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Abstract 
 

Additive Manufacturing (AM) simplifies the fabrication of complex geometries. Its scope 

has rapidly expanded from the fabrication of pre-production visualization models to the 

manufacturing of end use parts driving the need for better part quality assurance in the additively 

manufactured parts. Machine learning (ML) is one of the promising techniques that can be used to 

achieve this goal. Current research in this field includes the use of supervised and unsupervised 

ML algorithms for quality control and prediction of mechanical properties of AM parts. This paper 

explores the applications of supervised learning algorithms - Support Vector Machines and 

Random Forests. Support vector machines provide high accuracy in classifying the data and is 

used to decide whether the final parts have the desired properties. Random Forests consist of an 

ensemble of decision trees capable of both classification and regression. This paper reviews the 

implementation of both algorithms and analyzes the research carried out on their applications in 

AM. 
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Introduction 
 

Additive Manufacturing is a process of fabricating a component in a layer by layer manner 

directly from 3D CAD models by melting or sintering polymers or metal alloys using different 

energy sources such as laser, electron beam, arc, etc. This technology has broadened its 

applications in producing end-use parts because of the advantages such as the ability of fabricating 

complex geometries, use of diverse materials, and capacity of achieving desired mechanical 

properties [1]. 

 

To achieve perfect structural integrity is the basic requirement in fabricating any end use 

part. The Generation of defects in the part during the process results in wastage of time, money, 

and material. Additive manufacturing faces major challenges in in-situ defect detection and 

process control. Machine learning (ML) methods offer an opportunity to detect the defects in real 

time, which prevents material wastage and reduces the efforts for trial and error.  

Among different types of machine learning algorithms, supervised learning algorithms are 

used for classification and regression purposes. In this algorithm, the training data set contains one 

or more inputs and labeled desired outputs. First, the model is trained to learn a mapping 

function from inputto output using a training data set so that the function can predict the output 

for new data input. Next, the performance of the model is checked by generating predicted labels 

of the testing data. Last, the model is cross-validated for performance evaluation in terms of 
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accuracy, precision, recall, etc. Output variable for classification problems is categorical, whereas 

regression problems have continuous real output variables [2]. 

There are different supervised learning algorithms. This work reviews and analyzes the 

applications of two supervised ML algorithms- support vector machine and random forests. These 

algorithms were chosen as they represent the majority of research carried out using supervised 

learning algorithms. Neural networks were excluded to limit the scope of this review. 

 

Supervised Machine Learning Algorithms 

Support Vector Machine 

Support Vector Machine (SVM) is one of the powerful supervised machine learning 

algorithms which can be used for classification as well as regression. 

 

In classification problems, this algorithm is used to find a decision boundary which can 

properly separate unseen data into two or more categories with the help of training data. 

 

Figure 1: Classification of linearly separable data by support vector machine algorithm [2] 

 

For linear classification of n-dimensional data into two classes, a hyperplane with (n-1) 

dimensions is generated. Figure 1 shows the linear classification of two-dimensional data. 

Hyperplane for this case is a line which is defined as, 

wT x  + b  =  0, (1) 

 

Where, ‘w’ is (n-1) dimensional vector in the direction normal to the hyperplane and ‘b’ is 

a bias term. The essential condition to reduce the possible error in data separation is that the 

hyperplane should be at the maximum distance from the closest data points of each of the classes. 

Since it is a supervised machine learning algorithm classes are labelled as (y = +1) and (y = -1) 

and data distributed in two classes lies either on the left of (y = +1) or on the right side of (y = -1). 

Therefore, two boundaries, to ensure the data separability, can be defined as given in equation 2: 
 

T { 
for yi  = 1  ::;   -1, 

w x + b = � 1, 
for yi = -1 

} 
(2) 
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And the optimal hyperplane lies in between these two boundaries. The distance between these 

boundaries is called margin. To find the best hyperplane margin should be maximized using 

equation 3. [2] 
 

I(wT x + b - 1) - (wT x + b + 1)I 2 
 

 

 (3) 
d(w, b; x) = 

IIwII 
= 

IIwII 

In case the data is not linearly separable due to some similar features, training data in the original 

input space (x) is transformed into a higher dimensional feature space φ(x) using a kernel function. 

 

(x) ➔ φ(x) (4) 

 

This conversion from input to feature space provides the ability to generate a linear hyperplane in 

the feature space as shown in Figure 2. 

 

Figure 2: Conversion from the input space to feature space [2] 
 

The hyperplane, in this case, maximizes the margin and minimizes the classification error function. 

Kernel functions used for different classifiers are as shown in Table 1. [2] 

 
Type of Classifier Kernel function used 

Linear K (xi, xj) = (xT xj) ρ 
i 

Complete polynomial of degree ρ K (xi, xj) = (xT xj +1) ρ 
i 

Multilayer perceptron K (xi, xj) = tanh (γ xT xj + μ) 
i 

Gaussian RBF K (xi, xj) = exp (− [||xi − xj ||
2] /2σ2) 

Dirichlet K (xi, xj) = sin((n+1/2) (xi−xj)) /2 sin ((xi−xj)/2) 

Sigmoid K (xi, xj) = tanh (α (xi · xi) + ϑ) 
Table 1: Types of the SVM classifier 

 

When input and output data are defined in the training step, SVM determines the Lagrange 

multipliers. Non-zero values of the Lagrange multiplier determine the support vector which in turn 

determines the margin of each class to generate optimal hyperplane (decision function). 
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Support vector machine needs smaller amounts of training data. Also, it is robust against 

the error of models and has a higher computational efficiency compared to other supervised 

algorithms. Due to these advantages, it has various applications in various problems such as text 

classification, pattern recognition, etc. 

 
Applications of SVM in Additive Manufacturing 

 

In additive manufacturing, the SVM algorithm have been demonstrated in the following areas: 

 
1. Defect Detection: 

 

Additively manufactured components often have defects such as the incomplete fusion of the 

powder, porosity, cracks, inclusions, etc. These defects have a strong impact on the mechanical 

properties of the component. Porosity is one of the defects of major concern [3]. The existing 

porosity detection techniques are either visual based or simulation-based or based on post- 

manufacturing characterization. Vast research has been carried out on in-situ porosity detection 

using various sensors. Support vector machine provides great accuracy in in-situ porosity 

detection. Table 2 shows that it is used to classify the builds in two classes as defective or flawless 

using the input data from different sensors such as a high-speed camera, IR camera, pyrometer, 

etc. The following can be used as input data and class labels for training SVM model. 

 

Sr. 

No 

Input data Modification in SVM/Kernel used Class labels Ref 

. 

1. Layer wise Images Ensemble classifier Anomalous/ nominal [4] 

2. RGB values of images 
at a checkpoint 

Increasing no. of checkpoints Bad/good [6] 

3. Surface flatness  Flat/ Non-flat [9] 

4. Thermal History Linear, Gaussian, Polynomial Kernel Normal/abnormal [5] 

Table 2: Applications of SVM in defect detection 

Different measures are taken in order to improve the performance of SVM in terms of 

accuracy. In [4], A linear SVM ensemble classifier fuses visual information extracted from high- 

resolution layerwise images of build surface in PBF process captured from eight different sources. 

This classifier is trained using the labels ‘anomalous’ and ‘nominal’ automatically acquired from 

the post-build CT scans. An ensemble classifier combines the outputs from individual classifiers 

which enables multiple in-situ sensor modalities to be utilized for quality assessment. In this work, 

multiple images collected under different lighting conditions for each layer serve as sensor 

modalities to increase the accuracy of the model to 85% compared to the accuracy of 65% if 

individual classifiers are used. 

 

[5] Develops a methodology for DLD process based on functional principal component 

analysis (FPCA) to extract key characteristics from melt pool thermal images by converting them 

to morphological model. Using different supervised learning algorithms, data is classified into 

‘normal’ and ‘abnormal’ melt pool labels acquired via X-ray Tomography. To classify the data 
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using SVM, linear, polynomial and Gaussian kernel functions are used. SVM provides the highest 

value of the accuracy measure (28.32%) in correctly predicting abnormal data points. Also, it is 

found that the polynomial kernel function provides superior performance compared to other 

kernels. The method carried out in this study can be applied to other processes such as PBF or 

EBM, which have similar energy- material interaction. 

 

Another study, [6], uses SVM to detect any possible defects occurring during the FDM process. 

In this study, the algorithm classifies the parts as ‘good’ or ‘bad’ using the images taken at specific 

check points through the automated image capturing process. For training the model, section 

averages (of RGB values) of the images calculated at checkpoints are loaded as input to the vectors 

of training models. The method is capable of detecting both completion failure defects such as 

filament running out or printing stopped in the mid-progress and structural or geometrical defects. 

 
2. Fault diagnosis: 

 

The precision of 3D printing is influenced by many factors. One of the most important factors 

is the health of a 3D printer. Hence it is necessary to monitor the condition of components of 3D 

printer. SVM can be efficiently used for the fault diagnosis of 3D printers. A study [7] on fault 

diagnosis of delta 3D printer proposes Transfer support vector machine (TSVM) technique which 

is first of its kind. Figure 3 shows that in this hybrid approach, after preprocessing the attitude 

signals, data is divided into source domain and target domain. Next, cross-domain features are 

extracted from a source domain labeled-data and target domain unlabeled-data by performing 

transfer component analysis. Later SVM is used for classification using this new data as training 

data. This technique can better distinguish different fault conditions. 

Figure 3: Flowchart for Transfer Learning [7] 
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Another study [8] employs the least square support vector machine (LS-SVM) for the fault 

diagnosis modelling. Micro-electro-mechanical systems (MEMS) based attitude sensors are used 

for attitude monitoring. As shown in Figure 4, data is collected in 12 different condition patterns 

and fed to the LS-SVM model. The model achieves the highest accuracy of 94.44% in this case of 

nonlinear multi-classification issue. 
 

 

 

 

 
3. Process maps: 

Figure 4: Flowchart for LS-SVM method [8] 

 

In addition to the sign of the decision function, its value plays an important role. [9] Has found 

that the value of decision function has a physical meaning which can be considered to generate a 

process map for the additive manufacturing process. This study uses SVM to classify the parts 

built by the EBM process in two classes ‘Flat’ or ‘Non-flat’. According to the study, the probability 

of obtaining an AM part with a flat surface increases as the value of the decision function increases. 

It is assumed that surface flatness reflects the energy balance between the input energy and energy 

loss and is related to internal defect generation. Thus, the value of decision function can be 

interpreted as a measure of porosity generation. This method uses a small amount of data to 

determine the process window and can be used to optimize the process parameters. 
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Random Forests 

Random forests are another supervised machine learning method used to build predictive 

models for both classification and regression problems. Random forest algorithm uses an ensemble 

of randomly generated decision trees to arrive at the best possible answer. 

 

Figure 5 depicts a typical decision tree. Decision tree creates a model to recursively 
subdivide the data. The aim while choosing every single division in the decision tree, starting from 

the root node, is to maximize the amount of information gain obtained by that division. Information 
gain is calculated by finding out the Gini impurity or the entropy gain for that division. Gini 

impurity is basically the probability (P) of incorrect classification of the ith class. Gini impurity for 

each node with ‘k’ classes can be found out using the following equation: 
 

k 

Cini impurity = L 1 - (P(i))2 
i=1 

 

(5) 

 

The algorithm, starting from a root node, keeps dividing recursively until a leaf node is 

formed as shown in Figure 5. The node is called a leaf node if a predefined termination condition 

is met or the information gain from that division is zero. This algorithm works well with a 

completely different scale features, or a mix of the binary and continuous feature. However, the 

model tends to overfit and provides poor generalization performance [10]. 
 

 

 

 
Figure 5: Decision Tree 

Random forests address this problem by creating an ensemble of decision trees. As shown 

in Figure 6, every random forest is built using two methods- bootstrap aggregating (bagging) and 

random subspace method. In bagging, bootstrap datasets are created which have the same size (n) 

as the original data set. The no. of these bootstrap datasets is the same as the no. of trees (B) in 

random forest. These datasets are created from random resampling of data with-replacement due 

to which datasets can have duplicate entries as well as missing entries. This process is called 

bagging. Next, to create a decision tree/ classifier, ‘m’ sub features are randomly selected out of 

‘M’ possible features in the bootstrapped dataset. In most cases, m=✓M. This is called a random 

subspace method. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2021                   



 

 
 

Figure 6: Flowchart of the Random Forest Algorithm 

For a random sample (Xb, Yb), for b= 1 to B, bagging and feature selection are carried out 

B times and a classification or regression tree is trained to have B possible outcomes. The output 

of the random forest is either the majority of the outputs from all decision trees for classification 

problems or the arithmetic mean of the outputs of all decision trees for regression problems. 

Accuracy of random forests can be controlled by choosing the right number of features that 

are selected and correct depth for decision trees. Since each decision tree works on a different 

dataset due to bootstrap sampling, this ensemble method decreases the chances of overfitting [11] 

 
Applications of Random Forests in Additive Manufacturing 

 

Being one of the most accurate learning algorithms, random forests algorithm has applications 

in defect detection, defect prediction which improves the part quality as well as helps in detecting 

the cyber physical attacks in additive manufacturing. 

 
1. Surface Roughness Prediction 

In [12] the algorithm is used to train the model that predicts surface roughness of the parts 

produced by the FDM process. The study applies feature level fusion process for feature extraction 

from multiple sensor data such as the temperature of the table and extruder, vibrations of table and 

extruder, etc. to combine them into a single feature vector. This vector is input to the model which 

by using regression trees predicts the value of surface roughness. Also, models with individual 

sensor inputs are also generated. However, sensor fusion proves to be a more accurate method with 

the lowest cross validation error of 5.91%. 

 
2. Detection of attacks on cyber-manufacturing systems 

[13] attempts to use a vision-based system to detect intentional attacks on additive 

manufacturing processes, employing random forests algorithm. Due to malicious attacks on AM 
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systems, final products can result in defective infills without affecting the exterior and 

consequently can produce malicious defective parts without any warning. Random forest is used 

to accurately classify the in-process images parts as defective and non-defective in order to detect 

the anomalies during the process. 
 

 

 
Figure 7: Procedure for image classification using the random forest algorithm 

 

Figure 7 shows the general procedure for image classification for detecting malicious 

attacks based on grayscale values of the images, mean, STD deviation, and no. of pixels with a 

grayscale value above a certain threshold are used as the input features for the random forest 

algorithm. For accurate feature extraction anomaly detection techniques are embedded with a 

random forest method which is proved to be advantageous as the detection accuracy is increased 

almost by 5% [14]. 

 

Summary and Conclusion 
 

The support vector machine algorithm works by generating a hyperplane that can divide 

the data into two or more classes. The hyperplane generated needs to be tuned in order to perfectly 

classify the data. This algorithm is successfully used for detecting part defects, diagnosing faults 

in 3D printers and generating process maps. The accuracy of this algorithm can be increased using 

different methods for converting input data from the input space to feature space such as transfer 

component analysis, combining data from multiple sensor modalities etc. 

Random forest algorithm proves to be another powerful classifier. It reduces the chances 

of overfitting and can be used in additive manufacturing as it can work with missing data and does 

not require scaling. It has been used in research on surface roughness prediction as well as in 

detecting malicious defects caused by the attacks on cyber manufacturing systems. Accuracy of 

this algorithm depends upon the no. of decision trees used and no. of levels of each decision tree. 

 

This review shows that, in additive manufacturing, machine learning basically has been 

applied for defect detection and prediction purposes. Table 3 summarizes the applications of SVM 

and RF in different additive manufacturing processes for different purposes. 

 

Aim Process Material ML 
technique 

References 

Defect Detection FDM, 

PBF 

ABS, PLA, 
Stainless steel 

SVM [6], 
[4] 

Surface topology FDM, 
EBM 

PLA, 
CoCr Alloy 

RF, 
SVM 

[12], 
[7] 

Porosity Prediction DLD Ti-6Al-4V SVM [5] 
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Fault Diagnosis in 3D 
printers 

FDM  SVM [7], [8] 

Cyber Attack Detection FDM  RF [13], [14] 

Table 3: Summary of applications of ML in AM 

 

Figure 8 shows the areas of the applications of both algorithms. While selecting an 

algorithm for any application there are different parameters that should to be taken into 

consideration. The input dataset, the method of data preprocessing as well as training the model, 

dataset taken as ground truth, computation power of the system, the time required for computation 

are some of the parameters. Thus, the choice of the algorithm is highly application specific which 

makes it difficult to compare between the two algorithms. For example, as shown in Figure 8, the 

only common area of research, under the scope of this review, which uses both SVM or RF is 

regarding the surface topology of the AM parts. However, the performance of both algorithms 

cannot be compared as SVM is employed for classification and RF is used for regression purpose. 
 

Figure 8: Areas of application of ML algorithms 

 
 

More research is required in the metal AM processes as till now the majority of studies 

were conducted on the applications of SVM and RF in various fields of the FDM process. Within 

the scope of this review, it can be stated that SVM is preferred in comparison to RF. This review 

is limited to the study of only two supervised learning algorithms. Within the scope of the review, 

both algorithms prove to be highly accurate in the classification of parts as defective and non- 

defective. This makes them eligible for the application of detecting the generation of defects in 

real time. 

 

References: 
 

1. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., … 

Zavattieri, 

P. D. (2015). The status, challenges, and future of additive manufacturing in engineering. 

Computer-Aided Design, 69, 65–89.doi:10.1016/j.cad.2015.04.001 

2. Gibson, I., Rosen, D. W., and Stucker, B., 2015, Additive Manufacturing Technologies: 

3D Printing, Rapid Prototyping, and Direct Digital manufacturing, 2nd, Springer, New 

York, pp. 1–498. 

3. Kim, Felix H, and Shawn P Moylan. “Literature Review of Metal Additive Manufacturing 

Defects.” 2018, doi:10.6028/nist.ams.100-16. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2021                   



 

4. Gobert, Christian, et al. “Application of Supervised Machine Learning for Defect Detection 

during Metallic Powder Bed Fusion Additive Manufacturing Using High Resolution 

Imaging.” Additive Manufacturing, vol. 21, 2018, pp. 517–528., 

doi:10.1016/j.addma.2018.04.005. 

5. Khanzadeh, Mojtaba, et al. “Porosity Prediction: Supervised-Learning of Thermal History 

for Direct Laser Deposition.” Journal of Manufacturing Systems, vol. 47, 2018, pp. 69– 

82., doi:10.1016/j.jmsy.2018.04.001. 

6. Delli, Ugandhar, and Shing Chang. “Automated Process Monitoring in 3D Printing Using 

Supervised Machine Learning.” Procedia Manufacturing, vol. 26, 2018, pp. 865–870., 

doi:10.1016/j.promfg.2018.07.111. 

7. Guo, Jianwen, et al. “Fault Diagnosis of Delta 3D Printers Using Transfer Support Vector 

Machine With Attitude Signals.” IEEE Access, vol. 7, 2019, pp. 40359–40368., 

doi:10.1109/access.2019.2905264. 

8. He, Kun, et al. “Intelligent Fault Diagnosis of Delta 3D Printers Using Attitude Sensors 

Based on Support Vector Machines.” Sensors, vol. 18, no. 4, 2018, p. 1298., 

doi:10.3390/s18041298. 

9. Aoyagi, Kenta, et al. “Simple Method to Construct Process Maps for Additive 

Manufacturing Using a Support Vector Machine.” Additive Manufacturing, vol. 27, 2019, 

pp. 353–362., doi:10.1016/j.addma.2019.03.013. 

10. Breiman, Leo. Machine Learning, vol. 45, no. 1, 2001, pp. 5–32., 

doi:10.1023/a:1010933404324. 

11. Müller Andreas Christoph, and Sarah Guido. Introduction to Machine Learning with 

Python: a Guide for Data Scientists. Oreilly Et Associates Inc, 2016. 

12. Wu, Dazhong, et al. “Surface Roughness Prediction in Additive Manufacturing Using 

Machine Learning.” Volume 3: Manufacturing Equipment and Systems, 2018, 

doi:10.1115/msec2018-6501. 

13. Wu, Mingtao, et al. “Detecting Malicious Defects in 3D Printing Process Using Machine 

Learning and Image Classification.” Volume 14: Emerging Technologies; Materials: 

Genetics to Structures; Safety Engineering and Risk Analysis, 2016, 

doi:10.1115/imece2016-67641. 

14. Wu, Mingtao, et al. “Detecting Attacks in CyberManufacturing Systems: Additive 

Manufacturing Example.” MATEC Web of Conferences, vol. 108, 2017, p. 06005., 

doi:10.1051/matecconf/201710806005. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2021                   


