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Abstract: Following the general aim of recapitulating the native mechanical properties of tissues 

and organs in vitro, the field of materials science and engineering has benefited from recent progress 

in developing compliant substrates with similar physical and chemical properties. In particular, in 

the field of mechanobiology, soft hydrogels can now reproduce the precise range of stiffnesses of 

healthy and pathological tissues to study the mechanisms behind cell response to mechanics. 

However, it was shown that biological tissues are not only elastic but also relax at different 

timescales. Cells can indeed perceive and actually need this dissipation because it is a critical signal 

integrated with other signals to define adhesion, spreading and even more complicated functions. 

The mechanical definition of hydrogels used in mechanobiology is however commonly limited to 

the elastic stiffness (Young’s modulus) and this value is known to depend greatly on the 

measurement conditions that are rarely reported. Here, we report that a simple relaxation test 

performed under well defined conditions can provide all the necessary information to characterize 

soft materials mechanically, by fitting the dissipation behavior with a generalized Maxwell model 

(GMM). The method was validated using soft polyacrylamide hydrogels and proved to be very 

useful to unveil precise mechanical properties of gels that cells can sense and offer a set of 

characteristic values that can be compared with what is typically reported from microindentation 

tests. 
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1. Introduction 

Mechanical characterization has become a fundamental tool for understanding the behavior 

and organization of living systems [1]. In particular, it is known that the mechanical properties of 

the cellular microenvironment play a relevant role in cell behavior, fate and function [2–4]. It has 

become critical to precisely characterize the mechanical properties of biological materials at different 

scales: the relative/modulations of mechanics of cells, extracellular matrix, basal membrane, tissues 

and organs are now powerful indicators of physiological or pathological conditions. The correct 

determination of the mechanics of  biology also helps fabricate compliant biomaterials that offer 

physical properties recapitulating key native conditions found in biological tissues. Thanks to recent 

progress in technology, the stiffness of biocompatible materials such as polymers or gels can be 

tuned via an adequate control of their level of crosslinking. The elastic modulus of polyacrylamide 

hydrogels made in the laboratory can now lie in the physiological range of the softest tissues, for 

instance [5]. Gradual, yet controlled, dynamic modulations of mechanical properties can also be 
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engineered in soft gels, as rather simple techniques allow for material stiffening [6], softening [7] or 

reversible cycling [8] during cell culture, therefore restoring the natural changes occurring during 

the reconfiguration of a native matrix/tissue during pathological processes or wound healing and 

regeneration. 

 

To allow all this, the mechanical properties of the biological materials and their biomimetic 

counterparts need to be correctly imitated and therefore precisely characterized when using model 

substrates. Indeed, mechanobiology studies have shown that only slight changes in the order of only 

fractions of kPa of the mechanical moduli of a given substrate influence cellular behavior greatly 

[9,10]. Although measuring the stiffness is typically a well established task in the field of materials 

science and engineering in general, this is challenging for biological materials because they are very 

soft (in the Pa to kPa range), wet, porous and generally spatially inhomogeneous [9], aside of their 

temporal stability under cell culture conditions (Chaudhuri et al. 2016). There are several protocols 

that describe non-destructive mechanical characterization methods for the obtention of bulk (tissue 

level) or local (i.e., at the microscale) [11]. Microindentation [12] and atomic force microscopy (AFM) 

[13,14] are the most common ones, but micropipette indentation techniques [15] as well as magnetic 

and optical tweezers based methods [16] were also proposed for performing such indentations in 

the  lower (several pN) range of  forces. 

When aiming at measuring the mechanical properties of a material, it is important to consider 

that linear elastic materials can be characterized by two physical constants, their Young's modulus 

and Poisson's ratio. In contrast, the mechanical properties of nonlinear elastic materials cannot be 

represented by constants, but are described by parameters that are functions of the material's 

deformation: for example, the nonlinear shear modulus and the nonlinear stretch modulus [17]. On 

the other hand, viscoelastic materials present a stress-strain response that changes with the strain 

rate [17]. This dependence can either be described by the relaxation and creep moduli in the time 

domain, or by the dynamic storage and loss moduli in the frequency domain. It has to be underlined 

here that referring to a “stiffness” of a material is probably not a correct term to describe the 

mechanical properties of cells and tissues. The Young’s modulus (elastic modulus) is only a partial 

view of the actual mechanical characteristics of the biological materials under study. For instance in 

2018, Ben Amar revisited the modeling of tissues hyperelasticity and viscoelasticity and 

demonstrated that biological materials with a rather disordered structure present strong 

nonlinearities that are absent from the polymeric gels used to imitate them, under the same 

conditions [18]. Cell behavior in vitro can also be very much dependent on material dissipation 

timescales and precise control of this parameter is now needed [19]. Recently, the use of hydrogels 

with viscoelastic properties has become very important to increase the fidelity of the culture 

substrate materials in vitro [4]. These materials indeed look more similar to real tissues, dissipative 

in nature, and restore native cellular behavior in culture [20]. By experimentally controlling the 

viscous and elastic phases separately [21], biomaterials also help elucidate complex mechanobiology 

phenomena and will certainly impact the field further [22], as cells sense and respond to dissipative 

substrates [23]. Storage and loss moduli must then both be reported when characterizing mechanical 

properties, as cells respond to both elastic and viscous parts of their naturally viscoelastic substrates 

modifying their internal structures and nuclear envelope (Discher et al. 2017). All this has been 

proven to be of particular importance in tissue engineering [24], cancer research for treatment [25] 

or diagnostics [26]. 

Despite all this, the usually reported stiffness of cells and tissues is typically obtained by very 

simple experiments and one uses the Young’s (elastic) modulus that is derived from these 

measurements using an appropriate model. Indeed, this mechanical property is calculated from 

experimental curves obtained after measuring force/stress when applying a deformation or vice-

versa. However, when analyzing the stress-strain data and applying the selected model to it, critical 

information is necessary to guarantee the fidelity of the obtained results [27]. Precise control or at 

least knowledge of speed/rate, amplitude/depth or angle under which the material is deformed must 
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be reported. Then, the measurements that are collected need to be fed into the appropriate model 

after verification of its main hypotheses, before derivation of the mechanical properties [13]. Also, 

the nature of the material under test as well as the technical limitations and conditions of the testing 

equipment and the environment itself do influence the results and need to be accounted for with 

precision and reported thoroughly. For instance, in a recent paper it was shown that the Hertz model 

per se is not correct for the measurements of cells on very soft substrates, calling for a more accurate 

model [28]. On a more technical point, the methods for calibration and determination of the contact 

point in the curves (position when the tip first contacts the material under test) are absolutely critical 

[29]. Unfortunately, they are too rarely or hardly mentioned, and very difficult to port from 

experiments and labs to others.  

Moreover, due to the very high sensitivity of biological cells to even small changes in mechanics, 

the scale of deformations and forces employed to characterize the mechanics of living matter and its 

environment with very high precision is paramount. As reported recently, there are high levels of 

disparity between measurements, either when performed on the same (a priori) material with 

different methods or with a similar method but in different laboratories [30]. These discrepancies 

have critical consequences on the understanding of micromechanics and their origin is thought to lie 

in the lack of consideration for the importance of two critical variables: setting correct and 

reproducible sample preparation and measurement conditions, and using the appropriate models 

to calculate the mechanical properties of the samples from the obtained results. In their review, 

Guimarães et. al. point that the magnitude, directionality and dynamics of the deformations studied 

during mechanical tests are not sufficiently accounted for when comparing results, for instance. An 

additional problem comes from the fact that tissue properties are usually derived from analyses 

performed only at one scale (macro, micro or nanoscale) and it may differ from one report to another, 

but also from one scale to another. In the case of model, artificial systems, such as soft porous 

hydrogels, these differences have been reported to arise from experimental errors at small length 

scales and misinterpretations in the models, because the contact area or surface interactions between 

the tip of the interrogation probe and the sample surface are underestimated. It was shown for 

instance that the true mechanical properties of soft polyacrylamide hydrogels (poroelasticity and 

viscoelasticity) can be properly accounted for using indentation at small or large scales (indentation 

depth and tip diameter) by using indentation-relaxation tests and adjusting the duration of the 

experiment [31].     

In this work, we propose a relatively simple method to characterize the time-dependent 

mechanical properties of materials based on a rapid and localized indentation-relaxation test using 

a microindenter. The technique presented in Figure 1A and the data it produces enable the 

determination of the constitutive elements of a generalized Maxwell model (GMM) where a long-

range spring kl is combined in parallel with a consecutive association of N parallel dashpots and 

springs (depicted as (ηi ; ki) in Figure 1B). The generalized Maxwell model (GMM) is advantageous 

over the simpler viscoelastic linear models, such as the standard linear solid (SLS) model since it 

considers the non-homogeneous disorder at microscale: the material relaxation occurs according to 

a time distribution rather than at a single time. This is a definition that falls closer to the mechanics 

of a substrate as perceived by biological cells, who can maximize their spreading if their dissipative 

timescales match that of the material [19]. Moreover, relaxation tests have proven to allow the 

separate quantification of the viscous and poroelastic contributions occurring in soft hydrogels used 

in mechanobiology [32]. To validate our relaxation test method, we have tested the mechanical 

properties of soft polyacrylamide hydrogels (PAM) and compared the results with classical 

indentation tests, either static or using oscillations over a frequency range, as classically used in 

material characterization (see Appendix C, Figure C1). 
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Figure 1. Diagram (not to scale) of the method employed here to study with great precision the 

mechanical properties and dynamic behavior of polyacrylamide (PAM) hydrogels used in 

mechanobiology assays. A) Relaxation test performed with a microindenter; it collects all the 

information necessary to analyze the hydrogels mechanically. The bead is typically 50 µm in 

diameter and the gel ~200 µm thick.  B) The data collected from the relaxation test is adjusted using 

a GMM with the appropriate relaxation times τi that then allows to obtain the corresponding ki and 

ηi. The long term stiffness kl (or k∞) is also determined from the model fitting. Finally, the dynamic 

storage (E’) and loss (E”) moduli that describe the soft material were calculated, assuming a linear 

viscoelastic behavior. This complete characterization is more accurate than a microindentation and 

calculation of the elastic (Young’s) modulus. 

We found that when performed under the right conditions at a correct indentation depth and 

velocity, a relaxation test provides precise and robust information about the material under test. 

Because gels dissipative properties are critical in mechanobiology as recently shown [19], the 

relaxation tests also provide more complete information than microindentation about the mechanics 

of soft gels as perceived by biological cells. It also simplifies the characterization of dissipative soft 

materials by employing a single force-time test to define the material’s behavior in a broad frequency 

domain without the need for tedious dynamic tests. Finally, we compared our relaxation-based 

results with ones obtained from microindentation. In addition to providing useful supplementary 

information on the material under test, we found that the elastic modulus of soft poroelastic 

hydrogels measured by microindentation shows a positive correlation with (is comparable to) the 

long E(t = ∞) and instantaneous E(t = 0) relaxation modulus and with the storage modulus evaluated 

at frequencies lower than 1 Hz. 

2. Materials and Methods  

2.1. Polyacrylamide hydrogels preparation 

Elastic polyacrylamide hydrogels were fabricated as reported by Justin R. Tse and Adam J. 

Engler [5]. Briefly, 4% acrylamide and 2% bis-acrylamide stocks [Sigma-Aldrich, Merck]  were mixed 

and degassed for at least 20 min to fabricate soft PAM hydrogels of expected elastic modulus of 1.10 
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± 0.34 and 4.47 ± 1.19 kPa (called 1 kPa and 4 kPa in the rest of this report for simplicity). Then, 

mixtures were polymerized by adding 0.01% (w/v) of ammonium persulfate (APS) and 0.001% (v/v) 

of TEMED. To achieve a thickness of ~ 233 𝜇m, 75 µL of the solution were deposited onto 20 mm 

round glass coverslips which were treated previously with (3-Aminopropyl)triethoxysilane 

(APTES)/glutaraldehyde as mentioned in [33]; the polymerization reaction was carried out during 

20 min at room temperature. Polymerized hydrogels were rinsed with ddH2O once and immersed 

in DPBS 1X at 4°C overnight to swell. 

Additionally, viscoelastic polyacrylamide hydrogels were also fabricated as reported by 

Charrier et. al. [4]. First, linear polyacrylamide was polymerized by preparing a solution of 5% 

acrylamide plus 0.025% of APS and 0.05% of TEMED in ddH2O. The solution was incubated at 37ºC 

for 2h to ensure a complete polymerization. Then, mixtures of 4% acrylamide and 2% bis-acrylamide 

stocks were prepared to fabricate soft viscoelastic PAM hydrogels of expected dynamic modulus of 

G’ = 1.6 kPa and G” = 200 Pa respectively, in ddH2O. TEMED was added at the acrylamide/bis-

acrylamide and linear polyacrylamide mixture and APS was added just before the deposition and 

mixtures were incubated for 20 min at room temperature. Once polymerized, hydrogels were rinsed 

with ddH2O and immersed in DPBS 1X at 4°C overnight to swell. It is possible to define the dynamic 

moduli that will be calculated here by considering that the relation 𝐸 = (1 + 2𝜈)𝐺∗ is true for soft 

PAM hydrogels [34], with 𝐺∗ =
𝐺′+𝐺"

2
 and a Poisson ratio of ν = 0.457 [35]. Here, the storage and loss 

shear moduli that were prepared therefore lead to an expected Young’s modulus of the viscoelastic 

PAM hydrogels of E = 1.723 kPa. These gels will be called “soft V-PAM” in the following. 

2.2.  PDMS preparation 

For comparison with a less porous elastic material commonly used in mechanobiology, the 

common Sylgard 184 commercial form of poly-dimethylsiloxane (PDMS) was used (Dow Corning). 

Two different stiffnesses were prepared by tuning the concentration of the prepolymer and its curing 

agent during preparation. Two different proportions were employed, namely 10:1 and 15:1 w/w 

respectively to obtain two different expected elastic moduli of ~1.3 MPa and ~0.9 MPa respectively 

[36]. After mixing the two agents the mixture was poured on glass slides, degassed and cured at 

60°C for 2 hours in a convection oven. 

2.3.  Mechanobiology test with fibroblast culture 

Immortalized human fibroblast, BJ cell line obtained from Alejandro Cabrera-Wrooman, at the 

Instituto Nacional de Rehabilitación in Mexico, were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM) high glucose complemented with 10% fetal bovine serum (FBS) and antibiotics 

penicillin-streptomycin (from Gibco, ThermoFisher Scientific) at 37°C and 5% CO2. 5X105 cells were 

seeded in PAM HG conjugated with [100µg/mL] rat tail collagen type I (from Corning), as described 

in [37] and after 48 hours of culture were fixed with 4% paraformaldehyde in DPBS at 37°C for 15 

min. Cells were permeabilized with 0.1% Triton X-100 and blocked with 10% horse serum. For 

immunostaining, samples were incubated with a monoclonal antibody against YAP protein at a 

dilution of 1:200 (sc-101199,  from Santa Cruz Biotechnology). After, Alexa594-coupled secondary 

antibody was used for immunodetection (Jackson ImmnoResearch). Actin filaments and nuclei were 

detected by Alexa488-coupled phalloidin and DAPI staining (from Molecular probes, ThermoFisher 

Scientific), respectively. Samples were mounted with Mowiol over a rectangular coverslip following 

[38]. For image acquisition, samples were visualized with an epifluorescence microscope Eclipse Ci-

L coupled to a D750 FX digital SLR camera (from Nikon). Images were captured by using a Plan 

Fluor 40X objective. The images were edited and merged by using Fiji software. 

2.4.  Microindentation and relaxation tests 

Microindentation tests were performed using the FT-MTA03 Micromechanical Testing And 

Assembly System (FemtoTools AG, Switzerland). The force vs. displacement data were obtained 

with a FT-S200 tip (spherical tip with a diameter of 50 µm) with a measurement range of ± 200 µN 
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and a maximum resolution of 0.0005 µN (at a low sampling rate of 10 Hz). Measurements were 

performed with indentation velocities ranging in the  0-100 µm/s, with a sampling frequency of 100 

Hz and a 0.2µm indentation step. Because soft gels were measured, a force limit of ± 171 µN was set 

in the experiments.  

Relaxation tests were also performed using the same system, however, in this case, the probe 

tip (FT-S200) was programmed to stop its vertical course and remain static at a fixed indentation 

depth for the whole duration of the force measurement (fixed strain measurements). The tests thus 

consisted of an indentation phase at a predetermined speed (in the range of 10-200 µm/s) down to a 

position where the force sensor detected a predetermined, user-defined force value (in the range of 

2-50 µN). The duration of the measurement (10-600 s) and the frequency of the acquisition of data 

(1, 10, 100 and 300 Hz) being adjustable parameters, playing on the resolution in time of our GMM 

spectrum; they were defined accordingly to each sample. 

2.5.  Force curves processing 

After the tests were performed, collected experimental data were obtained in the form of files 

containing the information of force and displacement vs. time, that may be easily manipulated and 

plotted. Those files were then processed using custom-made programs in Python 3.x (Google CoLab) 

designed to compute the elastic modulus (microindentation tests) as well as the more detailed 

constitutive mechanical properties (relaxation tests) of the materials under test. From the system, 

data of force vs. time (FT) and displacement vs. time (DT) could be acquired and plotted to verify 

the characterization while measuring. All obtained data was then saved and processed to obtain 

force vs. displacement (FD) curves as well. Before the fitting process, a pre-processing step was 

finally implemented to filter and re-sample the data; this represents a critical step for the noisy data 

typically obtained for very hard materials. Indeed, the tip tends to present recoiling effects when 

stopping suddenly or encountering a different local stiffness, which is what happens when the 

probing tip meets the surface of the sample and just before a relaxation phase begins, respectively. 

Therefore the removal of this noise (if encountered) is needed for finding, with a higher precision, 

both the tip-surface contact point and the starting point of the relaxation phase, and in some cases, 

further removal of intrinsic noise during the relaxation phase is also needed for the model to be able 

to fit the data. In these cases, filtering was accomplished using a gaussian filter on the force data 

where the user has the option to manipulate the width of the gaussian kernel.  

2.5.1. Determination of the contact point 

It is widely reported that even very small errors in the selection of the contact point may lead 

to great changes in the resulting elastic modulus, including in apparently stiffer materials [39]. In 

order to process FD and FT curves, we took a great care in identifying the contact point is the first 

critical part, as it enables the precise determination of the indentation depth, which is mandatory to 

calculate the mechanical properties of the material under test (see Appendix A and in particular 

Figure A1).  

2.5.2. Indentation data analysis 

To fit experimental data obtained from mechanical characterization of materials, the following 

procedure was used, based on 3 different models typically employed in indentation of soft materials: 

Hertz model, JKR (Johnson, Kendall and Roberts) and DMT (Derjaguin, Muller, and Toporov) 

models [13]. Each model has a particular set of hypotheses to be valid and is indeed only appropriate 

within specific conditions of adhesion between the tip and the indented surface, since the adhesion 

forces originating at the tip-substrate interface and caused by surface tension or non-specific 

interactions must be considered in the fitting model for a correct calculation of the material’s 

mechanical properties [40]. As such, JKR and DMT models are approximations used to describe 

adhesive contacts during indentation: JKR is useful for contacts on compliant materials with a high 

surface energy and large contact radius [41] while DMT is employed for contacts on stiff materials 

with low surface energy and small contact radius [13]. The Tabor parameter µ defined in equation 1 
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below [42] serves to discriminate which model is the appropriate one to use: if µ < 0.1 then the DMT 

model is used but if µ > 5 the JKR model is more correct [43]. 

                                               𝜇 =  (𝑅𝛥𝛾2 / 𝐸𝑟
2𝑧0

3)1/3                                                                (1) 

To determine µ, the tip radius R, the adhesion work 𝛥𝛾, the reduced modulus Er and the 

separation distance at equilibrium z0 (defined in [44] as the range of attraction of adhesive forces, 

close to atomic distance and ranging in 0.1-0.3 nm) must be defined [40,45]. Here, we used z0 = 0.3 

nm [46] and 𝛥𝛾 was determined using the magnitude of the adhesion force Fadh in the retraction 

section of the curve of Figure 2D in the following equation 2: 

                                                           𝛥𝛾 = −2𝐹𝑎𝑑ℎ / 3𝜋𝑅                                                                     (2) 

Finally, the reduced modulus Er can be calculated from equation 3:  

                                                                       𝐸𝑟 = 𝐸 / (1 − 𝜈2)                                                                     (3) 

where 𝜈 is the Poisson ratio, which for acrylamide has been measured to be 0.457, close to 0.5 

[35], and E is the Young’s modulus obtained from a Hertz model fitting applied to the sample 

measured in the attraction-free detergent solution (Figure A3-A). The data analysis was performed 

using Wolfram Mathematica 12.1. 

2.5.3. Relaxation data analysis 

For relaxation tests, the contact point also needed to be precisely and objectively determined to 

set the relaxation start (see Appendix A). Then, the maximum force value Fmax was detected to extract 

its associated time tFmax and displacement dFmax values, which in turn allowed to determine the 

indentation depth δ as dFmax-dc where dc is the contact distance, as defined by the microindentor. Then 

the generalized Maxwell model (GMM) was used to determine the relaxation modulus E(t) as 

follows [47], equation (4): 

                                                        𝐸(𝑡) = 𝑘∞ + ∑𝑁
1 𝑘𝑖  𝐸𝑥𝑝(−𝑡/𝜏𝑖)                                                      (4) 

where 𝑘∞ is the long-term stiffness, 𝜏𝑖 is the i-th relaxation time defined as 𝜏𝑖 = 𝜂𝑖/𝑘𝑖 where 𝜂
𝑖
 

and 𝑘𝑖 are the viscosity and stiffness associated to the time 𝜏𝑖 as represented in Figure 1. 

Since the experimental microindenter used in this work measured force instead of stiffness 

(force per unit area), a form factor was used to transform the obtained parameters to correct for 

dimensional units. To define this conversion factor, we assumed, following the mode of control set 

for the microindentor, that the temporal dependence of the relaxation curve was defined entirely by 

the k(t) of the sample and not by the indentation depth 𝛿, that is 𝐹(𝑡)  =  𝑘(𝑡) 𝛿 , where 𝐹(𝑡) is the 

force measured by the microindenter. The probing tip indents a surface area and to recover E from 

k, a form factor r that depends on the surface-tip geometry and the Poisson ratio of the material under 

test was defined, following [48]. We have k(t) = r E(t) with r defined as follows in equation 5:  

                                                               𝑟 =
 4  𝜋  𝑎

7 (1 + 𝜈)(1 − 𝜈)
                                                                     (5) 

 

where a is the radius of contact 𝑎 = √𝑅𝛿  , R is the tip radius and ν the Poisson ratio.    

In this particular step, the code that was developed here for the GMM the model allows the user 

to define an appropriate number of Maxwell elements (arms, as depicted in Figure 1B) to use in the 

fitting. Once the family of such parameters is defined, it is necessary to scale them using the correct 

form factor determined above. The plotting of the normalized experimental data together with the 

obtained GMM fit curve enabled to verify the accuracy visually but for a less objective decision on 

the correctness of the fitting, residuals were also calculated (see Appendix B). A mathematical 
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criterion of cross validation was used to decide a clear cutoff regarding an acceptable fitting order 

and thus avoid overfitting. We generally found that a 3rd order GMM (N=3) was the best fit in this 

work. 

From the resulting 𝜏𝑖 and 𝑘𝑖 that were calculated from the GMM fitting, it is possible to obtain 

a discrete relaxation spectrum associated with the GMM that defines the mechanics of the material. 

The H(τ) spectrum was constructed for visualization by Dirac delta functions 𝛿(𝑡 − 𝜏𝑖) for each 

relaxation time 𝜏𝑖 with an amplitude 𝑘𝑖/𝑘𝑚𝑎𝑥 normalized with regards to the highest stiffness 𝑘𝑚𝑎𝑥. 

This allowed us to compare the relaxation times and dynamic behaviors for different conditions and 

samples. 

Finally, by considering that the PAM hydrogels may present a linear viscoelastic behavior 

during the relaxation tests, it was possible to predict the dynamic moduli of the material over a range 

of frequencies. The storage modulus E’(ω) and the loss modulus E”(ω) were calculated from  the 𝜏𝑖 

and 𝑘𝑖 values obtained above, according to equations 6 and 7 below [47]: 

                                               𝐸′ = 𝑘∞ + ∑𝑁
𝑖=1 (𝑘𝑖  𝜏𝑖

2𝜔2)/(1 + 𝜏𝑖
2𝜔2)                                                 (6) 

                                                          𝐸′′ = ∑𝑁
𝑖=1 (𝑘𝑖 𝜏𝑖𝜔)/(1 + 𝜏𝑖

2𝜔2).                                                    (7) 

Thanks to the estimation of a criterion of cross validation (see Appendix B), it was found that N=3 is 

sufficient to describe the mechanical properties of soft PAM hydrogels using the GMM, and it allows 

to avoid overfitting of the data. 

2.6.  Statistical analysis 

For all the data presented here in every condition, at least 2 samples were characterized 

independently. Statistical analysis was performed using GraphPad Prism 8. Data is consistently 

presented as mean ± standard deviation. For comparison between different conditions, a variance 

analysis was achieved (one way ANOVA) with a Tukey correction for multiple comparisons. 

Correlation between conditions was quantified using a Pearson correlation. 

3. Results 

3.1. Force curves and correction for tip displacement 

 When analyzing the mechanical data obtained from the microindentation characterization of a 

soft sample, it is necessary to take several aspects influencing the outcome of the analysis into 

account. The correct determination of the contact point, the tip displacement and the force of 

adhesion between the tip and the sample are important parameters to consider. Figure 2 shows 

representative force curves of typical indentation-relaxation tests carried out on soft hydrogels.  

One of the main problems occurring in microindentation is the electrostatic or capillary 

attraction of the tip by the sample surface, leading to an intermediary complex behaviour between 

the approach and the contact/loading phase. In order to show how this affected our results, two 

different conditions were tested for the same hydrogel: one sample was measured while submerged 

in a detergent solution of ddH2O + 0.1% Extran that reduced the surface tension of the liquid and 

avoided the tip-hydrogel attraction (Figure 2A and 2C) and a similar hydrogel sample was measured 

in air, while only soaked with ddH2O water to avoid its drying (Figure 2B and 2D). 
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Figure 2. Force curves of microindentation-relaxation assays. Graphs of A) and B) are force-time 

curves representative of the relaxation of a soft polyacrylamide hydrogel using a spherical tip with 

a 25 µm radius. Red arrows signal the different sections of the curve and the embedded insets show 

the constant position of the tip, equivalent to a constant indentation of the sample. A): relaxation 

curve obtained from a sample measured when submerged in a detergent solution of ddH2O and 

0.1% Extran. B): same curve from a measurement in air of a similar hydrogel sample soaked with 

water (ddH2O). Graphs of C) and D) are force-displacement curves, representative of the 

microindentation-retraction cycle of a soft hydrogel using the same tip. Red arrows signal the 

different sections of the curve and the magnitude of the attraction between the tip and the sample. 

Hysteresis can be observed between load and retraction in both cases. C) and D) represent the same 

measurement conditions of panels A) and B) respectively. 

Figure 2A and 2B show force-time (FT) curves where different sections are visible. The first one 

corresponds to the approaching of the tip prior to the physical contact. It is immediately followed 

by the loading phase (where the force increases to a rate that depends on the material under test), 

up until the displacement of the tip is stopped by the user at a given force or indentation depth. 

Then, the relaxation stage begins until the tip is displaced again in the opposite direction, at the same 

speed, for the retraction section (during which the force decreases at a rate that depends on the 

material). Therefore, when a constant deformation needs to be imposed on the material, the vertical 

z position of the tip is maintained for as long as the relaxation needs to be evaluated (see embedded 

inset plots in Figure 2A and 2B).  

Since the indenting tip is placed manually in the system, it is necessary to rule out or account 

for any unwanted displacement of the tip mechanism that would impact the measurement, hence 

the analysis. To address this, the indentation routine was run at least 20 times and at different 

indentation speeds (1, 50 and 100 µm/s) on a very stiff glass slide. Since this material presents a 

stiffness of ~70 GPa [49], it can be considered that within the force sensitivity range of the tip used 

in the experiments (0 - 200 µN), there is no indentation of the substrate; hence any measured 

displacement would correspond to a displacement of the tip mechanism and not of the glass being 
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indented. Figure A2 from Appendix A shows a FD curve obtained from the indentation of a glass 

slide (panel A) and its corresponding linear fit (panel B) which resulted in a slope of 76.23 ± 0.18 

𝜇N/𝜇m (R2 = 0.999). Therefore, the difference between the indentation curve of the samples and the 

indentation curve of the glass is the real indentation depth (as shown in panel C). 

3.2  Influence of velocity and depth of indentation  

Once the point of contact has been precisely determined, the influence of experimental 

conditions like the velocity v and depth d of indentation are important. Figure 3 summarizes the 

results obtained when measuring the elastic modulus of a soft PAM hydrogel with an expected value 

of E = 4.47 ± 1.19 kPa. Different indentation depths (~ 1, 3, 7, 13 and 29 µm) and velocities (~ 100, 80, 

50, 10 and 1 µm/s) were set during the experiments. It is clearly visible that for all velocities the 

calculated E values decreased with an incrementing indentation depth and rapidly plateaued at a 

fixed value, which appears to be independent of the depth. An exponential decay fitted very well to 

the data for each velocity, as shown in Figure 3A-C. 

This behavior has been already reported in [50], for AFM indentations of soft agarose gels and 

lung cells (of similar stiffnesses). In that work, the spherical tips of the pyramidal probes had a 5 µm 

diameter and the plateau appeared at approximately 200 - 400 nm indentation inside the materials. 

Interestingly, the dependence with the indentation depth is similar in both our results and Rico et 

al. with AFM: apparently for hydrogels the plateau appears consistently at a depth of ~10% of the 

tip diameter. This seems to indicate an estimate of the depth at which the material behaves as bulky, 

homogeneous and semi-infinite, which is a strong hypothesis of the models used to determine the 

Young’s modulus. This depth-dependence of the apparent elastic modulus seen in soft materials like 

biological cells and gels is not new, yet hardly mentioned in characterization reports. It is very 

important to determine, since it indicates a minimal (threshold) indentation depth dependent on the 

size and geometry of the interrogator tip and the behavior has been recently attributed to surface 

tension [51]. Remarkably, in our case, the value of the plateau appeared to be also dependent on the 

velocity of indentation (~20% relative variation for velocity variations between 2 and 5x). As seen in 

Figure 3 panels A-C and presented in the summary of Figure 3D, the deeper and the slower the 

indentation of the soft material, the lower its apparent elastic modulus, which is an index of its 

viscoelastic behaviour, in a way. To try and discriminate the impact of each parameter in these 

experiments, a mesh separating the Voronoi regions is presented. It was obtained with Wolfram 

Mathematica zero order interpolation (Wolfram Research, Inc.), yielding a collection of flat regions, 

with steps at each data point), each region of the mesh representing the influence of each 

experimental pair E=E(v,d).  

Interestingly, our data demonstrate that beyond the minimal threshold indentation depth of 

approximately 10% (5 µm with a 50 µm-diameter sphere), the computed elastic modulus E only 

depends on the velocity of indentation. This suggests that the stress supported by the hydrogels is 

strain rate-dependent and this is an intrinsic characteristic of viscoelastic materials. The Hertz model 

that was used here does not suppose any condition on the velocity of indentation and here we used 

the average of all plateau values in equation 3 to derive the reduced modulus and obtain the value 

of the Tabor parameter. For 4 kPa PAM hydrogels measured while only soaked in air (condition of 

Figure 2D) we found a value of the Tabor coefficient of µ = 31.36 ± 1.10 x 103 suggesting the use of a 

JKR model in order to fit the experimental data. However, the JKR shown in Figure A3-panel B 

clearly shows that this is far from being perfect to accurately fit the data.  
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Figure 3. Influence of velocity and depth of indentation on the computed Young’s modulus of a 4 

kPa PAM hydrogel, measured in a detergent solution of ddH2O + 0.1% extran. Panels A-C present 

the results for velocities of 1, 50 and 100 µm/s respectively. The values presented correspond to 

calculations using a Hertz model fitting. By increasing the indentation depth, the fitted modulus 

decreases down to a plateau level of 14.14 ± 1.14 kPa, 12.74 ± 1.74 kPa and 10.94 ± 0.98 kPa 

respectively. It was possible to fit those values to exponential decays as a function of , shown in the 

legend of each graph. In addition to the velocities shown in panels A-C, velocities of 80 and 10 µm/s 

were tested and shown in the density diagram of panel D. This graph is divided into different 

Voronoi regions (grey mesh) to visually present the influence of velocity and indentation depth. In 

panel A-C, error bars represent the mean standard deviation and when not visible, they are smaller 

than the data point visible dimension. 

All this suggests that the mechanical characterization of soft poroelastic hydrogels via 

microindentation represents a real challenge and that the apparent elastic modulus may still be an  

incorrect estimator of relative mechanical properties. The hysteresis observed in Figure 2 between 

the loading and retraction phase (which is a signature of energy dissipation during indentation), as 

well as the indentation depth-dependency of the value of the elastic modulus clearly indicate that 

several parameters affect the FD curves, hence the interpretation of the Young’s modulus with the 

microindentation results. The models may not account for the dissipative phenomena happening in 

the materials that could be poroelastic and affecting the measurements [52], demanding a more 

complete characterization method. The relaxation tests described below aimed at improving the easy 

and reliable characterization in this frame. 

3.3  Relaxation tests to characterize PAM mechanical properties 

To study the possible viscous origin of the hysteresis found in indentation of soft PAM 

hydrogels, two other types of hydrogels with distinct, more complex, properties were tested and 

compared. First, a dissipative viscoelastic PAM hydrogel was fabricated, following [4], see section 

2.1. This V-PAM material is indeed interesting because it offers a PAM crosslinked network with 

similar elastic properties, but interpenetrated with independent and non-crosslinked linear chains 

of acrylamide inside the PAM network that are free to move and permit a viscous dissipation. Then, 
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a softer (1 kPa) fully elastic PAM hydrogel was also fabricated, offering a larger pore size in its 

network than the 4 kPa PAM hydrogels [53]. From relaxation test results, the GMM model can be 

used to describe the mechanical behavior of soft materials and calculate the storage and loss 

modulus. To avoid adhesion forces between the tip and the substrate, all samples were characterized 

while immersed in the attraction-free detergent solution.  

Figure 4A presents the normalized FT curves showing the relaxation tests performed during 60 

seconds, for the 3 different PAM hydrogels. The system was forced to stop indenting at a 

predetermined maximum force Fmax before relaxation started. We registered the indentation depths 

for all measurements and they were very similar and varying accordingly with the softest being 

indented the most: 23.94 ± 1.17 µm for 4 kPa PAM hydrogels, 25.12 ± 3.85µm for the 1 kPa PAM 

hydrogels and 28.89 ± 3.09 µm for the viscoelastic gels. As expected, the different soft materials 

presented distinct temporal relaxation responses and the two purely  elastic PAM hydrogels relaxed 

more rapidly than the viscoelastic one. Also, the stiffest (4 kPa PAM) elastic gel stopped relaxing 

after t = 50 sec and settled to a fixed plateau while the other two materials kept relaxing further, 

although at different rates. The dissipation of force by an elastic material at a constant strain may 

seem abnormal, but it has been explained by the poroelastic nature of PAM hydrogels: they are made 

of a porous elastic matrix interpenetrated by an interstitial fluid that can flow and escape, similar to 

a sponge [31,32,52]. This behavior explains the hysteresis found in loading-retracting curves of 

Figure 2 and the difference between the relaxation rates of the two elastic gels thus lies in their 

porosity difference [53]. 

The temporal behavior of such complex materials as PAM hydrogels offer a better way to 

describe their mechanics, differentiating them appropriately, unlike the apparent elastic modulus 

often simply called “stiffness” that makes no difference between 1 kPa and 5 V-PAM gels (see Table 

1). The 3rd order GMM model employed here to describe the relaxation results of Figure 4A unveiled 

temporal clues behind dissipation in PAM hydrogels. First, it was an excellent fit to the data in the 

full range of the experimental times, as seen in the figure and confirmed with a cross validation 

calculation of the residuals (see Appendix B, Figure B1 for a representative FT curve with the 

residuals). Then, without any consideration for the possible different origins behind the relaxation 

of soft materials (poroelasticity/liquid phase or network viscoelasticity), the technique proposed here 

seems to enable the precise determination of the intrinsic and characteristic relaxation times the 

materials under test (Figure 4B). Again, the obtained spectra seem to precisely assess the nature of 

each material very well. Interestingly, the relaxation times accounting for porosity could be the ones 

falling in the 3-6 seconds (as shown in Appendix Figure A4, panel A) because this relaxation time is 

absent from measurements of soaked samples in air, in which there is no possibility for the medium 

to be expelled from the structure under pressure. There, the slightly higher relaxation times of 1 kPa 

and soft V-PAM gels could then be  explained by a higher porosity, thus a greater medium outtake 

effect. In the particular case of the V-PAM hydrogel which are viscous by design, the origin of the 

relaxation also comes from the presence of linear acrylamide chains delaying or modifying the 

deformation of the network thus dissipating the energy of its elastic network [4]. The higher 

relaxation time causes a slower relaxation as observed in Figure 4A. Interestingly, the 1 kPa and soft 

V-PAM hydrogels also presented very similar elastic behaviors, explained by their similar apparent 

Young’s modulus. The distribution of all the measured curves is presented in Appendix A, Figure 

A4, panel B. A good consistency is found for the relaxation times, with a broader distribution for the 

softest elastic gels, however, probably caused by a lowest reproducibility of such soft gels or by 

variabilities caused by swelling, impacting more strongly the softest gels [54].  

Figure 4C shows the dynamic moduli E’(ω) and E”(ω) calculated from the parameters derived 

from the 3rd order GMM model with equations 6 and 7. The experimental resolution represented in 

Figure 4C depicts the range of frequency that are physically available, corresponding to actual 

timescales in which the measurements were achieved; it is indeed reminded that the characteristic 

times obtained with the GMM offer only a discrete representation of the real spectrum (Figure 4B). 

The graph thus confirms that the storage modulus of the three materials represents the actual elastic 
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modulus that was expected from the literature and the preparations made in this work (see the 

compilation of literature with experimental data in Table 1). The loss moduli are also represented 

and present differences between the three materials, with the V-PAM and 1 kPa elastic PAM being 

very similar to each other, in the range that is expected from the preparation protocol and reported 

by others [4]. It is known [52] that the characteristic poroelastic relaxation times of permeable gels 

are strongly dependent on the experimental conditions and especially the diffusivity. This 

dependence is in the order of ~ 
√𝑅𝑡𝑖𝑝𝛿

𝐷
 where Rtip is the radius of the probe tip, δ is the indentation 

depth and D is the diffusivity of the gel (typically ranging in the 10-10 m2/s) [55]. It can be inferred 

from the data that the nature of each gels (different porosity and free volume) may explain the 

variations of the relaxation times found here. This also suggests that the viscosity of the medium will 

probably influence the mechanics of the gels bathed in it, as found in [56].   

To conclude on the pertinence of our method in obtaining the appropriate frequency behavior 

of soft materials, we decided to re-analyze published data obtained by another group where both FT 

curves and discrete frequency results were available [57]. As shown in Appendix C Figure C1, an 

excellent consistency was found when plotting the extrapolated frequency behavior of the dynamic 

moduli computed from the FT curve and comparing it to the actual experimental frequency 

measurements that the authors obtained (in a large range of frequencies).  

 

 

Figure 4. Mechanical characterization of 3 types of PAM hydrogels: 1kPa elastic PAM, 4kPa elastic 

PAM and 4kPa viscoelastic PAM. (A) Comparison of FT curves (60 s relaxation indentation at a 

velocity of ~100 µm/s with a frequency of 100 Hz) with their respective 3rd order GMM fitting. The 

curves were normalized to FMAX. (B) Relaxation spectrum obtained from the 3rd order GMM fitting 

with Dirac deltas. Distributions of 11 experiments are presented in Appendix A, Figure A4-B. (C) 

From the 3rd order GMM fittings, the dynamic moduli E’(ω) and E”(ω) were calculated for each 

sample type. The experimental resolution is the range of frequencies corresponding to the actual 

measurement times (0-60sec at 100 Hz). (D) Influence of the indentation depth and velocity on the 

long-time stiffness E∞ for the 4 kPa PAM sample. For all graphs, 2 independent samples were 

measured on at least 5 different locations for each condition. 
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Finally, Figure 4D shows the influence of the velocity and depth of indentation on the long-term 

elastic modulus E∞ of the 4 kPa PAM sample. When compared with the same graph constructed in 

Figure 3D for data obtained from the Hertz model, it is clear that the variations are smaller for the 

GMM-derived modulus, around a lower value of 6 kPa (which has to be compared to the 10 kPa 

results obtained by indentation and the Hertz model represents at least 50% less variation than the 

obtained with microindentation). Interestingly, for indentation velocities of ~140 µm/s the calculated 

long-term stiffness E∞ is almost independent of the indentation depth. This is consistent with 

previously reported results showing that a higher indentation velocity is preferrable [52].  

3.4 Comparison between microindentation and relaxation mechanicals tests 

 When the Young’s modulus of a material is required, for instance for quantifying the influence 

of substrate mechanics on cell spreading [58,59] or determining forces reliably using traction force 

microscopy measurements [60], our method also readily enables its determination from the 

relaxation data and GMM analysis. For that, we compared the calculated values of the elastic 

modulus obtained with conventional microindentation and with the relaxation tests. The results are 

shown in Figure 5A for the PAM hydrogels with an expected value of E = 4 kPa and in the two 

configurations of Figure 2 (submerged into a detergent solution and soaked). In the case of 

microindentation, the Hertz model was used in the attraction-free detergent condition (EH) while the 

JKR was preferred for the soaked samples (EJKR). For relaxation tests, two elastic moduli obtained 

from the relaxation data and 3rd order GMM fitting are shown: the long-term elastic modulus E∞ 

and the storage elastic modulus at 1 Hz E’(ω = 1 Hz). A significant difference between the value of 

the elastic modulus obtained with the Hertz model for the data of the microindentation performed 

in detergent and the results computed from relaxation tests. This may be explained by the fact that 

relaxation tests results are robust when adhesion effects have to be taken into account. Indeed Figure 

5A shows that there is no significant difference between the instantaneous modulus calculated from 

measurements of 4 kPa PAM samples either immersed or soaked. Moreover, the use of the relaxation 

spectra obtained from the GMM fitting enabled a further analysis of differences between the two 

conditions that helped explain the impact of the indentation velocity as depicted in Figure 3D. 

Although the relaxation spectra of the 4 kPa PAM samples measured in the two different conditions 

looked very similar, the samples characterized in detergent solution presented an additional 

relaxation time 𝜏𝑖 = 3.43 ± 0.24 s absent from the samples measured as soaked in air (see Appendix 

A Figure A4-A). The GMM viscosity associated with this relaxation time was calculated to be 𝜂i = 

5.73 ± 0.67 kPa.s, a value very similar to what was reported for other soft hydrogels under 

compression [61,62], and could explain the increment of the apparent Young’s modulus when 

indentation takes place at higher velocities. Indeed, we recall that the instantaneous modulus is the 

sum of all the moduli and it only appears in the immersed samples and not in the soaked ones, 

suggesting that the material viscosity (resistance to flow) may be the excess found here. Therefore, 

when aiming at describing the intrinsic mechanical properties of a material under test, the long-term 

modulus E∞ is clearly an appropriate characteristic property to use as it appears to be independent 

of the measurement conditions and is almost not impacted by indentation depth for high indentation 

velocities (as seen in Figure 4D). 
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Figure 5. Comparison between the elastic modulus obtained from microindentation and the most 

relevant model for data fitting, and relaxation tests, using the GMM model. A) Comparison between 

values calculated for hydrogels immersed in a detergent solution of ddH2O + 0.1% Extran (cyan) and 

only soaked with ddH2O (grey). In the case of the microindentation test, the Hertz model was used 

to determine EH in immersed samples while the JKR model was preferred to calculate EJKR for soaked 

gels. In the case of relaxation tests, the 3rd order GMM model allowed the calculation of long-term 

elastic modulus E∞ as well as the determination of E’(ω) and E”(ω) for a given frequency range 

delimited by 10-2 - 101 Hz. In this graph, E’(⍵ =1 Hz) is shown and noted E’. B) Same comparison for 

the soft viscoelastic PAM and 1 kPa elastic PAM. Their apparent elastic moduli when submerged in 

detergent are very similar when using microindentation (see Table 2), but are much larger than 

expected (see text). Relaxation tests reveal very different dynamic behaviors. Boxes are the 

interquartile range (Q1-Q3)  and bars extend to the maximum and minimum values. All the 

experimental data are presented as scatter plots in the Appendix C Figure C2, for more details. A 

one-way ANOVA analysis with Tukey correction was employed for multiple comparisons. It was 

considered significant statistically with p<0.05,  * p<0.01. 

Then, Figure 5B shows the comparison between microindentation and relaxation results for 

the viscoelastic PAM and the 1 kPa elastic PAM. It is clear that their apparent elastic moduli obtained 

from microindentation only are very similar (see also Table 2), but are 2 to 3 times larger than 

expected (1.72 kPa and 1.10 kPa respectively). Relaxation tests however provide lower values, much 

closer to the ones that were expected, as measured by AFM and reported in the literature (see Table 

1). 

All the data obtained from microindentation and relaxation tests is summarized and 

presented in Table 1. It clearly shows that in most cases, the Young’s modulus obtained from 

microindentation (using either Hertz or JKR model depending on adhesion levels observed during 

measurements) differs from the long-term modulus obtained from relaxation tests and GMM 

analysis. However, the latter appeared to be the closest to the expected values reported by many 

groups using AFM measurements. Relaxation tests seemed less affected by experimental conditions 

than microindentation and offered better results. Table 1 also presents the storage modulus E’ 

evaluated at a frequency of 1 Hz using the GMM analysis. This value is relevant for materials whose 

mechanical properties are important to study the mechanosensing of biological cells, as explained in 

[19]. It also offers a better mode of comparison with the dynamic moduli obtained from rheometer 

characterizations. Also, it has been reported recently that the exact swelling state, which can be 

difficult to control and reproduce, plays a very important role in the mechanical properties of PAM 

hydrogels, especially the softest ones (below 9 kPa): the elastic modulus measured by AFM showed 

that after only 9h of swelling the elastic modulus of the PAM gels decreased substantially [54]. 
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Table 1. Comparison of values of elastic moduli obtained for different methods, materials and 

conditions: E = calculated Young’s modulus, E∞ = long-term stiffness, E’ = storage modulus evaluated 

at 1 Hz and Eref = reported Young’s modulus. Detergent and soaked are the conditions depicted in 

Figure 2 and dry is a condition for which the sample is not moisted and measured in air at room 

temperature. The JKR model was used to fit experimental data for soaked and dry samples, Hertz 

model was used for samples immersed detergent solution. All reported values are mean ± standard 

deviation for each condition (two samples were characterized in at least 6 different locations). 

  

4kPa  

PAM  

(kPa) 

4kPa 

PAM 

(kPa) 

soft 

V-PAM 

(kPa) 

1kPa  

PAM 

(kPa) 

Stiff 

PAM 

(kPa) 

PDMS 

10:1 

(MPa) 

PDMS 

15:1 

(MPa) 
measurement 

conditions soaked detergent detergent detergent soaked dry dry 

reported 

values 

Eref 

Ref 

4.47±1.19 

[5] 
- 

1.7231 

[21] 

1.10±0.34 

[5] 

34.88 

[5] 

1.35 - 

2.01 

[63] 

0.9 - 1.2 

[36] 

micro 

indentation E 8.92±0.55 12.60±0.42 3.73±0.27 3.37±0.17 
38.72±8.7

1 
0.91±0.09 0.63±0.01 

relaxation 

tests 

E∞ 6.00±0.57 6.41±0.44 1.55±0.31 1.63±0.39 
36.01±2.6

7 
1.61±0.48 0.61±0.17 

E’ 8.25±1.47 8.78±0.80 2.09±0.40 2.57±0.50 
39.93±2.5

4 
1.68±0.47 0.65±0.16 

                                1 expected E’, see section 2.1 

Finally, we demonstrated the applicability of the relaxation tests and GMM analysis to stiffer 

PAM hydrogels and less porous elastomers. The last 3 columns of Table 1 show the results obtained 

for the characterization of 40 kPa PAM samples (expected Young’s modulus according to [5]) and 

two types of MPa-range elastic PDMS slabs. No real difference was observed for these stiffer 

materials between the results obtained from microindentation and relaxation and the calculated 

values were in well accordance with the literature. It is thought that those materials are much less 

porous and thus less sensitive to the hysteresis phenomenon found in soft PAM hydrogels.  

3.5 Relevance for cellular mechanobiology: cell response to PAM hydrogels of different mechanical properties 

 In order to conclude on the relevance of this work for mechanobiology assays, a validation of 

the PAM hydrogels for cell culture was achieved. We chose immortalized human fibroblasts because 

they are known to respond strongly to very small changes in the substrate stiffness: they spread 

more largely on stiffer substrates, which is an easy readout of mechanosensing [64]. A very precise 

characterization of PAM hydrogels is thus required in this type of mechanobiology assays, within 

experimental conditions that are as close as possible to the cell culture conditions (immersed in 

medium) since the chosen substrates have very close rigidities. Aside, the localization of YAP/TAZ 

markers and F-actin as well as the change of the size of the cell nuclei were used to visualize a clear 

difference in the cell mechanoresponse between the two materials. The description provided here 

only aims at validating the use of our materials in mechanobiology assays and underlying the 

potential of our precise and robust substrates characterization. 
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Figure 6. Mechanoresponse of immortalized human fibroblasts on two elastic hydrogels of different 

apparent stiffness. BJ fibroblasts were cultured for 48 hours in 1 and 4 kPa polyacrylamide hydrogels 

conjugated with [100 µg/mL] collagen type I. Subcellular localization of YAP protein (gray) was 

analyzed by immunofluorescence and epifluorescence microscopy. DAPI (red) and Alexa488-

coupled phalloidin (green) were used to stain nuclei and actin filaments (F-actin), respectively. Data 

shown is a representative of 3 independent experiments. Scale bar is 50 µm, same illumination was 

used for presentation. 

As can be seen from Figure 6, immortalized human fibroblasts behave very differently after 48h 

of culture on 1 kPa and 4 kPa elastic PAM gels. Yes‐associated protein (YAP) and transcriptional co‐

activator with PDZ‐binding motif (TAZ) are key effectors of actin polymerization and tensile forces 

status: the intracellular localization of YAP/TAZ is an important determinant in the regulation of 

their activity and transduction and it is known to depend on the apparent stiffness sensed by cells. 

Here, YAP/TAZ proteins showed a strong nuclear localization (active) in the stiffest material and 

more abundant in the cytoplasm for the softer gels (less active) similar to what is usually reported 

[65]. The size of the nuclei of the cells is also greater on the stiffer material and the morphology and 

size of F-actin fibers are apparently more elongated cells with larger F-actin stress fibers, on the stiffer 

substrate. 

In other experiments, BJ fibroblasts were much more extended with more abundant stress fibers 

on the 20 kPa PAM hydrogels (and glass), validating a gradual response of such cells on rigidity-

tuned substrates (data not shown). The point here is that if only microindentation tests results were 

used to account for the materials stiffness, the two materials would be thought to be 3.4 kPa and 12.6 

kPa PAM hydrogels, that is having very different rigidities (1 order of magnitude apart). We now 

know, however, that the mechanical properties of said gels are more complex and the relaxation tests 

suggest to consider long-term stiffnesses of E∞ = 1.6 kPa and E∞ = 6.4 kPa instead. This much smaller 

stiffness difference between the two gels indicates the large impact on cells of small variations of 

substrate rigidities, which may occur from one preparation to the other if no particular care is taken 

in preparing the samples and conserving the most stringently the components of gel preparation. 

These results hence offer a better precision and resolution of the range of the mechanical properties 

of a material to which the cells respond. 

 

4. Discussion 

In this work, we have shown that simple relaxation tests are very useful to characterize soft 

materials like PAM hydrogels and describe their dynamic behavior in conditions close to those of 

cell culture. We developed a GMM model and its application to data to extract parameters that are 

relevant in mechanotransduction studies. We characterized this procedure by designing gels with 
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precise elastic or viscoelastic properties, and obtained results in good agreement with what was 

expected from literature reports. Biological cells are very sensitive to slight changes in gel stiffness, 

calling for very precise measurements of the stiffness sensed by cells. Also, recent findings have 

shown that the relaxation times of culture substrates are critical in mechanobiology, as they control 

cell spreading dynamics in culture [19]. PAM hydrogels are known to present dissipation, as shown 

in the hysteresis curves in Figure 2, and this needs to be accounted for in the characterization. 

We first determined the correct experimental conditions to perform the relaxation tests. 

Adhesion forces must indeed be avoided to limit possible unwanted interactions biasing the 

measurements and distorting the final results. Also, a minimal indentation depth threshold of ~10% 

of the diameter of the tip was identified, identical to what had been reported for AFM in soft 

materials and even cells [50]. Although much larger spherical tips were used here, interestingly the 

same ratio was found. Indentation speed was also found important here, and this is justified by the 

fact that PAM hydrogels are poroelastic materials with a liquid phase exiting the material during the 

indentation compression and diffusing in and out of the surrounding liquid in time [52]. 

Then, our relaxation assays confirmed that soft PAM hydrogels may dissipate elastic energy 

with different characteristic times and that this dissipation affects the mechanical characterization 

by microindentation but cannot be accessed by this only means. Providing more useful information 

on the mechanical properties of the gels, a GMM was used to describe different materials using their 

relaxation times with associated stiffnesses and viscosities as depicted in Figure 1B. Dynamic storage 

and loss moduli were also calculated and were found accurate in describing the mechanics of the 

gels in a more general manner than Hertz model or empirical models [52]. Two relaxation 

mechanisms in soft gels may be existing: viscoelastic relaxation due to conformational changes of 

the polymer chains and fluid-induced poroelastic relaxation. A combination of both is also possible 

as seen in soft materials that swell with a solvent. Poroelastic relaxation is considered the dominant 

relaxation mechanism in PAM gels and it was demonstrated that the mechanical and transport 

properties of such poroelastic materials can be measured via microscale load relaxation, justifying 

our approach [31]. We also validated the method for stiffer PAM hydrogels and PDMS, showing that 

it can be used for other types of materials used in mechanobiology. 

As a conclusion, when properly performed, the simple relaxation tests proposed here are a very 

useful tool to describe soft PAM hydrogels as the results obtained from this simple characterization 

provide a full mechanical characterization of a soft material from a simple FT curve, e.g. at the end 

or even during a spreading experiment with cells. For comparison with typical microindentation 

tests, the intrinsic mechanical properties of a material under test may be defined by the long-term 

modulus E∞, which is clearly an appropriate characteristic, independent of the measurement 

conditions and almost not impacted by indentation depth for high indentation velocities. It could 

then be useful to report long-term modulus E∞, in decellularized matrices or tissue slides to correctly 

mimic this mechanical cue in biomimetic polymers.  

 

Supplementary Materials: The Python code written and used in this project for the GMM analysis is shared 

here for use with your own experimental data. Feel free to comment and provide improvements. 
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Appendix A- Notes on FD curve processing and analysis 

In our hands, for all samples measured in a ddH2O + 0.1% extran solution (to avoid undesired 

attraction of the tip) the contact point coincides with the position at which indentation begins. 

However, in the soaked-only samples, it has been reported that the contact point is not necessarily 

there [13]. We then considered the change of the slope in the FD curve (its first derivative) as a useful 

way to identify the position of a switch in the force regime. Indeed, when performing indentation 

tests, the origin of the major contribution of the measured forces is changed from an attraction-led 

regime in which the force is proportional to the indentation depth 𝛿 (Fattraction ~ 𝛿) to an indentation-

driven regime in which Findentation ~ 𝛿3/2. If these two types of forces are the only ones present during 

the physical characterization, then the maximum of the second derivative precisely and objectively 

marks the beginning of indentation (see Figure A1). The variations of the slope in the FD curves are 

also observed in the FT curves. If 𝐹𝑖𝑛𝑑𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ∼ 𝛿3/2 and we suppose that 𝐹𝑖𝑛𝑑𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐹(𝑡) therefore 

𝐹(𝑡) ∼  𝛿(𝑡)3/2  ⇒ 𝑑𝐹(𝑡) ∼
3

2
𝛿(𝑡)1/2𝑑𝑡  and so  𝑑𝐹/𝑑𝑡 ∼

3

2
𝛿1/2 . On the other hand, we have 𝑑𝐹/𝑑𝛿 ∼

3

2
𝛿1/2 leading to 𝑑𝐹/𝑑𝛿 = 𝑑𝐹/𝑑𝑡. This implies that the procedure to find the contact point in the FD 

curves for microindentation tests is equivalent for the FT curves obtained in relaxation tests. Figure 

A1 shows the determination of the contact point associated with the maximum of the 2nd derivative 

with respect to time computed for a relaxation curve for a 4 kPa PAM hydrogel immersed in 

detergent solution. 

 
Figure A1. Example of the determination of the contact point, start of relaxation (maximum force) 

and indentation depth for a relaxation test performed on a 4 kPa PAM hydrogel immersed in ddH2O 

+ 0.1% Extran. The first and second derivatives of the force are calculated as a function of time. The 

superior graph shows the displacement of the probe tip as a function of time. The middle graph 

shows the time behavior of the measured force. The 1st and 2nd derivatives are calculated from this 

graph and shown in the inferior graph. Experimental data were interpolated and it was considered 

that the maximum of the 2nd derivative implied a concavity change associated with the change in 

force behavior (a linear behavior for the attractive forces domain and a F2/3 for indentation forces 

domain) Thus the position, representative of the contact point is thus precisely determined by the 

maximum of the second derivative. Here, raw data are shown and time is therefore equivalent to 

displacement.  
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Figure A2. Correction for displacement of the indentation tip. A) FD curve representative of the 

indentation of glass (indentation of 100 µm/s and a frequency of data acquisition of 100 Hz). B) Hertz 

model and Hook model fittings of glass indentation data. C) comparison between the FD curve of 

the indentation of a PAM hydrogel measured immersed in ddH2O + 0.1% Extran (blue curve) and 

the FD curve of the indentation of stiff glass (red), associated to the displacement of the probe tip 

mechanism. The difference between them is the true indentation depth. 

 

 
Figure A3. Representative curves of FD fitting processing. A) Hertz model fitting of the indentation 

of a 4 kPa PAM hydrogel in ddH2O + 0.1% Extran. The viscous drag was calculated using the slope 

of the approach curve (figure 2C in the main text) obtaining 0.006 ± 0.005 µN/µm at an indentation 

speed of 100 µm/s, which is negligible compared to the ~0.3 µN change due to relaxation with the 

same indentation speed. B) JKR model fitting of the indentation of the same hydrogel PAM measured 

while only soaked. There is an underestimation of the slope (therefore the elastic modulus) when 

modelling data with distances lower than ~10 µm. Also, for indentation depths greater than ~11 µm 

the Young’s modulus reaches a plateau value which is similar to the behavior presented in Figure 3 
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in the main text. C) JKR model fitting of a stiffer hydrogel (~35 kPa, see Table 1) when only soaked 

in deionized water. There is a clear attraction of ~10 µN, twice that of the softer PAM hydrogel ( ~5 

µN), suggesting a possible dependency of the tip attraction with the stiffness of the sample 

(acrylamide / bisacrylamide proportions). 

 

 
Figure A4. To report on the experimental variability, we plotted a distribution of characteristic 

relaxation times (represented by Dirac deltas in Figure 4B of the main text), grouping the results of 

several measurements of different samples. A) Comparison between the relaxation spectra of a 4 kPa 

PAM hydrogel when measured either immersed in detergent solution or soaked but in air. While the 

material is the same but the experimental conditions differ, a relaxation time appears at 𝜏 = 3.43 ± 

0.24 s when the sample is immersed in detergent. Also, an additional relaxation peak appears at 𝜏 = 

0.05ya  ± 0.05 s in the soaked condition. These differences are probably caused by relaxation effects 

due to poroelasticity when diffusion happens at different times (see main text). B) Comparison 

between the different relaxation spectra of samples measured in detergent solution. Each peak 

represents a normal distribution centered in 𝜏i with a standard deviation 𝜎, obtained by gathering 

values of 𝜏i from 2 independent samples for each condition (n=11). 

Note: A normal distribution was supposed, with the standard deviation of the data being the 

deviation of the distribution and the weight is represented by 𝑘𝑖/𝑘∞. Because the distributions are 

gaussian distributions, a smaller peak represents a greater standard deviation, hence a greater 

dispersion (variability) of the data. 
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Appendix B- Notes on the criterion of cross validation to determine a proper fitting 

This appendix shows the verification of the correctness of the GMM fitting using the visualization 

of the residues and the subsequent evaluation of a possible overfitting of experimental data. 

 
Figure B1. Third order GMM fitting (N=3) to a relaxation curve of a 4 kPa PAM hydrogel immersed 

in ddH2O + 0.1% Extran. The superior graph shows the residues of the fitting. Experimental data is 

normalized before adjusting with a GMM fitting. 

In order to evaluate the level of acceptability or correctness of the GMM fitting, we used a criterion 

of cross validation calculating the mean squared error (MSE) defined in equation B1:  

                                                                   𝑀𝑆𝐸 =
1

𝑁
∑𝑁

𝑖=1 (𝑌𝑖
𝑡𝑒𝑠𝑡 − 𝑌̂𝑖

𝑡𝑒𝑠𝑡)2                                             (B1) 

where the 𝑌𝑖
𝑡𝑒𝑠𝑡  represent the test data and 𝑌̂𝑖

𝑡𝑒𝑠𝑡 the validation data out of a total of N data points in 

i partitions. We have: 

                                                                   𝑌̂𝑖
𝑡𝑒𝑠𝑡 = 𝐺𝑀𝑀𝑓𝑖𝑡(𝑋𝑖

𝑡𝑒𝑠𝑡: 𝛼𝑡𝑒𝑠𝑡) 

where 𝑋𝑖
𝑡𝑒𝑠𝑡 represents the set of experimental data used in the fitting using the GMM and  𝛼𝑡𝑒𝑠𝑡 is 

the set of fitted parameters. 

The criterion of cross validation quantifies a possible overfitting of the data while increasing the 

number of parameters and coefficients used in the model. The original set data are subdivided in k 

random samples. Each one of them is used in a validation set (called test), the data of the k-1 samples 

(train) are collected and fitted using the GMM model and the αtrain variables are obtained. Then, 

using these parameters, the validation data (the values that were not used) are fitted and the MSEitest 

of the validation set is calculated. This is iterated for all the N data points to average the cross 

validation MSE as a measure of the quality of the fitting. 
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Figure B2. Calculation of MSE as a criterion of cross validation to evaluate the quality of the GMM 

model fitting.  

Therefore, it was possible to define the number of Maxwell elements (arms) required in the 

GMM model. The order of the model is selected for the MSE to be minimal and the individual 

values of the fitting not to exceed an error of 10% (with an exception in Figure C1, where this 

threshold had to be increased to 20% because the total number of data of the relaxation curve 

was low (n=70) and there was considerable noise on the data). The results of the cross validation 

were validated with the Akaike information criterion as observed in Figure B3. This provides 

an estimation of the correctness and complexity of the model. 

 
Figure B3. Example of the method of determination of best GMM fitting order for stiff PAM hydrogel 

samples. The left column shows the experimental data of 4 curves (yellow) together with their GMM 

N N N N N N
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fittings of different orders (corresponding to a different number of Maxwell elements, or arms). Each 

dot presented in the graphs at the center and right columns are the MSE criterion (center) and Akaike 

information criterion (right) for N arms in the GMM fitting, showing which order is the best. 

Globally, the best fitting order was for N=4, as depicted by the lowest MSE (and AIC) value. 

However, we found that the error of each parameter individually increased with the number of 

degrees of freedom and it was decided to use a GMM fitting with N=3, for which the parameters 

always presented an error lower than 10%. 
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Appendix C - Validation and comparison with other methods 

 
Figure C1. GMM analysis of published experimental data (FT curve) obtained by nanoindentation-

relaxation of a biological cell using AFM [57] and comparison of computed frequency behavior with 

experimental data of dynamic moduli. This figure corroborates  the usefulness of the proposed 

method to characterize soft materials used in mechanobiology by only using a simple FT curve with 

a relaxation time of a few dozens of seconds. The raw stress-relaxation data were collected from 

Figure 1 of reference [57]: a cell was indented and relaxed using an ARROW-TL1 cantilever with an 

attached 4.7 μm silica bead, spring constant 0.05 N m-1. 

A) Graph reproducing the experimental relaxation data obtained from [57] together with the 

corresponding GMM 3rd order fit. B) Relaxation spectra associated with the hydrogel sample. We 

can observe that the relaxation times are of the same order as the ones found in Figure 4 and Figure 

A4, of our experiments. C) Representation of the dynamic moduli G’ and G” obtained from our GMM 

model (calculated from E* using the relation in section 2) and compared with the actual experimental 

data from rheology [57]. From frequencies of ~10.-1 s-1, the tendencies are very similar. It is striking 

that only with the data of the single relaxation curve of panel A the full frequency characterization is 

possible.  

Interestingly, in [57] the sample was indented 0.4 µm at a velocity of 30 µm/s; the indentation lasted 

0.13 s corresponding to the highest frequency (10 Hz) azd the relaxation lasted 30 s (~10-1 Hz). It was 

obtained that G’(1 Hz) =  432.19 Pa and G’’(1 Hz) = 98.75 Pa, values that are recommended to be used 

to compare the results obtained with other characterization methods. D) Losses in elastic energy are 

defined as tan(δ) = G’’/G’ and it can be observed that the major loss is at frequencies around 10-1 Hz 

and longer times (> 10 s) dissipate less elastic energy. 
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Figure C4. Comparison between the different modules obtained with microindentation (EH) and 

relaxation (Einst and E∞) for a 4 kPa PAM hydrogel immersed in a ddH2O + 0.1% Extran solution. 

 

Table C1. Pearson’s correlation between the Young’s modulus measured by microindentation (EH) 

and relaxation (Einst and E∞); in both cases a positive correlation was found.  

r(EH, Ei) = Pearson correlation with EH. 

 EH Einst E∞ 

r(EH, Ei) 1.000 0.556 0.924 
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