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Abstract: Accurate monthly runoff estimation is fundamental in water resources management, 
planning, and development, resulting in preventing and reducing water-related problems, such as 
flooding and drought. This article evaluates the performance of the monthly hydrological rain-
fall-runoff model, GR2M model, in Thailand's southern basins. The GR2M model requires only two 
parameters, and no prior research has been reported on its application in this region. The 37 runoff 
stations, which are distributively located in three sub-watersheds of Thailand's southern region, 
namely; Thale Sap Songkhla, Peninsular-East Coast, and Peninsular-West Coast, were selected as 
study cases. The available monthly hydrological data of runoff, rainfall, air temperature from the 
Royal Irrigation Department (RID) and the Thai Meteorological Department (TMD) were collected 
and analyzed. Thornthwaite method was utilized for the determination of evapotranspiration. The 
model's performance was conducted using three statistical indices: Nash-Sutcliffe Efficiency (NSE), 
Correlation Coefficient (r), and Overall Index (OPI). The model's calibration results for 37 runoff 
stations gave the average of NSE, r, and OPI of 0.637, 0.825, and 0.757, and those values for verifi-
cation of 0.465, 0.750, and 0.639, respectively. It indicated a model's acceptable performance and 
could apply the GR2M model for determining monthly runoff variation in this region. The spatial 
distribution of X1 and X2 values was conducted by using IDW method. It was susceptible to the X1 
value and X2 value of approximately more than 0.90 gave the higher model's performance. 
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1. Introduction 

The southern region of Thailand is an area characterized by a tropical climate since 
it is close to the equator, and the Northeast and Southwest influence it.  Consequently, 
many areas have been experiencing flooding problems leading to a vast majority of 
devastation to human beings' lives and properties that hindered economic growth and 
development.  Each year, during a dry spell of approximately two months, this region 
usually faces a drought situation due to increasing water demand from all activities and 
insufficient water supply and storage.  Accurate estimating runoff quantity and its time 
variation can help water resources management-related personnel for disaster response 
planning, preventing and reducing the adverse impact [ 1] .  Hence, it is fundamentally 
imperative to obtain a hydrological information since water supply is in demand from 
all activities, including domestic consumption, agriculture, and various industries [2-4].  

Although runoff is essential information, most hydrologists cannot access it due to 
insufficient runoff measuring stations compared to rainfall measuring stations equipped 
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throughout the country's regions [5] .  Many research topics regarding the rainfall-runoff 
model have been studied, developed, and applied by hydrologists and irrigation engi-
neers for many aspects. For example, Chen, et al. [6], Kabiri, et al. [7], Lin, et al. [8] applied 
the rainfall-runoff model to assess runoff impacts due to climate and land-use change. 

Kwak, et al.  [ 9]  also used the rainfall-runoff model to reconstruct the missing runoff 
time-series information.  Similarly, Ballinas-González, et al.  [ 10]  studied the sensitivity 
analysis of the rainfall-runoff modeling parameters in the data-scarce urban catchment. 

Lerat, et al.  [ 11]  proposed the alternative method for calibrating daily rainfall-runoff 
models to monthly streamflow data when no daily streamflow data recorded.  Likewise, 
Abdessamed and Abderrazak [12]  utilized a coupling HEC-RAS and HEC-HMS model-
ing for evaluating floodplain inundation maps in arid environments.  Zhang, et al.  [ 13] 

tested the performance of the shuffled complex evolution (SCE-UA) as a global optimiza-
tion method to calibrate the Xinanjiang (XAJ) model. Lastly, Khazaei, et al. [14] applied a 
simple genetic algorithm ( SGA)  to automatically calibrate the ARNO conceptual rain-
fall-runoff model. 

The Rural Genius model or GR2M model has recently been successfully applied as 
a rainfall-runoff relationship model to comprehend the variation of watershed’s hydro-
logical characteristics and to determine alleviation measures of unexpected situations in 
many regions throughout the world.  Dezetter, et al.  [ 15]  applied the GR2M model for 
study runoff in West Africa due to climate variability on hydrologic regimes for 
large-scale water resources management and planning. Okkan and Fistikoglu [16] evalu-
ated the effects of climate change on runoff in the Izmir-Tahtali watershed, Turkey, us-
ing statistical downscaling under the AR5 scheme and GR2M model.  They recommend-
ed that it immediately took on the drought alleviating water supply and agriculture 
measures on a national scale. Lyon, et al. [17] utilized the GR2M model as the first step for 
screening hydrologic data for evaluating the changes of hydrological response across the 
Lower Mekong Basin. Zamoum and Souag-Gamane [18] developed regionalized parame-
ters of the GR2M model for predicting monthly runoff in the ungauged catchment of 
northern Algeria.  Boulariah, et al.  [19] conducted a comparative study between two con-
ceptual nonlinear models, i.e. , the GR2M and the ABCD.  The results showed that the 
GR2M model outperformed the ABCD in the validation phase. Topalović, et al. [20] com-
pared four monthly rainfall-runoff models based on the water balance concept, i.e., abcd, 
Budyko, GR2M, and WASMOD to simulate runoff in the Wimmera catchment under 
changing climate conditions. Hadour, et al. [21] applied the GR2M model to study the ef-
fects of climate scenario on monthly river runoff in the Cheliff, Tafna, and Macta in 
North-West Algeria.  Rintis and Setyoasri [22]  compared the GR2M model's performance 
to two well-known rainfall-runoff models in Indonesia, that is, Mock and NRECA. Using 
the Bah Bolon Basin in Indonesia as a studied area, they found the GR2M model's per-
formance was comparable to Mock and NRECA methods requiring fewer parameters. 

O’ Connor, et al.  [ 23]  applied the GR2M hydrological model and an Artificial Neural 
Network for reconstructing monthly river flow for Irish catchments.  

The spatiotemporal characteristic with a hydrological analysis of Southern Basins 
of Thailand constitutes a vital platform for understanding the hydrological behavior.  It 
gives particular interest to the valorization of the hydraulic potential.  Hydrological 
modeling is essential for studying the development and management of water resources 
in the watershed.  The main reason for choosing GR2M in this study is that it requires 
few hydrological information ( rainfall data, potential evapotranspiration, and flow 
rates), and only two model’s parameters can be calibrated. This article mainly focused on 
investigating the monthly hydrological rainfall-runoff model, GR2M model, in 
Thailand's southern basins, namely, Songkhla Lake Basin, West basin, and the Eastern 
Basin. The study's novelty is that it is the first attempt to apply a two-parameters month-
ly rainfall-runoff model, the GR2M model, in Thailand's southern basins. It is also dras-
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tically useful for water resources planning and management in this region. This article is 
organized in the following ways: section 1 reviews the study area's dominant character-
istic and data analysis for model input.  In section 2, the GR2M theory is briefly 
examined.  The model’s calibration and verification are delineated in section 3.  The per-
formance criteria for evaluating the applicability of the GR2M Model is depicted in sec-
tion 4. Our result findings and discussion are portrayed in section 5. Finally, in section 6, 
we concluded significant contributions from our research work. 

2. Study Area and Data Analysis 

This research was conducted in Thailand's southern basin.  It encompasses five ma-
jor river basins, including the Peninsula-East Coast. Peninsula-West Coast, Mae Nam Ta-
pi, Thale Sap Songkhla, and Mae Nam Pattani, as shown in Figure 1. When investigating 
monthly rainfall, evapotranspiration, and runoff data, we found only three river basins, 
i. e.  the Peninsula-East Coast, Peninsula-West Coast, Thale Sap Songkhla.  Thus, we fo-
cused our experiment in these three basins.  These river basins have an area of approxi-
mately in the range of 13 to 6,713 km2.  Geographically, this portion is the peninsula be-
tween the Andaman Sea, which is on the western side, and the South China Sea, which 
is on the eastern side.  The long western mountain range in the northern and central re-
gions also extends to this portion. The Phuket ridge along the west coast and the Nakhon 
Si Thammarat ridge at the center of the lower portion of the ridge's southern part is di-
vided into two regions: the east and the west coasts. Climate variability on both sides of 
the river basins is mainly dominated by the north-eastern monsoon and the 
south-western monsoon winds.  The southwest monsoon wind typically starts in 
mid-May and ends in mid-October, while the northeast monsoon typically begins in 
mid-October and ends in mid-February. 

The Peninsula-East Coast watershed covers an area of 26023. 91 km2 and encom-
passes 11 provinces.  It also consists of areas covering all parts of the provinces of 
Chumphon, Trang, Nakhon Si Thammarat, Narathiwat, Prachuap Khiri Khan, Pattani, 
Phatthalung, Yala, Ranong, Songkhla, and Surat Thani.  The flat coast has a small plain 
from Chumphon to Narathiwat.  Additionally, most rivers are short rivers with a length 
not more than approximately 150 km flowing into the Gulf of Thailand.  There are nine 
runoff stations in the Peninsula-East Coast watershed.  The Peninsula-West Coast Water-
shed, 18841.20 km2, consists of seven provinces: Ranong, Phang Nga, Phuket, Krabi, Na-
khon Si Thammarat, Trang, and Satun.  It also includes Chumphon, Surat Thani, Phat-
thalung, and Songkhla, with similar topography to the Peninsula-East Coast Watershed. 

It is a coastal area next to the Andaman Sea.  The Phuket Mountains go from Ranong 
Province to Phang Nga Province, the origin of various rivers and streams. They are gen-
erally not long, and they flow mainly to the Andaman Sea in the west and southwest di-
rections.  The nineteen runoff stations were used for our analysis.  Thale Sap Songkhla 
watershed, an area of 8484. 35 km2, primarily covers three provinces, the province of 
Nakhon Si Thammarat (Some portions of the district of Cha-Uat and the district of Hua 
Sai), the province of Phatthalung, both provinces, and the province of Songkhla, except 
for the district of Nathawi, the district of Chana, the district of Thepha and the district of 
Saba Yoi). Thus, 147 sub-districts and 26 districts, with nine runoff stations, were the set-
ting of our study. Figure 1 shows the location of rainfall, runoff, and weather stations se-
lected in Thailand's southern basin. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 January 2021                   doi:10.20944/preprints202101.0605.v1

https://doi.org/10.20944/preprints202101.0605.v1


 

 

Figure 1. Location of rainfall, runoff, and weather stations selected in the southern basin of Thailand. 

We collected the monthly meteorological and hydrological data from the Royal Ir-
rigation Department ( RID)  and the Thai Meteorological Department ( TMD) , including 
runoff (37 stations), rainfall (38 stations), and air temperature (13 stations) as shown in the 
statistical values in Figure 2. We also investigated and analyzed the time corresponding 
among those three meteorological and hydrological data to select the suitable periods of 
model's calibration and verification, as shown in Table 1. The thiessen polygon was used 
to determine the mean areal precipitation in the considered basin from rain gauge ob-
servations. The monthly evapotranspiration, which is one of the input data for the GR2M 
model, was calculated from the average monthly air temperature ( Ti)  data by 

Thornthwaite [24], as shown below: 

• Monthly values of heat index 

I୧ = ൬
T୧

5
൰

ଵ.ହଵସ

 (1)

• Annual temperature efficiency index 

J = ෍ (I୧)
ଵଶ

୧ୀଵ
 (2)

• Evapotranspiration 

PET୧(0) = 1.6 ൬
10T୧

J
൰

େ

 (3)

• The C value can be obtained from: 

C = 0.000000675Jଷ − 0.0000771Jଶ + 0.01792J + 0.49239 (4)

• Potential Evapotranspiration 

PET୧(L) = K × PET୧(0) (5)

Where      :T୧ =   Monthly average temperature (Cº) 

                         K     = PET constants at different latitudes    
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    (a)                                                  (b) 

 
(c) 

Figure 2. Statistical values of monthly (a) runoff, (b) rainfall and (c) evapotranspiration data used in this analysis 

3. GR2M Model 

The GR2M, a conceptual model, was first introduced by Demagref in the late 1980s 
to use water resources management. The model's purpose is to simulate the relationship 
between monthly rainfall and runoff and reproduce the hydrological system's response.  

It has been continuously being developed to improve its efficiency by Kabouya 1990 [25], 
Makhlouf and Michel 1994 [26] , Mouelhi 2003 [27] until Mouelhi 2006 [28]. The model se-
lected in this study was the latest model GR2M 2006. It is the most popular and efficient 
compared to other models [5]. The GR2M model's advantage is that it requires only two 
parameters: the ability to retain soil moisture (X1) and the exchange coefficient water (X2).  

Additionally, it needs only three monthly meteorological and hydrological data, i.e., 
rainfall, runoff, and evapotranspiration [28,29]. The GR2M model results give runoff hy-
drograph as well as other elements such as soil moisture content, surface runoff, the 
groundwater flow, etc. 

The structure of the GR2M model consisted of two reservoirs, as presented in Figure 
3. The first reservoir represents soil moisture (S) of the basin controlled by production 
store or the ability to retain soil moisture: X1 (mm). Furthermore, the second reservoir is 
water flow through the river (R), its capacity is up to 60 mm, and regulated by the ex-
change coefficient water: X2. This model starts with the precipitation infiltrated into the 
soil, causes soil moisture at the level: S1 (mm). When the soil reaches a saturation point, 
the remnants of infiltration rain become rainfall excess: P1 (mm). The soil moisture loss 
from evapotranspiration: E until the remaining moisture level: S2 (mm). Additionally, 
some moisture content is released as surface water: P2 (mm) and gradually released with 
rainfall excess. This water section is called surface runoff or net rainfall: P3 (mm), which 
moved into the flow path combined with the remaining water from the previous month: 

R (mm). It causes the water content at level R1 (mm), where the water volume movement 
may change because some water may be lost, causing the residual water volume at level: 

R2 (mm). Ultimately, the total amount of water discharge into the runoff streamflow 
gauging station conducted the assessment. 
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Figure 3. Structure of the GR2M model. 
Source: Adapted from Bachir, et al. [30] ; Rwasoka, et al. [31] 

4. Model’s calibration and verification 

In achieving our aims in evaluating a Two-Parameters Monthly Rainfall-Runoff 
Model's performance, the GR2M model, which is applied in the southern basin of Thai-
land, was calibrated and verified. It included two steps, i.e., the warm-up period and cal-
ibrating and verifying the GR2M Model. 

4.1. Warm-up period: 
In this process, the appropriate initial parameters of X1 and X2 are determined.  It 

enables the model to mimic the basin's existing hydrological behavior at the considered 
runoff stations before conducting the model's calibration and verification.  The R0 value 
is varied between 10 mm and 60 mm to determine the suitable warm-up period.  In our 
study, we found the warm-up periods of approximately 4 to 7 months. 

4.2. Calibrating and verifying the GR2M Model 
As widely known, the calibration and verification processes are imperative for ap-

plying the mathematical model to find the most suitable model’s parameters. The model 
can simulate the behavior of our concerning water system.  For the GR2M model, only 
two parameters:  the production store (X1) and the exchange coefficient water (X2), must 
be calibrated and validated. With Microsoft Excel Solver's, it helps by giving an objective 
function and practical constraints, which can automatically solve the fair values of X1 
and X2 parameters for each runoff station. In this study, the GR2M model was calibrated 
and verified for 37 different runoff stations in the Southern Basins. The details of the in-
tervals for the calibration and verification of the model are presented in Table 1. It shows 
that the lowest and the highest periods used for running the GR2M model are 41 and 80 
months.  It can also more explain the used range regarding the range of calibration and 
verification periods of 22 and 48, and 10 and 39 months, respectively. 

Table 1. The periods of data used for the GR2M model’s calibration and verification. 

No. Code 
Basin 
Name 

Period (months)  
No. Code 

Basin  
Name 

Period (months) 

All Calibrate Validate  All Calibrate Validate 
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1 X.44 TSS 54 29 25  20 X.187 PWC 67 36 31 
2 X.67A TSS 41 23 18  21 X.191 PWC 67 45 22 
3 X.71B TSS 53 30 23  22 X.192 PWC 66 35 31 
4 X.90 TSS 65 45 20  23 X.196 PWC 67 36 31 
5 X.109 TSS 53 38 15  24 X.205 PWC 79 45 34 
6 X.113 TSS 65 37 28  25 X.207 PWC 79 49 30 
7 X.170 TSS 65 40 25  26 X.208 PWC 44 26 18 
8 X.174 TSS 65 39 26  27 X.209 PWC 68 46 22 
9 X.240 TSS 53 27 26  28 X.245 PWC 44 23 21 

10 X.53A PEC 80 41 39  29 X.56 PWC 55 36 19 
11 X.64 PEC 54 36 18  30 X.150 PWC 42 22 20 
12 X.158 PEC 55 37 18  31 X.228 PWC 65 35 30 
13 X.212 PEC 80 47 33  32 X.229 PWC 65 41 24 
14 X.55 PEC 41 25 16  33 X.234 PWC 54 35 19 
15 X.70 PEC 42 32 10  34 X.235 PWC 54 36 18 
16 X.149 PEC 41 30 11  35 X.236 PWC 56 29 27 
17 X.167 PEC 65 36 29  36 X.237 PWC 55 29 26 
18 X.203 PEC 41 26 15  37 X.239 PWC 55 28 27 
19 X.186 PWC 66 39 27        

Remark: TSS = Thale Sap Songkhla; PWC = Peninsular-West Coast; PEC = Peninsular-East Coast. 

5. Performance Criteria for evaluating the applicability of the GR2M Model 

In this study, three performance criteria were used for evaluating the applicability 
of the GR2M Model.  They included Nash-Sutcliffe Efficiency (NSE) , Correlation Coeffi-
cient (r), and Overall Performance Index (OPI) .  The details for each performance criteria 
can be delineated as shown the following: 

• Nash-Sutcliffe Efficiency (NSE) is a popular index used to tell model accuracy or ef-
ficiency-effectiveness of the model (Model Performance)  in estimating the desired value. 

As the equation below: 

NSE = 1 −
∑ (Qୡୟ୪ − Q୭ୠୱ)ଶ୬

୧ୀଵ

∑ (Q୭ୠୱ − Qഥ୭ୠୱ)ଶ୬
୧ୀଵ

 (6)

NSE is between - to 1. If the Nash values are close to 1, then the model results and the 
measurement results are similar. Which is considered the model of efficiency or accuracy 
in forecasting [32]. 

• Correlation Coefficient (r) is a simple linear regression equation. It is a simple linear 
regression equation can be used to estimate the Y as well. If X and Y are correlated well. 

The correlation coefficient between X and Y can be calculated from the following equa-
tion. 

r =
∑ (Q୭ୠୱ − Qഥ୭ୠୱ)(Qୡୟ୪ − Qഥୡୟ୪)

୬
୧ୀଵ

ට∑ (Q୭ୠୱ − Qഥ୭ୠୱ)ଶ୬
୧ୀଵ ∙ ට∑ (Qୡୟ୪ − Qഥୡୟ୪)

ଶ୬
୧ୀଵ

 
(7)

The r-value is between -1 and 1. The squares of r or R2 will always be between 0-1 and in 
this sense, if R2 is 0, then the two variables have no linear correlation. If R2 is equal to 1, 
then there is a completely linear correlation.  If the r value approaches 1, the model re-
sults and the measurement results are related. In addition, the plus sign (+) or minus sign 
can also tell the direction of the relationship of the data set.  The plus sign (+ ) means the 
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dataset is related. If the data obtained from the model is very valuable. The data obtained 
from the measurement is also very valuable. The minus sign (-) means the dataset is in the 
opposite relationship. If the information is valuable More information will be less [33]. 

• Overall Performance Index (OPI) 

OPI =
1

2
ቈ2 −

RMSE

Q୭ୠୱ,୫ୟ୶ − Q୭ୠୱ,୫୧୬

−
∑ (Q୭ୠୱ − Qୡୟ୪)

ଶ୬
୧ୀଵ

∑ (Q୭ୠୱ − Qഥ୭ୠୱ)ଶ୬
୧ୀଵ

቉ (8)

The OPI value is a criterion that indicates model performance. It is between - to 1. If the 
higher OPI is closer to 1, the model's performance is favorable [34]. 

Where; 𝐐𝐨𝐛𝐬  is the amount of runoff obtained from the measurement, 𝐐𝐜𝐚𝐥  is the amount 
of runoff obtained from the calculation,  𝐐ഥ𝐨𝐛𝐬  is the average runoff from the measure,  

𝐐ഥ𝐜𝐚𝐥  is the average runoff from the calculation,  𝐐𝐨𝐛𝐬,𝐦𝐚𝐱 is the runoff from the highest 
measurement,  𝐐𝐨𝐛𝐬,𝐦𝐢𝐧  is the runoff from the lowest measurements, and 𝐧 is the amount 
of information. 

6. Results and Discussion 

6.1. The results of calibrating and verifying the GR2M Model 
Table 2 shows the results of the model’s calibration and verification. It explicitly in-

dicated that the GR2M model could be applied for modeling monthly rainfall-runoff in 
the southern region of Thailand. The average performance criteria gave NSE, r, and OPI 
values for the calibration stage of 0.637, 0.825, and 0.757, respectively, and those values 
for the verification stage of 0.465, 0.750, and 0.639, respectively.  Lian, et al. [35]suggested 
that the model had a satisfactory prediction since NSE was in the range of 0.36 to 0.75. By 
obtaining an r-value of more than 0.70, it indicated a strong positive linear relationship 
between simulated and observed runoff [36]. Moreover, the OPI value of more than 0.60, 
showed the model had relatively high forecasting accuracy. The three performance crite-
ria previously mentioned emphasized a strong consistency between the runoff data ob-
tained from the measurements and model-simulated for our study. 

Considering the best top-three model performance stations obtaining from X. 64, 
X.70, and X.209, NSE, r, and OPI values for both calibration and verification processes 
gave more than 0.76, it showed the GR2M model performed quite satisfactorily for sim-
ulating monthly runoff.  Conversely, the worst top-three model performance stations 
were X.212, X.186, and X.192. They gave NSE, r, and OPI values for both calibration and 
verification processes less than 0.690.  However, some runoff stations, i.e. , X.205, X.229, 
and X.237, had a negative NSE value.  It represented overfitting models for those three 
runoff stations and could not be generally applied.  Although many attempts had been 
being made for the model’s calibration and verification processes, the quality and accu-
racy of measured hydrological and meteorological data is the most important thing to 
concern and check the consistency. 

Figure 4 illustrates the relationship between rainfall and runoff obtained from run-
ning the GR2M model. We herein present six examples of runoff stations, i.e., X.64, X.70, 
X.209, X.212, X186, and X.192.  The best top-three and the worst top-three model perfor-
mance stations are presented.  Likewise, the bar chart in blue represents rainfall 
time-series variation.  The line graphs in orange and green also show the observed and 
simulated runoff time-series variation, respectively. For both runoff time-series variation, 
the solid and dot lines mean calibration and validation periods, respectively.  The small 
difference runoff time-series value was observed for the best top-three model perfor-
mance stations.  The immense difference runoff time-series value was observed for the 
worst top-three model performance stations. However, both cases underestimated runoff 
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value; that is, the simulated runoff was lower than the observed runoff.  It could realize 
when using the calibrated and verified GR2M model, especially for water resources 
management and planning for rainy and dry seasons. 

Table 2. Results of calibrating and verifying the GR2M model 

No. Code 

Performance Criteria 
No. Code 

Performance Criteria 

Calibration Validation Calibration Validation 
NSE r OPI NSE r OPI NSE r OPI NSE r OPI 

1 X.44 0.942 0.973 0.949 0.465 0.705 0.657 20 X.187 0.563 0.756 0.668 0.349 0.654 0.548 

2 X.67A 0.978 0.99 0.974 0.719 0.852 0.795 21 X.191 0.177 0.492 0.505 0.664 0.831 0.749 

3 X.71B 0.688 0.954 0.793 0.605 0.797 0.733 22 X.192 b 0.165 0.462 0.493 0.167 0.670 0.451 

4 X.90 0.772 0.887 0.85 0.468 0.502 0.478 23 X.196 0.333 0.691 0.544 0.283 0.691 0.505 
5 X.109 0.925 0.987 0.94 0.577 0.849 0.696 24 X.205 c 0.518 0.755 0.693 -0.119 0.663 0.289 

6 X.113 0.736 0.91 0.821 0.479 0.796 0.648 25 X.207 0.758 0.878 0.798 0.836 0.920 0.856 

7 X.170 0.805 0.903 0.867 0.038 0.451 0.392 26 X.208 0.796 0.906 0.838 0.751 0.894 0.808 

8 X.174 0.725 0.975 0.821 0.385 0.731 0.61 27 X.209 a 0.880 0.943 0.896 0.870 0.935 0.883 

9 X.240 0.975 0.993 0.973 0.511 0.735 0.687 28 X.245 0.476 0.715 0.636 0.199 0.503 0.457 

10 X.53A 0.822 0.908 0.868 0.714 0.847 0.793 29 X.56 0.813 0.911 0.868 0.676 0.866 0.746 
11 X.64 a 0.787 0.888 0.838 0.941 0.970 0.942 30 X.150 0.833 0.915 0.871 0.226 0.623 0.461 
12 X.158 0.573 0.759 0.714 0.752 0.869 0.818 31 X.228 0.111 0.527 0.450 0.346 0.702 0.554 
13 X.212 b 0.383 0.668 0.594 0.173 0.431 0.467 32 X.229 c 0.564 0.794 0.730 -0.437 0.407 0.120 

14 X.55 0.654 0.903 0.761 0.987 0.996 0.980 33 X.234 0.854 0.934 0.890 0.713 0.882 0.773 

15 X.70 a 0.780 0.943 0.845 0.923 0.976 0.916 34 X.235 0.430 0.758 0.648 0.404 0.679 0.596 

16 X.149 0.557 0.912 0.702 0.957 0.986 0.950 35 X.236 0.801 0.896 0.857 0.513 0.719 0.647 
17 X.167 0.892 0.973 0.912 0.278 0.803 0.534 36 X.237 c 0.734 0.277 0.411 -0.305 0.497 0.202 

18 X.203 0.732 0.970 0.809 0.897 0.973 0.904 37 X.239 0.376 0.754 0.602 0.055 0.673 0.388 
19 X.186 b 0.400 0.660 0.580 0.405 0.680 0.620         

Maximum 0.978 0.993 0.974 0.987 0.996 0.987 

Minimum 0.730 0.277 0.411 -0.437 0.407 -0.437 

Average 0.637 0.825 0.757 0.005 0.750 0.005 

Standard Deviation 0.256 0.170 0.153 0.354 0.166 0.354 
Remark : TSS  =Thale Sap Songkhla; PWC  =Peninsular-West Coast; PEC  =Peninsular-East Coast . 

 a  the green bold italic text shows the best top-three model performance stations 
b the red bold italic text shows the worst top -three model performance stations 

  c the blue bold italic text shows the worst top-three model performance stations 
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Figure 4. The relationship between rainfall and runoff of models (GR2M) stations. 

6.2. The optimal values of production store capacity (X1) and groundwater exchange rate (X2) 
Figure 5 shows suitable X1 and X2 parameters of the GR2M model for each runoff 

station obtained from the model’ s calibration and verification.   The production store 
capacity ( X1)  value results ranged from 2. 00 mm to 10. 00 mm.  It showed a spatial 
variation of X1 value, and its values ranged from the minimum (2.00 mm) and maximum 
(10.00 mm)  values. The average and standard deviation values of X1 were 5.71 mm, and 
2.49 mm, respectively.  Furthermore, the skewness and kurtosis values of X1 were -0.52 
and -1.03, respectively.  It could physically explain river basin characteristics in terms of 
production store capacity ( X1)  that it had left skew, platykurtic, and non-symmetric 
distributions. The groundwater exchange rate (X2) value results ranged from 0.54 to 1.00. 

Those X2 values mostly reached the maximum value (1.00) .  The average and standard 
deviation values of X2 were 0. 93 and 0. 12, respectively.  Moreover, the skewness and 
kurtosis values of X2 were -2.01 and 3.69, respectively.  It could physically explain river 
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basin characteristics in terms of the groundwater exchange rate (X2) that it had left skew, 
leptokurtic, and non-symmetric distributions.  The positive value of groundwater 
exchange rate (X2) displayed no groundwater flows outside the basin. 

 

 
(a)           (b) 

Figure 5. The suitable X1 and X2 parameters of the GR2M model: (a) Production Store: X1, and (b) Groundwater exchange rate: X2 

6.3. The spatial distribution of X1 and X2 values using Inverse distance weighting (IDW) method 
Figure 6 shows the spatial distribution of X1 and X2 values using the IDW method. 

As seen from Figure 5 (a), the low production store capacity (X1) value (yellow and green 
color)  was generally located on the Peninsular-West Coast.  The major area roughly was 
covered by the average production store capacity ( X1)  value (5.71 mm) , as shown that 
most areas were a light blue color. Only the northern part of Surat Thani province shows 
the high production store capacity (X1)  value, which shows the dark blue zone.  For the 
groundwater exchange rate (X2) as depicted in Figure 5 (b), most areas were governed by 
the dark blue zone.  It indicated that most areas in the southern basin, Thailand, had a 
high groundwater exchange rate (X2).  Furthermore, it agreed to the average X2 value of 
0.93. The northern part of Surat Thani province and some areas of Chumporn, Trang, and 
Satun provinces show the low groundwater exchange rate (X2) value, as portrayed in the 
yellow and green zone. In the case that we do not have a measured gauged or ungauged, 
we can use these figures to roughly determine the values of X1 and X2, and then if we 
know areal rainfall and evaporation, we also can estimate the runoff via the GR2M 
model. 
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(a)           (b) 

Figure 6. The spatial distribution of X1 and X2 values using IDW method: (a) Production Store: X1, and (b) Groundwater exchange 
rate: X2 

7. Sensitivity Analysis 

The sensitivity analysis [10]  was experimented on in our research work to under-
stand the effects of the model’s two parameters: X1 and X2.  We randomly selected three 
runoff stations (X.44, X.64, and X.240) as the representative for all 37 runoff stations due to 
the experiment's sensitivity.  By fixing the optimal X2 value obtained from calibration 
and verification stages and then varying the X1 value in its range from the minimum to 
maximum (2 mm.  to 10 mm.)  [30,31] , we received the results of X1’s sensitivity analysis. 

Similarly, by fixing the optimal X1 value obtained from calibration and verification 
stages and then varying the X1 value in its range from the minimum to maximum (-1 to 
1)  [30,31], we got the results of X2’s sensitivity analysis.  It was rarely reported about the 
sensitivity analysis for the GR2M model’s two parameters to our best knowledge. It was 
the early attempt to conduct their sensitivity analysis.  As evidentially presented in Fig-
ure 7, The X1 value was susceptible.  Apart from the optimal value obtained from the 
calibration and verification stages, the other value gave a lower model’ s performance. 

Considering the X2 value, we found that the higher value (approximately more than 0.90) 

was trial, it gave the higher model’s performance.  It also confirmed and corresponded 
with the results, as found in Figures 5 and 6. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 January 2021                   doi:10.20944/preprints202101.0605.v1

https://doi.org/10.20944/preprints202101.0605.v1


 

 

 

 

Figure 7. The sensitivity analysis of the GR2M model’s two parameters: X1 and X2. 

8. Conclusion 

With only two parameters, namely, the production store (X1) and the exchange coef-
ficient water (X2), our research work explicitly indicated GR2M model could be applied 
for modeling monthly rainfall-runoff in the southern region of Thailand. The model's 
calibration results for 37 runoff stations gave the average of Nash, r, and OI of 63.74, 
0.825, and 0.757, and those values for verification of 46.46, 0.750, and 0.639, respectively. 

The range of X1 was between 2.00 and 10.00 and the range of X2 was between 0.54 and 
1.00. It was susceptible to the X1 value. The other value is given lower model efficiency, 
apart from the optimum value obtained from the calibration and verification phases. We 
also found that the higher value of X2 (approximately more than 0.90) gave the higher 
model's performance. Personnel concerning water resources planning and management 
can apply our work for a guideline for utilizing the GR2M model to determine monthly 
runoff in other runoff stations located in the southern region, Thailand. It is because there 
are similar hydrological, geological, and topological basin characteristics. For more GR2M 
model's reliability, a more extended period of recorded hydrological data is required and 
more runoff station installation to cover the variety of existing watershed characteristics. 
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