any pair of
images in SITS. Wu et al. developed a new radiometric normalization procedure for SITS to
solve this issues effectively, which obtained a more objective and accurate correction results
than previous methods [14]. However, continuously changing noise in SITS usually results
in nonlinear radiometric distortion between images in reality, and the method proposed by
Wau et al. cannot effectively reduce such nonlinear radiometric distortion.

An optimum method for minimizing nonlinear radiometric distortion between im-
ages in SITS is needed to facilitate remote sensing application. Thus, in this paper we
constructed a nonlinear radiometric normalization model for SITS,in which an artificial
neural network (ANN) and greedy algorithm(GA) are combined for the nonlinear radio-
metric normalization of SITS. Here, GA is used for determining the correction order of
SITS and calculate the error function of the image to be corrected, and ANN is used for
obtaining the optimal solution of error function. Hereinafter, this nonlinear radiometric
normalization procedure is called NMAG model.

2. Description of methodology

The existing radiometric normalization approaches are based on the reference image
X, to correct the subject image X.. The key of these methods is to find a mapping function
f() to minimize the radiometric distortion between subject image f(X.) and reference
image X;. The objective function Q, can be expressed as:

Qr = min Y [F(X3 — X)P2 M

s€S

where S represents pseudo-invariant features (PIFs), s € S represents the pseudo-invariant
features (PIF) in PIFs, f(X%) represents the Digital Number (DN) value of PIF in a subject
image f(X,) , and X; represents the DN value of PIF in a reference image.
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Figure 1. Flow diagram showing steps used by NMAG model in rediometric normalization for SITS.

When Equation 1 is used for the correction of SITS X, an image X, € X is selected
as the reference image, and then each image X; in X is normalized with respect to the
reference image X, in turn.The objective function Q, can be written as :

Q, = min i Y [F(x5) — X5)? @)

i=1s€S
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where 71 represents the number of images in X, and f(X?) represents the DN value of PIF
in the image to be corrected f(X;). It can be easily found from Equation 2 that Q, cannot
make sure the radiometric distortion between each pair of images in normalized SITS
is minimum. Therefore, Wu et al. proposed an improved objective function Qg for the
relative radiometric normalization of X, and Qg is expressed as [14]:

n n
Qo =min Y 3 Y [F(X7) = f(X}))? ®)
i=1j=1s€S
Our NMAG method is based on this objective function, to achieve nonlinear radiomet-
ric normalization for SITS data by using artificial neural networks and greedy algorithms.
The NMAG approach can be implemented using the following steps as shown in Figure 1.
Stepl. Create a greedy algorithm [15]. In order to ensure that Qg can obtain the
optimal solution, the greedy algorithm should be created to adopt the most greedy solution
when implement the rediometric normalization of each image in a SITS.
SITS X is divided into two groups, one as reference image dataset R and the other as
image dataset U to be corrected:

X=R+U @)

The initial value of R and U can be given by:

R={}mdU=X (5)

A clear and cloudless image X, is selected from SITS as the reference image, and then
added X, to the reference image dataset R. Update U according to Equation 6, then an
image with smallest rediometric distortion from R is selected from U as the next image to
be corrected U.. The selection of U, can be given by Equation 7.

R={X}andU=X-X, (6)

k
¢ =argmin(}_ Y (U — R)?) (7)
x€[l,m] i=1s€S

where k represents the number of normalized images in R, m represents the number of
uncorrected images in U, and s € S represents the PIF in PIFs. R} represents the DN value
of PIF in the i-th image of R , and U} represents the DN value of PIF in the x-th image in U.
Next, implementing the rediometric normalization of U, and the local optimal solu-

tion Q. can be calculated by:

k
Qe = min ) 3 [f(U) ~ R (®)
i=1s€S
where f(U.) represents the rediometric normalization result for U, and f(U}) represents
the DN value of the PIF in f(U,) .

Step 2. Generate an ANN regression model. Linearity assumption of radiometric
distortion in SITS is not precise, and nonlinear regression model may achieve more accurate
normalization results of SITS. As a representative method of machine learning, ANN
regression model has been widely used to solve nonlinear regression problems and has
achieved significant results. The schematic diagram of ANN [16] is shown in Figure 2.
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Figure 2. The schematic diagram of artificial neural network (ANN) regression model used in NMAG

In this study, PIFs were randomly divided into training sample set S; and test sample
set St, accounting for 70% and 30% of total PIFs respectively. S; was used for the training of
ANN regression model, and S; was used for the accuracy assessment of ANN regression
model after training. As shown in Figure 2, ANN includes an input layer, an output layer
and several hidden layers. The input layer is the DN value of the training samples in
the image U, to be corrected, which is expressed as UZ,s € 5;. The output layer is the
radiometric normalization results f(U?),s € S;.

The ANN regression model that is consisted of an input-output pair can be adjusted
by the connection weights between the nodes by learning to memorize every one of
the network learning and training samples. The magnitude of weights represents the
importance of the link between the neurons to f(UZ). The value of weights is initialized
randomly, thus, the initial output is also random.The difference (i.e. error) between the
generated output and a training set output is calculated and is fed back to the network,
where it is used for connection-weight readjustment by Gradient Descent Algorithm (GDA)
to minimize the error to within a predefined tolerance. In this way, the iteration calculation
can reduced the error to a predetermined allowable range. The error estimation function
can be expressed as:

LOSS =

*

N~

I~

Y () - R})? ©)
i=1s€S;
where k represents the number of images in R, and R} represents the DN value of PIFs in
the i-th image in R.
Step 3. Loop execution. Added the corrected image f(U,) to reference image dataset R
and remove U, from uncorrected image dataset U. The Update of R and U can be expressed

as:

R=R+ f(U;)and U =U — U, (10)

where f(U.) is the radiometric normalization results of image UL.
If there still exists images in the updated U, we execute the relative radiometric
correction of the next image in the same way.

3. Materials
3.1. Study Area and Satellite Data

Here, as an illustration of the application of NMAG modle, SITS with 21 high-quality
landsat-8 satellite images covering an area of Tianjin were used in this study. The acquisition
time of these images is from October 2017 to January 2019 and the average cloud cover
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of images is 3.58%. The cost time of performing relative radiometric correction on entire
images in SITS is too long, thus only 1000*1000 pixels were selected as the study area. The
false color composite image of the study area is shown in Figure 3.

@

Figure 3. Overview of the study area: (a) the Landsat-8 image with Path=122 and Row=38 in the
Worldwide Reference System (WRS), (b) The false color composite image in the study area (R: B7, G:
B5, B: B4)

No further geometric correction is needed during image preprocessing because the
positioning accuracy of these images obtained from the USGS ! is less than one pixel.
The false-color composite images of each temporal data in the SITS are given in Figure
4, and we can find from this figure that this area is rich in ground features, of which
artificial buildings are mainly concentrated in the urban area of Tianjin, bare land is mainly
distributed in suburbs of Tianjin, and road pixels are evenly distributed in the study area.
The PIFs were mainly selected from pixels corresponding to this three types of ground
features. Vegetation with intra-year seasonal changes are mainly distributed in suburbs
of Tianjin, which can be selected to assess the accuracy of the radiometric normalization
results of SITS.

Figure 4. False-color composite image of SITS in the study area (R: B7, G: B5, B: B4)

The Pearson correlation coefficient matrix of landsat-8 SITS in the study area (Tianjin,
China) from October 2017 to January 2019 is shown in Table 1 and Table 2. The larger

1

https:/ /glovis.usgs.gov
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the Pearson Correlation Coefficient between different variables, the stronger the linear
correlation of these variables, and vice versa. Table 1 shows that the range of Pearson
Correlation Coefficient between images both acquired from October 2017 to December 2017
is 0.71~1.00, and the average value is 0.88, indicating that there exists a strong positive
linear correlation between images which acquisition time is close. Table 2 shows that the
range of Pearson Correlation Coefficient between image aquired from October 2017 to
December 2017 and image acquired from October 2018 to December 2018 is 0.61~0.75,
and the average value is 0.67, indicating that the linear correlation between images which
acquisition time is far apart is weak. Due to there exist both linear and nonlinear radiation
distortions between images in SITS in this area, the use of SITS in this area can be more
beneficial to test the effectiveness of NMAG module.

Table 1. The Pearson correlation coefficient between images both acquired from October 2017 to
December 2017

2017-10-23 2017-11-08 2017-11-24 2017-12-10 2017-12-26 mean_pccs

2017-10-23 1.00 0.89 0.83 0.79 0.71 0.84
2017-11-08 0.89 1.00 0.91 0.88 0.81 0.90
2017-11-24 0.83 091 1.00 0.92 0.85 0.90
2017-12-10 0.79 0.88 0.92 1.00 0.89 0.90
2017-12-26 0.71 0.81 0.85 0.89 1.00 0.85
mean_pccs 0.84 0.90 0.90 0.90 0.85 0.88

Table 2. The Pearson correlation coefficient between image aquired from October 2017 to December
2017 and image acquired from October 2018 to December 2018

2017-10-23 2017-11-08 2017-11-24 2017-12-10 2017-12-26 mean_pccs

2018-09-24 0.71 0.62 0.69 0.63 0.60 0.65
2018-10-10 0.73 0.66 0.75 0.68 0.65 0.69
2018-10-26 0.72 0.64 0.74 0.69 0.65 0.69
2018-12-13 0.70 0.65 0.73 0.70 0.65 0.69
2018-12-29 0.67 0.61 0.69 0.68 0.64 0.66
mean_pccs 0.70 0.64 0.72 0.68 0.64 0.67

3.2. The Preparation of PIFs

PIFs refer to pixels with constant radiometric value in SITS, which were mainly
selected from artificial buildings, roads or bare ground pixels. Using high-quality landsat-
8 images of the study area can avoided the interference of clouds and shadows while
selecting PIFs, which is more helpful to select high-quality PIFs. The SITS used here can be
expressed as:

X ={Xy, X2, X3, ..., Xn} (11)

The least squar method was used to estimate the best-fitting parameters (k, and b)) of
the time-series’” DN value of pixel p sorted in ascending order DN? , and the distribution
of ky, values of the experimental area are shown in Figure 5 a. The slope of fitted line of
PIFs (k) is higher than that of water bodies and lower than that of vegetation [14]. Thus,
the time-series” DN values of pixel p sorted in ascending order can be given by Eq.(11) and
the range of k; is expressed as:

DNX = sort {DN,",DN,?,DN;?,.., DNt} p € P (12)
ks € [kLouJ/kHighL s€S (13)
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where P represents all pixels in images in this area, S represents selected PIFs, and DN,E(
represents the time-series” DN value of pixel p sorted in ascending order.

ky value
1750
1500
1250
1000

750

(b)

Figure 5. The selection result of Pseudo-invariant feature points (PIFs). (a) The distribution of kj,
values in the study area. The water bodies pixels in light blue; the road, bare land, and urban pixels
in gray; and the vegetation pixels in orange or dark brown. (b) The selection result of PIFs. The white
pixels represent PIF that is mainly selected from artificial buildings and bare lands.

As seen in Figure 5a, water bodies are displayed in light blue, artifical buildings and
bare lands are showed in gray, and vegetation is expressed in orange or dark brown. The
results indicates that the k, value of the water bodies is the lowest (k, < 250), the k, value
of the vegetation is the highest (k, > 500), and the k, values of the artifical buildings and
bare lands are between those of the water bodies and the vegetation (250 < k, < 500). PIFs
represents pixels with unchange radiometric value over time, they were mainly selected
from artificial buildings and bare lands. Thus, we set the thresholds of ks utilized in this
paper to extract PIFs were 275 for kp 4,y and 300 for kp;qp,. The extraction results of PIFs are
shown in Figure 5b, and white pixels represent PIFs, with a total of 12,515 pixels.

4. Results and Discussion
4.1. Experimental Results

As an illustrative example, we applied NMAG model to the relative radiometric
normalization of landast-8 SITS. Figure 6 shows the normalized results for SITS.

Figure 6. The relative radiometric normalized images in SITS

Figure 7 is a mosaic image composed of four normalized images taken from December
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10 and 26, 2017, and December 13 and 29, 2018, respectively. In untreated images shown in
Figure 4, there exists significant differences in color intensity and color saturation between
images acquired on December 2017 and 2018. However, in normalized images shown in
Figure 7a, we can see that all have similar radiometric intensity, hue and color saturation to
each other.
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Figure 7. (a) The mosaic pattern composed of four normalized images taken from December 10 and
26,2017, and December 13 and 29, 2018, respectively. The Resultant images have similiar color and
color contrast to each other. (b)The mosaic pattern of the urban area, and the bundary of this area is
marked in red box in figure a. (c) the mosaic pattern of the artificial building area, and the bundary of
this area is marked in black box in figure a. (d) The comparison of time-series’ curves of DN values
(DN-TSC) from the near-infrared Band (Band 5) for the road pixel (marked in red point in figurea)
before (marked in black line) and after (marked in red line) radiometric normalization.

Figure 7b and Figure 7c are two local area with complex ground features, including
artificial bulidings, road and vegetation, are characterized with similiar color and color
contrast. These results indicate that the radiometric distortion between different images
caused by noise in SITS can be effectively suppressed by NMAG method.

Figure 7d shows the time-series’ curve of DN values (DN-TSC) from the near-infrared
Band (Band 5) of road pixels before and after radiometric normalization. The original
DN-TSC fluctuate greatly,which indicates that the noise can conceal the actual variation of
spectral characteristics from ground features. After radiometric normalization, the DN-TSC
fluctuate slightly and nearly lie to a straight line. This indicates that NMAG effectively
supresses the radiometric distortion between different images in SITS and result in DN
values between images in SITS become more comparable.

Figure 8c shows the DN-TSC from the near-infrared Band (Band 5) of pixels in cropland
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images before (black) and after(red) radiometric normalization. In general, there exists a
single peak of DN-TSC during the entire corn growth period. According to information
obtained from the website of Tianjin Agriculture and Rural Committee? and crop images
during the growth period of corn (see Figure 8b), we know that corns in this area are
generally sown in early June and are harvested at the end of October. This means that DN
values of cropland pixel is similar to that of bare land pixel from November of the previous
year to June of the current year, which should be hold on a fixed value theorically.

However, the original DN-TSC (marked in black line) fluctuate greatly from November
2017 to June 2018, and exist two peaks (May 19, 2018 and Sep 8, 2018 ) during the entire
corn growth period. This means that the noises containded in the original DN-TSC led to
large fluctuations and increased the difficulity of discovering the variation pattern of corn
growth.

After radiometric normalization, the DN-TSC (marked in red line) fluctuate slightly
from November 2017 to June 2018, demonstrating that NMAG method effectively mini-
mizes the disturbtion of noise. A sigle peak (Sep 8,2018) existed in the normalized DN-TSC
during the entire growth period, which indicates that NMAG can enhance the real time-
series’ characteristics for cropland pixels.
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Figure 8. The relative radiometric normalization results of DN values of cropland pixel. (a) The
location of cropland pixel and the boundary of crop images are marked in red point and black box,
respectively. (b) The corpland images during the growth period of corn. (c) The Comparison of the
DN-TSC from the near-infrared Band (band 5) for the cropland pixel before (marked in black line)
and after (marked in red line) the radiometric normalization.

4.2. Comparison with other methods

We compared NMAG module with other two contrast methods using the same data.
The Contrast Method 1 (CM1) proposed by Sadeghi et al. is a nonlinear radiometric
normalized based on the reference image to normalize the subject image [13]. When CM1
is used for the relative normalization of SITS, one image in SITS should be selected as a
reference image first and then normalized other images to the reference image one by one.
The Contrast Method 2 (CM2) proposed by Wu et al. is a rediometric normalization method

2

http:/ /nync.tj.gov.cn
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for SITS based on linearity assumption [14]. In order to evaluate the accuracy of radiometric
nomalization results obtained using different methods for SITS, we computed the root
mean square error RMSE(f(X;), f(X;)) to measure the radiometric distortion between the
normalized image f(X;) and the normalized image f(X;), which is can be calculated from
Equation 14. The smaller the RMSE value,the more accurate the radiometric normalization
results of images.

1
RMSE(f(Xi), f(X))) = |55 * L UF(X5) = F(X)? (14)
SES;
where X; represents i-th image in SITS, X; represents j-th image in SITS. S; represents the
test samples of PIFs, N represents the number of PIF in S; , s represents the PIF in S¢, and
f(X?) represents the DN value of PIF in the radiometric normalization result for image X;.
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Figure 9. The error matrices and the frequency distribution curve of RMSE for the normalized results
obtained using NMAG and two constrasting methods. As the color transitions from blue to red, the
radiometric distortion increases.(a) The error matrices of RMSE obtained using CM1. (b) The error
matrices of RMSE obtained using CM2. (c) The error matrices of RMSE obtained using NMAG. (d)
The frequency distribution curve of RMSE obtained using NMAG and two constrasting methods.

Figure 9a-c shows error matrices of RMSE for the normalized results obtained using
NMAG model and two constrasting methods with the same SITS data. In this figure, as the
color transitions from blue to red, the RMSE increases. Compared with the error matrices
of RMSE obtained using NMAG (see Figure 9c), more red pixels are observed in the error
matrices of RMSE obtained using CM1 (see Figure 9a) and CM2 (see Figure 9b). This
Qualitative analysis result shows that the error matrices of RMSE obtained using NMAG is
generally distributed at low values.

Figure 9d shows the RMSE frequency distribution curve of NMAG (marked in red
line) and other two methods (marked in black line and blue line,respectively). The RMSE
between various images of CM1, CM2 and NMAG is concentrated around 700,550 and 400,
respectively. Thus, the error of our method between images in SITS are significantly lower
than that of CM1 and CM2. The comparison result demonstrates that NMAG method can
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Table 3. Accuracy comparison of the prpsg of NMAG, Contrast Method 1 (CM1) and

Contrast Method 2 (CM2)
Method cMmi1! CM2? NMAG
HRMSE 641.39 543.47 497.22

Lovn proposed by Sadeghi et al. is a nonlinear radiometric normalization
method based on the reference image to normalize the subject image.[13]

2 The CM2 proposed by Wu et al. is a radiometric normalization method for
SITS based on linearity assumption.[14]

reduce the radiometric distortion caused by noise between images in SITS more effectively
than two contrasting methods, and obtain more accurate normalized results.

We further compared NMAG method with CM1 and CM2 by calculating the average
of RMSE(f(X;), f(X;)). This parameter can be calculated by:

1 n n
HRMSE = 3 ). Z RMSE(f(Xi), f(X))) (15)
:1 =1
where 1 represents the number of images in SITS. f(X;) and f(X;) are respectively i-th and
j-th image in normalized SITS.

Table 3 shows that the pgpsg of NMAG (497.22) is significantly smaller than those of
CM1 (641.39) and CM2 (543.47), and the accuracy of SITS obtained by using NMAG has
increased by 22.4% and 8.5% toward CM1 and CM2, respectively. These results indicating
that NMAG model can obtain more accurate SITS.

4.3. Application of NMAG to Vegetation Index

Vegetaion index (VI) obtained from multi-band image data can better reflect the
green vegetation status than DN value from single band data. Therefore, the time-series’
vegetation index is often used in the field of land cover change monitoring, environmental
monitoring and so on [17,18]. Considering the normalized difference vegetation index
(NDVI) is the most frequently used VI in remote sensing applications [19], we further
examine the application of NMAG to NDVI . The NDVI can be expressed as:

NDV] = PNIR Z PR (16)
PNIR t PR

Where ppr is the top-of-atmosphere (TOA) reflectence from the near-infrared Band and pr
is the top-of-atmosphere (TOA) reflectence from the red Band. With the help of metadata
file (_M TL.txt), we can easily transform DN value into TOA reflectance. We used NMAG
model to normalize the near-infrared band and the red band respectively, and normalized
NDVI could be calculated by using normalized result of TOA reflectance of near-infrared
Band and red Band.

Fig.10 shows the comparison of time-series’ curve of NDVI values(NDVI-TSC) cal-
culated from pixels in corpland images before (black) and after (red) the radiometric
normalization. These two NDVI-TSC exist significant differences in details though they
have the same trend. The fluctuation amplitude of NDVI-TSC obtained using NMAG
is lower than that of untreated curve from November 2017 to May 2018. As mentioned
in Section 4.1, the DN values of cropland pixel is similar to that of bare land pixel from
November of the previous year to June of the current year, which should be hold on a fixed
value theorically. This means the NDVI value of pixels should be also hold on a fixed value
theorically from November 2017 to May 2018. The Reduction of fluctuation amplitude
of NDVI-TSC indicates that NMAG can effectively decrease noises contained in different
bands of SITS.

The time corresponding to the turning point of NDVI-TSC before and after the radio-
metric normalization is May 3, 2018 and May 19, 2018, respectively. This means that the
corn sowing time corresponding to the untreated NDVI-TSC is between May 3,2018 and
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May 19,2018, and the corn sowing time corresponding to the normalized NDVI-TSC by
using NMAG is between May 19,2018 and June 4,2018. In reality, the corn sowing time
is in early June, 2018 according to the information obtained from the website of Tianjin
Agriculture and Rural Committee. The normalized result by using NMAG is fully matched
the actual situation, showing that the timer-series” NDVI values obtained by using NMAG
to normalize SITS data can better reflect the vegetation coverage, which is beneficial to
improve the accuracy of remote sensing applications.
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A Normalized Data
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0.8 - —= Normalized NDVI-TSC
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Figure 10. The Comparison of time-series’curve of NDVI values (NDVI-TSC) calculated from pixels
in corpland images before (marked in black line) and after (marked in red line) the radiometric
normalization.

5. Conclusions

In this paper, we propose a nonlinear radiometric noramlization method NMAG for
SITS based on GA and ANN. This method can effectively supressed the noise contained
in SITS, resulting in the gray values of images acquired at different time became more
comparable. In the method, GA was used to determine the correction order of SITS and
calculate the error between the image to be corrected and corrected images, which avoided
the selection of a single reference image. ANN was used to obtain the optimal solution of
error function, which minimized the radiometric distortion between images in SITS.

SITS composed of 21 Landsat-8 images in Tianjin City from October 2017 to January
2019 were used to test our method. The Resultant images have similiar color and color
contrast to each other, and the normalized DN-TSC of the near-infrared Band (B5) obtain by
using NMAG can better reflect the actual change of different features than the origin DN-
TSC. In addition, We compared NMAG with other two existing methods (CM1 and CM2)
using the same data. The result shows that the pgpsg of NMAG (497.22) is significantly
smaller than those of CM1 (641.39) and CM2 (543.47), and the accuracy of SITS obtained
by using NMAG has increased by 22.4% and 8.5% toward CM1 and CM2, respectively. This
indicates that NMAG can obtain more accurate SITS than other two constrasting methods.

Because the NDVI obtained from multi-band image data can better reflect the green
vegetation status than DN value from single band data, We further analysed the application
of NMAG to Vegetation Index. The NDVI-TSC obtained by using NMAG to normalize SITS
data is fully matched the actual situation, indicating that NMAG can effectively reduce
the rediometric distortion caused by noise in SITS so that we can obtain more precise
time-series” NDVI values.
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