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Abstract: It has been recognized for some time that even for perfect conductors, the interaction
Casimir entropy, due to quantum/thermal fluctuations, can be negative. This result was not
considered problematic because it was thought that the self-entropies of the bodies would cancel this
negative interaction entropy, yielding a total entropy that was positive. In fact, this cancellation seems
not to occur. The positive self-entropy of a perfectly conducting sphere does indeed just cancel the
negative interaction entropy of a system consisting of a perfectly conducting sphere and plate, but a
model with weaker coupling in general possesses a regime where negative self-entropy appears. The
physical meaning of this surprising result remains obscure. In this paper we re-examine these issues,
using improved physical and mathematical techniques, partly based on the Abel-Plana formula,
and present numerical results for arbitrary temperatures and couplings, which exhibit the same
remarkable features.
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1. Introduction

It is ordinarily expected that entropies of closed systems should be positive. This follows from the
Boltzmann definition in terms of the number of microstates Ω, so the entropy is given as S = kB ln Ω
(kB is the Boltzmann constant). Quantum-mechanically, in terms of the density operator ρ, the entropy
is S = −kB Tr ρ ln ρ. But there are intriguing possibilities of negative entropy [1–3].

Here we are considering quantum-fluctuational or Casimir free energies and entropies. For two
parallel conducting plates possessing nonzero resistivity, the entropy corresponding to the interaction
free energy vanishes at zero temperature, as required by the Nernst heat theorem (third law of
thermodynamics). However, for sufficiently low temperatures, compared to the inverse of the plate
separation, a region of negative interaction entropy emerges [4]. But the expectation at that time was
that the total entropy must be positive. Negative Casimir interaction entropies also occurred without
dissipation between a sphere and a plane [5–8], both perfectly conducting, or between two perfectly
conducting spheres [9,10]. This was systematically explored in the dipole regime [11,12].

But, indeed, it turned out that the sphere-plane problem was resolved by considering the
self-entropy of the plate and the sphere separately. The former vanishes in the perfectly conducting
limit, but the latter is just such as to cancel the most negative contribution of the interaction entropy
[13,14]. The sphere-sphere entropy is then seen to be clearly positive as well.
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However, going beyond the case of a perfectly conducting sphere has proved to be more subtle.
We carried out a systematic treatment for an imperfectly conducting sphere, modeled by a δ-function
sphere, or a “plasma-sphere,” described by the potential V = ε − 1 = λ(1 − r̂r̂), (in terms of polar
coordinates based on the center of the sphere), where the transversality condition is required by
Maxwell’s equations. We take the coupling λ to be frequency dependent, according to the plasma
model, λ = λ0/(ζ2a), where ζ = −iω is the Euclidean frequency, and a is the radius of the sphere.
The dimensionless coupling constant λ0 is necessarily positive. In the limit of λ → ∞ we recover
the entropy for a perfectly conducting sphere first obtained by Balian and Duplantier [15]. But for
sufficiently weak coupling, even at high temperatures, we found that the entropy could turn negative
[16,17]. (The results found there largely agreed with those found subsequently by Bordag and Kirsten
[18,19].)

Since the transverse electric contribution to the entropy is always negative, and presents no
difficulties in its evaluation, in this paper we concentrate on the transverse magnetic free energy,
FH . One feature of the analysis here is that we always subtract an infrared sensitive, but unphysical
term, which we only subtracted in a ad hoc manner in Ref. [16]. The most salient element of our new
treatment, however, is the emphasis on the Abel-Plana formula, and the numerical computations based
upon that formulation. In the next section we give the general formulas for this model, and recast the
result in Abel-Plana form, which expresses the finite temperature-dependent part of free energy in
terms of a mode sum over the phase of a quantity involving spherical Bessel functions. Then in Sec. 3
we specialize to weak coupling, where the mode sum can be carried out explicitly for the lowest-order
term. The result agrees with that found in Ref. [16]. The low-temperature limit is considered in Sec. 4;
we extract coincident free energies using both the Euclidean and the (real-frequency) Abel-Plana
formulations. We briefly review the previous result for high temperatures in Sec. 5. Finally, we present
general numerical results in Sec. 6, which, for coupling and temperature of order unity (in units of 1/a)
turn out to be remarkably similar to those found for low temperature. Further numerical explorations
have shown how the analytic asymptotic behaviors are realized. Concluding remarks round out the
paper.

In this paper with adopt natural units, with h̄ = c = kB = 1.

2. Transverse magnetic free energy of plasma-shell sphere

We concentrate on the transverse-magnetic (TM) contribution to the free energy of a δ-sphere,
since the transverse electric (TE) part seems unambiguous, and always yields a negative contribution
to the entropy. As derived in Ref. [16] the TM free energy is given by

FH =
T
2

∞

∑
n=−∞

einατ̃
∞

∑
l=1

(2l + 1)Pl(cos δ) ln
[

1− λ0
α|n|e′l(α|n|)s

′
l(α|n|)

α2n2 + µ̃2

]
, (1)

where τ̃ = τ/a→ 0 is the dimensionless time-splitting regulator, δ→ 0 is the angular point-splitting
regulator, and α = 2πaT, so that nα = aζn, where ζn is the Matsubara frequency. Further we have
inserted an infrared regulator µ̃ = µa, modeled as a photon mass. Here the modified Ricatti-Bessel
functions are

sl(x) =
√

πx
2

Il+1/2(x), el(x) =

√
2x
π

Kl+1/2(x). (2)

We might hope to eliminate the µ̃ regulator dependence, formally, by subtraction of an unphysical
coupling-independent term:

FH =
α

2πa

∞

∑
n=0

′ cos(nατ̃)
∞

∑
l=1

(2l + 1)Pl(cos δ)
(

ln
[
(nα)2 + µ̃2 − λ0 fH(l, nα)

]
− ln

[
(nα)2 + µ̃2

])
, (3)
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where the prime on the summation sign means that the n = 0 term is to be counted with half weight,
and we have abbreviated fH(l, x) = xe′l(x)s′l(x). The subtracted term was evaluated in Ref. [16],
because ∑∞

l=1(2l + 1)Pl(cos δ) = −1:

Fsub
H =

T
2

∞

∑
n=−∞

einατ̃ ln
[
n2α2 + µ̃2

]
= − 1

2τ
+ T ln

µ

T
. (4)

We discarded this term as unphysical (it makes no reference to the properties of the sphere) frequently
throughout Ref. [16], although it was not done systematically. Now we propose doing so. Then we can
recast the remainder of FH using the Abel-Plana formula, which reads

∞

∑
n=0

′g(n) =
∫ ∞

0
dt g(t) + i

∫ ∞

0
dt

g(it)− g(−it)
e2πt − 1

. (5)

Applied to Eq. (3) after the omission of the subtracted term (4), we see that the first integral gives a
contribution independent of T, which is the (divergent) zero-temperature TM energy of the sphere
[20]. We are here only concerned with the temperature-dependent part, which we can rewrite as

∆FH = − 1
πa

∫ ∞

0

dx
e2πx/α − 1

∞

∑
l=1

(2l + 1) arg[−x2 − λ0 fH(l, ix)]. (6)

Here, we have dropped the regulators because this expression is finite.
The definition of the argument function is somewhat subtle. We choose it to be defined by the

usual arctangent,

arg(z) = arctan
(
=z
<z

)
, −π

2
< arctan y ≤ π

2
, (7)

which is discontinuous when <z passes through zero. This choice is necessary in order to have
a well-defined limit at zero temperature. (See Section 4.2.) It also guarantees that the free energy
vanishes for zero coupling, which would seem an obvious physical requirement. Therefore, the
argument appearing in Eq. (6) is

arg[−x2 − λ0 fH(l, ix)] = arctan

(
λ0

π
2 J 2

ν (x)
−x2 + λ0

π
2 Jν(x)Yν(x)

)
, ν = l +

1
2

. (8)

The functions appearing here are, in terms of ordinary Bessel functions Jν and Yν,

Jν(x) = −
√

2x
π
[xjl(x)]′ = (ν− 1/2)Jν(x)− xJν−1(x), (9a)

Yν(x) = −
√

2x
π
[xyl(x)]′ = (ν− 1/2)Yν(x)− xYν−1(x), (9b)

jl , yl being the corresponding spherical Bessel functions.
The ultraviolet convergence of ∆FH in Eq. (6) in x is assured by the exponential factor, but the

convergence in l requires further investigation. It is easily checked that

fH(l, ix) ∼ −ν

2
as l → ∞, (10)

so
arg[−x2 − λ0 fH(l, ix)]→ 0, as l → ∞. (11)
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3. Weak coupling

With the above definition of the argument function, we can readily work out the weak coupling
expansion of the free energy. The leading term in λ0 is obtained from the first term in the expansion of
the arctangent, so

∆F(1)
H =

λ0

πa

∫ ∞

0

dx
x

1
e2πx/α − 1

∞

∑
l=1

(2l + 1)
(
[xjl(x)]′

)2 . (12)

The sum on l can be carried out using the addition theorem for spherical Bessel functions

∞

∑
l=0

(2l + 1)jl(x)jl(y) =
sin(x− y)

x− y
. (13)

Then, the l sum in Eq. (12) is

lim
y→x

∂

∂x
∂

∂y
xy
[

sin(x− y)
x− y

− j0(x)j0(y)
]
= 1 +

x2

3
− cos2 x, (14)

since j0(x) = sin x
x . This yields the same result found in Ref. [16], Eq. (5.34),

∆F(1)
H =

λ0

πa

∫ ∞

0

dx
x

1
e2πx/α − 1

(
sin2 x +

x2

3

)
=

λ0

4πa

[
ln
(

sinh α

α

)
+

α2

18

]
, (15)

found there both using the Abel-Plana (real frequency) and the Euclidean frequency formulations.

4. Low temperature

4.1. Euclidean frequency argument

Let us first write the subtracted free energy in the original point-splitting form:

∆FH =
T
2

∞

∑
n=−∞

eixτ̃
∞

∑
l=1

(2l + 1)Pl(cos δ) ln[x2 − λ0 fH(l, x)], (16)

Here x = 2πnaT = nα. So the low temperature limit corresponds to small x. Using the small-argument
expansion for the Bessel functions,

fH(l, x) ∼ − l(l + 1)
2l + 1

− 3 + 2l(l + 1)
(4l2 − 1)(2l + 3)

x2 + O(x4)− x2l+1
[
(−1)l2−2(l+1) (l + 1)2π

Γ(l + 3/2)2 + O(x2)

]
,

x � 1, (17)

so it is seen that the leading odd term in x arises only from the l = 1 term, where

fH(1, x) ∼ −2
3
− 7

15
x2 +

4
9

x3 + O(x4), x � 1, (18)

so the logarithm in the free energy is

ln[x2 − λ0 fH(1, x)] ∼ ln
2λ0

3
+

(
3

2λ0
+

7
10

)
x2 − 2

3
x3 + O(x4), x � 1. (19)

This is the same as Eq. (6.12) of Ref. [16], except the x2 in the logarithm there has been removed by the
subtraction.
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The above analysis is relevant to the low temperature behavior because that may be extracted by
using the Euler-Maclaurin formula,

FH = T
∞

∑
n=0

′g(n) ∼ T
∫ ∞

0
dn g(n)− T

∞

∑
k=1

B2k
(2k)!

g(2k−1)(0). (20)

Because of the subtraction, the expansion can be carried out around n = 0, since the function is now
analytic there. (In Ref. [16] we did the expansion around n = 1, and we did, in fact, remove the Fsub

H
term, Eq. (4). See Eq. (6.11) there.) The integral term in Eq. (20) is independent of T, so the leading
contribution to the entropy comes from the third derivative term, allowing us to immediately obtain,
as before,

∆FH = − 2
15

(πa)3T4, aT �
√

λ0, 1. (21)

This is the well known strong-coupling low-temperature limit [15,16].
The above, of course, corresponds to a positive entropy. But this analysis presumed that aT was

the smallest scale in the problem. However, we have another parameter, ξ = α
√

3
2λ0

, which could be

large if λ0 � α2. The analysis given in Ref. [16] is unchanged, and results in the formula

∆FH =

(
2λ0

3

)2 1
πa

[
ξ2

12
− ln ξ −<ψ

(
1 +

i
ξ

)]
, α� 1, ξ ∼ 1. (22)

Here ψ is the digamma function. (An alternative derivation is given in Appendix A of Ref. [17].) This
function is plotted in Fig. 3 of Ref. [16] and Fig. 1 of Ref. [17]. See Fig. 1 here. Evidently, the entropy,
the negative derivative of the free energy with respect to temperature, goes negative for sufficiently
weak coupling (large ξ), as is seen from the analytic limiting behavior:

ξ � 1 : ∆FH ∼
2
9

λ0πaT2,
√

λ0 � aT � 1. (23)

The TE contribution to the entropy is always negative, so the total entropy turns negative for sufficiently
small coupling.

4.2. Abel-Plana analysis

The derivation of the same result must be achievable directly from the Abel-Plana form (6), since
the Euler-Maclaurin formula is derivable from the Abel-Plana expression. It is a bit subtle, because we
have to worry about the appropriate branch of the phase, but actually very simple.

First, we use Eq. (17) with the replacement x by ix. (Again, the leading odd term comes from
l = 1.) This gives the predominant term in the phase, (x � 1, x2/λ0 ∼ 1)

arg
[

2
3

λ0 −
(

1 +
7

15
λ0

)
x2 + i

4
9

λ0x3
]
= arctan

 2
3 x3

1− 3x2

2λ0

 . (24)

The TM free energy thus reads for low T

∆FH = −
(

2λ0

3

)2 1
πa

3ξ3

α3

∫ ∞

0
dz

1
e2πz/ξ − 1

arctan

 2
3

(
α
ξ

)3
z3

1− z2

 (25a)

→ −
(

2λ0

3

)2 2
πa

P
∫ ∞

0
dz

1
e2πz/ξ − 1

z3

1− z2 , α� 1. (25b)

These expressions require some explanation. For the first line, we remind the reader that, because of
our choice of the branch of the arctangent to be the usual one, there is a discontinuity in the integrand
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Figure 1. The TM free energy for low temperature in terms of ξ = α
√

3/(2λ0). Shown are the
coincident results for the formula (22), and for Eq. (25a) for α = 0.1 and α = 0.01. Plotted is the free
energy apart from a factor of (2λ0/3)2/(πa). Although the slope is negative (positive entropy) for
small ξ (strong coupling), it is positive (negative entropy) for large enough ξ (weak enough coupling).

at z = 1, but of course this is integrable. We need, for stability, to evaluate the integral by taking
a principal value there. In the second line, we have replaced arctan y by y, appropriate for small α,
and the resulting singularity at z = 1 is integrated by taking a principal value. Then, numerically,
both forms exactly agree with the previous formula (22), as Fig. 1 shows. The figure shows that for
sufficiently weak coupling, the low-temperature entropy turns negative.

It is very easy (much easier than in Sec. 4.1) to extract the weak-coupling limit at low temperature,
ξ → ∞. The crucial observation is that (25b) receives contributions from only large z ∼ ξ when the
latter is large, so the last factor in the integrand is merely −z and then the integral gives the result
(23) immediately. Note that the oddness of the arctangent around z = 0 is crucial here; were there a
discontinuity in the argument function at z = 0, the T → 0 limit would not exist.

5. High temperature

We showed in Refs. [16,17] that the leading behaviors for high temperature of the TM free energy
and entropy are

FH ∼
λ0

18
πaT2, SH = − ∂

∂T
FH ∼ −

λ0

18
α, α = 2πaT � 1, λ0. (26)

Again, it is remarkable that this is first-order in the coupling. This same behavior was found in Ref. [18].
(If λ0 � 2πaT � 1, the entropy becomes positive [15].) Here, we have made the universal subtraction
of the term Fsub

H , but that should not alter the conclusion, because that contribution to the entropy is
subdominant at high temperature. (Indeed, we dropped coupling-independent terms in Ref. [17].)

In Ref. [17] we worked out the leading high-temperature form for the free energy starting from
the Euclidean frequency expression (1) using the uniform asymptotic expansions for the Riccati-Bessel
functions and the Chowla-Selberg formula. Here, it seems to be much harder to use the uniform
asymptotics on the highly oscillatory real-frequency Bessel functions appearing in the Abel-Plana
expressions.

6. Numerical analysis

In principle, it seems that the Abel-Plana formula (6), which is finite, should be directly evaluated
to obtain the free energy for any temperature and coupling strength. (It is not possible to do so starting
from the Euclidean form (16), because this still contains divergences.) The difficulty is that the phase
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(a) Exact free energy.
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(b) Low temperature free energy.

Figure 2. The TM free energy (in units of 1/a) computed from the exact formula (6) (left panel),
or the low-temperature formula (22) or (25b) (right panel) plotted as a function of aT for the same
intermediate values of λ0, λ0 = 0.5, 1, and 2, in increasing order on the right side of each figure.
Although the low-temperature formula would not seem to be applicable here, since the temperature is
not particularly low, it gives results which are qualitatively identical to the exact free energy seen in
Fig. 2a, with significant deviations apparent only at higher T.

(8) becomes an extremely oscillatory function for x > ν. Nevertheless, the sum and integral can be
carried out for intermediate values of λ0 and T with moderate computing resources.

In the numerical calculations, the behaviors of the phase in the vacinity of the singularities have
to be carefully considered. When the coupling λ0 is small, contributions to the free energy near these
singularities are significant. Here, we have carried out the evaluations with sufficient precision to
achieve reliable results, limited only by available hardware.

Fig. 2a shows the TM free energy for different moderate values of λ0, as a function of temperature.
What is truly remarkable is how similar these curves are to those given by the low-temperature formula
(22) which, despite its apparent inappliability, is shown in Fig. 2b. Apparently, then, the numerical
results shown in Fig. 2a still largely inhabit the low-temperature regime. This is not, perhaps, so
surprising, since the validity of the replacement in Eq. (25b) demands aT � 1, not α� 1.

In Fig. 3a we compare the computed TM free energy to the strong-coupling low-temperature
result (21). This is qualitatively very similar to that obtained by taking the ratio of Eqs. (22) and (21), as
seen in Fig. 3b. Again, this demonstrates that the low temperature description extends to quite large
temperatures. To put this into perspective, it might help to note that aT = 1 corresponds, at room
temperature, to a sphere radius of a = 8 µm.

The weak-coupling regime for low temperature is explored in Fig. 4a. The comparison here is
with Eq. (23). Of course, this agrees with that obtained from (22), as demonstrated in Fig. 4b. The
low-temperature regime for moderate couplings is explored in Fig. 5a. Again, this agrees with the
low-temperature free energy (22), as shown in Fig. 5b.

Finally, we compare in Fig. 6 the exact free energy relative to Eq. (15). We see that the
weak-coupling formula is recovered as the coupling goes to zero, and that the ratio tends to one
as the temperature increases, consistent with Eq. (26).

7. Conclusions

In this paper, we have re-examined the question of negative entropy for a spherical plasma-shell.
We confirm the results first found in Ref. [16], using now a uniform subtraction of an irrelevant
(infrared) divergent term, basing our re-analysis largely on the Abel-Plana representation of the free
energy. Most interesting is that the leading anomalous terms (those corresponding negative entropy)
are captured by the weak-coupling limit, which we also rederive here. In Fig. 7 we show the weak
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(b) Low temperature free energy

Figure 3. TM free energy relative to the strong-coupling low-temperature limit. The left panel shows
the exact TM free energy as a function of temperature T (in units of 1/a) relative to the strong-coupling
low-temperature limit (21), for various values of the coupling λ0. For very low temperature, the free
energy agrees with the limit (21). The nonmonotonicity is quite striking. The right panel shows the
ratio R of Eq. (22) to (21) as a function of aT. It is seen that the general low-temperature expression (22)
captures most of the behavior shown in Fig. 3a. The different curves in Fig. 3b correspond to the same
values of the coupling as in Fig. 3a, namely: λ0 = 0.5 (blue, solid), λ0 = 1 (red, dotted), λ0 = 2 (black,
dashed).
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Figure 4. The behavior of the TM free energy for low temperatures (in units of 1/a), for even smaller
values of the coupling, relative to the limiting value for low temperature and very small λ0, Eq. (23).
The left panel shows the exact free energy, while the same ratio R is plotted in the right panel, except
that the TM free energy is computed from the general low temperature expression (22). The different
curves are for the same values of λ0 as in Fig. 4a: λ0 = 10−4 (blue, solid), λ0 = 2× 10−4 (red, dotted),
λ0 = 4× 10−4 (black, dashed). The fact that FH turns negative for very small temperatures reflects the
limit (21).
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Figure 5. The left panel shows the ratio of the exact TM free energy to the strong-coupling,
low-temperature limit (21) for relatively low temperatures, as a function of λ0. The reversal of
sign for low λ0 reflects the transition from the regime where Eq. (23) applies to the strong-coupling,
low-temperature limit (21). The right panel shows the same ratio, except instead of the exact free energy,
the general low-temperature expression (22) is used, for the same values of temperature. The two
graphs are nearly indistinguishable. In both panels, the different curves correspond to the temperatures
aT = 2.5× 10−2, 5× 10−2, 1× 10−1, from bottom to top on the right of each panel.
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Figure 6. The free energy (6) compared to the O(λ0) approximation (15). For small coupling, the ratio
approaches unity, and the curves become flatter for increasing temperature, consistent with the limiting
form (26).
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Figure 7. The O(λ0) contribution to the free energy (blue, solid), given by Eq. (15), with the prefactor
λ0/(πa) pulled out, compared to the limiting forms (23) (low temperature, black, dashed) and (26)
(high temperature, red, dotted).

coupling TM free energy (15) compared to the low and high temperature limits, given in Eqs. (23) and
(26), respectively. The weak-coupling contribution to the entropy is always negative.

Since the anomalous behavior seems concentrated in the O(λ0) term, one might be tempted to
argue it should be subtracted from the free energy [21]. After all, at zero temperature, such terms are
frequently recognized as “tadpole” terms and are often omitted as unphysical. And for a dielectric ball,
at zero temperature, the “bulk subtraction” also removes automatically the linear term in (ε− 1) [22].
Here, however, such a subtraction would ruin the limit to strong coupling, which has been understood
for many years [15]; see, for example, Eq. (21). The analytic structure of the theory in the coupling
constant is rather rigid, so ad hoc subtractions are not allowed. This point was made at the end of
Ref. [16].

In any event, the anomalous behavior is not confined to weak coupling, as the numerical analysis
summarized in Sec. 6 shows. Therefore, the occurence of negative entropy here is hard to deny. These
remarkable findings may have profound implications for our understanding of statistical mechanics
and quantum field theory.
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