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Abstract—A convolutional neural network (CNN) is sometimes
understood as a black box in the sense that while it can
approximate any function, studying its structure will not give us
any insights into the nature of the function being approximated.
In other terms, the discriminative ability does not reveal much
about the latent representation of a network. This research aims
to establish a framework for interpreting the CNNs by profiling
them in terms of interpretable visual concepts and verifying them
by means of Integrated Gradient. The interpretability profiling
has been done by evaluating the correspondence between in-
dividual hidden neurons and a set of human-understandable
visual semantic concepts. An integrated gradient-based class-
specific relevance mapping approach is proposed that verifies
interpretability profiling. Moreover, it is insightful to examine
the correlation between the different input classes in terms of an
overlapping set of highly active neurons. The result suggests the
existence of a structured set of neurons inclined to a particular
class. Finally, network ablation is performed to illustrate the
performance of the network based on our approach.

Index Terms—Network Interpretation, Image Classification,
Convolutional Neural Networks, Integrated Gradient.

I. INTRODUCTION

Convolutional neural networks (CNNs) constitute a subset
of artificial neural networks. CNNs are inspired by the struc-
ture of the animal visual cortex system, unlike the ordinary
neural networks which are designed after the operation of
neurons (nodes) in the animal brain [1] [2]. A CNN is com-
posed of several convolutional layers in conjunction with other
layers, mainly providing non-linear capabilities (activation),
data reduction (pooling), and classification (fully connected).
CNNs are primarily employed for image processing and have
proven to provide higher performances than other methods
for tasks as image classification, segmentation, and object
detection.

The performance of CNNs is mainly driven by the dis-
criminative power of its units. Understanding the internal
working mechanisms of these computational methods has a
high impact on the field of Computer Vision as it enables
training mechanisms with a higher semantic level. However,
it is very hard to intuitively understand the prediction or
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inference process of deep CNNs— i.e. how do these networks
reach a particular decision for a specific input, due to the non-
linear layers and their deep and complex internal architectures.

Experiments studying the hidden units of CNNs revealed
that these units learn intermediate latent variables that are in-
terpretable by humans. For instance, hidden units of a network
that has been trained to detect scene learn object detection
as intermediate latent variables [3]. Similarly, hidden units of
a network that has been trained to detect objects learn part
detection as intermediate latent variables [4]. However, these
spontaneous decompositions are not linearly interpretable.

In this study, our aim is to build a complete profile of
a certain CNN expressed in terms of interpretability using
modified Network Dissection framework [5]. Our interpretabil-
ity profiling is based on correspondence between individual
hidden units and four categories of human interpretable con-
cepts: objects, object parts, materials, and colors. Then we use
Integrated Gradient [6] to calculate per neuron basis relevance
score which corresponds to the interpretability score with a
very little error margin. Further we perform network ablation
based on the relevance score to show inter-class entanglement
of the networks.

II. RELATED WORK

A large number of methods have been employed by the
researchers to shed light on the internal representation of
CNNs; most of them are based on visualization. The internal
representations can either be obtained by sampling the image
patches that maximize the activation probability of each hidden
unit of a CNN [7] or using variants of backpropagation to
generate salient features [7] [8] [9]. Interestingly, some other
techniques have been used to understand the discriminative
power of networks: isolating parts of the network, transferring
them to combine with other networks or limiting them up to
certain layers, and checking their ability on different problems
[10] [11] [12]. This kind of approach tries to boil down the
working mechanism of CNNs into visual images interpretable
by humans. Here our work aims to match the internal repre-
sentation of CNNs with labeled and interpretable images.

Most relevant to our approach is investigating the behavior
of each individual hidden unit in a layer of the networks.
Zeiler and R. Fergus proposed a visualization technique that978-1-6654-9522-6/21/$31.00 ©2021 IEEE
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maps feature activations of a convolutional unit back to the
input pixel space [13]. Authors in [5] proposed an analytic
framework based on the behavior of individual hidden units
that has been adopted in this study. Also—as aforementioned,
in [5], human evaluation has been used to show that units are
behaving as object detectors in a network that was trained to
detect scenes.

Conversely, with the aim to better understand the complex
input-to output behavior of a deep neural network, a number
of approach have been proposed based on attribution problem.
Attributions measure the contribution of the model’s output
explained in terms of its input variables. For example, an
attribution method image classification assigns a relevance
score to each pixel of the given input image that tries to explain
the model’s predicted class. Some of the recent approaches of
attribution are GradCAM [14], Layer wise relevance propa-
gation [15] and nonlinear classification decisions with deep
Taylor decomposition. Integrated Gradients (IG) proposed by
Sundararajan et al. [6] as an attribution method for deep neural
networks, which unlike some of the previously mentioned
approach [14], [15] is fully independent of the structure of
the model’s architecture, and can be easily implemented with
access to just the input’s gradients after backpropagation.

III. DATASET

For this study, we have chosen a heterogeneous dataset
called Broden [5]. This dataset contains a wide range of
images of materials, colors, textures, parts, objects, and scenes.
Except for the textures and scenes, most of the examples are
annotated at pixel level. However, in our experiment, we have
excluded the image-wise annotated categories, i.e., textures
and scenes, as they tend to bias the overall interpretability
process. Also, each pixel of the image is annotated with
eleven color names as defined by Weijer [16]. The main goal
of this dataset is to provide a baseline for visual concepts
through which we want to express the interpretability of the
evaluated CNN. All the concepts in this dataset are merged
and normalized from their original dataset.

Furthermore, every class of this dataset corresponds to an
English word. Labels are created without the consideration of
the positional distinction, such as ’right’ and ’bottom’; also
some overly general synonyms have been avoided. Broden
includes only those images having at least ten samples per
label. See an example of the images and annotations from the
Broden dataset in Fig. 1.

IV. METHODOLOGY

We divide this work into two main parts, namely inter-
pretability profiling and class specific relevance profiling.

A. Interprability Profiling

We evaluate the interpretability of every unit of the CNN
as a solution to a binary segmentation task to every visual
concept in Broden by calculating the Intersection over Union
(IoU) score (see equation 1) between the unit response to input
and the annotated concept masks in the dataset. The activation

Fig. 1: Samples from the Broden Dataset with pixel-wise dense
annotation

map Ai(x) has been calculated for every image x in the dataset
and for all the units i of a CNN. Then for each unit i we
compute the distribution ai of its activations for all the images
of the dataset. Now, to account only for relevant activation
responses, we keep a small portion of the top activation values.
To this aim, we compute a top quantile level Ti in such manner
that P (ai > Ti) = 0.005 over every spatial location of the
activation map.

In order to compare activation maps and annotated masks,
we first resize the activation maps by scaling Ai(x) up to the
masks resolution using bilinear interpolation. We name the
upscaled version of Ai(x) as Si(x). Si(x) is then converted
into a binary mask Mi(x) ≡ Ai(x) ≥ Ti(x), by selecting
specific regions whose activation exceeds the threshold Ti(x).
These segmented masks are evaluated against every concept c
in the dataset by computing the intersection over union score
between Mi(x) and Lc(x) — the annotation mask for image
x and concept c, for each pair i, c as follows:

IoUi,c =

∑
x |Mi(x) ∩ Lc(x)|∑
x |Mi(x) ∪ Lc(x)|

(1)

As the dataset contains some labels which are not present
on every subset of inputs, the sums are calculated only on
the subset of images that have at least one labeled concept of
the c category. The IoUi,c score aims to indicate how much
a unit i is aligned with the concept c. Note that one unit
might detect multiple concepts; for the sake of analysis, we
choose to report only the top 1 concepts for each individual
unit i. The obtained top IoU scores: QtI(i, c), t = [1, 2, 3] can
be interpreted as confidence scores for the interpretability of
networks. Hence this score allows us to compare networks in
terms of interpretability.

B. Class Specific Relevance Extraction

Integrated Gradient is a method originally proposed in [6]
that aims to attribute an importance value to each input feature
of a machine learning model based on the gradients of the
model output with respect to the input. In particular, integrated
gradients defines an attribution value for each feature by
considering the integral of the gradients taken along a straight
path from a baseline instance x′ to the input instance x .
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(a) AlexNet (b) VGG (c) ResNet

Fig. 2: Layer wise distribution of each type of concepts (Vertical and horizontal axis denote No. of detectors and convolutional
layer in each network respectively).

Formally, suppose we have a function F : Rn → [0, 1] that
represents a deep network, and an input x = (x1, . . . , xn) ∈
Rn. An attribution of the prediction at input x relative to a
baseline input x ′ is a vector AF (x, x ′) = (a1, . . . , an) ∈ Rn
where ai is the contribution of xi to the function F (x)

We consider an input instance x, a baseline instance x ′

and a model P : X → Y which acts on the feature space
X and produces an output y in the output space Y . In this
case the function F is defined as F (x) = P (x) if the model
output is a scalar and F (x) = Pj(x) if the model output is
a vector, with the index k denoting the j-th element of P (x).
Pj(x) is the probability of class j, which could be the true
class corresponding to x . The attributions Ai(x, x ′) for each
feature xi with respect to the corresponding feature x ′i in the
baseline are calculated as

Ai(x, x
′) = (x− x′)×

∫ 1

α=0

∂F (x′ + α× (x− x′))
∂xi

dα (2)

where ∂F
∂xi

is the gradient of F along the ith dimension at x .

We calculate the integrated gradient map Gi,c(xn) for every
image xn in the class c and for all the neurons i at each layer
of the network. To take into account the spatial location of
our object of interest in the input xn we perform element
wise multiplication operation with the binary annotation mask
Mxn

corresponding to our input xn. This yields a masked
integrated gradient map containing only the integrated gradient
values of the location of object of interest which we denote
as MGi,c(xn). Now let p run across all the pixels P in the in
a gradient map MGi,c(xn) and n across all the samples N in
class c then the relevance score for each unit i and each class
c is Ri,c given by

Ri,c =
1

N

N∑
n=1

P∑
p=0

Mxn � ψ(Gi,c(xn)) (3)

Here, ψ(.) is the pre-processing operator. For this work, we
choose ψ(.) function as ψ(.) = bilinearUpsample((abs(.))),
where abs(·) is absolute value operation to take only the
magnitude of importance while ignoring the sign. One can also
use separately the positive and negative parts of the map to
avoid signs. bilinearUpsample(·) upsamples the gradient maps
using bilinear interpolation to have the same spatial size as
the annotation mask.

V. EXPERIMENTAL RESULTS & DISCUSSION

A. Interpretability Evaluation & Discussion

Experiments start with AlexNet architecture as it is one
of the first widely successful deep model . Next, VGG is
considered as it has lower number of parameters compared to
AlexNet as well as demonstrated comparable performance for
applications. Finally, Resnet has a different architecture from
the other two networks as it has skip connections to avoid
gradient vanishing problem. Those networks are extensively
used in the deep learning community which motivated us to
examine our approach with these architectures. Although our
approach is tested on the basic version of these architecture
to compensate for the computational resource constraints, it is
possible to extend to other architectures as well.

AlexNet: Results of the interpretability profiling for all
the layers of AlexNet trained on image classification tasks
on ImageNet are shown in the Fig. 2a. Also Fig. 2a shows
that there are more object and part detectors than color
concept detectors. This seems to violate the assumption that,
at shallower convolutional layer low-level cues e.g. colors
arise and more complex detectors arise at deeper convolutional
layers [5].

In general shallow layers contains more low-level cues e.g.,
color detectors. Differently, we found more objects and part
detectors than color ones. This may be due to the fact that
the colors are divided into 11 fixed categories. If inside an
object or a part class, all the exemplars share similar colors
or different sheds of the same color that not defined within
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Fig. 3: Architecture of the treatment Response Assessment and Prediction pipeline

these 11 categories, our approach has no way to calculate IoU
for undefined color or sheds of color. As a result, IoU score
of parts and objects are higher than color in such case even
though the units are in essence responding to a color concept
(the object’s or part’s one). Hence some of the units are having
a higher score for parts and objects despite of being activated
by the colors of that object or part.

The phenomenon can be better understood by looking at
annotations from the dataset and activation map of a particular
unit. One such unit is 41 in conv1 layer of AlexNet, which
seems tuned to Water according to the IoU score but actually is
responding to the specific shed of blue color. Let us illustrate
this through a set of qualitative examples.

Fig. 3 shows the activation response of unit 41 for a set
of images that represents the object Water. From the top left
sub-image of Fig. 3 it can clearly be seen that the input image
contains Water object, and the annotation map shows the unit’s
activation to the image. The unit is not responding to the Water
nor the blue concepts. In top right sub-image we can notice
that some spatial location of Water and Sky has been activated
which are of blue color particularly. Finally, in the bottom right
and left sub-images, although there is a lot of blue-colored
region in the input, the unit tends to respond only to some
specific spatial locations. This indicates that the unit under
investigation is tuned to a specific shed of blue color, not to
any object or in general to all the sheds of blue color.

Resnet18: In Fig. 2c the unit distribution of the Resnet18
architecture is illustrated. At a glance, most of the units
are learning part and object type concepts. There are only
a few color and material type concept detector neurons. A
closer inspection using our approach reveals the quantitative
distribution of each concept type in different layers as shown
in Fig. 2c.There is a surge in the concept detectors in the final
two convolutional layers. It is due to the fact the final two
layers of Resnet18 contains almost double neurons than the
previous layer. Also, in the final layer the emergence of object
type concept detector is noticeable. It might indicate the fact
that this network captures the object structure as a whole very
well rather than focusing on parts of the object. This behaviour
can also be justified given the depth of Resnet18 compared to

other two networks. As with more depth the network has more
ability to create the higher level of abstraction.

VGG11: A summary of various concept type for different
layers of the VGG11 architecture is given in Fig. 2b. Appar-
ently we have less color and material type concept detectors in
regards to the ample amount of part and object type concepts.
The explanation for this unusual response of the network is
similar to the one given for AlexNet architecture. The units are
learning color contents of the image in the shallower layers but
due to the availability of the few color types in our Broden
dataset, the method was unable to capture this information.
The logical explanation for this specific phenomenon is the
same as the previously examined network architectures.

Figure and discussion suggest the following ideas regarding
the operation of convolutional units:

• Units are tuned to a color despite having a higher IoU
score for an object type concept. It appears that these
units represent the colors of the object not the object
itself.

• Units tend to represent a specific shed of a color. On the
other hand, dataset annotations are the same for all the
sheds of same color. Consequently, the union score gets
much higher than the intersection score. Hence IoU for
color concepts gets a small value. Similarly, it is also true
that, if we had used denser color sampling beyond the 11
categories, results may have been different.

B. Interpretability Score & Relevance Score

For the sake of simplicity we select 10 classes that are ex-
actly available both on the Broden and ImageNet dataset. Next
we compute integrated gradient for each class and and each of
the unit in the whole network using the approach described in
subsection IV-B. We ask the question that if the neuron marked
as important by IoU score for a specific class/concept is also
marked important by the integrated gradient approach. In order
to answer the question we compare the layer wise spatial
location of the neurons yielded by both approach and report
them in the table I. We report the mean error for all the layer in
a particular network and across 10 classes under investigation
with the error deviation. Number shows that indeed both of the
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(a) AlexNet (b) VGG (c) ResNet

Fig. 4: Layer wise Relevance score (Vertical and horizontal axis denote class type and convolutional layer in each network
respectively).

approach identified almost same set of neurons as important
for a given class.

TABLE I: Error percentage between IoU score and integrated
gradient score across all layer and 10 classes

Networks Mean error Layer Error Deviation
AlexNet 7.56 % ±2.68%
VGG11 6.21 % ±1.96%
Resnet18 9.58 % ±5.11%

C. Relevance Distribution & Network Ablation

Relevance Distribution. To analyze the layer wise distri-
bution of the relevance score to each class we aggregate
the scores of individual neurons within a layer. For all the
networks under investigation for such aggregated scores we
can now visualize per-layer scores shown in Fig. 4 for three
networks. The plots represent a heat map of attributions across
all layers and 10 classes. It is interesting to observe that for
different input classes different layer or combination of layers
gains increasingly high relevance. For example cat class has
a very high gradient for all the layers overall but in layer 3
and layer 4 there is a very large value in the AlexNet whereas
for some other classes like vase & lamp has a very negligible
value. Again when we compare between the networks for same
class this can be observed that, it does not follow a specific
pattern in terms of relevance score distribution. In case of both
cat & bus the later layers like layer 3 & 4 are gaining a high
relevance score in AlexNet; the layer at the middle of the
network are getting the highest relevance for VGG; finally for
the ResNet again it is near to the end of the network. In other
words not all the layers are equally important for classification
of all the input classes. This in turn might suggest that the
neurons that learns to pick up or detect the necessary features
for a particular type of input object classification may arise at
different depth of a network.

Network Ablation. Depending on the relevance score that
we have computed, we perform systematic network ablation
by turning off some neurons in the network to understand the
class wise effects and importance of the turned off neurons.

Here we turn off the 1, 2 and 3 % neurons with the highest
and lowest scores in each convolutional layer except the first
and last convolution layer. The reason behind not ablating the
neurons in first layer is that it might lead us to complete
blindness along some channels. On the other hand, we do
not prune the last layer as it contains the most high-level
features and doing so might damage the entire performance
of the network.

First we measure the performance of the original network on
a certain input class. Then we turn off the top and bottom 1, 2
& 3% percent of the neurons of each layer convolutional layer
depending of relevance score for that class. Next we measure
the performance of of the ablated network on the class we
have performed the ablation as well as 9 other classes. To
demonstrate we only show the performance on two classes
bench & refrigerator for all the networks on Fig. 5 &
6. Result shows that turning off the top neurons decreases
performance significantly for both of the classes. However the
amount of decrease in performance varies network to network,
as it can be seen in Fig. 5c & 6c, that the performance decrease
for ResNet is much heavier than other two network. The reason
can be two fold; first as ResNet is a deeper network compared
to other networks the amount of neuron being turned off
is much larger than other networks; second the architecture
of the ResNet again is more complex with different residual
block and short skip connections for which the neuron inter
dependencies or entangled condition of the neurons in feature
representation are more dominant.

Now turning off the same amount of neurons with least rel-
evance score, the performance decrease is almost non existing
or negligible. This actually provides us a set of definite neurons
with their spatial position in each layer that are not important
or not needed at all for classification of a particular class.
This can be helpful when we want to develop very specialized
model to detect or classify single or only handful of objects.

VI. CONCLUSIONS

We applied our method to investigate how detectors for
different visual concepts arise in various layers of a network.
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(a) AlexNet (b) VGG (c) ResNet

Fig. 5: Performance measurement on bench input class

(a) AlexNet (b) VGG (c) ResNet

Fig. 6: Performance measurement on Refrigerator input class

Results suggest that the shallower layers represent more low-
level visual cues like colors, whereas deeper layers represent
a more complex ones. IG mapping approach were able to
identify neurons of the network that are crucial for the
correct recognition of a particular concept. We found positive
correlation between the neurons extracted by both modality.
Also, we were able to identify a set of neurons that influence
multiple classes to be recognised while there are other set
of neurons that helps to classify one class but confuses the
network classifying a different class. Further, network ablation
verified our method as ablating significant units led to a fall
in the network’s performance while removal of insignificant
units had not much effect on the performance.
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