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Abstract: The Newton-Hooke duality and its generalization to arbitrary power laws in classical,
semiclassical and quantum mechanics are discussed. We pursue a view that the power-law duality
is a symmetry of the action under a set of duality operations. The power dual symmetry is defined by
invariance and reciprocity of the action in the form of Hamilton’s characteristic function. We find that the
power-law duality is basically a classical notion and breaks down at the level of angular quantization. We
propose an ad hoc procedure to preserve the dual symmetry in quantum mechanics. The energy-coupling
exchange maps required as part of the duality operations that take one system to another lead to an
energy formula that relates the new energy to the old energy. The transformation property of Green
function satisfying the radial Schrédinger equation yields a formula that relates the new Green function
to the old one. The energy spectrum of the linear motion in a fractional power potential is semiclassically
evaluated. We find a way to show the Coulomb-Hooke duality in the supersymmetric semiclassical
action. We also study the confinement potential problem with the help of the dual structure of a two-term
power potential.

Keywords: Power-law duality, Classical and quantum mechanics, Semiclassical quantization,
Supersymmetric quantum mechanics, Quark confinement

1. Introduction

In recent years, numerous exoplanets have been discovered [1,2]. In exoplanetary research it is a
generally accepted view that Newton’s law of gravitation holds in extrasolar systems [3]. Orbit mechanics
of exoplanets, as is the case of solar planets and satellites, is classical mechanics of the Kepler problem
under small perturbations. The common procedure for the study of perturbations to the Kepler motion is
the so-called regularization, introduced by Levi-Civita (1906) for the planar motion [4,5] and generalized by
Kustaanheimo and Stiefel (1965) to the spatial motion [6]. The regularization in celestial mechanics is a
transformation of the singular equation of motion for the Kepler problem to the non-singular equation of
motion for the harmonic oscillator problem with or without perturbations. It identifies the Kepler motion
with the harmonic oscillation, assuring the dual relation between Newton'’s law and Hooke’s law.! The
Newton-Hooke duality has been discussed by many authors from various aspects [8]. The basic elements
of regularization are: (i) a transformation of space variables, (ii) interpretation of the conserved energy as
the coupling constant, and (iii) a transformation of time parameter. The choice of space variables and

Here, following the tradition, we mean by Newton’s law the inverse-square force law of gravitation and by Hooke’s law the
linear force law for the harmonic oscillation. Although Hooke found the inverse square force law for gravitation prior to Newton,
he was short of skills in proving that the orbit of a planet is an ellipse in accordance with Kepler’s first law, while Newton was
able not only to confirm that the inverse square force law yields an elliptic orbit but also to show conversely that the inverse
square force law follows Kepler’s first law. History gave Newton the full credit of the inverse square force law for gravitation.
For a detailed account, see, e.g., Arnold’s book [7].
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time parameter is by no means unique. The transformation of space variables has been represented in
terms of parabolic coordinates [4,5], complex numbers [9,10], spinors [6], quaternions [3,11], etc. The time
transformation used by Sundman [9] and by Bohlin [10] is essentially based on Newton’s finding [12] that
the areal speed dA/dt is constant for any central force motion. It takes the form ds = Crdt where s is a
fictitious time related to the eccentric anomaly. To improve numerical integrations for the orbital motion, a
family of time transformations ds = C,r"dt, called generalized Sundman transformations, has also been
discussed [13], in which s corresponds to the mean anomaly if # = 0, the eccentric anomaly if 7 = 1, the
true anomaly if 77 = 2, and intermediate anomalies [14] for other values of 77. Even more generalizing, a
transformation of the form ds = Q(r)dt has been introduced in the context of regularization [15].

As has been pointed out in the literature [7,12,16,17], the dual relation between the Kepler problem
and the harmonic oscillator was already known in the time of Newton and Hooke. What Newton posed in
his Principia was more general. According to Chandrasekhar’s reading [12] out of the propositions
and corollaries (particularly Proposition VII, Corollary III) in the Principia, Newton established the
duality between the centripetal forces of the form, r* and rf, for the pairs («,8) = (1,-2),(—1, 1)
and (—5, —5). Revisiting the question on the duality between a pair of arbitrary power forces, Kasner [18]
and independently Arnol’d [7] obtained the condition, (« + 3)(B + 3) = 4, for a dual pair. There are a
number of articles on the duality of arbitrary power force laws [19]. Now on, for the sake of brevity, we
shall refer to the duality of general power force laws as the power duality. The power duality includes the
Newton-Hooke duality as a spacial case.

The quantum mechanical counterpart of the Kepler problem is the hydrogen atom problem. In 1926,
Schrodinger [20] solved his equation for the hydrogen atom and successively for the harmonic oscillator.
Although it must have been known that both radial equations for the hydrogen atom and for the harmonic
oscillation are reducible to confluent hypergeometric equations [21], there was probably no particular urge
to relate the Coulomb problem to the Hooke problem, before the interest in the accidental degeneracies
arose [22,23]. Fock [22] pointed out that for the bound states the hydrogen atom has a hidden symmetry
50(4) and an appropriate representation of the group can account for the degeneracy. In connection with
Fock’s work, Jauch and Hill [24] showed that the 2 — D harmonic oscillator has an algebraic structure
of su(2) which is doubly-isomorphic to the so(3) algebra possessed by the 2 — D hydrogen atom. The
transformation of the radial equation from the hydrogen atom to that of the harmonic oscillator or vice
verse was studied by Schrodinger [25] and others [26]. The same problem in arbitrary dimensions has
also been discussed from the supersymmetric interest [27]. In the post-KS era, the relation between the
three dimensional Coulomb problem and the four dimensional harmonic oscillator was also investigated
by implementing the KS transformation or its variations in the Schrodinger equation. See ref. [28] and
references therein. The duality of radial equations with multi-terms of power potentials was studied in
connection with the quark confinement [29-31].

The time transformation of the form ds = C,r"dt used in classical mechanics is in principle integrable
only along a classical trajectory. In other words, the fictitious time s is globally meaningful only when
the form of r(t) as a function of t is known. In quantum mechanics, such a transformation is no longer
applicable due to the lack of classical paths. Hence it is futile to use any kind of time transformation
formally to the time-dependent Schrodinger equation. The Schrodinger equation subject to the duality
transformation is a time-independent radial equation possessing a fixed energy and a fixed angular
momentum. The classical time transformation is replaced in quantum mechanics by a renormalization
of the time-independent state function [32]. In summary, the duality transformation applicable to the
Schrodinger equation consists of (i) a change of radial variable, (ii) an exchange of energy and coupling
constant, and (iii) a transformation of state function. Having said so, when it comes to Feynman'’s path
integral approach, we should recognize that the classical procedure of regularization prevails.
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Feynman'’s path integral is based on the c-number Lagrangian and, as Feynman asserted [33], the
path of a quantum particle for a short time dt can be regarded as a classical path. Therefore, the local time
transformation associated with the duality transformation in classical mechanics can be revived in path
integration. In fact, the Newton-Hooke duality plays an important role in path integration. Feynman'’s
path integral in the standard form [33,34] provides a way to evaluate the transition probability from a point
to another in space (the propagator or the Feynman kernel). The path integral in the original formulation
gives exact solutions only for quadratic systems including the harmonic oscillator, but fails in solving the
hydrogen atom problem. However, use of the KS transformation enables to convert the path integral for
the hydrogen atom problem to that of the harmonic oscillator if the action of Feynman'’s path integral is
slightly modified with a fixed energy term. In 1979, Duru and Kleinert [35], formally applying the KS
transformation to the Hamiltonian path integral, succeeded to obtain the energy-dependent Green function
for the hydrogen atom in the momentum representation. Again, with the help of the KS transformation,
Ho and Inomata (1982) [36] carried out detailed calculations of Feynman’s path integral with a modified
action to derive the energy Green function in the coordinate representation. In 1984, on the basis of the
polar coordinate formulation of path integral (1969) [37], without using the KS variables, the radial path
integral for the hydrogen atom was transformed to that for the radial harmonic oscillator by Inomata
for three dimensions [38] and by Steiner for arbitrary dimensions [39]. Since then a large number of
examples have been solved by path integration [40,41]. Applications of the Newton-Hooke duality in
path integration include those to the Coulomb problem on uniformly curved spaces [42], Kaluza-Klein
monopole [43], and many others [41]. The idea of classical regularization also helped to open a way to
look at the path integral from group theory and harmonic analysis [40,44,45]. The only work that discusses
a confinement potential in the context of path integrals is Steiner’s [46].

As has been briefly reviewed above, the Newton-Hooke duality and its generalizations have been
extensively and exhaustively explored. In the present paper we pursue the dual relation (power-duality)
between two systems with arbitrary power-law potentials from the symmetry point of view. While most
of the previous works deal with equations of motion, we focus our attention on the symmetry of action
integrals under a set of duality operations. Our duality discussion covers the classical, semiclassical and
quantum-mechanical cases. In Section 2, we define the dual symmetry by invariance and reciprocity of the
classical action in the form of Hamilton’s characteristic function and specify a set of duality operations.
Then we survey comprehensively the properties of the power-duality. The energy-coupling exchange
relations contained as a part of the duality operations lead to various energy formulas. In Section 3, we
bring the power-duality defined for the classical action to the semiclassical action for quantum mechanical
systems. We argue that the power-duality is basically a classical notion and breaks down at the level of
angular quantization. To preserve the basic idea of the dual symmetry in quantum mechanics, we propose
as an ad hoc procedure to treat angular momentum L as a continuous parameter and to quantize it only
after the transformation is completed. A linear motion in a fractional power-law potential is solved as an
example to find the energy spectrum by extended use of the classical energy formulas. We also discussed
the dual symmetry of the supersymmetric (SUSY) semiclassical action. Although we are unable to verify
general power duality, we find a way to show the Coulomb-Hooke symmetry in the SUSY semiclassical
action. Section 4 analyzes the dual symmetry in quantum mechanics on the basis of an action having wave
functions as variables. The energy formulas, eigenfunctions and Green functions for dual systems are
discussed in detail, including the Coulomb-Hooke problem. We also explore a quark confinement problem
as an application of multi-power potentials, showing that the zero-energy bound state in the confinement
potential is in the power-dual relation with a radial harmonic oscillator. Section 5 gives a summary of the
present paper and an outlook for the future work. Appendix A presents the Newton-Hooke-Morse triality
that relates the Newton-Hooke duality to the Morse oscillator.
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2. Power-Law Duality as a Symmetry

Duality is an interesting and important notion in mathematics and physics, but it has many faces [47].
In physics it may mean equivalence, complementarity, conjugation, correspondence, reciprocity, symmetry
and so on. Newton’s law and Hooke’s law may be said dual to each other in the sense that a given orbit of
one system can be mapped into an orbit of the other (one-to-one correspondence), whereas they may be a
dual pair because the equation of motion of one system can be transformed into the equation of motion for
the other (equivalence).

In this section, we pursue a view that the power duality is a symmetry of the classical action in the
form of Hamiltonian’s characteristic function, and discuss the power duality in classical, semiclassical and
quantum mechanical cases.

2.1. Stipulations

Let us begin by proposing an operational definition of the power duality. We consider two distinct
systems, A and B. System A (or A in short), characterized by an index or a set of indices 4, consists
of a power potential V,(r) ~ r* and a particle of mass m, moving in the potential with fixed angular
momentum L, and energy E,. Similarly, system B (B in short), characterized by an index or a set of indices
b, consists of a power potential V;,(r) ~ r’ and a particle of mass n1;, moving in the potential with fixed
angular momentum L, and energy E;.

If there is a set of invertible transformations A(B, A) that takes A to B, then we say that A and B are
equivalent. Naturally, the inverse of A(B, A) denoted by A(A, B) = A~1(B, A) takes B to A.

Let X(a,b) and X(b,a) = X~ !(a,b) be symbols for replacing the indices b by a and a by b, respectively.
If B becomes A under X(a,b) and A becomes B under X(b,a), then we say that A and B are reciprocal to
each other with respect to A(B, A). If A and B are equivalent and reciprocal, we say they are dual to each
other. Since each of the two systems has a power potential, we regard the duality so stipulated as the power
duality.

The successive applications of A(A, B) and X(a,b) transform A to B and change B back to A.
Consequently the combined actions leave A unchanged. In this sense we can view that the set of operations,
{A(A, B),X(a,b)}, orits inverse, {A(B, A), X(b,a)}, is a symmetry operation for the power duality.

If a quantity Q, belonging to system A transforms to Q, while A(B, A) takes system A to system B,
then we write Q, = A(B, A)Q,. If Qp can be converted to Q, by X(a, b), then we write Q, = X(a,b)Q,
and say that Q, is form-invariant under A(B, A). If Q, = Qp, then Q, is an invariant under A(B, A). If every
Q. belonging to system A is an invariant under A(B, A), then A(B, A) is an identity operation.

2.2. Duality in the classical action

The power duality in classical mechanics may be most easily demonstrated by considering the action
integral of the form of Hamilton’s characteristic function, W(E) = S(t) + Et, where S is the Hamilton’s
principal function and E is the energy of the system in question. The action is usually given by Hamilton’s
principal function,

S(t) = /Tdti _ /Tdt (32— v(7)] (1)

which leads to the Euler-Lagrange equations via Hamilton’s variational principle. If the system is
spherically symmetric, that is, if the potential V(7) is independent of angular variables, then the action
remains invariant under rotations. If the system is conservative, that is, if the Lagrangian is not an explicit
function of time, then the action is invariant under time translations. In general, if the action is invariant
under a transformation, then the transformation is often called a symmetry transformation.
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For a conserved system, we can choose as the action Hamilton’s characteristic function,
T - dS
W(E):/ dt{L+E} =S(t)+Er, E=-— a(:)' @)

Insofar as the system is conservative, both the principal action S(7) and the characteristic action W(E)
yield the same equations of motion. For the radial motion of a particle of mass m with a chosen value of
energy E and a chosen value of angular momentum L in a spherically symmetric potential V(r), the radial

action has the form,
m (dr\? 12
Wien (E) = f, {2 (&) ~ 3z VO E} ' )

where I; = 7(E) > t is the range of t. We let a system with a specific potential V, be system A and append
the subscript a to every parameter involved. In a similar manner, we let a system with Vj, be system B
whose parameters are all marked with a subscript b. For system A with a radial potential V,(r), we rewrite
the action (3) in the form,

o | my o=2 /dr 2 L2
Wiy (Ea) = /I¢ de t {2 t (dqo) + ST Uu(f’)} , 4)

U,(r) = Va(r) — Eg, (5)

with

where ¢ is some fiducial time, I, > ¢ is the range of integration, and t=dt/ de.
In (4), as is often seen in the literature [30-32], we change the radial variable from r to p by a bijective
differentiable map,

Ry r=flp) & p=f0) (6)
where f is a positive differentiable function of p, 0 < r < o0 and 0 < p < co. With this change of variable

o
we associate a change of time derivative from ¢ to s by a bijective differentiable map,

@)

In the above, we assume that both 7 and p are of the same dimension and that s has the dimension of time

[e]
as t does. As a result of operations R ¢ and T, on the action (4), we obtain

R . 2 -2 /d 2 L%
Woen (Ea) = [ dqos{”;fgs () +2iaf2—gua(f(p))}, ®)

whose implication is obscure till the transformation functions f and g are appropriately specified.

Suppose there is a set of operations A, including %R and %g as a subset, that can convert W, ;) (E,) of
(8) to the form,
2 2
o | my 0—2 dp Lb
Wi (Ep) = | d - - - U
(Prs)( h) /I‘(p ¢ s { 2 s (d(P> +2mbp2 b(P) ’ (9)

U, = Vy(p) — Ep, (10)

with
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where V;(p) is a real function of p, and E, is a constant having the dimension of energy. Then we identify
the new action (9) with the action of system B representing a particle of mass m; which moves in a potential
Vi (p) with fixed values of angular momentum L; and energy E;. If Wg, (E;) = X(a, b)Wg, (E,) where
Ca = (r,t) and &, = (p, s), then We, (E,) is form-invariant under A. Since W(, ;) (E,) is physically identical
with W, 1y (Eq), if W, ) (Ea) = X(a,b)W, ) (Ep), then we say that system A represented by W, ;) (E,) is
dual to system B represented by W, ;) (Ej) with respect to A.

2.3. Duality transformations

In an effort to find such a set of operations A, we wish, as the first step, to determine the transformation

functions f(p) of (6) and g(p) of (7) by demanding that the set of space and time transformations {9y, ‘%g}
preserves the form-invariance of each term of the action. In other words, we determine f(p) and g(p) so
as to retain (i) form-invariance of the kinetic term, (ii) form-invariance of the angular momentum term and
(iii) form-invariance of the shifted potential term.

In the action W, ) (Ea) of (8), the functions f(p) and g(p) are arbitrary and independent of each other.
To meet the condition (i), it is necessary that ¢ = 3 f’> where y is a positive constant. Then the kinetic term
expressed in terms of the new variable can be interpreted as the kinetic energy of a particle with mass

M: my =mg/p. (11)

In order for the angular momentum term to keep its inverse square form as required by (ii), the
transformation functions are to be chosen as

flo)=Cyp",  glp) = uCon*p™72, 12)

where 7 is a non-zero real constant and C;, is an 7 dependent positive constant which has the dimension
of =7 as r and p have been assumed to possess the same dimension. With (12), the angular momentum
term of (8) takes the form, L2/ (2m;p*), when the mass changes by 9t of (11), and the angular momentum
L, transforms to

£:  Ly=rnL,. (13)

So far the forms of f(p) and g(p) in (12) have been determined by the asserted conditions (i) and (ii),
even before the potential is specified. This means that (iii) is a condition to select a potential V() pertinent
to the given form of g(p). More explicitly, (iii) demands that gl,(r) must be of the form,

gUa = Vy(p) — Ey, (14)

where V(o) is such that V,(p) = X(a,b)V;(p). Therefore, the space-time transformation {9, %g} subject
to the form-invariance conditions (i) - (iii) is only applicable to a system with a limited class of potentials.

The simplest potential that belongs to this class is the single-term power potential V,(r) = A,r* where
Aq € Rand a € R. The corresponding shifted potential is given by

u” (7") = )\ura - Ea (15)
which transforms with (12) into

§Uu(r) = uAaCy 2o 2172 — uCon*o* 2E,. (16)
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Under the condition (iii) the expected form of the shifted potential is

Uy(p) = gUa(r) = App” — Ep, 17)

where A;, € R and b € R. Comparison of (16) and (17) gives us only two possible combinations for the
new exponents and the new coupling and energy,

b=an+2np—-2 and 2y-2=0, (18)
Ay = uCpt2y*A, and  Ey = uCynE, (19)
and
b=2y—2 and an+2n—-2=0, (a #-2), (20)
Ap = —puCon*p™*E, and  E, = —uCit2nP A, (21)
Note that a = —2 is included in the first combination but excluded from the second combination.

In the following, we shall examine the two possible combinations in more detail by expressing the
admissible transformations in terms of the exponents,

m = 1, Na = 2/(ﬂ + 2) ({1 7& 0, _2)1 (22)

and separating the set of 7, into two as

N+ = {nala > =2}, - = {nala < -2}. (23)

Chandrasekhar in his book [12] represents a pair of dual forces by (a —1,b — 1). In a way analogous to his
notation, we also use the notation (a, b) via # for a pair of the exponents of power potentials when system A
and system B are related by a transformation with 77. We shall put the subscript F to differentiate the pairs
of dual forces from those of dual potentials as (a —1,b — 1) = (a,b) whenever needed. Caution must be
exercised in interpreting (0,0) which may mean lim,_,o(=%¢, t¢), lim,_,o(=£¢, Fe¢) and purely (0,0) (see the
comments in below Subsections). We shall refer to the sets of pairs (a, b) related to the first combination
(18)-(19) and the second combination (20)-(21) as Class I and Class II, respectively.

2.3.1. Class I
Class I is the supplementary set of self-dual pairs. Equation (18) of the first combination implies
¢ m=1 a=0beR, (24)

which is denoted by (a, ) via ;. In this case, (12) yields f(p) = C1p and g(p) = uC? where C; and y are
arbitrary dimensionless constants. With these transformation functions, (6) and (7) lead to a set of space
and time transformations whose scale factors depend on neither space nor time,

9%1 : r = ClP/ (25)

and
o o]

Ti: t=puCls. (26)
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Associated with the space and time transformations (25) and (26) are the scale changes in coupling and
energy, as shown by (19),

Er: Ag— Ay = (uCi)A,,  Eq — Ep = (uC})E,. 27)
According to (11), the mass also changes its scale,
m, - My = Mg/ W. (28)
From (13) and (24) follows the scale-invariant angular momentum,?
Lo: Ly=L, (29)

In this manner we obtain a set of operations Ay = {€1, R, %1, €1, MMy, £} that leaves form-invariant the
action for the power potential system. System B reached from system A by A can go back to system A by
X(a,b). Hence, system A is dual to system B. Notice, however, that A; leads to a self-dual pair (a,4) via i1
for any given a € R. In particular, (0,0) = lim,_,o(=%e, Fe).

Remark 2.1: Class I consists of self-dual pairs (a,a) via #1 for all 2 € R. All pairs in this class are
supplemental in the sense that they are not traditionally counted as dual pairs. Since A; is a qualified set of
operations for preserving the form-invariance of the action, we include self-dual pairs of Class I in order to
extend slightly the scope of the duality discussion.

Remark 2.2: The space transformation 9 of (25) is a simple scaling of the radial variable as C; > 0.
The scaling is valid for any chosen positive value of C;. Hence it can be reduced, as desired, to the identity
transformation r = p by letting C; = 1. Those dual pairs linked by scaling may be regarded as trivial.

Remark 2.3: The scale transformation with C; > 0 induces the time scaling %1 whereas the time has
its own scaling behavior. The change in time (26) integrates to t = C;us + v where v is a constant of
integration. The resulting time equation may be understood as consisting of a time translation t = ' 4+ v, a
scale change due to the space scaling ' = Cys’, and an intrinsic time scaling s’ = us. The time translation,

under which the energy has been counted as conserved, is implicit in %1. The scale factor y of time scaling,
independent of space scaling, can take any positive value. If C; = 1 and p = 1, then ‘%1 becomes the

o
identity transformation of time, t=s.

Remark 2.4: The scale change in mass m;, = pm, is only caused by the intrinsic time scaling t = ys. If
u = 1, then the mass of the system is conserved. Conversely, if m, = m;, is preferred, the time scaling with
# = 1 must be chosen. The time scaling in classical mechanics has no particular significance. In fact, it
adds nothing significant to the duality study. Therefore, in addition to the form-invariant requirements (i) -
(iii), we demand (iv) the mass invariance m, = mj, = m by choosing y = 1. In this setting the time scaling
occurs only in association with the space-scaling. In accordance with the condition (iv), we shall deal with
systems of an invariant mass m for the rest of the present paper.

2 We use the subscript 0 for trivial transformations representing an identity.
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Remark 2.5: If C; = 1 and p = 1, then operations, &, My, and £(, become identities of respective
quantities. Thus A; for C; = 1 and y# = 1 is the set of identity operations, which we denote Ag. The set of
operations A for C; > 0 is trivial in the sense that it is reducible to the set of identity operations A.

Remark 2.6: 1If Class I is based only on the scale transformation, it may not be worth pursuing. As
will be discussed in the proceeding sections, there are some examples that do not belong to the list of
traditional dual pairs (Class II). In an effort to accommodate those exceptional pairs within the present
scheme for the duality discussion, we look into the details hidden behind the space identity transformation
r = p. The radial variable as a solution of the orbit equations, such as the Binet equation, depends on
an angular variable and is characterized by a coupling parameter. In application to orbits, the identity
transformation r = p means r(8; A,) = p(6; A}), which occurs when 6 — f. The angular transformation
0 = 0+ 0y where —27T < 6y < 27T causes a rotation of a given orbit p(0;A;) = r(0;A;) = r(6 — 6p; Ay)
about the center of force by 6. For instance, the cardioid orbit r = ry cos?(/2) in a potential with power
a = —3 maps into p = rgsin®(f/2) by a rotation § = 6 + 7r. This example belongs to the self-dual pair
(—3,—3) via 7 = 1. In this regard, we argue that the identity transformation includes rotations about the
center of forces. Of course, the rotation with 6y = 0 is the bona fide identity transformation.

Remark 2.7: Suppose two circular orbits pass through the center of attraction. It is known that the
attraction is an inverse fifth-power force. If the radii of the two circles are the same, then the inverse
fifth-power force is self-dual under a rotation. If the radii of the two circles are different, the two orbiting
objects must possess different masses. A map between two circles with different radius, passing through
the center of the same attraction, is precluded from possible links for the self-dual pair (—4, —4) by the
mass invariance requirement (iv).

Remark 2.8: If C; < 0 in (25), either r or p must be negative contrary to our initial assumption.
However, when we consider the mapping of orbits, as we do in Remark 2.6, we recognize that there is a
situation where the angular change 6 — 0 induces p(6;A;) = —7(0; A,) = r(6; —A,). For instance, consider
an orbit given by a conic section r = p/(1+ ecosf) where p > 0and —1/e < cosf < 1. Ife > 1, then it
is possible to find § such that —1 < cosf < —1/e by 8 — §. Consequently the image of the given orbit
is p(6; p) = r(6; p) = —r(6; p) < 0. Certainly the result is unacceptable. The latus rectum p is inversely
proportional to A,. Hence in association with the sign change in coupling A, — A, = —A,, we are able to
obtain a passable orbit p(8, —p) = r(8; —p) = —r(6; —p) > 0. The orbit mapping of this type cannot be
achieved by a rotation. To include the situation like this in the space transformation, we formally introduce
the inversion,

R, : r— —p, (30)

and treat it as if the case of C; = —1. Then we interpret the negative sign of the radial variable as a result
of a certain change in the angular variable  involved in the orbital equation by associating it with a sign
change in coupling so that both r and p remain positive. If 4 = 1, the inversion causes no change in time,
mass, energy, and angular momentum, but entails, as is apparent from (27), a change in coupling,

Ao = Ap = (=1)%A,. (1)

The inversion set A; with C; = —1 and ¢ = 1, denoted by A;, is partially qualified as a duality
transformation. The reason why A; is ”partially” qualified is that it is admissible only when a is an
integer. Notice that (—1)? appearing in (31) is a complex number unless 4 is an integer. As A, and A;, are
both assumed to be real numbers, 2 must be integral. Having said so, in the context of the inversion, we
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need a further restriction on a. The sign change in coupling is induced by the inversion only when a is an
odd number. Since A; is not generally reducible to the identity set Ay, it is non-trivial.

2.3.2. Class II

Class 11 is the set of proper (traditional) dual pairs. Equation (20) of the second combination can be
expressed as
&: n=2/(a+2) with b=-2a/(a+2), (a £ =2). (32)

which implies that a pair (a,b) = (a, —2a/(a + 2)) is linked by #, when a # —2. The above operation ¢;
may as well be given by
&: y=(b+2)/2 with a=-2b/(b+2), (b # -2), (33)
which means a pair (a,b) = (—=2b/(b + 2),b) linked via = (b + 2) /2. Another expression for €; is
& p=(b+2)/2, with (a+2)(b+2)=4, (a#-2,b+#-2), (34)

which is a version of what Needham [16] calls the Kasner-Arnol’d theorem for dual forces. If a # 0 and

b #£0,
n=2/(a+2)=(b+2)/2=—b/a, (a#-2,b#-2), (35)

from which follows that to every (a,b) via 1, there corresponds (b,a) via ;' ifa # 0,—2. If |a] < 1,
then b ~ —a and (a,b) ~ (a, —a). Hence (0,0) = lim,_,o(a, —a) via 14+, which overlaps with (0,0) =
lim,_,0(a, a) of Class I in the limit but differs in approach. In the above 7, stand for 1 with a fixed a.

In this case, the transformation functions of (12) can be written as f(p) = Cgp’" and g(p) =
uC2y2p*1~2 where C, = Cy,. Here we choose y = 1 by the reason stated in Remark 2.4. The change of
radial variable (6) and the change of time derivative (7) become, respectively,

R, : r=Cyp'l", (36)

and 5 i
Tai 1= Congp™ %S (37)

Equation (21) of the second combination, associated with {R,, %a }, yields the coupling-energy exchange
operation,
€0 Ay=-CinaEa, Epy=-Ci%pids, (a2 -2). (38)

The time scaling has been chosen so as to preserve the mass invariance (11),
My : my, = m; = m, (39)
and the scale change in the angular momentum follows from (13) with 7,

£, Ly = 14L,. (40)

Now we see that each of the sets A, = {€,;, R, %a, €., My, £,} preserves the form-invariance of the action
(4) with a power potential. The form-invariance warrants that X(a,b)A; = A;. Hence system B is dual
to system A with respect to A,. Let Ay = {A;; a 2 —2}. The set Ay linksa > —2and b > —2 of (a,b),
whereas A_ relatesa < —2tob < —2. No A, linksa 2 —2 to b < —2. Hence there is no pair (a,b)
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consistingof 2 2 —2and b s —2.

Remark 2.9: Class I consists of proper dual pairs (a, b) linked by A, which have been widely discussed
in the literature [7,12,16,17,30,31]. Here a and b are distinct except for two self-dual pairs, (0,0) via 774 and
(—4,—4) viay_.

Remark 2.10: Note that the time transformation (37) is not integrable unless the time-dependence of
the space variable (i.e., the related orbit) is specified.

Remark 2.11: The scale factor C; appeared in Case I was dimensionless. A space transformation of (12)
for a given value of 77, contains a constant C;;, which has a dimension of 2/ (@+2) Let Cy, = Cadg where C,
and d, are a dimensionless magnitude and the dimensional unit of C;,, respectively. Use of an appropriate
scale transformation which is admissible as seen in Case I enables C, to reduce to unity. More over, the
dimensional unit may be suppressed to d, = 1. Therefore, if desirable, the space transformation (36) may
simply be written as r = p* without altering physical contents.

Remark 2.12: Let (a,b) be a dual pair satisfying the relation (a + 2)(b + 2) = 4. Then the left element
(a, ) of (a,a) maps via (a,b) into (b, ), and the right element (,a) into (, b). Hence the self-dual pair (a,a)
can be taken by (a, b) to the self-dual pair (b, b). Schematically,

(a,a) “Y (b,a) “Y (5,0).
We call ((a,a), (b, b)) a grand dual pair.

2.4. Graphic presentation of dual pairs

A dual pair (a,b) is presented as a point in a two-dimensional a — b plane as shown in Fig.1. All
self-dual pairs (a,a) of Class I are on a dashed straight line 2 = b denoted by 7. Every dual pair (a,b) of
Class I is shown as a point on two branches 7+ of a hyperbola described by the equation (2 +2)(b+2) =4
of (34). The graph for Class Il is similar to the one given by Arnol’d for dual forces [7].

Among the dual pairs of Class I, there are pairs (a,a) linked by scale transformations (inclusive of
rotations), which cover all real 4, and those (4, a) related by the inversion, which are defined only when a
is an odd number. In this regard, every pair (a,a), occupying a single point on 71, plays multiple roles.
While the pairs linked by scale transformations admissible for all real values of a4 form a continuous line
11 indicated by a dashed line, those pairs linked by the inversion appear as discrete points on #1 and are
indicated by circles.

The hyperbola representing all pairs of Class II has its center at (—2, —2), transverse axis along b = g,
and asymptotes on the lines a = —2 and b = —2. The bullets indicate all pairs (a,b) via 7+ with integral
a’s; namely, (—1,2) vian =2, (0,0) viay =1, (=3, —6) viay = —2, and (—4, —4) via 7 = —1. There are
no integer pairs other than those listed above in Class II. The square represents the dual pair (—1/2,2/3)
to be discussed in Section III D. On the branch of 7, a dual pair (4, b) via 77 and its inverse pair (b, a) via
17;1 are symmetrically located about the transverse axis #1. Since both (4, b) and (b, a) signify that system
A and system B are dual to each other, the curves 77+ have redundancy in describing the A — B duality.
An example is the Newton-Hooke duality for which two equivalent pairs (—1,2) via = 2 and (2, —1) via
1 = 1/2 appear in symmetrical positions on 7.

We notice that there are two special points on the graph. They are the intersections of #; and 7+ ;
namely, (0,0) with y = 1, and (—4, —4) with # = 1. The former is an overlapping point of 77; and 7+
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Figure 1. The solid line shows the allowed combinations of dual pairs (a,b) of power laws. The dashed
line indicates the symmetry axis (a,b) < (b, a). The bullets show the only dual pairs where both 4 and b
are integers representing the Newton-Hook duality. The square represents the duality pair discussed in
Section 4.4.
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where 17 = 1. The latter is like an overhead crossing of 77; and 77— where the pair belonging to #; is linked
by a transformation with # = 1 while the one belonging to #_ is linked with 7 = —1.

In approaching the crossing of #; and 74, the pair (0,0) at #7; = 1 has a limiting behavior as
(0,0) = lim_,o(=£e, £¢), while (0,0) at y = 1 behaves like (0,0) = lim,_,o(+e, F¢) viay = 1. As has
been mentioned earlier, (a,b) = (a — 1,b — 1)r. However, the counterpart of (0,0) is not exactly equal
to (—1, —1)r. The potential corresponding to the inverse force F ~ 1/ris V ~ Inr. Thus, it is more
appropriate to put symbolically (=1, —1)r = (In,In). Yet, (0,0) # (In,In). Consider V,(r) = A,r*. For ¢
small, V,(r) = A4(1 + elnr), which gives rise to the force F ~ «/r where k = A4e. As long as « can be
treated as finite, (¢, —¢) ~ (—1, —1)r. Chandrasekhar [12] excluded (—1, —1)F from the list of dual pairs
on physical grounds. We exclude (In, In) because the logarithmic potential, being not a power potential,
lies outside our interest.

By analyzing Corollaries and Propositions in the Principia, Chandrasekhar [12] pointed out that
Newton had found not only the Newton-Hooke dual pair but also the self-dual pairs (2,2), (=1, —1) and
(—4, —4). He also mentioned that (—3, —6) was not included in the Prinpicia. For a integral, there are only
two grand dual pairs ((—1,—1),(2,2)) and ((—3, —=3), (—6, —6)). In Fig.1, (2,2) and (—1, —1) are marked
with triangles on 71, while (-3, —3) and (—6, —6) are marked with diamonds on 7;.

2.5. Classical orbits

Here we discuss the orbital behaviors for the dual pairs in relation with energy and coupling.

First, we consider self-dual pairs (a,a) of Class 1. If an effective shifted potential is defined by
ueff(r)y = U(r) + L2/ (2mr?), the space transformation r = C;p induces

12 L3
U (r) = Aar® 4+ 285 B, = U (p) = Cf 20" + omp? ~ CiEw (41)

resulting in self-dual pairs (a,a) for any real a. The space transformation includes scale transformations
r = Cyp with C; > 0, identity transformation r = p (inclusive of rotations), and inversion formally defined

by r = —p.

Statement 2.1: System A and system B linked by a scale transformation are physically identical but
described in different scale. Typically an orbit of system A maps to an orbit of system B similar in shape
but different in scale.

Statement 2.2: In the limit C; — 1, the two orbits become congruent (identical) to each other.
Any self-dual pair (a,a) due to a scale transformation is reducible to a trivial pair (a,a) linked by
the identity transformation. However, in dealing with the orbital behaviors, we have to look into
the angular dependence of radial variables by allowing the identity transformation » = p to contain
r(0) = p(8) = r(9 — 0y) with & — 8 = 0 + 6y, which represents a rotation of a given orbit about the center
of force by 6.

The inversion r — —p entails A, = (—1)?A,, as is apparent from (41). If a4 is an even number, the sign
change in coupling does not occur. Hence the inversion for even a cannot properly be defined and must
be precluded. Only when a is odd, the inversion is meaningful. However, we have to notice that orbits
in a potential with a > 0 are all bounded if A, > 0 and all unbounded if A, < 0. Under the inversion,
the sign of A, changes, so that a bound orbit with E;, > 0 is supposed to go to an unbounded orbit with
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E, = E; > 0. It is uncertain whether there are such examples to which the inversion works.

Statement 2.3: 1f a is a negative odd number, under the inversion, an orbit in an attractive (repulsive)
potential maps to an orbit in a repulsive (attractive) potential, keeping the energy unchanged.

In the Principia, Newton proved that if an orbit passing through the center of attraction is a circle
then the force is inversely proportional to the fifth-power of the distance from the center (Corollary I to
Proposition VII). From Corollary I of Proposition VII and other corollaries in the Principia Chandrasekhar
[12] shows in essence that if an object moves on a circular orbit under centripetal attraction emanating
from two different points on the circumference of the circle then the forces from the two points exerted on
the orbiting object are of the same inverse fifth-power law. Then he suggests, in this account, that the
inverse fifth power law of attraction is self-dual for motion in a circle. In contrast to Chandrasekhar’s
view on the self-dual pair (—4, —4), we maintain that (—4, —4) can be understood as a member of Class [
and Class II. The circular orbit in an attractive potential V,(r) = A.r—% which occurs when E; = 0, can
be described by the equation r = 2R, cos @ where R, = /—A,m/(2L2) is the radius of the circle and
—m/2 < 0 < /2 is the range of 6. The scale transformation r = Cyp with C; > 0 converts the orbit
equation into p = 2R}, cos 8 where R;, = R;/C;. Apparently it is consistent with the requirements L, = L,
and A, = C; 2\, of (41). Thus the radius of the circle is rescaled while the center of force is fixed at
the origin and the range of 0 is unaltered. The inverse fifth-power law of attraction may be viewed as
self-dual under a scale change for motion in a circle. If the identity map » = p may include a rotation
r(0) — p(8) = r(6 — 6y), then p(8) = 2R cos(f — 0y) with the angular range —77/2 + 6y < 6 < /2 + 6p.
In particular, if ) = 7, then p(8) = —2R cos(#) with /2 < § < 371/2. The circular orbit maps into itself,
though rotated about the center of force. In this sense, the inverse fifth-power law of attraction is self-dual
under a rotation for motion in a circle. In much the same way, the inverse fifth-power force, whether
attractive or repulsive, may be considered as self-dual under a scale change and a rotation for motion in
any other orbits. Hence the self-dual pair (—4, —4) linked by the scale transformation (including rotations)
is a member of Class I. The same self-dual pair (—4, —4) has another feature as a member of Class II which
will be discussed in Remark 2.13.

Secondly, we consider dual pairs (a, b) of Class II.

All dual pairs (a,b) of Class II are subject to the proper dual transformation Ajj. The members a and b
of each pair obey the Kasner-Arnol’d formula (a + 2)(b + 2) = 4, and are related viayy = 2/(a +2) (or
y§ = —b/aif a # 0). These dual pairs belong to branch # if 2 > —2, and branch _ ifa < —2.

Now the space and time transformations r = Capy/(,42) and t= C%r;zp’z"/ (1+2) § induce the
energy-coupling exchange,

Ay =—Cin’Ea,  Ey=—Cit2n%A,, (42)

where C; > 0 and a # —2. Hence the effective shifted potential transforms as

LZ 2 L2
) = At st B = U 0) = ~ClR B!+ LR O @)

wherea # —2and b = —2a/(a + 2).
The two equations in (42) are not simply to exchange the roles of energy and coupling. They also
provide a useful relation between E, and E;,. In general E, depends on A,. So we let E; = &;(A,), and
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invertitas A, = &7 1(=Ay/ UZC%) with the help of the first equation of (42). Substitution of this into the
second equation of (42) yields

_ A
Ep = —n?Ci2e, ! (-112&2) . (44)
Ui

which shows that E;, depends on E, through the coupling A,.

Statement 2.4: For a dual pair (a, b) of Class II, if the coupling dependence of E, is explicitly known,
then Ej; can be determined by (44), and vice versa.

From (42) there follow four possible mapping patters,

(0) (Ea=0,A,20) = (E; 0,4, =0)
(1) (Es > 0,A; <0) = (E, >0,A; <0)
(2) (E, <0,A; <0) = (E, >0,A; >0)
(3) (Ea >0,A; >0) = (E; <0,A, <0)
(4) (E; <0,A; >0) = (E, <0,A;, >0)

In the above, pattern (0) implies that any zero energy orbit of system A goes to a rectilinear orbit of system
B with no potential. Patterns (1) - (4) imply that any positive energy orbit of system A, regardless of the
sign of A4, maps to an orbit of system B with a coupling A; < 0, and any negative energy orbit of system
A, independent of A;, maps to an orbit of system B with a coupling A, > 0.

The dual pairs (a, b) of Class II can be grouped into those on 74 and those on 77_. Furthermore, the
pairs of the first group can be divided into two parts for 7, > 1and 0 < 71 < 1. If we let 77 denote the
part for 7. > 1, then 7 = {—b/a] —2 < a < 0,b > 0}. Similarly, let 5 denote the part for 0 < 14 < 1.
Then 7 = {-b/ala > 0,-2 < b < 0} = {—a/b| =2 < a < 0,b > 0}. Thus T = [y7]"\. Itis
sufficient to consider the set 177 . The same can be said for the second group on 7. We take up only the set
nZ ={-=b/al —4<a<-2,b< —4}.

For the case of 77, A, > 0(< 0) implies a repulsion (attraction), while A;, > 0(< 0) means an
attraction (repulsion). There are no negative energy orbits in a repulsive potential with A, > 0 and in
an attractive potential with A;, > 0. For 4=, both A; > 0 and A, > 0 are repulsive, and both A, < 0 and
Ap < 0 are attractive. In any repulsive potential with A, > 0 or A, > 0, no negative energy orbits are
present. Pattern (4) is not physically meaningful. Taking these features of potentials into account, we can
restate the implication of the relations in (42) as follows.

Statement 2.5: Under the proper duality transformation Ay, if =2 < a < 0 (i.e., b > 0), then any
positive energy orbit in the potential of system A, whether attractive or repulsive, maps to an orbit in a
repulsive potential of system B, and any negative energy (bound) orbit maps to a positive energy (bound)
orbit in an attractive potential. If 2 > 0 (i.e., =2 < b < 0), then the above situations are reversed. If
—4 <a < —2(ie, b < —4), then any positive orbit in an attractive potential maps to a positive orbit under
attraction, any negative bound orbit in an attractive potential maps to a positive orbit under repulsion,
and any positive orbit under repulsion maps to a negative bound orbit in an attractive potential. Even for
the case where a < —4 (i.e,, —4 < b < —2), the mapping patterns are the same as those for —4 < a < —2.
In all cases, zero energy orbits map to force-free rectilinear orbits.
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This is a modified version of Needham’s statement made in supplementing the Kasner-Arnol’d
theorem [16].

Remark 2.13: The pair (—4, —4) has another feature as a point on 77_, that is, as a member of Class II.
From (42), it is obvious that A, = 0 for the circular zero energy orbit. Hence the duality transformation Ajj
maps the orbit into a force-free rectilinear orbit. According to Statement 2.4, any positive energy orbit must
map to an orbit in an attractive potential, and any negative energy orbit maps to an orbit in a repulsive
potential. Therefore, the self-dual pair (—4, —4) Newton established is not a member of Class II. It must be
(—4, —4) on 111, belonging to Class I.

In what follows, we make remarks on the Newton-Hooke pairs and related self-dual pairs.

Remark 2.14: Statement 2.4 applies to the pair (—1,2). The mapping patterns (0) - (3) works in going
from the Newton system with 2 = —1 to the Hooke system with b = 2. Namely, (0) the zero energy orbit
of the attractive Newton system maps to a rectilinear orbit; (1) a positive unbound orbit of the attractive
Newton system maps to a positive unbound orbit of the repulsive Hooke system; (2) a negative energy
bound orbit of the attractive Newton system maps to a positive energy bound orbit of the attractive Hooke
system; and (3) a positive unbound orbit of the repulsive Newton system maps to a negative unbound
orbit of the repulsive Hooke system. Since there are no negative orbits for the repulsive Newton system
and the attractive Hooke system, pattern (4) is irrelevant.

Remark 2.15: In view of the orbit structure, we study in more detail the mapping process from the
Newton system to the Hooke system. As is well-known, for the motion in the inverse-square force, the
orbit equation in polar coordinates has the form,

— p
" T T ecos’ “)
where p is the semi-latus rectum, e the eccentricity. The orbit is of conic sections and the origin of the
coordinates is at the focus closest to the pericenter of the orbit. The angle 6 is between the position of the
orbiting object and the direction to the pericenter located at r = r,,;;, and 8 = 0. The semi-latus rectum, the
semi-major axis, and the eccentricity of the orbit are determined by p = —L2/(mA,), @ = — A,/ (m|Ea4|),
and e = \/ 1+ (2L2E,/mAZ2), respectively. If the inverse square force is attractive, i.e., if A, < 0, thena > 0,
p>0,and1 > cos@ > —1/e. If repulsive, ie., if A; > 0,thena <0, p <0Oand —1 < cos@ < —1/e.

(i) For the bound motion, E, < 0,e < 1and p = a(1 — ¢?) > 0. The equation (45) describes an elliptic
orbit with semi-major axis @ and eccentricity e. Apparently, r,,;, = (1 — e). For the duality mapping, a
more suited choice is the orbit equation expressed in terms of the eccentric anomaly ¢,

r=a(l—ecosy), (46)
which may be put in the form,

r:ﬁ{(l—i—e)cosz(tp/Z)—t—(1—e)sin2(lp/2)}. (47)



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021

17 of 51

Here 1 is related to the polar angle 8 by tan(6/2) = [(1+¢)/(1 — ¢)]'/? tan(y/2). Since r = Cp?, use of

(47) leads to
0= {zx2 cos?(/2) + B2 sin2(1p/2)} V2

a=/a(l+e)/Cy, P=4/a(1—e)/Cy. (49)

Let p = Vu? + v? in cartesian coordinates, and let

, (48)

where

u=uwcos(yp/2), v=PBsin(y/2). (50)
Then it is clear that the trajectory drawn by p is given as an ellipse,

2 2

—+ % ~1, (51)
with semi-major axis « and semi-minor axis 8, centered at the origin of the u — v plane. It is obvious
that p,i, = /(1 —e)/Cy is the semi-minor axis of the ellipse on the # — v plane. The above calculation
shows that the elliptic Kepler orbit with semi-major axis 2 and eccentricity e maps to an ellipse with
semi-major axis « = /d(1+e)/C, and eccentricity € = 1/2¢/(1 + e) . The semi-major and semi-minor
axes of the resultant ellipse depend on the scaling factor C,. With different values of Cy, a Kepler ellipse
of eccentricity e is mapped to ellipses of different sizes having a common eccentricity €. In general, the
resultant ellipse having eccentricity € is not similar to the Kepler orbit with eccentricity e. If ¢ = 0, then
€ = 0. Namely, a circular orbit of radius @ under an inverse-square force maps to a circle with radius
« = /a/C, . With a particular scale C; = 1/+/a, the mapped circle is congruent to the original orbit. In
the limit e — 1, the Kepler orbit becomes a parabola with E; = 0, which maps to a force-free rectilinear
orbit described by (u,v) = (p,0).

(i) IfE; > 0,thene > 1and a > 0 for A, < 0. The semi-latus rectum in (45) must be modified as

p =a(e? —1) > 0. Again cos® < —1/e. The orbit is a branch of a hyperbola with semi-major axis @ and

eccentricity e. The center of attraction is at the interior focus of the branch, so that 7,,,;, = @(e — 1). In much

the same fashion that the eccentric anomaly is used in (46), we introduce a parameter 1 related to the angle

0 by tan(6/2) = [(e+1)/(e —1)]'/? tanh(¢p/2). Here cosh ¢ > 1/e. Now the orbit equation in parametric
representation is

r=da(ecoshyp —1), (52)

which may further be written as
r:ﬁ{(e—l)coshz(lp/Z)—l—(e—l—l)sinhz(tp/Z)}, (53)
whose minimum occurs when ¢ = 0. Correspondingly, p = /r/C; is expressed as

o= {zx2 cosh?(y/2) + B2 sinhz(lp/Z)} V2 , (54)

a=/ae—1)/Cy, PB=r/a(e+1)/C,. (55)

where
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Hence p,in = v/d(e —1)/Cy . Letting
u=uwcosh(¢/2), ©v=pPsinh(y/2), (56)
we obtain p = Vu? + v? and the equation for a hyperbola having two branches,
u>  0?
ﬁ - ? =1, (57)

which has the semi-major axis « = y/d(e —1)/C, and the eccentricity € = y/2¢/(e — 1) . Thus the positive
energy orbit in the attractive inverse potential, given by a branch of the hyperbola, maps to a positive
energy orbit given by either branch of a hyperbola whose center coincides with the center of the repulsive
Hooke force.

(iii) For a repulsive potential with A, > 0 such as the repulsive Coulomb potential, the orbit equation
(45) describing a hyperbola holds true insofar as E; > 0,i.e.,e > 1. Since p = —Lﬁ/ (mA;) < 0forA, >0,
the semi-lotus rectum must be replaced by f = —p. At the same time, the angular variable has to be
changed from 6 to § where cos§ < —1/e and cosf > —1/e. The conversion of the hyperbolic equation
(45) for the attractive potential to the hyperbolic equation for the repulsive potential,

A — (58)
1+ecost
is indeed the inversion process mentioned in Remark 2.8. Since (45) and (58) have the same form, we can
follow the procedure given in (ii) to show that under 7 = /p/C; the positive energy orbit in the repulsive
inverse potential, given by a branch of the hyperbola, maps to a negative energy orbit given by either
branch of a hyperbola whose center coincides with the center of the repulsive Hooke force.

Remark 2.16: In connection with Remark 2.14, we look at the self-dual pairs (—1, —1) and (2,2) which
do not belong to Class II. Apparently the two pairs are closely related to each other via the Newton-Hooke
pair (—1,2), so as to form a grand dual pair ((—1,—1),(2,2)). As they are both on 7, each of them is
self-dual under scale changes and rotations. In addition, (—1, —1) is self-dual under the inversion. From
(iii) of Remark 2.15, it is clear that due to the inversion the orbit equation takes the form (45). There the
angular range for fis 6, < 0 <271 — 0, where 6, = cos ™! (—1/e). Hence the resultant orbit has the center
of orbit at the exterior focus. This means that a hyperbolic orbit in attraction with the center of force at
the interior focus maps to the conjugate hyperbola in repulsion with the center of force at the exterior
focus. In contrast, any rotation maps a hyperbolic orbit under attraction (repulsion) into a hyperbolic
orbit under attraction (repulsion). In summary, the inversion maps a hyperbolic orbit under attraction
into a hyperbolic orbit under repulsion, whereas any rotation takes a hyperbolic orbit under attraction
(repulsion) to a hyperbolic orbit under attraction (repulsion). According to Chandrasekhar’s book [12],
what Newton established for (—1, —1) and (2,2) are that the attractive inverse square force law is dual
to the repulsive inverse square force law, and that the repulsive linear force law is dual to itself. Thus
we are led to a view that Newton’s (—1, —1) is due to the inversion and his (2,2) is due to a rotation.
Finally we wish to point out that by the mapping patterns (1) and (3) of (—1,2) a hyperbolic orbit of the
attractive Newton system, whether attractive or repulsive, maps to a hyperbolic orbit of the repulsive
Hooke system. In other words, the pair of forces (attraction, repulsion) for (—1, —1) goes to the pair of
force (repulsion, repulsion) for (2,2) with the help of (—1,2). This is compatible with the assertion that
Newton’s two self-dual pairs form the grand dual pair ((—1, —1), (2,2)) via (—1,2).



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021

19 of 51

2.6. Classical energy formulas

We have used the energy-coupling exchange relations,
¢: Ey=—n*C"2A,, Ay = —12C2E,, (59)

as essential parts of the power-duality operations. They demand primarily that the roles of energy and
coupling be exchanged. Using these relations, we can also derive energy formulas which enable us to
determine the energy value of one system from that of the other when two systems are power-dual to each
other.
In general E, depends on A,;, L, and possibly other parameters. So let the energy function be
E, = E(Ag, Ly, w,) where w, represents those additional parameters. Then we pull A, out from the inside
of £ as
Ao = EY(Es, Lo, wy). (60)

Now we insert this coupling parameter A, into the first equation of (59). Substituting the second relation
E, = —)/(4*C?) and the angular momentum transformation L, = L; /7 to the right-hand side of (60),
we can convert the first relation of (59) into an energy formula,

Ep(Ap, Ly, wp) = —>CH2E71 (= Ay / (7*C?), Ly / 17, wa (wy)). (61)

Thus, if E; is known, then Ej, can be determined without solving the equations of motion for system B. By
making an appropriate choice of C, the value of A, may be specified by the second relation of (59).
Alternatively, let us combine the two relations in (59) by eliminating the constant C to get another

energy formula,
2 A\
= _ — . 62
By =~ (22 ) (62

This formula can be rearranged to the symmetric form,
b

[4(a+2) 2 Y@ D|E,| | = [4(6+2) 20, | Y DB (63)

Note that the signs of the energies and coupling constants are related via (59). See also the four patterns
discussed in Statement 2.4 above.

When the parameters w contained in E, are invariant, that is, w, = wy,, under the duality operations,
the last equation suggests that there is some positive function F (L, w), independent of A, and A;, such

that
2 1/a
|Ea(Aa, Lo, w)| = @IMIZ/(““) {f(,/Z/(Hz) Lu,w>} ) (64)
2 1/b
|Ep(Ap, Ly, w)| = @MW“’“) {f(\/z/<b+2> Lb,w)} , (65)

where L = /(a+2)/2L, = \/(b+2)/2Ly. If such a function is specified for E, by (64), then E;, can be
determined by (65) with the sign to be obtained via (59). Notice that (65) is useful as an energy formula to
find Ej, only when E; has the form of (64).

Remark 2.17 As an example, let us consider the Newton-Hooke dual pair for which (a,b) = (—1,2),
n = —b/a=2and r = Cp?. Let system A be consisting of a particle of mass m moving around a large
point mass M >> m under the influence of the gravitational force with A, = —GmM < 0. Let system B be
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an isotropic harmonic oscillator with A, = %mwz > 0. Then, as the exchange relations of (59) demand,
E; < 0and E, > 0. Hence the orbits of the two systems are bounded. This means that the Newton-Hooke
duality occurs only when both systems are in bound states.

Suppose the total energy of the particle is given in the form,

L2 Aa
E, = + = E(Aa, Las Tmiin), (66)
2mr? T
min min
where 1,,;,, is the minimum value of the radial variable r and A, = —GmM. Then we obtain the inverse
function,
L2 Aptimi
—_ec-1(_ 2 ) = a  b'min
A= €7 (Ap/AC Layryin) = =5 = “g . (67)
With this result, the formula (60) immediately leads to the energy of the Hooke system in the form,
Ly 2
E, = + Ap0iyi 68
b 2mP$m-n bOmin (68)

where L, = 2L, and pyi, = \/Tmin/C . Although A, may be interpreted as Hooke’s constant, its detailed
form }mw? cannot be determined by the energy formula. Noticing that E, is a constant, we let x =
v/ =2mE,. If we choose C = mw/ (2«), then we have A, = 1mcw? from the second relation of (59). With the
same choice of C, we have mwpfnin = 2KV in-

Suppose the energy of system A is alternatively given in the form,

272 mA2

Ej=——7-—"F2—
! (I+27TL11)2,

(69)

where | is the radial action variable, ] = f dr py, or more explicitly,

max /\ L2
]:2/% dr\/2m<E—:—2mr2>, (70)

which is a constant of motion. Let E,; of (69) be put into the form given via (64) then we may identify

F(\2/ @+ 2)L01) = [1/@m) + (VL) V2] /(2m). 1)
From this follows 2
{F(res2ng)} " = e+ w2 v 72

Since the first relation of (59) indicates that E; > 0 for A, < 0, the relation (65) together with A;, = %mwz
results in
E, = ((U/ZT[)(Z]-FZT[L;,), (73)

which is an energy expression of the Hooke system obtainable from the Hamilton-Jacobi equation.
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2.7. Generalization to multi-term power laws

In the following, on a parallel with Johnson’s treatment [31], we examine how the duality can be
realized with a sum of power potentials (i.e., a multi-term potential) in the present framework.
Let the potential V;; be a sum of N distinct power potentials as

N
Va(r) =Y Aar®, a;> -2, (a; #a; for i#j) (74)
i=1

where A, is the coupling constant of the i-th sub-potential in V;. Then R and % take the shifted potential
in (16) to
- 2 22 2 242
gUa(r) = Y Ao o™= — 70 " Es. (75)
i=1
Let us pick one of the terms in the sum in (75), say, the i = k term, and make its exponent zero by letting
=1 =——7 -2 7
="k 2’ ag > —2, (76)
where 7 is k-dependent. If the exponent of the i = k’ term, instead of the k # k’ term, is made vanishing,
then 7 is to be given in terms of ap where ay # ay. Since k = 1,2,..., N, there are N possible choices of
1. Thus it is appropriate to write # in (76) with the subscript k as 7. Apparently, 7, is a possible one of
{m,n2,...,un}. Let the operations R and % for 7 = n; be denoted by 93y and %k/ respectively.

For the remaining potential terms (i # k) and the energy term in (75), we rename the exponents of p

as
2ay _2(a; — ay)

ag+2’ i ag+2

which can easily be inverted to express a; and a; in terms of by and b; in the same form. These relations are

by = — , ik, (77)

equivalent to the conditions on the exponents,
G : (llk + 2)(bk + 2) =4, (a,' — ak)(b,' - bk) = aib,’. (78)

From (77) there also follows b; > —2 for all i if a; > —2 for all i. The first relation of (78) leads to alternative
but equivalent expressions of # in (76),

b et2 2

Te= "0 T2 T a2 79)
To Ry and ‘%k: we have to add two more operations,
£+ Ly =nilLa, (80)
and
Wy: Ay, =—ngEs, Ep = —nihe, and Ay =nfA,, i#k (81)

Then, we express the shifted potential of (75) in the new notation as

§Ua(r) = Vi, (0) — Ep, = Uy, () (82)
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where

N
Vir(p) = 1 A" )
i=1
The set of operations Ay = {9y, %k, Ck, £, Wy } transforms the radial action of the A system into

_ o Jmo=2 (dp ? L%k
Wo(Ep,) = /14, de s {2 s (dqo) " I Uy, (0) ¢ - (84)

Thus we find the duality between the A-system and Bj-system with respect to Ay. Again, this duality is
only one of the N dualities; there are N pairs of dual systems, (ag, by) fork =1,2,...,N.

3. Power-duality in the semiclassical action

The power-duality argument made for the classical action in Section 2 can easily be carried over to
the semiclassical action. In semiclassical theory the power-duality is a relationship between two quantum
systems which are not mutually interacting. In studying such a relationship, there are two distinct
approaches; one is to pay attention to a reciprocal relation between two systems, and the other to pursue
a deeper connection between the quantum states of two systems (see Remark 3.1). Our power-duality
argument is of the former approach, taking reciprocity as a heuristic guiding. Special care will have to be
exercised though, when dealing with the quantum structure of each system.

3.1. Symmetry of the semiclassical action

The action in semiclassical theory is of the form, W = [ dqp, which is Hamilton’s characteristic
function and essentially the same as that in (2). The semiclassical action for the radial motion reads

W= /dr\/Zm (E-v(r) 112/ 2mr?)). (85)

Here the classical angular momentum L is replaced by /L. Customarily the semiclassical angular
momentum (divided by ) of (85) is given by the Langer-modified form,

L=(+(D=-2)/2, (=0,1,2,.. (86)

if it is defined in D dimensions. Let us write the semiclassical action for system A as

W, = / dr\/ —om [hZLg /(2mr2) + ua(r)} 87)

where U,(r) = V,(r) — E,. After the change of variable r = f(p), the action (87) of system A becomes

Wo = [ doy/-2m [iP13g/ (2m2) + 5] (58)
where f' = dr/dp and ¢ = f’?. The following substitutions
R: f(p)=Cp, (89)

£: La - Lb/’?l (90)
gua = ub/ (91)
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lead the action (88) to

Wy, = / dp\/ —om [h2L§/(2mp2) + Ub(p)}, (92)

which is taken as the action for system B. Here we have assumed m, = m;, = m (i.e., 4 = 1). We shall also
assume that two mutually power-dual systems are by definition in the same dimensions (i.e., D, = D, = D).

Only when the potential of system A is a power potential, Uy,(p) in (92) can be brought to the
form V,(p) — E,. The change of variable R : r = Cp” with the choice ¢ : 1 = 2/(a+2) gives
g(p) = #*C%p~1. Hence, for V,(f) = A,C?0", we have g(0)Va(f) = #>C*+2A, and gE, = n>C?E,qp"
where b = —an = —2a/(a + 2). After performing the energy-coupling exchange,

€: Ay = —E,/(?C*2),  E, = —Ay/(77C?), (93)

we obtain
g(Aar® — Eg) = Apo” — Ey. (94)

In effect, under the operation of g, the following transformations have taken place,
gVa(r) = =By, gEa = —Vi(p), (95)

where V, = A,7* and V;,(p) = Aypt.
In this manner, transforming the action W, of (87) to W, of (92) by the duality operations, we have
W, = W, that is,

/dr\/Zm(Ea Nar®) — P12/ = /dp\/Zm(Eb — App?) —IRL2 /2. (96)

It is also apparent that W, = X(a,b)W;, with ¢, = r and §;, = p. Thus we see that the semiclassical action
(85) is form-invariant under the set of duality operations, {ER, £,¢¢ }

Although we have presented in the above the power-duality features of the semiclassical action similar
to those in the classical case, we have not taken account of the possibility that the angular momentum L
is a discretely quantized entity given in terms of the angular quantum number ¢ = 0, 1,2, ... by (86). It is
natural to expect that the operation £ : L, = 5L, of (90) implies the equality,

ly+ (Dy —2)/2 =nly +1(D, —2)/2. (97)
In addition, if we demand that £, = 0 corresponds to ¢/, = 0, then (97) can be separated into two equalities,
ty=mnls, Dy=n(Da—2)+2. (98)

Either (97) or (98) suggests that the allowed values of ¢, differs from those of ¢, unless # = 1. This means
that the condition ¢ = 0,1, 2, ... in (86) cannot be imposed on system A and system B at the same time.
Although the transformations in (97) and (98) are invertible, they cannot preserve the Langer-form (86) of
the angular momentum in the two systems. In other words, they are not reciprocal relations between the
two systems. Insofar as operation £ implies the equalities (97), the semiclassical action with the Langer
modification is not form-invariant under the set of operations {fR, £, €, €}. Then, we may have to draw a
conclusion that the power-duality valid in the classical action breaks down in the semiclassical action due
to the quantized angular momentum term.

In the above we have observed that the power-duality is incompatible with the angular quantization.
By the same token, the energy-coupling relations of € in (93) may have to be examined. In the semiclassical
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action, the energy E and the coupling A may be treated as parameters. However, the implication of the
exchange relations in (93) becomes ambiguous after quantization. It is not clear whether E; in (93) is one
of the energy eigenvalues of system A or it represents the energy spectrum of the system. As an aid of
clarification, we study one of the energy formulas resulting from combining the two relations in (93),

2 (M i
By == (—5) 99)

which has been given in Section 2 as a classical energy formula. To see if it will work in quantum mechanics,
let us employ;, e.g., the Coulomb-Hooke duality, the quantum counterpart of the Newton-Hooke duality,
and test (99). We assume that E; and E, in (99) represent the spectra of system A and system B, respectively.
According to (99), the energy spectrum Ej, of the hydrogen atom with the Coulomb coupling A, = —e?
is expected to follow from the spectrum E, of the three-dimensional isotropic harmonic oscillator with
frequency w = /2A,/m. For this pair of systems, (a,b) = (2,—1) and 4 = —b/a = 1/2. Given
Ei(ny,4q) = hw(2ny + €y +3/2) with n, = 0,1,2,... and ¢, = 0,1,2, ..., the formula (99) immediately
yields E, = —(me4/2h2)(nr +€,/2+3/4)"2. Heren = n, +£,/2+3/4 =3/4,5/4,7/4,.... The result is
not the energy spectrum of the hydrogen atom that is commonly known. Evidently, a naive application
of the energy formula (99) fails at the level of angular quantum numbers. By contrast, if we consider
the states of a four-dimensional oscillator which possess ¢, = 0,2,4, ..., thenn =n, + ¢, +1=1,2,3, ...
via ¢, = {;/2, which matches the principal quantum number of the hydrogen atom. In other words,
the energy formula (99) suggests that the spectrum of the hydrogen atom can be composed of "half the
states" of the four dimensional isotropic harmonic oscillator.®> The relation between the oscillator in four
dimensions and the hydrogen atom in three dimensions is not reciprocal in (99). The alternative scheme is
not the Coulomb-Hooke duality that we pursue (see Remark 3.1). The Coulomb-Hooke duality in quantum
mechanics will be discussed again in Section 4.3.

In an effort to make the power duality meaningful in semiclassical theory, we shall take a view
that the power duality is basically a classical notion. Accordingly, for the duality discussions, all physical
objects such as L, E and A, should be treated as classical entities, i.e., continuous parameters. Then we
consider quantization as a process separate from the duality operations. The duality is a classical feature
of the relation between two systems, whereas quantization is associated with the micro-structures of each
system. None of duality operations can dictate how the quantum structure of each system should be. The
equality of (93) which is compatible with reciprocity must not imply the non-reciprocal equality of (97).
It is necessary to dissociate duality operations from quantization. Technically, we deal only with those
continuous parameters for the duality discussions, and replace them as a post duality-argument activity
by appropriately quantized counterparts when needed for characterizing each quantum system. From this
view, the power duality of the semiclassical action has already been established at the equality (96) with
follow-up substitutions L, = ¢, + (D —2)/2, (¢, =0,1,2,..)and L, = ¢, + (D —2)/2, (¢, =0,1,2,...). It
is helpful to introduce the dot-equality = to signify the equality amended by substitutions of quantized
entities. The power-duality of the semiclassical action in the amended version may be exhibited by

[ dry/2m(Es = Ar) — 1t + (D~ 2)/2)2/72

- /dp\/Zm(Eb — Ap?) — B2y + (D —2)/2)2/ 02 (100)

3 Tobe more precise, the set {¢, = 0,2,4, ..., D, = 4} for the oscillator and the set {¢;, = 0,1,2, ..., D;, = 3} for the H-atom are in
one-to-one correspondence.



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021

25 of 51

3.2. The semiclassical energy formulas

In the preceding section, we have adopted the Coulomb-Hooke duality to test (99), and failed.
However, it should be recognized that if the energy spectrum of the three dimensional radial oscillator
is given in the form E,(n,,L;) = hw(2n, + L, + 1) without requiring L, = ¢, + 1/2, then the energy
formula (99) together with L, = 2L, yields Ej(n,, Ly) = —(me*/2h*)(n, + L, + 1/2)~2 which reduces
to the desired Coulomb spectrum Ej(v, L) = —(me*/2h%)(n, + £, + 1)2 after ad hoc substitution of
Ly = €, + 1/2 with ¢, € Ng. Solong as L, E and A are treated as continuous parameters, the energy
formula (99) derived from the exchange relations (93) should work for semiclassical systems provided that
those parameters are eventually replaced by their quantum counterparts.

In semiclassical theory, the bound state energy E; of system A can be evaluated by carrying out the
integration on the left-hand side of (96) between two turning points. Namely, we calculate for E, the
integral

r//
Jo = 2// dry/2m(E, — Agr) — 12L2/12, (101)
T

where 1" and 1"’ are the turning points of the orbit where the integrand vanishes. The quantity J, is indeed
an action variable defined for a periodic motion by ¢ dq p. It is a constant depending on E,, A4, and L,. By
letting it be a constant N, multiplied by 277,

]a(Eu/)\a/ La) = 27thN,, (102)

and solving (102) for E,, we obtain the classical bound state energy as a function of parameters A,, L, and
Nﬂ/
E, = Eu()\a; Ly, Na)' (103)

Once the classical energy E; of system A is given in terms of A,;, L, and N,;, when system A and system B
are power-dual to each other, we can determine the energy E;, of system B, with the help of the operations
£ and €, as a function of A, L, and N,. Since W, = W, as shown in (96), it is obvious that N, = N;. As
the former equality is a consequence of the duality operations, so is the latter equality. Hence the equality
N; = N is a consequence but not a part of duality operations. So, we let N = N, = Nj,. With the energy
function (103), the semiclassical energy formula stemming from (99) is

: , A 1/n
. Ny = e (- ) 104
h( b Lp ) n “< UZEQ(Aa,Lb/%N)) o

which can be rearranged as the classical case in the following form

1/a
|Es(Aa, Lo, N)| = i(a +2)2[A,[¥/ (@+2) {F(1 [2/(a+2) Lu,N) } (105)

1 1/b

B Lo )| = 30+ 220202 {7 (270 2 L) | (106
where F(L, N) is a function common to both systems. The signs for both energy relations are determined
as in the classical case via the signs of the coupling constants, i.e., sgn E; = —sgn A; and sgn E;, = —sgn A,.

Alternatively, expressing an explicit form of the energy function (103) by £(A4, L, N) as

E, = g()\az L, Na)/ (107)
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and inverting (107) to take A, out, we have
Aa = EY(Eq, Lo, N). (108)

Then we use the angular momentum transformation £ of (90) and the energy-coupling exchange relations
€ of (93) to write down the bound state energy formula for Ej, as

Ey(Ap, Ly, N) = =p*C** 21 (=N / (17C?), Ly /1, N), (109)

which is essentially the same as the energy formula (104).

To convert the classical energy E, in (103) to a quantum spectrum, we replace the parameters L, and
N by their corresponding quantized entities. The angular momentum is quantized in the Langer form
L, = {5+ (D — 2) /2. The Wentzel-Kramers-Brillouin (WKB) quantization formula for the radial motion,

asserts that
N=n,+1/2, n,=0,1,2,.. (111)

Substitution of the Langer-modified angular momentum (86) and the WKB quantization (111) in the
classical energy function of (103) yields the energy spectrum,

Eo(ny, €)= Ea(Ag, ba — 14+ D/2,n, +1/2), (112)

wheren, =0,1,2,...and ¢, = 0,1, 2,... Similarly, after substitution of the Langer form (86) to L, and the
WKB quantization (111) to N, the semiclassical energy formula (109) leads to the energy spectrum of
system B,

Ey(ny, by) = —yCP2e1 (—)\b /(13C2), (b, —1+D/2)/y,ny +1 /2) (113)
wheren, =0,1,2,...and ¢, =0,1,2,....

3.3. A system with a non-integer power potential and zero-angular momentum

As a simple but non-trivial example, we study a non-integer power potential system with L? = 0 (see
Remark 3.5). Let system A be the case. Bound states of system A occur only when (i) A, < 0,a < 0 with
E, < 0or (i) A, > 0,a > 0 with E; > 0. The integral (101) with L, = 0, denoted J;(E4, A4, 0), is reducible
to a beta function under either condition (i) or (ii). Suppose system A be under condition (i). Then it goes
to a beta function as

(114)

1 a
Ja(Ea, Aa)0) = M(Eu,Aa)/ dzz™ % 1(1—2)3"1 = M(E,, Aa)B <—“+2 3>
0

2a '2

where we have let z = (E;/A)r~% and M(Eq, Ag) = /—2mA,/a2(Eq/A,)@+2)/27, As in (102), we express
the right-hand side of (114) by the parameter N as

a+?2 §

M(Eq, As)B <— o ,2> — 27thN, (115)
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which we solve for E, to find the energy function E, = £(A,,0,N),
- -
2 2m a+2 3 ! 20
Ey = —(=Ag)a2 <h|a|7rB ( o 2)) N, (116)
Now the WKB condition (111) yields the energy spectrum of system A,
— 20 2a
2 ([ V2m a+2 3\\ 1) 2
E = (=), )72 B — = = 117
a(n) (=Aa) <h|a7r ( 2a '2)) (n+2> ’ (117)

wheren =0, 1,2,.... The bound state energy spectrum of system B can be independently calculated in a
similar fashion, and the WKB quantization (111), separately applied to system B, will lead to a spectrum
similar to but different from the spectrum of system A in (117). Insofar as system B is power-dual to
system A, the bound state energy spectrum of system B can be obtained via the formula (113). Inverting
the A, dependent function (116), we obtain

_ o1 _ _(_ra+p2 [ V2Zm [ a+2 3 —a
)\ﬂ g (EH/O/N) ( Ea) <h|a|7'cB< 251 I2 N . (118)

Utilizing this inverted function and the WKB condition (111) in the energy formula (113), we arrive at the
energy spectrum of system B,

_2b 2b
2 /2m 13 b+2 1\ 2
-y b+2 I _ —
Ey(n) = A} <h|b|nB <b,2>> (n—|—2> , n=0,1,2,.. (119)

which is independent of the arbitrary constant C appearing in (109). In the above, we have also changed a
to b by using the relations, a = —2b/ (b + 2) and n7a = —b. Apparently, the spectrum (119) is very similar
in form with the spectrum of system A in (109) but is not identical. The relations (93) suggest that E;, > 0
for A, < 0and A > 0 for E; < 0. Hence system B has bound states with E; > 0 only when b > 0. This
means that system B is under condition (ii) and that the energy spectrum (119) is for the case where A;, > 0,
b > 0 with E, > 0. In particular, if V,(r) = A,/ /r with A, < 0, the spectrum resulting from (117) is

A A 1/3 1 —-2/3
Eoe _1/2(n) = 7” (—";2”> (n + 2) ,n=0,12,.... (120)
2/3

For the dual partner potential V},(p) = App

82 1/4 1\ 172
Ey_a/3(n) =2, S <n+2> ,n=0,1,2,.... (121)

3.4. Duality in SUSY semiclassical formulas

with A > 0, the spectrum follows from (119) as

Let us begin this section with a brief comment on the semiclassical quantization in supersymmetric
quantum mechanics (SUSYQM). In SUSYQM, there are semiclassical quantization formulas similar to
WKB’s. A unified form of them for a radial motion is

r//
/ dry/2m(E — ®%(r)) = nth (1/+ % + g) , v=012,..., (122)
r/
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defined for the partner Hamiltonians H. In (122), E is the eigenvalue of Hy, and ®(r) is the superpotential
which is a solution of the Riccati equation in the form

ho dd(r)
V2m dr

where V(r) is a potential function, 7' and " denote the turning points defined by ®2(+') = E = ®?(+')
with? <#”’,and L = ¢+ (D —2)/2with £ =0,1,2,.... There, A is the Witten index whose values are
A = +1 for good SUSY and A = 0 for broken SUSY.# The quantization condition for good SUSY was found
by Comtet, Bandrauk, and Campell [48]. The broken SUSY case and the general formulation of the form
(123) were derived by Eckhardt [49] and independently by Inomata and Junker [50]. It is known that both
the Comtet-Bandrauk-Campbell (CBC) formula for good SUSY and the Eckhardt-Inomata-Junker (EIJ)
condition for broken SUSY yield the exact energy spectra for many shape-invariant potentials. For detail,

nA(L? - 1)
2mr?

% (r) £

—V(r) - =0 (123)

see reference [51].
Now we wish to study the power-duality in SUSY semiclassical action on the left-hand side of (122)
only for the H_ case. Let us write the action of system A as

W, = / lrﬁ dry/2m(E, — ®2(r)), (124)

where E, is the eigenvalue of H_. Suppose the superpotential in (124) has the form,

h_p
D, (r) = e/ A% — =, 125
11( ) a \/27711 7 ( )
where € = %1 and 7 in the shoulder of r is an arbitrary real number. The potential term appearing in the
SUSY semiclassical action (124) is the squared-superpotential rather than the usual potential V(7). For the
superpotential (125), it is

Q) = Art 4 Ay 4 b 126
a(r) = Aar" + Ay t o2 (126)
where
a=(@a-2)/2, Ay = —€hps\/2A,/m. (127)
Then we have )
o dd,(r) a v W (pe — 1)
D2 (r) — — 4 = A" 1+ — | A 7" _— 12
a(?’) m dr al” + ( + 4,ua) a’ + 271’17’2 ( 8)

Evidently, ®,(r) of (125) satisfies the Riccati equation (123) with a two-term power potential,
Vi(r) = Aar® + (1 +a/ (4410)) Ag?™, (129)

provided that
ad=@@-2)/2, pg=Ls+ 1/2. (130)

In (129), a is arbitrary but a’ is dependent on a as given by the first condition of (127). If both a and 4’ are
assumed to be independent and arbitrary, the superpotential of the form (125) cannot be a solution of

4 SUSY stands for supersymmetry. If Hy. are the partner Hamiltonians, then spec(H_) \ {0} = spec(H. ) for good SUSY, and

spec(H—) = spec(H4.) for broken SUSY.
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the Riccati equation. The quantity on the left-hand side of (128) is a SUSY effective potential, denoted by
Vu(_) (r), that belongs to the Hamiltonian H_. It is related to V,(r) of (129) by

_h d®q(r)
\2m dr

The superpotential (125) works for the radial oscillator and the hydrogen atom in a unified manner as it
contains the two as special cases:

mA (L2 -1
2mr?

Vi (r) = @2(r) = Va(r) + (131)

(1) Radial harmonic oscillator witha = 2,4’ =0, A, = %mwz, Ag = —hwpa, 4o = Lg + %, e=1:
Ou(r) = JMr— I ta (132)
a 2 /721/” r 7
2
(=) 15y Wpa(pa—1)
Vv, () = SV o —hw(pa + 1/2), (133)
1 72,2
2 _ 2.2 H
E, — ®; = (Eq + howpa) — S MW = 2mr;' (134)
The CBC quantization of (122) with A = —1 yields
E, =2hwv, v EN, (135)
which corresponds to the energy spectrum in quantum mechanics,
EM(v,0) = Eq + hwpy = hw(u+ £+ D/2 - 1/2), (136)
ifpu, =L, +1/2=0+D/2— 1/2with ¢ € Ny.
(2) Hydrogen atom witha = 0,4’ = —1,e =1, A, = me4/(2h2;tg), Ay = —€2, Ma=Ls+ % :
2m , b oy
D, (r) = ef— —, 137
{1( ) 2h]fla /721’}’1 r ( )
2 2 4
Dy — & (e —1)  me
V, (7‘) = p + 2mr2 + thV%’ (138)
4 2 2.2
S S W L
E,— @2 = (Ea thy%> + (139)
The CBC result is
Eo = ESM (v, 0) + me*/ (212p2) = — me’ + me* (140)
o= M ot 1 D/2— 1722 22((+D/2— 1/22
where v, ¢ € Ny.
Next we change the radial variable r by
R: r=flp)=Cp, & p=fl(r=Cc (141)

and let the system described by the new variable be system B. Upon application of (141), the action W, of (124)

transforms to .
0
W, = / dpy/2mf2(E, — ®3), (142)
p/
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where ' = df(p)/dp and
2 PP
Eq— @7 =Es — Ao = Ay v — 2mr§' a=(a-2)/2. (143)
Since "2 = y2C% %172,
, , hZ 2,2
flz(Eu _ q%) _ ;72C2E[,p2’7‘2 _ 172c2+aAapaﬂ+2n—2 _ ”2C2+u A" n+2-2 _ 2;71;;51. (144)
If there is such a parameter 7 that f?(E, — ®2) takes the form,
, hZVQ
Ey — @ = By — App” — App” — Zmpbzl (145)
with
b =(b-2)/2, (146)

then the action is form-invariant under (141) and reciprocal, that is, W, = W, and W, = X (a,b)Wy. In the
X(a, b)-operation, we have temporarily let = &, and p = &,. We have also assumed that X(a,b) takes b’ = (b —2)/2
toa’ = (a — 2)/2. Furthermore, (145) together with (146) implies that the new superpotential ®;(p) has the same form
as that of ®,(r) in (125), namely,

@y (r) = e/Apr/? — \/%% (147)
If this were the case, we could establish the general power-duality of the action (124) with the superpotential (125).
Unfortunately there is no way to transform system A with an arbitrary power a to system B satisfying the conditions
(145) and (146). Therefore, with the superpotential (125), we are unable to demonstrate in a general term the power-dual
symmetry in SUSY semiclassical quantization. To our knowledge, no qualified superpotential supporting the general
power-duality in SUSY semiclassical action has ever been reported.

Although we have to give up pursuing the general power-duality, we may find cases where duality occurs
within the present scheme. For a dual symmetry, the form-invariance of the superpotential ®(r) is not an essential
requirement, but it is necessary that f’2(E, — ®2(r)) is reducible to the form Ej, — ®? under the transformation
r = f(p) = Cp'l. There are two options for 5 to reduce the left-hand side of (144) to the form of (145) under different
conditions than (146). Namely,

(i) n=2/(a+2)=1/( +2), aad #-2,
(i) n=2/(+2)=4/(a+2), aa # -2
Let D(b, a) be such an operator that D(b,a)W, = W, under the change of variable (141). Since (141) with option (i) or

(ii) is invertible, the operator has an inverse. Hence W, = D=1 (b, a)W, in addition to W, = W,. Although the strict
reciprocity is broken, we can talk about the power-dual symmetry in this relaxed sense.

Option (i): Transformation r = sz/ (a+2) jn (141) brings

2 b 1 hzﬂ%

Ey—®; =Ey, — Ayp” — Apyp™ " — . 148
b~ Py =Ep —App bo 2mp? (148)
which contains a Coulomb-like potential in addition to a power potential for any value of a other thana = -2

(a' = —2). Option (i) must be associated with the substitutions,
Ey=—1*C* s, Ap=—1*C%Ea, My =02CH "Ny, pp = Ha, (149)

and
2 1 2

7= — L op=—"" V= —1. (150)

a+2’
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The second relation in (149) may be used to determine the constant C of the transformation (141).
Option (ii): Transformation r = sz/ (@'+2) yields
’ hzlxlz
Ep — ®% = By — Apo? — Ay — L, 151
b= Py = Ep = App ve o 02 (151)
where a Hooke potential appears in addition to a power potential for any a # —2. Option (ii) comes with
Ey= —12C* " \y, Ay = —1*C%Ea, Ay = 12C* N0,y = Niita, (152)
and A , ( )
2 2a 2(a—2
= 0= —:, b:2, b/:_ - — . 153
T=o¥2  a+2 a +2 a+2 (153)

Again, the second relation of (152) is able to fix the constant C.

Example 1. The Coulomb-Hooke duality: Option (i) is appropriate for the Hooke to Coulomb transition with a = 2,
@ =0,b=—-1and V' = —1. By r = Cp'/?,

E, — @ = (Eq + hewpy) — 1mwzr2 - hzyﬁl (154)
i 2 2mr?
transforms to 2 5
4 2 g
me e .z
E, — @2 Ey— —— | + = — =35, (155)
21y o 2mp
where . 5
me 1 4e 1
E)— —— = ——mw?C*, (C*=—" = —u,. 156
’ 21742 g Eo+hop,’ 10~ 20 (156)
Combining the first and the second relation of (156) gives
2 4 4
By=—g———— g (157)
B (Eq/hw + pa)? 207,
which can be converted to the QM spectrum for the hydrogen atom
4 4
EM(v, ) = By — — me (158)

242~ 22(v+0+D/2— 1/2)2

by substitution of E; = 2fiwv and p, = 2u, =2({+D/2— 1/2).

Option (ii) is for the Coulomb to Hooke transition witha = 0,4’ = —1,b = 2 and b’ = 2. By p = C~1/?, the
equation (155) for the hydrogen atom transforms back to the equation (154) for the radial oscillator. The constant C -1
appearing in the variable transformation is the inverse of C obtainable from the second relation of (156). Obviously,
for the Coulomb-Hooke pair, option (ii) is the inverse of option (i). This confirms that the Coulomb-Hooke dual
symmetry is valid in the SUSY semiclassical action.

Example 2. A confinement problem: Option (i) and option (ii) may be used to study a confinement potential for
which the superpotential (125) is of the form,

h_Ma
Vom v’

)
E, — d>§(r) = Eq — Aar + €hpigy/ %r’l/z - M (160)

2mr?

D, (r) = e/ Agr/? - (e=1, A, >0). (159)

Correspondingly, we have
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Option (i) witha = 1 (¢ = —1/2) gives y = 2/3. By r = Cp?/3, (159) transforms to

’ ~2/3 Py
Ep = @ (0) = Ep = Moo= = App™" = 55 (161)
where
4 4 4 2A 2

E, — _2c3 — _2C2E e 3/2, | £ha _ 162
b=—5C A, Ap = —5CEa, Ay = —eghuyC5\ [ =7, 1y = Sia (162)

The result (161) is not particularly interesting because it is not integrable. However, it is interesting that the limit
Ap — 0implies E; — 0. Hence the states in the vicinity of the zero-energy state of system A may be approximated by
a set of states of the hydrogen atom.

Option (ii) with @’ = —1/2 implies 7 = 4/3. The transformation r = Cp*/3 reduces E, — ®2(r) of (160) to the

form,
2 2/3 2 P‘%hz
E, —®i =E, — A — Ay o — 21—, 163
b — Py = Ep — App b 2mp? (163)
where
16 2A, 16 16 4
By = e iuaC2\ [ =8, Ay = =5 CPBay Ay = - CoMa, iy = 3 e (164)

In the limit A, — 0, system B becomes a radial harmonic oscillator with the coupling constant, A, > 0. Thus the
states of system A in the vicinity of E; = 0 may be approximated by those of such a radial harmonic oscillator. The
confinement problem will be revisited in Section 2.4.

Remark 3.1 The duality relation between system A and system B is reciprocal in the sense that the two systems
are bijectively mapped to each other. Hence, if system A is dual to system B then system B is dual to system A.
For instance, the Newton-Hooke duality in classical mechanics is reciprocal. The Newton-Hooke duality is the
Hooke-Newton duality. The map from the Newton system to the Hooke system is bijective. By contrast, it has been
known [52-54] that all the states of the hydrogen atom in three dimensions correspond to half the states of the isotopic
harmonic oscillator in four dimensions. The map from the three dimensional Coulomb system (of {¢o,;, = 1,2,3,...) to
the four dimensional oscillator (of £osc = 2,4, 6, ...) is injective. Hence all the states of the oscillator as a Hooke system
(with £osc = 0,1, 2,...) cannot be mapped back to the Coulomb system (with £, = 0,1,2,...). The relation between the
Coulomb system and the Hooke system at the level of the quantum structures is not reciprocal [53,55].

Remark 3.2 The Langer replacement, \/¢({ + D —2) — ¢+ (D — 2)/2, is an ad hoc procedure introduced so as
to be consistent with the quantum mechanical results [56]. In the literature [31], it has been suggested to regard the
angular momentum L appearing in the Schrodinger equation as a continuous parameter since an arbitrary inverse
square potential can be added to make the quantized angular momentum continuous. This reasoning, however,
would make Langer’s replacement nonsensical.

Remark 3.3 Recall that 7 = —b/a for a dual pair (4,b) and that ¢, = ¢, and D, — 2 = (D, — 2). Although 5
can be any positive real number, in the following, we list a few examples of relevant numbers and relations for integral

values of #:
| (@b |=012. | 4,=0,1,2, .. | Dy =2,3,..
2 | (-1,2) |4,=024,.. la=0,1/2,1,... Dy, = 2D, —2
3 | (—4/3,4) |6,=036,.. ly=0,1/3,2/3,... | D, =3D, —4
4 | (=3/2,6) | £, =0,4,8,.. la=0,1/4,1/2,.. | Dy =4D, — 6

For example, from the line of = 2, we see that the states of the Coulomb system in D, = 3 correspond to half the
states of the Hooke system in Dj, = 4. System A and system B cannot be reciprocal as long as the equality ¢, = ¢, is
assumed.
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o
Remark 3.4 The time transformation ¥ has no role to play because the semiclassical action does not explicitly
depend on time as a solution of the stationary Hamilton-Jacobi equation.

Remark 3.5 The condition L? = 0 assumed for the example in (117), if the Langer replacement (86) is employed,
implies ¢ = 0, which occurs only in two dimensions.

Remark 3.6 The spectrum (120) for a = —1/2 is similar to the approximate result obtained from an exact solution
of Schrodinger’s equation in one dimension [57].

Remark 3.7 The action on either side of (96) is not always integrable in closed form. Suppose the power a of the
potential V; be a non-zero integer. Then there are a few integrable examples. If 2 = 2, —1 or —2 then the action of
system A is reducible to an elementary function, and if a = 6,4,1, —3, —4 or —6 then it can be expressed in terms of an
elliptic function. Therefore, (2, —1), (=3, —6), (—4, —4), (1,—2/3), (4, —1/3) and (6, —3/2) are integrable dual pairs
(a,b) when 4 is an integer other than 0 and —2 though b is not necessarily an integer. To a = —2, there corresponds the
self-dual pair (-2, —2) with = 1.

4. Power-duality in quantum mechanics

The main object to be studied for the power-duality in quantum mechanics is the energy eigenequation of the
form H|p) = E|¢p) where H is the Hamiltonian operator for a system in a power-law potential. Since one of the
key operations in the power-duality transformation is the change of variable r = Cp', we have to deal with the
eigenequation in the radial coordinate representation, that is, the radial Schrodinger equation. In the context of the
duality argument, the radial Schrédinger equation with power-law potentials have been exhaustively explored in the
literature [29-31]. There is little room available to add something new. The aim of this section is, however, to present
from the symmetry point of view the power-duality of the radial Schrédinger equation in parallel to the classical and
semiclassical approaches. The power-duality in the path integral formulation of quantum mechanics is important but
is not included in the present paper.

4.1. The action for the radial Schrodinger equation

The stationary Schrodinger equation for a D dimensional system in a central-force potential V() can be separated
in polar coordinates into a radial equation and an angular part. The radial Schrodinger equation has the form,

W (d D-1d)\ 6 W(+D-2)
{Zm (dﬂ+ r dr)+2mr2+V(f)E Ry(r) = 0. (165)

In the above equation, the angular contribution appears in the third term, which stems from izyg" (r/r)=4({+D—
2) Y (x/r) where L is the angular momentum operator and Y}" (r/r) is the hyperspherical harmonics. Substituting
Ry(r) = r=DP)/2yp, (1) reduces it to a simplified differential equation on the positive half-line,

n? d®>  RA(L2-1/4)
{_2711(311’2+27111’2+V(r)_E lpg(?’)fo, (166)
where
L=¢+(D-2)/2, ¢=0,1,2,.. (167)

For the sake of simplicity, we shall call equation (166) the radial equation and ,(r) the wave function. The angular
quantity L in (167) is precisely the same as Langer’s choice (86) in the semiclassical action (see Remark 4.1). Under
operation £ : L, = Ly/1, the same problem that we have encountered in the semiclassical case should recur with
the equality (167). Therefore, again, we adopt the view that the power-duality is basically a classical notion and
follow the steps taken previously to circumvent the problem. Namely, for the duality argument, we treat L and E in
(166) as continuous parameters. Only after the duality is established, we replace the parameters by their quantized
counterparts. We consider that operation £ applies only to the angular parameter and that L, = L, /7 does not imply
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l;+D/2—1= (¢, + D/2—1)/1. The last equality breaks the reciprocity that ¢, € Ny and ¢, € Ny. The relation (167)
holds true for each quantum system as an internal structure being independent of duality operations.
Suppose that system A has a two-term power potential V, (r) = A,r? + Aa?® wherea # d’. Defining the modified
potential,
Uy (r) = Agt® + Ag?™ — Eq, (168)

we write the radial equation (166) as

d> 12-1/4 2
. I TR (169

Since we ignore the relation (167) for a while, we have dropped the subscript ¢ of the state function ¢, (r). The radial
equation (169) for system A is derivable from the following action integral,

Wo = [ drLa (442, B0 91 ), 9a(r) (170)

(4]

having a fixed range 0; > r and the Lagrangian of the form,

c = W) BV B0 gy

dr dr
7%%(¢;()d¢a()+lp()d%()), 171)

where 1} () is the complex conjugate of ,(r). Here we assume that the wave function ¢, (r) and its derivative are
finite over the integration range 0. The last term of (171) is completely integrable, so that it contributes to the action
as an unimportant additive constant. Use of the equality,

Ay (1) dpa(r) _ o () d (L dYa(r)
ar - —, (7’)? +— (% (")T) / (172)
enables us to put the Lagrangian (171) into an alternative form,
, . d%yp, L2-1/4 2
cu——%w{jfﬁ( - +gwmwmﬁ
1d * dq)ll( ) dlpu( )
sy (nn ) -y (2L, a73)

The Euler-Lagrange equation, resulted from W /oy =0,

d 0L, 0L,

— — =0, (174)
;s x

dr {a (TLI;) } oy

readily yields, with either of £, or £}, the radial equation (169). Since £, is symmetric with respect to () and ¢*(r),
the complex conjugate of (169) can be derived from it. However, £} is inappropriate for deriving the radial equation
for i (r). For now we put L], aside even though there is no need for complex conjugation of the radial equation.
For studying the power-duality in quantum mechanics, we focus our attention on the action W, of (170) with the
Lagrangian (171) rather than the radial equation (169).

The symmetry operations that we consider for the power-duality in quantum mechanics are as follows

R: r=f(p)=CpT (C>0), (175)

£: Ly =1Ly, (176)
]
€: Ep=—n*C"2A,, Ay = —1C2E,, (177)
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¢:n=2/(a+2)=(1b+2)/2, (a+#-2 b#-2), (178)
B Ay = Ay (2/(a+2))2C"2, b =2(d —a)/(a+2), (179)
§: a(r) = h(p)¢s(p)- (180)

In (180), h(p) is a continuous positive real function of p.
As dr goes to dp, the integration range of (170) changes from 0; 3 r to 0, 3 p. Under (175) and (180), the first
term of the Lagrangian (171) transforms as

dy; (r) dya(r) _ B> [ dyp(p) dyy(p) | d (W W d (I
& dr f,z{ R [d,)() ()}%wb} f,zd—p< wbrpb) (181)

By choice, we let %(p) = f'(p). Then the second term on the right-hand side of (181) reduces to the Schwarz derivative

fros (LY
Sl =" -3 (7 (182)
divided by 2f’. The third term of (181) can be decomposed to two terms by using the relation,
d ., h? d 2h
a Wa (a(r)) = 7 do (¥ (0) () + 7%%- (183)

Therefore,

WO D) 2L o) = 5 { LB L5y} - 2L [ wiemen] .

2f" dp
(184)
The angular term of the Lagrangian (171) transforms as
—1/4 1 g(L2—-1/4)
—ha(Na(r) = 5 =¥, (0) ¢ (p) (185)
ANE
where g denotes f'? as in the classical and semiclassical cases. The energy-potential term of (171) changes as
2m " 2m "
U () n(1) = 38U F(0)¥5 ()91 () (156)

Moreover, we let f(p) = Cp" as defined by (175). Then S[f] = —(y> —1)/2, ¢ = C?y?p*172 and g/ f*> = C?%p>.
Hence, we have
g(L; —1/4)/f* = (1/2)S[f] = (F°L; = 1/4) /¢, (187)

which results in (L‘Z- —1/4)/p? under £ : L, = nL,. Changing the variable by (175) and making the energy-coupling
exchange by (177) result in
g(0)Ua(Cpl) = —Eyp™ 2172 4 CTF20 o 1H2172 4 0 02172, (188)
which is written as
Up(p) = App” + App” — Ey (189)

with the help of (178) and (179). Namely, U,(r) goes to U,(p) by Uy(p) = g(p)Ua(r). Consequently, we obtain
W, = W, or, emphasizing the parameter dependence of the Lagrangian,

dr La(A, Lo, Us) = /V dp Ly(Ap, Ly, Uy), (190)
b

Oa
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where

dy;(p) d L2 —-1/4 d d dy;
£y = 20 ‘/’;;PM( - +f§ub<p>) W) - 3o (40 L 4y () D) o

The last term of (191) is completely integrable and contributes to W}, as an unimportant constant. We identify £, of
(191) with the Lagrangian of system B, use of which leads to the radial equation for system B,

a2 I2-1/4 2m
dp? 02 72

- - Ub(p)} ¥u(p) = 0. (192)

Apparently the form of the Lagrangian is preserved under the set of power-duality operations, {?%, £, ¢, €, B, §}.
Furthermore, with the Lagrangians £, of (171) and Ly, of (191), the equality (190) implies that the action W of (170) is
invariant under the same set of operations. By (190) the complex conjugate of the radial Schrédinger equation (166) is
as well assured to be form-invariant.

To complete the procedure, as we have done for the semiclassical case, we must replace in an ad hoc manner each
of the angular momentum parameters by the quantized form £+ (D —2)/2 with £ = 0,1, 2, .. .. Using the dot-equality
introduced in Section 3.1, we write the form-invariance of the action amended by the angular quantization with
4, ,fh S No,
dr Lo(Aa, ba+ (D —2)/2,U,) = /0 dp Ly(Ap, by + (D —2)/2,Uy), (193)

b

Oa
which warrants that the radial Schrodinger equation (166) with the angular quantization (167) is form-invariant under
the set of duality operations, {fR, £, ¢, &,B,F}. In this modified sense we claim that two quantum systems with
Va(r) = Agr® + Agr® and with V;,(p) = App? + Ay p? are in power-duality provided that (a 4 2)(b+2) = 4.

4.2. Energy formulas, wave functions and Green functions

In arriving at the invariance relation (190), we have seen the equality dr £, = dp £}, under the duality operations.
The relation (190) is valid with the alternative Lagrangian £’ of (173), suggesting dr £ = dp £} . The last equality in
turn leads to

2 12-1/4 2 1 [d> L2-1/4 2
{dﬂ—ﬂ—gua(r)}%(r)zw{dpz—b—;Ub(p)}h%(f(p)) (194)

where f' = h* = Cyp"~!. Let H,(r) be the Hamiltonian for system A in the r-representation, that is,

h? 4> K312 -1/4)

- = At + At 1
2m dr? 2mr? AT+ Agy (195)

H,(r) =

Similarly, we define Hj(p) for system B. By using the exchange symbol X(b,a), we have Hy(&) — E, =
X(b,a){Hs(a) — Eq} where &; = r and }, = p. Then the equality (194) may be put into the form,

{Ha(r) = Ea}ga(r) = 25 (i (6) — s} ), (196)

when ,(r) = h(p)y(p) with r = f(p) and f' = h?. Evidently, the radial equation (169), expressed as {H,(r) —
Eq}pa(r) = 0, implies {Hy(p) — Ep }¢4(p) = 0.

4.2.1. Energy formulas

To find the energy spectrum of system A, we usually solve the radial equation of (169) by specifying boundary
conditions on ¥, (). Suppose we found a solution §,(r; v) compatible with the given boundary conditions when
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the energy parameter took a specific value E,(v) characterized by a real number v. This solution may be seen as an
eigenfunction satisfying

Ha(r)a(r;v) = Ea(v)a(r;v). (197)
Since operation § demands ¥, (7;v) = Pa(f(p);v) = h(p)Pp(p;v), the equation (197) should imply via the equality
(196)

Hy (0) 96 (0;v)) = Ep(v) iy (0;v)- (198)

This shows that the number v is a dual invariant being common to E,(v) and E;(v). As has been repeatedly mentioned
earlier, the duality operations cannot interfere the internal structure of each quantum system. In general, there are
a number of solutions for the given boundary conditions. Thus v may be representing a set of numbers. Then we
understand that the value of v is preserved by §. For a while, however, we treat v as another parameter and express
the energy E; as a function of A4, L; and v,

E; = E;(Ag, Lo, v). (199)

This corresponds to the energy function E; (A4, Ls, N) in the semiclassical case. We convert this energy function to the
energy spectrum of system A by replacing the parameters L, and v to their quantum counterparts. If we restrict our
interest to bound state solutions, the parameter v is to be replaced by a set of discrete numbers v = 0,1,2,.... Also
putting the angular parameter L, into the Langer form (167), we obtain the discrete energy spectrum of system A,

Eq(la,v) = Ea(Ag, o+ D/2 —1,v), (200)

where ¢, € Ny and v € Nj.

Since the energy functions E,; (A4, L, v) and E,(Ay, Ly, v) are related by the classical energy formulas, (60) and
(64)-(65), the corresponding energy spectra E; ({5, v) and E; (¢}, v) can be related by the same formulas provided the
angular parameter and the quantum parameter are properly expressed in terms of quantum numbers. Knowing
the energy spectrum of the form E; (¢, v) = £(Aq, Lg, v) for system A, we can determine the energy spectrum E;, of
system B by

Ey (L, v) = —*CT2EN (= Ay / (17CP), Ly /1, v), (201)

where L, = ¢, + D/2 — 1 with ¢, € Ny. For the bound state spectrum, v = 0,1,2,....
If the energy spectrum of system A is given in the form

1/a
Eo(la,v) = j:i(u+2)2|)ta|2/<”+2> {]—'( 2/(a+2) (€a+D/2—1),v)} (202)

then the energy spectrum of system B is given by

1/b
Eb(fh,v):izli(bJrZ)th\z/(b*z) {J-'( 2/(b+2)(€h+D/271),1/)} . (203)

These relations are the same as the semiclassical relations (104 and (105) where the signs are determined by the signs
of the coupling constants, sgn E; = —sgn Aj, and sgn E, = —sgn A,.

4.2.2. Wave functions

The wave function transforms as ¥, (7; Ly, v) = h(p)¥p(p; Ly, v). Therefore, if an eigenfunction of system A is
given, then the corresponding eigenfunction of system B can be determined by

1
¥y(p; Ly, v) = Wp)%(c’ﬂ; Ly/n,v), (204)
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where L, = ¢, + D/2 — 1 with ¢, € Ny. Both ¢, (r) and 1, (p) as eigenfunctions are supposed to be square-integrable,
and each of them must be normalizable to unity. However, even if ¢, () is normalized to unity, it is unlikely that ¢ (o)
constructed by (204) is normalized to unity. This is because

el = [ dog(e) lgu(e) = 1 (205

where g(p) = [f'(0))? = [1(p)]* = C*;%021~1). In this regard, if system A and system B are power-dual to each other,
the formula (204) determines ¢, (p) of system B out of i, (r) of system A except for the normalization.

4.2.3. Green functions

The Green function G(r,7’;z) = (r|G(z)|r') is the r-representation of the resolvent G(z) = (z — H)~! where
z € C\spec H and H is the Hamiltonian operator of the system in question. Let E(v) and |i(v)) be the eigenvalue of
H and the corresponding eigenstate, respectively, so that H|y(v)) = E(v)|g(v)). For simplicity, we consider the case
where v € Ny. Assume the eigenstates are orthonormalized and form a complete set, that is,

pW)p(")) =6, 3 lp)(p)| =1 (206)

veNy

From the completeness condition in (206), it is obvious that

veNy
Hence, the Green function can be written as
/ (' v)p(rv)
G(r,1r;z) = L s 7, 208
2 = & (208)

Use of Cauchy’s integral formula leads us to the expression,

P (r, V)P (r;v) = %fc dzG(r,7';z), (209)

where the closed contour C, counterclockwise encloses only the simple pole z = E(v) for a fixed value of v. Note that
we will deal only with radial, hence one-dimensional, problems where no degeneracies can occur. Multiplying both
sides of (209) by two factors v(r) and v(r’) yields

P (r,v)P(r;v) = Zim 7% dzG(r,7';2), (210)

where (r;v) = v(r)¢(r;v) and G(r,7;z) = v(r)o(r')G(r,7; 2).
For instance, the Green function G(r,+'; E) for the radial Schrédinger equation (165) is related to the Green
function G(r,’; E) for the simplified radial equation (166) by

G(r,;E) = (r")1=PV2G(r, 7' E) (211)

as the wave functions of (165) and (166) are connected by R,(r) = V<17D)/2¢[(V).
Suppose the Green functions of system A and system B are given, respectively, by

Yi(rv) (75 v) f dz Gu(r,7';2), (212)

and

G0 = 3 . d2Golp, o). @13)

Zm



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021

39 of 51

By comparing these two expressions, we see that if ¥, (7;v) = h(p)y,(p; v) then

Ga(r, 7'} Ea(v)) = h(p)h(p") Gy (p, ' Ey(v))- (214)

The above result is obtained without considering the detail of the Hamiltonian. In the following, an alternative
account is provided for deriving the same result by using the Hamiltonian explicitly. Let H, be the Hamiltonian
operator of system A such that (r|H, — Es|r') = (Ha(r) — Ez){(r|r'). Then it is obvious that

{Ha(r) = Ea}Ga(r,7'; Ea) = —6(r —1'). (215)

According to (194), equation (215) implies

{Hy(p) — Eb}%cu (F(p), f(0"); Ea) = =12 (p)3(f(p) — f(p"))- (216)

From the relations,

[arintl = [ des@)If NNl = [ dolo)te =1, e17)

there follows [0) = (p)| f(p)). Hence we have, (plo’) = h(p)h(p')(f(p)]f(0)), thatis, 8(r — ') = (F(p) — (o)) =
[h(p)h(0")]~16(p — p'). Thus we arrive at the radial equation satisfied by the Green function of system B,

{Hy(0) — Ep}Gy(p,0'; Ep) = —6(p — ), (218)
if the Green function transforms as
Ga(r,70; Ea, La) = h(p)h(p") Gy (0, 0; Ep, Lp)- (219)
Substitution of L, = ¢, + D/2 — 1 with ¢, € Nyand L, = ¢, + D/2 — 1 with ¢;, € Ny into (219) results in
Ga(7,7';Eq, €+ D/2—1) = h(p)h(p9)Gy (0,0 Ep, by + D/2 — 1), (220)

which is not an equality as £, € Ny and £}, € Ny are assumed. Insofar as system B is power-dual to system A, the
Green function of system B can be expressed in terms of the Green function of system A as

Gp(p, 0/ Eps ly +D/2 =1, A5, Ap) = [(f (0)f' ()] 2Ga (f(0), f(¢'); Ea, (£ + D/2—1) /1, A, Aut) (221)

where f(p) = Cp and the parameters E;, A, and A, are given via the relations (177) and (179) in terms of Ej;, A, and
Ay This relation is an equality even though (220) is a dot equality. An expression similar to but slightly different from
(221) has been obtained by Johnson [31] in much the same way:.

4.3. The Coulomb-Hooke dual pair

Again, we take up the Coulomb-Hooke dual pair to test the transformation properties shown in Section 3.1.
Let system A be the hydrogen atom with A, = —e2 < 0and system B a radial oscillator with A, = %mwz > 0. So
(a,b) = (—1,2) and § = —b/a = 2. Both systems are assumed to be in D dimensional space. The Coulomb system has
the scattering states (E;, > 0) as well as the bound states (E, < 0). However, the exchange relations (177) prohibits the
process (E; > 0,A; < 0) = (E; > 0,A; > 0). The Coulomb-Hooke duality occurs only when the Coulomb system is
in bound states.

The energy relations: Suppose we know that the energy spectrum of system A has the form,

me*

E /\,L , V) = — ’
o(AarLav) 212 (v + Ly +1/2)2

(222)
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where A, = —e2,v € Nyand L, = ¢, + D/2 — 1 with ¢, € Ny. Then the formula (202) leads to
1 2
f(\/iLa,v) - [u+(\ﬁLa)/f2+1/2] . (223)

Careful use of this result in the formula (203) enables us to determine the energy spectrum of system B. Namely,

2
Ey(Ap, Ly, v) :4\//\71,\/2% [v+(L;,/x/§)/f2+ 1/2]1/2. (224)

Substituting A; = mw?/2 and Ly, = £, + D/2 — 1in (224), we reach the standard expression for the energy spectrum
of the isotropic harmonic oscillator in D-dimensional space,

E;,(Eb,v) :hw(2v+£b+D/2) (fb, S No) (225)
Wave functions: The radial equation (166) for the Coulomb potential V(r) = —e?/r can easily be converted to the
Whittaker equation [58]
& 2-1/4 k1
{dexZ+x4 ’(/U(X)fo, (226)

where L = £+ D/2 —1 (£ € Np). In the conversion, we have let x = 2xr, k = me?/ (h*«) = ko, hx = \/—2mE, L = L,
and w(x) = P, (x/(2x)). This set of replacements is indeed a duality map for the self-dual pair (a,a) = (=1, —1). The
Whittaker functions, M 1 (x) and Wy 1 (x), are two linearly independent solutions of the Whittaker equation (226). For

|x| small, My 1 (x) ~ xLt1/2 and Wi (x) ~ — ¢ Ir(2L) )x*L+ 1/2 1f —r/2 < argx < 37/2 and |x| is large, then

(L—k+1/2
x/2.,.—k
LR . S (227)
[(L+k+5) I[(L—k+3)

eit(L—k+3)o=x/2,k

My 1 (x) ~T(2L+1) {

and, if x ¢ R~ and |x| is large,
Wir(x) ~ e ™21+ 0(x 7). (228)

The first solution M ; (x) vanishes at x = 0as L > —1/2 but diverges as |x| — co unless k — L — 4 € Ny, whereas the
second solution Wy 1 (x) diverges at x = 0 but converges to zero as |x| — co.
The solution for the Coulomb problem is given in terms of the Whittaker function,

Ya(r; Lo, v) = Na(Lg) MV+L“+%’La(2Kr), (229)

where k, is replaced by v + L, + 1/2. For the bound state solution which vanishes at infinity, we have to let
v=0,1,2,.... In this case, k, = v+ L, + 1/2 implies the discrete spectrum E,; (A4, Lq, v) in (222).
Since the Whittaker function M, (z) is related to the Laguerre function Lt (z) as

_T@u+1Ir(v+1)

_ 1.2
prebn® = ety ¢ R W@ (230)

M

the eigenfunction may also be expressed in terms of the Laguerre function as

Pa (I‘; Lg, V) =N, (Lu) r(IZ.I(T/l i;zr(i ;r)l) eiKr(ZKT)L“Jr% L%L“ (21(1"), (231)

which is normalized to unity with

hx/vVme2 [T(v+2L,+1)
TeL+1)\ ~ Tw+1)

Na(Lg) = . (232)
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The radial equation for the Hooke system with V;(p) = %mwzpz, too, can be reduced to the Whittaker equation

by letting
y=(mw/mp®, L=Ly/2, k=Ey/(2hw)=ky, w(y)=y"ps(y), (233)
which form a duality map for (b,¢) = (2, —1). Here L, = ¢, + D/2 — 1 with £, € Ny. The bound state solution for the

radial oscillator is given by

1 mw
¥ (03 Lo, v) = Np(Lyp) 7 M, 1,1, (TPZ) - (234)

The choice kj, = (2v+ L, +1)/2 with v € Ny makes the solution (234) the eigenfunction belonging to the energy
Ep(v,ly) in (224). In terms of the Laguerre function, it reads

. _ F(Lb+1)r(v+1) —(mw/2n)p? (MW 2 (Lo+3)/2 L, (Mw 5
Polo3 Loy v) = No(l) =gy (%) L (5707, (235)
which is normalized to unity with
(4mw /)4 |T(v+ Ly +1)
Ny(Ly) = . (236)

T(L, +1) T(v+1)

The process of going from (229) to (234) is rather straightforward. First we notice that # = —b/a = 2 for the
Coulomb-Hooke pair (a,b) = (—1,2). Then we use the relation A, = —5?C2E,, A;, = mw?/2 and fix = \/—2mE,
to get C = mw/(2hx). Hence operation R : r = Cp" with 57 = 2 yields 2xr = (mw/h)p?. In addition, we apply
£: L, = L;,/2. Consequently, we have the right hand side of (204) fora = —1, 7 = 2 and h(p) = \/mw/ (hx)p'/? in
the form,

1 - 1
Vi e = gal(meo /20007 Ly /2,0) = Ny(L) —oMy 1,y 1, (55507) @7

which coincides with the eigenfunction for the radial oscillator in (234) except for the normalization factor. In (237),
Ny(Ly) = Vir/mwNa(Ly/2), (238)

which differs from N (L) of (236) due to the difference of factors, /72«3 / (me2) (mw/h) =12 # \/2(mw /h)'/*. The
wave function of the radial oscillator can be determined by the radial wave function of the hydrogen atom except for
its normalization.

The Green functions: The Green function of interest, G,(r,7’; E, L), obeys the radial equation,

fif—V(r)Jr?E Ga(r,7";E, L) :fh—Zé(rfr’), (239)

di 12-1/4 2m 2m 2m
dr2 ) 72

where V,(r) = As7® + Ay 1" . The boundary conditions we impose on it are

1in% G(r,7;E,L)=0  and lim G(r,7;E,L) < co. (240)
r—

r—00

Let () (r) and 9@ (r) be two independent solutions of the radial equation (166). Let us assume that (1) (r)
remains finite as r — oo while the second solution obeys (2) (0) = 0. With these solutions, following the standard
procedure[59], we can construct the Green function G(r,7’; E, L) as

, 2m (1) (2) (4 , >
G(r,i’ ,'E,L) = Wl),lp(z)] { lp (r/)lp (r ) r 4 (241)

where W[., ] signifies the Wronskian.
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For the Coulomb problem with V,(r) = —e2r—1, we let 1) (r) = Wk, 1, (2¢r) and p@(r) = My, 1,(2xr). Then
we calculate the Wronskian to get

T(2L+1)

26) " Iwiw, 2kr), My 1 (2xr)] = W[W . (x), M (x)] = —————F5—, 242
(26) W [Wi . (2k7), M1, (26)] (Wi (x), M1, (%)] FL—k+ D) (242)
where we have use the property,
WIWi 1 (x), My (x)] = (dy/dx)W[Wi(y), ML (y)]. (243)
Substituting this result in the formula (241), we obtain the radial Green function for the Coulomb problem,
T(Lo—ka+ %
Ga(r,7';Ea,Ly) = — = (Lo —ka+ 3) Wi, 1, (2xr) My, 1 (2kr<), (244)

2 T(Q2L,+1)

where 7~ = max{r,7'} and 7. = min{r,7'}. We have also set k = +/—2mE, h and k, = me?/(h/—2mE,), both of
which are in general complex numbers. The resultant Green function is a double-valued function of E,. It contains the
contribution from the continuous states (corresponding to the branch-cut along the positive real line on E;) as well as
the bound states (corresponding to the poles on the negative real axis). The poles of G(r,'; L,, E;) on the E;-plane
occur when L, — k; + % = —v with v € Ny, yielding the discrete energy spectrum (222).

Similarly, for the radial oscillator with V,(p) = (m/2)w?p?, we let 1) (p) = Wy, 1, ((mw/h)p?) and ¢ (p) =
My, 1, ((mw/h)p?). Use of the property,

WX Wit (), x(W)Mer ()] = X PWIWe L), Mer ()], (245)

for a differentiable function x(y), together with (243) and (242), enables us to evaluate the Wronskian and to get to the
Green function for the radial oscillator,

1 TGL—k+3)

/. _ @ 2 @ 2
Colp:pi Lo, By) = hoJpo  T(L, +1) ka%Lb( 7 P>) Mk»%kb( 7 P<)’ (246)

where k, = E;,/(2hw). Since G(p, p’; I, Ep) is not a multi-valued function of Ej, it has no branch point on the Ej-plane
and contains no contribution corresponding to a continuous spectrum, but has poles at kj, = v + 3L, + 3 with v € Ny
yielding the discrete energy spectrum (225).

Finally, we compare the Green function for the bound state of the Coulomb problem (244) and the Green function
for the radial oscillator (246). The Gamma functions and the Whittaker functions in (244) are brought to those in
(246) by transformations r = Cp? with C = mw/ (2hx), L, = L,/y with y = 2, and k, = k. Although the first two
transformations are two of the dual operations, the last one must be verified. Since k, = me?/ (h?x) = —mA,/ (h*x)
and A, = —E,/(4C), it immediately follows that k, = E;/ (2hiw) = k;, provided C = mw/ (2hix). For the bound state
problem, k; = v+ L, + % and k, = v+ %Lb + % Hence, it is apparent that k; = k, when L, = L,/2. The extra
function in (219) is now given by i(p)h(p’) = \/mw/(fix)/pp’. Hence the prefactor m/ (*x) in (244) divided by the
extra function gives rise to the prefactor (fiw \/pp’) ~! in (246). In this fashion, G,(r,7’; La, E4) of (244) is completely
transformed into Gy (p, 0; Ly, E) by the duality procedures with C = (mw/2hx). By letting L, = ¢, + D/2 — 1 with
£, € Ny, we can see that the formula (221) works well for the Coulomb-Hooke pair.

4.4. A confinement potential as a multi-term power-law example

One of the motivations that urged the study of power-law potentials was the quark-antiquark confinement
problem. See, for instance, references [29-31]. Here we examine a two-term power potential as a model of the
confinement potential.

Let system A consist of a particle of mass m confined in a two-term power potential,

Va(r) = Aat® + Agr”, (247)



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021

43 of 51

where A, #0,Ay #0,a #a’,a # 0,and a’ # 0. Let system B be power-dual to system A and quantum-mechanically
solvable. Then we expect that some quantum-mechanical information can be obtained concerning the confined system
A by analyzing the properties of system B. As we have seen earlier, when system A and system B are dual to each
other, the shifted potential of system A,

Uy (r) = Agt® + Ag?™ — Eq, (248)
transforms to that of system B,
Uy(p) = App” + App" — Ey, (249)
by
Uy(p) = g(p)Ua(f(0))- (250)

Here r = f(p) = Cp", g(p) = C?y?0*1=2, n=2/(a+2) = —b/a,and
V=20 —a)/(a+2) Ay =Agy?C"+2. (251)
Note also that the exchange relations,
Ey = —*C** 20, Ay = —y*CPEy, (252)

play an essential role in verifying the equality (250).
First, we wish to tailor the potential of system A to be a confinement potential. To this end, we set the following
conditions.
(i) System B behaves as a radial harmonic oscillator (A, =0, Ay > 0, b’ =2)
(ii) System A has a bound state with E, = 0 and its potential is asymptotically linearly-increasing (A, >0, a’ = 1).
Since we are unable to solve analytically the Schrodinger equation for system B with (249) in general, we consider
the limiting case for which A;, — 0, that is, we employ for the potential of system B

Uy(p) = lim Uy (p) = Ayp” — Ep. (253)
Ap—0
According to the second relation of (252), the limit A, — 0 implies E; — 0. Hence we study only the zero-energy state
of system A by assuming that it exists and is characterized by an integral number v5. We denote the zero-energy by
E;(vp). There are only a few exactly soluble nontrivial examples with U, of (253). Our choice is the one for the radial
harmonic oscillator with b’ = 2 and Ay > 0,

Uy(0) = Ayp® — Ep (Ay > 0). (254)

Namely, we consider that system B behaves as the radial harmonic oscillator with frequency Q) = /2Ay /m and
angular momentum L;. Since b’ = 2 implies 2(a’ — a)/(a + 2) = 2 as obvious from (251), the corresponding potential
of system A is

Vi(r) = Agr@=272 L A%, (255)

Next we assume that a possible confinement potential behaves asymptotically as a linearly increasing function. Thus,
letting @’ = 1 and A, > 0 in (255), we have

Va(r) = Aar Y2 4 Apr, (Mg <0, Ay > 0). (256)
If A; > 0, then V,(r) > 0 for all r, and the assumed zero-energy state cannot exist. For A, < 0, the effective potential of
system A,
(LZ _ l )hz N
Vil () = 5 = el 4 A, 257)

can accommodate the zero-energy state provided that A, and A, are so selected that V,ff f (r1) < Owherer; isa

positive root of dV;ff(r)/dr =0.Here L, = Ly/yand L, = ¢; + D/2 — 1 with {; € Ny. In this manner, we are able
to obtain the confinement potential (256) which is asymptotically linearly increasing and may accommodate at least
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Figure 2. The effective potential (257) related to the eigenfunctions (266) for vy = 0,1,2,3,4 from top to
bottom. The parameters and units are set to {; = Ay =1, D = 3 and 2m = i = 1, respectivly.

v

10

10

the assumed zero-energy state. Figure 2 shows the effective potential (257) of system A for {; =1, D =3, Ay = 1and
vp=0,1,2,3,4inunits 2m = h = 1.

Sincea’ =1, wehavea = (a’' —2)/2=-1/2,5=2/(a+2) =4/3 and b = —an = 2/3. The last information
concerning b is unimportant insofar as A;, — 0 is assumed. The second relation of (251) demands that

C = (9Ay /16A,)Y3. (258)
Therefore, the first relation of (252) yields
_ 4 )\b/
E, = 5)\,1 A, (259)

On the other hand, since system B behaves as a radial harmonic oscillator with frequency (2 = /21 /m and angular
momentum Ly, its energy spectrum is given by

Eb(VOIEb) =hQ (21/0 + Lb + 1), (260)

where v = 1y is fixed by E;(vp) and L, = ¢, + D/2 — 1 with ¢, € Ny. Letting L, = (4/3)L, in (260) and interpreting
that Ej of (259) represents an allowed value in the spectrum (260), we observe that the coupling constant A, may take
one of the values specified by the set of (v, {;) via

3 [2A K2
Aa=—7 ;1 (2vp + (4/3)L, + 1), (261)

where L, = ¢, + D/2 — 1 with ¢, € N.
The energy eigenfunction of the radial oscillator has been given in (234). Replacing (mw/h) in the previous
result by B = mQ/h = \/2mAy /1, we write down the eigenfunction of the present oscillator as
1

¢v(0; Ly, vo) = Ny (Ly, vo, B) 7 My g1, (ﬁPZ) , (262)

which is normalized to unity with

(4p)* T +Ly+1)
T(Lb+1) T(V0+1)

Ny(Lp,vo, B) = . (263)



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021

45 of 51

Moreover, utilizing the eigenfunction just obtained, we construct the eigenfunction for the zero-energy state in the
confinement potential (256) by following the simple prescription ¢, (1) = h(p)¢;(p). For the pair (a,b) = (—1/2,2/3),
the two variables r and p are related by r = Cp*/3 with C given in (258). Since p?> = C~3/2r%/2 and C™3/2 =

(4/3)\/ /\u///\b/, we let

. 4 /\u/ o 4 \/Zm/\u/ o \/Zm/\b/
=3k, T3 P (264)
and
Bo* = ar®/2. (265)

Multiplying ¢y, () of (262) by h(p) = +/dr/dp = /4C/3p'/®, and substituting (264) and L, = (4/3)L, into ¢ (p), we
arrive at the eigenfunction for the zero-energy state of system A,

¢a(0; La,v0) = Na(La, vo, @) rt/ Mvo+§Ln+%/ %L, (MS/Z) ! (266)

where L, = {; + D/2 — 1 with ¢, € Nj. Here the factor NV;(L,, vp, «) that normalizes ¢,(p) to unity cannot be
determined by N}, ((4/3)La,vo, (3/4)a+/Ay /Ay). Corresponding to the value of A, specified in (261) by the set
(vo, £a), the eigenfunction ¢, (p; £, Vo) is characterized by the same set (v, £,;) of numbers.

The Green function of system A obeys the inhomogeneous radial equation,

2me

2 -1/2 2 / 2m /
7_7_7 (/\,17‘ +)La!r) +h72Ea Ga(r,r;Ea,Lu) = _?5(1’_7). (267)

Since the Green function for the radial oscillator has been given in (246), we can write down the Green function

Gy(p, p'; Ep(vp)) of system B with A, = 0 as

m 1 T(ALy—ky+3)
Gb(P/P//'Eb/Lb) = 7% \/w Zr(Lb+1) : ka,%Lb(pri)Mkh,%Lb(ﬁpi)’ (268)

where k, = Ej,/(21Q)). The pole of G (p, p'; E;) that corresponds to Ej(vg) occurs when ky(Ly, v9) = vo + 3Ly + 4
where 1y is a non-negative integer.
The Green function G4(r,7’; Ea, L) of system A at E; = 0 can be found by substituting (265) together with

1 2

into h(p)h(p")Gy(p, 0'; Ep, Lp). Namely,
Galr, 7B = 0,L0) = 5CY4()/3 G, ((r/C)3/4, (/P4 By = 1l §L) , (269)

where C has been given in (258). Explicitly, we have

2 1
Ga(r,7";Eq, Lg) = — il (rr’)_1/4r(§L“ —kat3)
3% T(4L,+1)

W, 21, (ar’/?) My 31, (ar®/?). (270)
where « and B have been given by (264). The pole corresponding to E;(vp) = 0 occurs when k, = vg + (2/3)Ls + 1/2
and L; = ¢, + D /2 — 1. We have to remember that the Green function (269) is meaningful only in the vicinity of E; = 0.

Remark 4.1 The angular momentum L in (167) is identical in form to that used in the semiclassical case (86).
However, no Langer-like ad hoc treatment has been made in the Schrodinger equation. The angular contribution
£(¢ + D — 2) and an additional contribution (D — 1)(D — 3) /4 from the kinetic term due to the transformation of base
function, R, (r) to y(r), make up the term L? — 1/4 in the effective centrifugal potential term of (169).
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Remark 4.2. The time transformation ¥ needed in classical mechanics takes no part in the power duality of
the stationary Schrodinger equation. Instead, the change of the base function plays an essential role. While ¥
assumes dt = g(p)ds, the state function changes as ,(r) = [¢(0)]"/*;(0). The possible connection between the time
transformation and the change of state function has been discussed in the context of path integration for the Green
function in [32]. So long as the stationary Schrodinger equation is concerned, there is no clue to draw any causal
relation between ¥ and §. However, one might expect that T would play a role in the time-dependent Schodinger
equation. If the energy-coupling exchange operation & of (93) is formally modified as

., 0 ., 0
¢ oV, (r) — fzh%, gzha—{ - —Vi(p), (271)

then the time-dependent radial Schrodinger equation,

&> (L2 —1/4) | ()
[Zmdﬂ + T + Va(i’) lIJu(V) = ZHT, (272)
transforms into . . ;
R 21/ R
[chw " omgr + V(o) | ¥u(p) = ZF’T/ (273)

under the set of {$, £, ¢/, §}. It is important that f and § are not necessarily connected by T; they are basically
independent time-like parameters. In conclusion, the time transformation ¥ has no role in the time-dependent
Schroédinger equation.

Remark 4.3 More on time transformations. Since we are dealing with the action integral (170) rather than the
Schrodinger equation, it is easy to observe that the time transformation ¥ in the classical action in Section 2 is closely

related to the transformation § of wave functions in the quantum action (170). Recall that T : t= g(p) s where g=f"
with f = Cp”, and that
dt U, = dsgl, = dsUj,. (274)

From (171) and (190), we have
dr Uatpipa = dp f'W*Uatipy = dp Uiy, (275)
where ¢ = f W2 = f’z. Comparing (274) and (275), we see that dt = gds in classical mechanics corresponds to

dr ¢31a = gdp P}y in quantum mechanics. In other words, dr i; ¢, has the same transformation behavior that dt
does. In this respect, we may say that the role of ¥ in classical mechanics is replaced by § in quantum mechanics.

5. Summary and Outlook

In the present paper we have revisited the Newton-Hooke power-law duality and its generalizations from the
symmetry point of view.

(1) We have stipulated the power-dual symmetry in classical mechanics by form-invariance and reciprocity
of the classical action in the form of Hamilton’s characteristic function, and clarified the roles of duality operations
{¢€,R,%,¢ L}. The exchange operation € has a double role; it may decide the constant C appearing in the
transformation r = Cp", while it leads to an energy formula that relates the new energy to the old energy.

(2) We have shown that the semiclassical action is symmetric under the set of duality operations {€, R, €, £}
without ¥ insofar as angular momentum L is treated as a continuous parameter, and observed that the power-duality
is essentially a classical notion and breaks down at the level of angular quantization. To preserve the basic spirit
of power-duality in the semiclassical action, we have proposed an ad hoc procedure in which angular momentum
transforms as L, = #7L,, as the classical case, rather than ¢;, = 17¢;; after that each of L is quantizedas L = ¢+ D/2 -1
with £ € Ny. As an example, we have solved by the WKB formula a simple problem for a linear motion in a fractional
power potential.

(3) We have failed to verify the dual symmetry of the supersymmetric (SUSY) semiclassical action for an arbitrary
power potential, but have succeeded to reveal the Coulomb-Hooke duality in the SUSY action.
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(4) To study the power-dual symmetry in quantum mechanics, we have chosen the action in which the variables
are the wave function ¢ () and its complex conjugate ¢*(r) and from which the radial Schrodinger equation can
be derived. The potential appearing in the action is a two-term power potential. We have shown that the action is
symmetric under the set of operations {€, R, €, £} plus the transformation of wave function § provided that angular
momentum L is a continuous parameter. Again the ad hoc procedure introduced for the semiclassical case must be
used in quantum mechanics. Associated with § is the transformation of Green functions from which we have derived
a formula that relates the new Green function and the old one. We have studied the Coulomb-Hooke duality to verify
the energy formula and the formula for the Green functions. We also discussed a confinement potential and the
Coulomb-Hooke-Morse triality.

There are more topics that we considered important but left out for the future work. They include the power-dual
symmetry in the path integral formulation of quantum mechanics, the Coulomb-Hooke duality in Dirac’s equation,
and the confinement problem in Witten’s framework of supersymetric quantum mechanics. Feynman’s path integral
is defined for the propagator (or the transition probability) with the classical action in the form of Hamilton’s principal
function, whereas the path integral pertinent to the duality discussion is based on the classical action in the form of
Hamilton’s characteristic function. Since the power-dual symmetry of the characteristic action has been shown, it
seems obvious that the path integral remains form-invariant under the duality operations, but the verification of it is
tedious. As is well-known, Dirac’s equation is exactly solvable for the hydrogen atom. There are also solutions of
Dirac’s equation for the harmonic oscillator. However, the Coulomb-Hooke duality of Dirac’s equation has never been
established. The situation is similar to Witten’s model of SUSYQM. Using the same superpotential as that used for the
semiclassical case in Section 4, we may be able to show the Coulomb-Hooke symmetry and handle the confinement
problem in Witten’s framework.

Appendix The Coulomb-Hooke-Morse triality

In this Appendix, we wish to present the Coulomb-Hooke-Morse triality that relates the Morse oscillator to the
Coulomb-Hooke duality. Specifically, letting system A be the hydrogen atom (for the Coulomb system), system B
be the radial harmonic oscillator (for the Hooke system) and system C be the Morse oscillator, we deal with their
triangular relation. The Morse oscillator is a system obeying the one-dimensional Schrodinger equation [60],

w dpe(%) B
_%TCHVC(C)—EC)%(C) =0, (€R, (A1)
where
Ve(Z) = Dye ¢ —2D,e™*, Dy, Dy >0, (A2)

which is the Morse potential in a slightly modified form. The potential (A2), being not a power-law potential, is beyond
the scope of the main text. It is yet interesting to observe how the Morse oscillator is related to the Coulomb-Hooke
duality. It is straightforward, if one follows the general transformation procedure [32] for the Schrodinger equation, to
transform (A1) directly to the Schrodinger equation for each of the hydrogen atom and the radial harmonic oscillation.
Here, to focus our attention on their trial nature, we place the Whittaker function at the center of the triangular relation.
In fact, the Schrodinger equation (A1) is easily transformed to the Whittaker equation (226) under the substitutions

x=qetd, o= YOI (A3
ha
/—2mE. 2mD?2
o= YZ2mEe g [ 200 (A4)
fiox hzzxle
w(x) = x 2y (€). (A5)

Hence the bound state solution of (A1) can be expressed in terms of the Whittaker function as

9e(@) = Nee¥2My, 1, (ve™f), (A6)
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subject to the condition
1
kC:v—l—Lc—i-E, v € Np. (A7)

The last condition yields the energy spectrum,

2
w22 | | 2mD3 1 2mD3 1
ECZm{ Flztx2D1 - <V+§) ,v=012,...< hztxle 5 (A8)

The Morse oscillator solution (&) in (A6) may be compared with the Coulomb bound state solution ¢, (r) and
the Hooke oscillator solution i, (p) given, respectively, by

$a(r) = Na My, 1, (2x7), (A9)
with 1
ka=v+Lits veN, (A10)
and o
_ -1/2 2
Yulo) = Npp™ "My 1y, (Tp ) , (A11)
with 1 .
kb:V+ EL[,"‘E VEN(). (A12)

The bound state conditions (A10) and (A12) lead to the energy spectrum of the Coulomb system (A) and that of the
Hooke system (B), respectively, when

ko = me?/(h*), Thx=+/—2mE,, L,=/(+1/2, (€N, (A13)
kh:Eb/(hw), Ly=¢+1/2, (eNp. (A14)

The triality relations are schematically shown below,

Morse Morse
CA / r\ BC AC /\ \,1 CB
Coulomb — Hooke Coulomb — Hooke
AB BA

and the dual transformations AC, CB and BA are given by

AC: 2xr = e, ko=ke, Lo=Le, Pa(r) = e/ 2y ()
CB: e * = (mw/h)p? ke=ky, Lc=(1/2)Ly, e /2y (&) =p 1 2¢y(p)
BA: (mw/h)p? = 2xr, kp =ka, (1/2)Ly = Lo, 0 *9y(p) = 9a(r)

which are all invertible. Although none of the energy formulas discussed earlier for the power-duality works when
the Morse (non-power-law) potential is involved, transforming one of the bound state conditions to another suffices
as each condition generates an energy spectrum. Let x(ks, #7sLs) represent the condition ks — #sLs — % = v where
s=ua,b,c,and 15, = 5. = 1and i, = 1/2. The map x(ks,#sLs) = x(ks,nsLy) induces Es = Eg.

X(kc; Lc) E;
CA / r\ BC = CA / y\ BC

X(kar Lu) — X(kb/ %Lb) E, — E,
AB AB
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Finally, it must be mentioned that this triangular relation has been discussed in the context of so-called shape

invariant potentials in supersymmetric quantum mechanics [61]. It may also be worth pointing out that the three
systems share the SU(1,1) dynamical group [40,45].
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