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Abstract: This paper presents a new framework to classify floor plan elements and represent them
in a vector format. Unlike existing approaches using image-based learning frameworks as the first
step to segment the image pixels, we first convert the input floor plan image into vector data and
utilize graph neural network. Our framework consists of three steps. (1) image pre-processing and
vectorization of the floor plan image. (2) region adjacency graph conversion. (3) graph neural network
on converted floor plan graphs. Our approach is able to capture different types of indoor elements
including basic elements such as walls, doors, and symbols as well as spatial elements such as rooms
and corridors. In addition, the proposed method can also detect element shapes. Experimental
results show that our framework can classify indoor elements with an F1 score of 95%, with scale
and rotation invariance. Furthermore, we propose a new graph neural network model that takes the
distance between nodes into account, which is a valuable feature of spatial network data.
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1. Introduction

Feature extraction and analysis of indoor spatial data obtained from floor plan images have
been done by pre-processing the input image using image processing techniques and then applying
statistical and analytical algorithms. Studies with heuristic algorithms have resulted in high accuracy
and precision; however, these algorithms cannot be applied to different types of drawing styles due to
the limitations of being dependent on certain types of data [1–3,5,7,11]. To alleviate these limitations,
various machine learning-based approaches have been used in floor plan analysis. Among them,
Convolutional Neural Network-based approaches have been used the most as they can be applicable
to many styles of floor plan images. CNN-based approaches only require a basic level of image
pre-processing techniques and are robust to floor plan noise. In addition, they can be applied to
any style of drawing without the need for transformation, which makes them efficient and versatile
[6,8–10].

However, because these methods perform pixel-level segmentation, the exact shape of indoor
elements is hard to capture. To overcome this limitation, these approaches have incorporated additional
post-processing steps that abstract the output of the neural network. This, however, results in feature
loss of the original indoor elements such as the polygons are expressed as line vectors. For example,
walls should have a thickness and an area of their own, nonetheless, as the shapes get blurry as they
pass through the convolution layers, the walls are finally depicted as line vectors by the post-processing
algorithms [6,8]. Although abstracting a floor plan layout through machine learning-based models
may be essential for specific user purposes such as to express navigable areas in IndoorGML format
[12], vector outputs that maintain the form of the original floor plan image intact can be transformed
into various objects depending on the user purpose, this owing to the high flexibility and deformation
ability of the vector data type.

In this paper, we propose a framework that finds any kind of elements in the floor plan without
losing the shape information. It first vectorizes the input floor plan image as-is to maintain the shape
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of the original indoor elements and minimize the abstraction. The polygon vector set is then converted
into a region adjacency graph. The graph is then fed to an inductive learning-based graph neural
network (GNN), which is used to compare multiple floor plan graphs and perform node classification
by analyzing inherent features and the relationships between the nodes. This allows the user to classify
basic indoor elements (e.g. walls, windows, doors, etc.) and symbols, together with space elements
(e.g. rooms, corridors, or outer spaces), without losing their shape and arial features. Furthermore, a
new GNN model, the Distance-Weight Graph Neural Network (DWGNN), is presented. In accordance
with the first law of geography [28], the neighboring nodes that are close to a target node should be
given relatively high attention values compared to the neighbors that are far apart from the target node.
To do so, we developed a GNN model that assigns attention values to the neighbors in a target node’s
neighboring subgraph. The DWGNN considers the distance information between the nodes, expressed
by edge features, in the spatial network (graph). To evaluate the performance and expressiveness of
the new proposed floor plan analysis framework, we applied it to two floor plan datasets and one
data-augmented dataset.

The remainder of the paper is structured as follows. In section 2, we discuss the limitations of
previous researches related to floor plan analysis, in particular, regarding indoor element classification
using rule-based methods and machine learning approaches. In section 3, based on the described
limitations, we propose framework for floor plan element classification via GNN. Finally, we analyze
the results on three datasets and discuss issues and further research.

2. Related works

2.1. Rule-Based Heuristic Methods and Machine Learning Algorithms in Floor Plan Analysis Research

Detecting and classifying floor plan basic elements or regions have been studied for many years
with various approaches. Ruled-based heuristic approaches utilize methods based on image processing
such as the morphological filtering [1,11], Hough transformation [2,5], text/graphic recognition [3,5],
or using graph algorithms [4,7]. Although they have showed meaningful outputs, rule-based heuristic
approaches struggle to maintain the shapes of elements and can only be applied to specific drawing
styles.

To avoid these style-dependent heuristics and take expressive generality among various drawing
styles, approaches using machine learning algorithms have emerged [6,8–10]. De las Heras et al. [6]
utilized a machine learning algorithm to detect indoor elements and then converted the output into
vector data. Citing the limitation that the existing rule-based methods are ad-hoc and only applicable
to certain drawing styles, they presented an automatic method that detected room boundaries in floor
plans invariant to the style of the drawings. They used a Support Vector Machine Bag of Visual Words
(SVM-BOVW) to detect the pixel boundaries of the structural elements, which included walls, doors,
and windows, and then create the vector data. In addition, the model recognizes room boundaries
in the floor plan by finding closed regions surrounded by vectors of structural elements. Liu et al.
[8] trained a CNN to detect the junctions, such as wall corners, in a floor plan and applied integer
programming to extract vector data by combining the junctions to build simple primitives like walls
and windows. In addition, they found spaces with closed combinations of simple primitives. However,
all of the elements were assumed vertical and horizontal, thus failing to secure the shapes of the
elements and resulting in largely abstracted primitives, such as expressing the walls with line vectors.
Dodge et al. [9] used Fully Connected Networks (FCN) and Faster R-CNN to segment walls and
detect objects respectively in floor plans with various drawing styles. They also used OCR to be able
to recognize the size of the rooms and to place furniture models scaled to the scene. Zeng et al. [10]
proposed a method that detects and classifies walls, doors, windows, and rooms by training a VGG
encoder-decoder. Unlike [8], their method is applicable to non-rectangular shape elements and is able
to obtain the shape features of indoor elements. In addition, they used an attention mechanism for the
decoder units. The two decoders share the attention values to predict the boundary and the type of
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rooms. However, their method is limited to only a few classes, which are used as a layout to help the
decoder find the room boundaries; these boundaries are ultimately placed under the same class.

Floor plan analysis using machine learning algorithms has shown great potential on various floor
plan datasets, but still, each approach has its own limitations and shortcomings. Models trained on
various input floor plan datasets may have great adaptability, but their outputs may be blurry as they
perform pixel-level segmentation. This creates problems in the output such as unconnected lines,
which result in unclosed vectors. In many cases, the room detection and recognition depend heavily
on structural elements in the floor plan, such as walls, doors, and/or windows, if these structural
elements have unclosed issues, they will considerably affect the room formation process. Because
elements may lose their shape information during the vectorization process [6,8], some approaches
omit this process in order to secure the shape features [9,10]. In addition, none of the approaches that
concentrated on detecting structural elements and space elements considers symbolic elements such
as cabinets, baths, or toilets among others.

2.2. Graph Neural Network (GNN) and Floor Plan Analysis Using GNN

A Graph data structure consists of a finite set of nodes (vertices) and edges (links). A node
represents an entity and an edge represents a relation between two nodes. Graphs are often referred to
as non-euclidean data structures since they are not confined to any particular dimension. Existing deep
learning algorithms applied to euclidean data structures have shown great performance. However,
existing deep learning models are unable to learn graphs because permutation between nodes can
appear in various ways. Accordingly, GNNs [13,14] have been devised to describe a way to express
the order of the nodes and allow neural network to learn graph data structure.

In recent years, GNNs have undergone numerous variations of the basic definition. Kipf et al.
[15] introduced the graph convolution networks (GCN) to utilize the convolution operation on graphs
by updating the nodes’ latent vector using a normalized Laplacian matrix as an adjacency matrix of
the input graph. Hamilton et al. [16] proposed GraphSAGE and showed that the results of the latent
vector of outcome differs with various AGGREGATE functions, and applied this notion to perform
inductive learning to train the model with, not a single, but multiple graphs. Xu et al. [17] found
that GNN models cannot be properly trained, and introduced a new model, the graph isomorphism
network (GIN), that can perform as much as the WL test, which is an isomorphism test for graph
structure. They also classified graph-related tasks that can be appropriately applied according to the
AGGREGATE methods.

A GNN can analyze various real-world problems. Due to their inherent characteristics, they
can be represented as a graph, and GNN would take them as input to analyze and predict. [19,21].
A floor plan can also be converted into a graph by treating cell regions as nodes and constructing
an adjacency matrix based on the adjacency among the regions of the floor plan. Various graph
algorithms and analyses have been applied to floor plan graphs. In particular, floor plan graphs have
been extensively used in the field of floor plan design research, which has recently studied different
methodologies using GNN. For example, an automated generation framework for floor plan design
using GNNs was proposed by Hu et al. [22]. When it comes to detect and classify the indoor symbols
or elements, Renton et al. [23] applied GNN to classify symbols in the floor plan. They pre-processed
floor plan images and considered the centroids of regions surrounded by black pixels as nodes. A
region adjacency graph is then constructed by connecting the nodes that share a pixel line. Then, the
floor plan graph is fed into a GNN model as the input graph and a graph is obtained where the nodes
were classified according to their local dependencies. This study is the first to use GNN to classify
symbols in floor plan images. However, it only targeted symbols and objects, excluding walls and
rooms, which are the most important elements of floor plan images. In addition, the final output of
the approach is limited to graphs that represent only the symbol classes and are not converted into
vector-format output for utilization.
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3. Materials and Methods

To overcome the limitations described in the previous studies on floor plan element extraction
and classification tasks, the following requirements were defined.

1. The framework must detect and classify space elements such as rooms, together with basic
elements (walls, doors, etc.) and symbols.

2. The framework must start with raster data and output vector data maintaining shape without
abstraction

3. The framework must perform inductive learning by separating a set of graphs of various types
and sizes into graph units, rather than transductive learning that deals with a single large graph.

To meet these requirements, developing and extending the ideas used in [23], we propose a new
framework as follows. The raster floor plan image is fed to the framework as the input data. The
image is first pre-processed in order to obtain a binarized image to be vectorized. The closed regions
in the image become polygons after the vectorization process. The polygons with shape features are
then converted into a region adjacency graph (RAG) according to their adjacent relationship with
neighboring polygons. The RAG is then fed into the neural network to train the GNN model. The final
output of the framework is a set of polygons with different classes. The overview of the proposed
framework is shown in Figure 1.

Figure 1. Overview of the proposed framework. The input floor plan image is pre-processed to erase
texts and get binarized. The processed image is then vectorized depending on its closed regions and
converted to an RAG. The floor plan graph is input to a GNN module in order to classify each polygon
according to its and neighbors’ feature vectors.

3.1. Image Pre-processing and Vectorization

The pre-processing phase may vary depending on the layout style of the floor plans, but most
consist of text removal and binarization. The three channels of the input floor plan image (Red, Blue,
and Green) are merged into a single channel and get binarized. The text information is removed using
the OCR algorithm. The processed image is then vectorized. De [11] assumed that only walls are
depicted as thick black lines in a floor plan layout; therefore, thick and thin lines can be distinguished
using a morphological transformation and thick lines can be considered as walls. However, this
approach can only be applied to specific floor plan styles, as in many cases walls could be represented
as white areas. To vectorize the image regardless of the floor plan drawing style, we chose to vectorize
the white and black areas separately.

The detailed process is described as follows. A closed area surrounded by black pixels in the
image becomes a polygon object. A set of polygons is generated from all polygon objects (Figure 2c). If
the floor plan layout contains black areas, the empty polygon with the size of the floor plan (Figure
2b) does the difference operation on the white polygon set. This creates a second set of polygons that
represent the black areas in the floor plan (Figure 2d). Since we binarized the image, there are only two
colors in the image, make it possible to turn every area in the image into polygon regardless of the
drawing or layout style. Lastly, the two polygon sets get merged and the complete set of polygons
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Figure 2. Overview of the vectorization process. The white areas in (a) are vectorized and buffered
according to the pixels surrounding them (c). The black areas are converted into polygons (d), which are
generated by the difference operation as (b) and (c). Finally, the complete polygon set (e) is generated
by merging the two polygon sets. (f) describes the detailed process of polygon buffering.

is generated (Figure 2e). During this process, the regions occupied by the pixel lines that surround
the polygons will not be included in the polygons. Therefore, the polygons will be buffered by the
thickness of the pixel line before executing the difference operation (Figure 2f). Buffering the polygon
is crucial because, if the polygons are separated from one another, the adjacency operation will return
false when constructing the adjacency graph. Taking the thickness of the pixel line t, the buffering
distance parameter is selected as t/2.

3.2. Region Adjacency Graph (RAG) Conversion and Feature Extraction

Algorithm 1: RAG conversion
input :A polygon set P, a minimum area parameter m
output :A floor plan graph G

// Create a graph with adding polygon nodes
1 G ← Graph()
2 for p ∈ P do
3 vp ← p.centroid
4 G.addNode(vp)

// Build STRtree with the polygon set
5 tree← STRtree(P)
6 for p ∈ P do

// Query intersects function with polygon p
7 Q← tree.INTERSECTS(p)
8 for q ∈ Q do
9 if q 6= p and q.area > m then

10 G.addEdge(vp, vq)

11 return G

Algorithm 1 describes the RAG conversion process. First, an empty graph G is created and for
each polygon element p in the polygon set P, the centroid of p (vp) is added as a node. To construct
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the edge set of G, p executes an INTERSECTS operation on another polygon q ∈ P, q 6= p. With the rest
of the polygon elements in P, p would need to execute the INTERSECTS operation |P| − 1 times, and
the number of iterations for P would increase exponentially with the number of nodes. To reduce the
number of iterations and the complexity, instead of two nested loops, we used an STRtree [24], which
is a spatial indexing algorithm based on an R-tree. The tree returns a resulting polygon set Q when
p queries the INTERSECTS of the other spatial objects. If a polygon element q is in Q and q’s area is
bigger than the minimum area parameter m, the edge between vp and vq is added to the edge set E.
By using the STRtree, the time complexity of the RAG conversion process is reduced from O(n2) to
O(n logm n). n is the number of polygons (nodes) and m is the number of entries in the tree.

The constructed graph G = (V , E) consists of the node set V and the edge set E , which represent
the adjacent relationship among nodes in the floor plan layout. A polygon node vp is recognized as the
centroid of p and has its own unique feature vector xvp ∈ Xv. Xv is the feature matrix of G whose size
is the number of V and the dimension of the node feature vector dv. epq is an element of the edge set
E, which represents that polygon nodes vp and vq are connected to each other. An edge also has its
own feature vector xepq ∈ Xe. Each edge feature vector has de features. If de = 1, we consider the edge
feature as the weight value between two nodes. The constructed RAG G is described as follows.

G = (V , E , Xv, Xe) (1)

In the framework, we used four features for Xv and a single feature for Xe (a weight value).
A node feature vector for node vp (xvp ∈ Xv) consists of the area of p, the degree of the node, the
normalized central moment of order 1 and 1 for the polygon, and the Zernike moment [25] of order 4
and repetition 2 (xvp ∈ R4). The two used moments are scale and rotation invariant. The edge feature
vector xepq ∈ Xe consists of the euclidean distance between its two nodes (vp, vq). Edge features are
considered as weights of G since the edge feature dimension parameter de = 1. The polygon set P and
the RAG G are constructed for each floor plan layout in the datasets. In the following section, we will
describe various GNN models to classify the classes of polygons in P using G.

3.3. Graph Neural Network Models

A GNN performs prediction on various tasks such as node classification, edge prediction, and
graph classification. Like other deep learning models, it extracts a unique embedding vector of each
entity in the target dataset and compares its similarity to other embedding vectors to predict a result as
close as possible to the label data. And the domain of interest of GNN varies includeing nodes, edges,
graphs, and subgraphs [26]. The GNN takes the adjacency matrix A and the feature matrix X of the
target graph as input. A represents the relationship between the nodes and X holds the feature vector
for each node in the target graph. If features are found on the edges, they can be added to the value for
A or taken as a separate edge feature matrix.

GNN has multiple layers and each layer consists of the AGGREGATE and UPDATE functions.
AGGREGATE function aggregates information coming from the neighboring nodes and returns a
message. The UPDATE function combines the target node’s embedding vector and the message to
update the new latent embedding vector of the target node. This process is called message passing.
The forward-propagation process of vanilla GNN model for generating the new embedding vector of
node v at layer k can be as follows [27].

hk
N (v) = AGGREGATEk({hk−1

u , ∀u ∈N (v)}
)

hk
v = UPDATEk

(
hk−1

v , hk
N (v)

) (2)

where N (v) is the set of neighboring nodes of v and hk−1
u is the latent embedding vector of u ∈

N (v) at layer k− 1. AGGREGATEk aggregates the embedding vectors to return the message mk
N (v).

UPDATEk takes mk
N (v) with hk−1

v , which is the embedding vector of node v at layer k− 1, as input and
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generates the embedding vector of node v at layer k. Both AGGREGATEk and UPDATEk are arbitrary
differentiable functions at layer k (i.e., neural networks). These two functions can be defined in various
ways depending on the task the model wants to solve. The definition of the AGGREGATE function
allows neighboring nodes to determine how they will affect the target node, and the UPDATE function
determines how to combine the message and target node’s embedding vector of the previous layer,
and how the embedding vector is generated.

Our goal is to classify the polygon nodes by extracting the latent embedding vectors for each
node in the floor plan graph, which is categorized as a node classification task. The performance of a
GNN model for node classification highly depends on the structure of its network, not only regarding
the functions used for AGGREGATE and UPDATE, but also regarding the number of layers. As the
number of layers increases, the wider the neighborhood node information is included. This is similar
to the receptive field of a target pixel in a CNN; as the number of layers increases, the receptive field
widens.

3.3.1. A GNN Variant for Inductive Learning on Graphs

Figure 3. Node classification on a transductive learning GNN method (a) and on an inductive learning
GNN method (b). In the transductive learning method (a) the model is trained by accessing all the
nodes and edges in order to predict the class of nodes in the test set (denoted by question marks). In
the inductive learning method (b), on the other hand, the set of graphs is split into training and test set,
and the test set is predicted with a GNN model trained on a set of training graphs

Most of the GNN models target one large graph, such as a social network, focused on generating
embedding nodes from a single fixed graph. However, from a real-world application point of view, a
GNN model that generates embedding vectors for unseen nodes, or entirely new graphs is needed
[16]. Figure 3 explains the difference between transductive learning and inductive learning in graphs.
Our study also required the inductive learning GNN model as the floor plan datasets mostly consist of
various floor plans, and each floor plan is converted into a unique graph. Inductive learning enables
prediction on these completely unseen graphs. We trained the inductive learning-based GNN model
on the floor plan graphs of the training set, and the model predicted the classes of the nodes in the test
set floor plan graphs.

Many existing spatial-based GNN models are transductive learning-based GNN models [15,17],
while GraphSAGE [16] is based on inductive learning. GraphSAGE is a general inductive framework
for generating latent embedding vectors of completely unseen nodes. In the GraphSAGE model, which
consists of K layers, the algorithm for generating an embedding vector of node v at layer k is as follows:

hk
N (v) = AGGREGATEk({hk−1

u , ∀u ∈ N (v)}
)

hk
v = σ

(
Wk ·CONCAT(hk−1

v , hk
N (v))

) (3)
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where Wk is a weight parameter matrix to be trained and σ is a non-linear activation function (e.g.
sigmoid function). The UPDATE function in GraphSAGE is a concatenation function multiplied with
the weight matrix.

The initial vector for node v is the input node feature vector, and, as the number of layers increase,
the embedding vector of node v holds the information coming from farther neighbors. This means that,
if k = 0, h0

v is xv ∈ Xv, and hK
v aggregates all the information of the neighbors within K-hops from v in

the graph. Hamilton et al. [16] showed the difference of performance among various AGGREGATE
functions. For the AGGREGATE function, they used the MEAN operator (similar to GCN [15]), an
LSTM layer, and a POOL function based on the MAX operator with a weight matrix parameter. Unlike
others, LSTM is not permutation-invariant but shows strong performance and expressiveness as it
trains additional neural networks [16].

3.3.2. A GNN model to utilize distance weight feature

A graph describing a real-world example may have not only node features but also edge features.
In spatial networks, the distance between two nodes can be expressed as an edge feature or the
weight value of the graph [18]. The weight values are an important feature in that they describe the
relationship between nodes in a spatial graph. Under the first law of geography, neighboring nodes
that are close to a target node should be given relatively high attention values compared to the other
neighbors that are far apart from the target node [28].

However, most of the existing GNN models do not leverage the edge feature in their networks.
Studies that have utilized the edge feature in node and graph classification tasks have focused on
multi-dimensional features, not single-dimension features like weight values in spatial networks
[19,20]. Glimmer et al. [19] proposed a model utilizing edge features in the message-passing process.
However, their model is too general since the message function Mt is not a specific method and could
be any function. A GNN model that can handle spatial networks consisting of nodes and distance
weights is thereby needed.

We propose a new inductive learning-based GNN model named Distance-Weight Graph Neural
Network (DWGNN). DWGNN is a GraphSAGE-based model in which an edge feature mechanism
is applied in the message-passing process. Its target graph represents a spatial network where the
distance between nodes is a 1-dimensional weight value. When DWGNN aggregates the neighbor’s
information, it assigns the attention values to neighboring nodes’ embedding vectors according to the
relative distance from the target node. The update process of DWGNN is as follows.

hk
N (v) = AGGREGATEk

(
Wk

0 · (hk−1
u � softmin(eN (v))u), ∀u ∈ N (v)

)
hk

v = σ
(

Wk
1 · (hk−1

v + hk
N (v))

) (4)

where eN (v) is the distance weight vector of node v and its neighboring node set N (v) and � denotes
element-wise multiplication. Softmin is a function that converts every element of eN (v) into an
attention value. It is defined as follows.

softmin(xi) =
exp(−xi)

∑j exp(−xj)
(5)

Similar to the softmax function, which converts each element of the input vector to a value
between [0, 1] and the sum of all converted values is equal to 1 such as a probability value, the softmin
function returns a normalized vector where each element gets a larger attention value if its weight
value is relatively smaller than others. This assigns nearby neighboring nodes a larger attention
value compared to those far apart. In addition, similar to GraphSAGE, the AGGREGATE function
of DWGNN can be chosen between various functions such as SUM, MEAN, MAX, and LSTM. The
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Figure 4. Visual illustration of the update process of node v. The softmin function assigns respective
attention values to each neighbor of v according to their distance to v (euiv). Each node’s embedding
vector at layer k− 1 is element-wise multiplied with a respective attention value. They are passed
through a weight matrix W0 and aggregated to a message. This message is added to v’s embedding
vector at layer k− 1 and multiplied with the weight matrix W1. The result is the embedding vector
of node v at layer k. In the figure, aN (v) is the converted attention vector and AGG is AGGREGATE
function.

update process of DWGNN is shown in Figure 4. If the weights play a significant role in a spatial
network, DWGNN can be an appropriate GNN model to analyze such graphs.

4. Results

4.1. Datasets

To test and evaluate the proposed framework, we conducted experiments on two different floor
plan benchmarks, together with one data-augmented dataset. We do not use the floor plan datasets
which had been used in previous works, since their raster images have a lot of noise and/or the
resolution is too low (e.g., R2V [8], RF-P [9]) or unable to obtain (ILPIso [23]). We will discuss
applicability issue in detail in section 5.

CubiCasa5K [29] (CubiCasa) dataset consists of 5000 different apartment floor plans. The quality
of the floor plan images varies from clean, noise-free ones to scribbled or noisy ones. They are divided
into three categories: high quality, architectural high quality, and colorful. We used the SVG formatted
labeled floor plan images hand-annotated by experts as input data by converting them into raster
image data. After we vectorized the polygons, we classified the polygons into eight classes: four
structural element classes (walls, windows, doors, and stairs), three spatial element classes (rooms,
porches, and outer-space), and the object class comprised of various symbols. We selected the 400 high
quality floor plan images and split them evenly into training and test sets.
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The University of Seoul (UOS) dataset, plans for seven floors of the 21st-century building at
University of Seoul, was used to evaluate whether the framework is applicable to large-area floor plan
data along with relatively small ones such as CubiCasa5K. We exported the CAD floor plan data into
raster data. We classified the elements of vector plans into nine classes: five structural element classes
(including elevators), three spatial element classes (rooms, corridors, and X-rooms), and the object
class. Though the number of plans is limited because of the security issue, if the framework is able to
generalize and classify the indoor elements in UOS, we can say that the framework works well with
less number of floor plans. We used a 7-fold cross-Validation strategy. Each session consisted of six
training plans and one plan for the test. The final result was averaged by the whole 7 sessions.

4.2. GNN Models

We implemented four GNN models for performance comparison. We conducted inductive
learning experiments under the same conditions and settings. The following are the used GNN
models.

1. GCN [15]: Graph Convolution Networks aggregates the neighbor nodes of the target node using
a symmetric normalized graph Laplacian D̃−

1
2 ÃD̃−

1
2 made with a self-loop adjacency graph

Ã = A + I and a diagonal degree matrix D̃ = ∑j Ãij. The embedding vectors of the target nodes
are generated by summing the information of neighboring nodes and projecting onto weight
matrix. The update process of GCN is

hk
v = σ

(
Wk−1 · ∑

u∈N (v)

1
cvu

hk−1
u
)

(6)

where cvu is a normalization constant for the edge (v, u) originated from D̃−
1
2 ÃD̃−

1
2 .

2. GIN [17]: Graph Isomorphism Network was proposed to maximize the discriminative and
representational power of each node in a graph. It shows almost the same performance as the
Weisfeiler-Lehman graph isomorphism test [30]. We used MAX, MEAN, and SUM operations as
the AGGREGATE function in our experiments. The update process of GIN is

hk
v = σ

(
MLPk

(
(1 + εk) · hk−1

v + AGGREGATE
(
hk−1

u , u ∈ N (v)
)))

(7)

where MLPk is a multi-layer perceptron placed at layer k to maximize the discriminative power
of the generated embedding vectors. Along with MLPs, εk is a scalar parameter at layer k to be
trained. We fixed εk = 0.

3. GraphSAGE [16]: We used the same model as introduced in section 3.3.1. MEAN was excluded
from the experiment because it does not differ much from the propagation rule of GCN. When
using the POOL aggregator, a weight matrix was added prior to the MAX operation to increase
the expressive power of the message function. the POOL aggregator is defined as follows.

AGGREGATEpool
k = max

(
{σ(Wk

poolh
k
u + b), ∀u ∈ N (v)}

)
(8)

4. DWGNN: The model developed by the authors and introduced in section 3.3.2. was implemented.
MAX, MEAN, SUM, and LSTM were used for the AGGREGATE function in our experiment.

4.3. Implementation Details

In our experiment, each floor plan image of the datasets was vectorized and labeled according
to the class conditions described earlier. The parameters used in the vectorization process were the
minimum area parameter m as 20 and t as 2. All the node and edge features in the graphs were scaled
using the standardization technique. To train the GNN models, we used the Adam optimizer with an
initial learning rate of 0.01. Batch normalization [32] was applied to every hidden layer for CubiCasa.
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The number of hidden layers was 6 for every GNN model and the MLPs had 2 layers for the GIN.
[31] The hyper-parameters for experiments were: (1) the number of hidden dimensions for the hidden
layers was fixed to 128; (2) for CubiCasa, minibatches of 10 graphs were set for each iteration and no
minibatches were set for the UOS; (3) the number of epochs was set to 1000 and 300 for CubiCasa and
UOS, respectively.

The hardware characteristics used for the experiments were an Intel i7-9700KF CPU, an NVIDIA
GeForce GTX 1660 Ti GPU, and 64 Gb of RAM. For the code implementation, we used the Rasterio
package for vectorization and the Shapely, GeoPandas, NetworkX packages for the creation and
management of polygon vectors and graphs. GNN models were built using the Deep Graph Library
[33] with PyTorch backend. The code is available at https://github.com/LymanSong/FP_GNN.

4.4. Experiment on the CubiCasa dataset

Table 1. Class-wise accuracy comparison by different GNN models on the CubiCasa dataset
(micro-averaged F1 score). AGG stands for AGGREGATE method.

GNN model AGG Objects Wall Window Door Stair Room Porch Outer space Overall

GIN MEAN 0.9001 0.8009 0.9176 0.8029 0.5453 0.8092 0.6719 0.7879 0.8577
GCN · 0.9113 0.8118 0.9142 0.8154 0.5398 0.8325 0.54 0.7453 0.8658
GIN MAX 0.9241 0.8842 0.9454 0.8816 0.5968 0.8833 0.75 0.7849 0.9025

DWGNN MEAN 0.9392 0.8485 0.9367 0.8942 0.7653 0.903 0.6982 0.9038 0.9137
DWGNN MAX 0.9429 0.8571 0.9456 0.898 0.7854 0.9133 0.7215 0.9048 0.9201
DWGNN SUM 0.9441 0.8648 0.9428 0.9054 0.7612 0.9164 0.7268 0.9119 0.9214

GIN SUM 0.9445 0.8991 0.9783 0.9063 0.6572 0.9067 0.7352 0.8664 0.9283
DWGNN LSTM 0.9597 0.9224 0.971 0.94 0.7913 0.9313 0.7849 0.9233 0.9471

GraphSAGE POOL 0.9586 0.9157 0.9765 0.941 0.7675 0.9377 0.8449 0.9289 0.9478
GraphSAGE LSTM 0.9708 0.9466 0.9896 0.9557 0.8341 0.9617 0.8832 0.9625 0.9651

Table 1 shows the results of the predicted classes of elements in the CubiCasa test set using
different GNN models and aggregate methods. Among the GNN models, GraphSAGE showed the
highest accuracy. In addition, the LSTM aggregate method showed the highest results.

The accuracy for stairs was relatively low in all models. This is because, given that stairs are
depicted as a set of rectangular polygons, rectangles often appear in different elements’ classes.
In addition, stair polygons with different shapes share one single class and the number of plans
including stairs is significantly lower. On the other hand, windows and doors have high accuracy
rates, apparently because each of them shares a highly defined structure shape in the drawing style of
CubiCasa.

We can find that, compared to the transductive learning-based models (GCN and GIN), the
inductive learning-based models (GraphSAGE and DWGNN) performed well on recognizing spatial
elements. In Table 1, DWGNN with the SUM method slightly underperformed compared to GIN with
the SUM method, but in the case of spatial elements (rooms, porches, and outer spaces) it classified
better than GIN with SUM. If we divide the element classes into two classes (spatial and non-spatial)
the inductive learning-based models found the spatial classes much better than the transductive
learning-based models did. This means that inductive models can generalize the characteristics of
classes well and easily find the dominant features on unseen data, such as predicting whether it is
spatial or non-spatial by looking at the area attribute.
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Figure 5. Examples of input image (a) and ground truth (b), and visual comparison of indoor element
classification results by GNN models for transductive learning (c and d) and inductive learning models
(e and f). The element class ’outer space’ is erased for visibility.

Fig 5 shows the results of visualizing examples of floor plans analyzed through the proposed
framework. The framework first vectorizes the input images and converts them into RAGs. The
trained GNN models then take these graphs as inputs and extract features to predict the classes of
polygons. Compared to the ground truths, inductive learning-based models can classify the basic
classes and spatial elements well. On the other hand, the transductive learning-based models fail to
predict some basic and spatial element classes. In particular, GCN and GIN were unable to find the
doors and walls correctly. As stated earlier, all models classified the stairs incorrectly.

4.5. Experiment on Large and Complicated Floor Plans: UOS and UOS-aug

Small-area floor plans have fewer polygons and their RAGs have a relatively simple structure
compared to large and complex buildings. We conducted experiments on large and complicated floor
plans to test our framework. The floor plans of the UOS dataset were large and complicated, thus
resulting in many polygons with complex relationships. The number of floor plans in the UOS dataset
was 7, so we used a 7-fold cross-validation strategy. Each session consisted of six plans for training
and 1 for testing. Table 2 shows the results of the experiment on the UOS dataset.

Table 2. Class-wise accuracy comparison on different GNN models on the UOS data set.

GNN model AGG Objects Wall Window Door Stair lift Room Hallway X-room Overall

GCN · 0.7286 0.6829 0.6286 0.6314 0.7643 0.8043 0.56 0.4143 0.4357 0.6843
GIN MEAN 0.7014 0.7614 0.5629 0.67 0.7957 0.7071 0.4886 0.3643 0.4729 0.71
GIN MAX 0.7529 0.7857 0.7114 0.73 0.7186 0.4686 0.5671 0.49 0.4743 0.7457
GIN SUM 0.8014 0.87 0.84 0.7914 0.7786 0.7414 0.6757 0.65 0.5086 0.8329

GraphSAGE POOL 0.8371 0.87 0.8357 0.7971 0.8514 0.6714 0.7571 0.6214 0.5614 0.8429
DWGNN MEAN 0.8626 0.8879 0.8526 0.8256 0.8857 0.6525 0.8382 0.7712 0.6686 0.8658
DWGNN SUM 0.8633 0.8916 0.8684 0.8274 0.9103 0.8454 0.8067 0.8087 0.7142 0.8764
DWGNN MAX 0.8644 0.8943 0.861 0.8165 0.9191 0.7323 0.8293 0.8155 0.7353 0.8765
DWGNN LSTM 0.8665 0.9178 0.923 0.8661 0.9457 0.7875 0.8406 0.8385 0.7765 0.9072

GraphSAGE LSTM 0.908 0.9308 0.9152 0.8847 0.9318 0.9206 0.8599 0.7951 0.8255 0.9184

The overall accuracy score was lower than that of the CubiCasa dataset. The spatial element
class underperformed compared to the CubiCasa dataset since non-spatial classes in the UOS dataset
had large doors and lifts, whose area was large and could be added to the spatial class. Like the
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CubiCasa dataset, transductive learning-based models underperformed compared to the inductive
learning-based models. Unlike the previous experiment, GraphSAGE with LSTM aggregator was not
ranked 1st place in every element class, for stairs and hallways, DWGNN did better than GraphSAGE
with LSTM (see Table 2). This is because the shapes of stair elements are more defined compared
to that of CubiCasa, DWGNN could generalize the structured set of polygons and find the patterns
of their formation better than GraphSAGE. And for the hallways, they tend to linked to many other
elements with respective distances, make DWGNN easy to generalize the characteristics of hallways
by taking the attention values account (shown in Figure 6).

Figure 6. Visualized results of classification on UOS dataset.

As the number of plans in the UOS dataset was limited, the generalization of the characteristics of
classes was difficult. If a GNN model has a node that is never seen before, the node will not only affect
itself but the neighboring nodes up to K hops away. This occurs because GNN aggregates the feature
of a much wider range of nodes as the number of layers increases. In addition, the GNN model may
simply memorize the training dataset as the number of plans is limited. To alleviate these problems,
we augmented the UOS dataset using an affine transformation. For all points in the set of floor plan
polygons, a point was scaled about the origin with a scale factor of 0.7, then flipped over the y-axis.
After that, we rotate the polygons 90 degrees counterclockwise (see Fig 7). The transformation formula
is as follows. x′

y′

1

 =

cos 90◦ − sin 90◦ 0
sin 90◦ cos 90◦ 0

0 0 1


0.7 0 0

0 −0.7 0
0 0 1


x

y
1

 (9)
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Figure 7. Example of data augmentation. The original plan (a) gets transformed by Eq. 9, returns an
augmented plan (b).

We formed a new dataset UOS-aug consisting of the 7 augmented plans with the original plans
from UOS. Because classification performance was improved through data augmentation, we can
derive that the results of the GNN model are invariant to scale and rotation. In addition, this proves
that the GNN model learns a pattern of updating the embedding vectors of that node in relationship
with the neighbors of each node, rather than memorizing the structure of the drawing. The results are
shown in Table 3.

Table 3. Class-wise accuracy comparison on different GNN models on the UOS-aug data set.

GNN model AGG Objects Wall Window Door Stair lift Room Hallway X-room Overall

GCN · 0.8812 0.7898 0.7295 0.7565 0.8516 0.9243 0.6508 0.6619 0.6255 0.7822
GIN MEAN 0.886 0.8865 0.8656 0.8208 0.95 0.8406 0.7603 0.5446 0.8215 0.8752
GIN MAX 0.9014 0.9373 0.9094 0.906 0.9706 0.9348 0.9026 0.8734 0.8822 0.925

DWGNN MEAN 0.9334 0.9516 0.9472 0.9092 0.9705 0.9405 0.9289 0.8598 0.8862 0.9446
DWGNN SUM 0.9602 0.9608 0.9511 0.9301 0.9728 0.9311 0.9469 0.9088 0.8966 0.955
DWGNN MAX 0.9612 0.9683 0.9588 0.9398 0.9803 0.9659 0.9531 0.9208 0.9189 0.9628

GIN SUM 0.964 0.9731 0.9679 0.9286 0.9766 0.9531 0.9661 0.9358 0.9004 0.9658
GraphSAGE POOL 0.9696 0.9727 0.9689 0.9485 0.974 0.9617 0.9459 0.8946 0.933 0.9681

DWGNN LSTM 0.9627 0.978 0.9733 0.9474 0.9848 0.9507 0.9488 0.9401 0.9478 0.9716
GraphSAGE LSTM 0.9762 0.9827 0.9802 0.9646 0.9796 0.9869 0.9553 0.9124 0.9747 0.9788

The results improved compared to Table 2. Though the augmented plans have gone through
many changes, they worked in a complementary manner with the original plans, which means that the
GNN models are invariant to scale and rotation. This proves that the GNN models classify their nodes
using the relationship and patterns among nodes and features within each graph, not the formation
and arrangement of nodes.

5. Discussion

The contributions of our work are as follows. First, we developed a raster to vectorization
process for floor plan image independent of the drawing style. With appropriate image pre-processing
methods, it can convert any type of floor plan image into polygon vector data. By vectorizing the
floor plan image before pixel segmentation, we were able to capture not only structural elements but
symbols and spatial elements without losing shape information. Second, to classify the polygons, we
employed Graph Neural Network approach. The GNN models are invariant to scale and rotation since
GNN takes input as graph and graph data structure has no fixed permutation of nodes. Utilizing GNN
makes the framework robust and easy to generalize any style floor plan dataset. Third, we defined
the need for inductive learning GNN models for floor plan elements classification task and, among
many GNN models, we chose an appropriate one (GraphSAGE). Further, we developed a new GNN
model taking the distance weight value into accounts in the message passing process using the softmin
function.
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While the results showed that our framework can detect and classify multi-labeled floor plan
elements, few limitations were derived as follows. The features currently used in the feature
matrix of polygons are significant but if we use additional feature information that fully describes
individual polygons among different types of floor plan elements, it would be possible to do additional
classification. The proposed framework outputs the result in a vector format, which facilitates its use
in additional research or real-world applications. For example, Zeng et al. [10] demonstrated the 3D
models of the results from their method, the output of the proposed framework is already a vector
type data, making it even easier for 3D modeling.

Unlike CNN-based models, which are robust to noisy images, the application of the proposed
framework to noisy or low-resolution images is difficult. Especially in the image pre-processing phase,
the output is highly dependent on the noise and the resolution. For example, if the pixel values of the
symbol are uneven due to low resolution, doors tend to lose the exact arc line and fail to get converted
into a polygon. To overcome these limitations, an image generation model can be applied and used in
the pre-processing step. However, due to the nature of the generative model, it is difficult to expect
detailed improvement at the pixel-level. In addition, our framework does not utilize text information
in the image, thus rendering impossible the use of semantic information that explicitly indicates the
nature of each object.

In most experiments, the DWGNN showed slightly lower accuracy than GraphSAGE. It is because,
on the RAG conversion stage, the node of the graph corresponds to the centroids of the polygons
and the weight value is calculated between the coordinates of the pair of nodes, thus preventing
them to hold the shape information of the polygons. Especially walls or outer space, most of the
node coordinates that represent polygons are often situated where the actual polygon is not located.
To alleviate this, DWGNN uses the softmin function to assign the attention values; however, the
meaningless edge features still distract the model from being trained and predicting the classes
correctly. With the nature of DWGNN, we think that it can be an appropriate model for solving
combinatorial optimization problems in spatial networks such as the traveling salesman problem or
vehicular routing problems, rather than for graphs with polygon nodes.

6. Conclusions

This paper presents a new framework for extracting and classifying the elements in a floor
plan. Unlike previous approaches that first segment the floor plan image, our method vectorizes
the floor plan images and converts the polygon set into an RAG. The model then employs a GNN
to classify the nodes in the graph according to their unique features and neighborhood relationship.
Inductive learning was conducted on the floor plan graphs in order to predict completely unseen
graphs. Our framework classifies not only basic element and symbol classes but also spatial elements
such as rooms, with resulting vector format outputs to minimize the abstraction and loss of shape
information. To evaluate the performance of the proposed framework, we performed experiments
on two floor plan datasets with different areas and distributions and one data augmented dataset.
Results showed high accuracy rate on the classification task with the expressive power of the final
output. By comparing various GNN models, we also found that inductive learning-based GNN models
outperform transductive learning-based models. As further research, we will find a way to handle
low-resolution floor plan images and improve the classification performance by extracting additional
features.
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