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Abstract: The Newton-Hooke duality and its generalization to arbitrary power laws in classical,
semiclassical and quantum mechanics are discussed. We pursue a view that the power-law duality
is a symmetry of the action under a set of duality operations. The power dual symmetry is defined by
invariance and reciprocity of the action in the form of Hamilton’s characteristic function. We find that the
power-law duality is basically a classical notion and breaks down at the level of angular quantization. We
propose an ad hoc procedure to preserve the dual symmetry in quantum mechanics. The energy-coupling
exchange maps required as part of the duality operations that take one system to another lead to an
energy formula that relates the new energy to the old energy. The transformation property of Green
function satisfying the radial Schrödinger equation yields a formula that relates the new Green function
to the old one. The energy spectrum of the linear motion in a fractional power potential is semiclassically
evaluated. We find a way to show the Coulomb-Hooke duality in the supersymmetric semiclassical
action. We also study the confinement potential problem with the help of the dual structure of a two-term
power potential.

Keywords: Power-law duality, Classical and quantum mechanics, Semiclassical quantization,
Supersymmetric quantum mechanics, Quark confinement

1. Introduction

In recent years, numerous exoplanets have been discovered [1,2]. In exoplanetary research it is a
generally accepted view that Newton’s law of gravitation holds in extrasolar systems [3]. Orbit mechanics
of exoplanets, as is the case of solar planets and satellites, is classical mechanics of the Kepler problem
under small perturbations. The common procedure for the study of perturbations to the Kepler motion is
the so-called regularization, introduced by Levi-Civita (1906) for the planar motion [4,5] and generalized by
Kustaanheimo and Stiefel (1965) to the spatial motion [6]. The regularization in celestial mechanics is a
transformation of the singular equation of motion for the Kepler problem to the non-singular equation of
motion for the harmonic oscillator problem with or without perturbations. It identifies the Kepler motion
with the harmonic oscillation, assuring the dual relation between Newton’s law and Hooke’s law.1 The
Newton-Hooke duality has been discussed by many authors from various aspects [8]. The basic elements
of regularization are: (i) a transformation of space variables, (ii) interpretation of the conserved energy as
the coupling constant, and (iii) a transformation of time parameter. The choice of space variables and

1 Here, following the tradition, we mean by Newton’s law the inverse-square force law of gravitation and by Hooke’s law the
linear force law for the harmonic oscillation. Although Hooke found the inverse square force law for gravitation prior to Newton,
he was short of skills in proving that the orbit of a planet is an ellipse in accordance with Kepler’s first law, while Newton was
able not only to confirm that the inverse square force law yields an elliptic orbit but also to show conversely that the inverse
square force law follows Kepler’s first law. History gave Newton the full credit of the inverse square force law for gravitation.
For a detailed account, see, e.g., Arnold’s book [7].
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time parameter is by no means unique. The transformation of space variables has been represented in
terms of parabolic coordinates [4,5], complex numbers [9,10], spinors [6], quaternions [3,11], etc. The time
transformation used by Sundman [9] and by Bohlin [10] is essentially based on Newton’s finding [12] that
the areal speed dA/dt is constant for any central force motion. It takes the form ds = Crdt where s is a
fictitious time related to the eccentric anomaly. To improve numerical integrations for the orbital motion, a
family of time transformations ds = Cηrηdt, called generalized Sundman transformations, has also been
discussed [13], in which s corresponds to the mean anomaly if η = 0, the eccentric anomaly if η = 1, the
true anomaly if η = 2, and intermediate anomalies [14] for other values of η. Even more generalizing, a
transformation of the form ds = Q(r)dt has been introduced in the context of regularization [15].

As has been pointed out in the literature [7,12,16,17], the dual relation between the Kepler problem
and the harmonic oscillator was already known in the time of Newton and Hooke. What Newton posed in
his Principia was more general. According to Chandrasekhar’s reading [12] out of the propositions
and corollaries (particularly Proposition VII, Corollary III) in the Principia, Newton established the
duality between the centripetal forces of the form, rα and rβ, for the pairs (α, β) = (1,−2), (−1,−1)
and (−5,−5). Revisiting the question on the duality between a pair of arbitrary power forces, Kasner [18]
and independently Arnol’d [7] obtained the condition, (α + 3)(β + 3) = 4, for a dual pair. There are a
number of articles on the duality of arbitrary power force laws [19]. Now on, for the sake of brevity, we
shall refer to the duality of general power force laws as the power duality. The power duality includes the
Newton-Hooke duality as a spacial case.

The quantum mechanical counterpart of the Kepler problem is the hydrogen atom problem. In 1926,
Schrödinger [20] solved his equation for the hydrogen atom and successively for the harmonic oscillator.
Although it must have been known that both radial equations for the hydrogen atom and for the harmonic
oscillation are reducible to confluent hypergeometric equations [21], there was probably no particular urge
to relate the Coulomb problem to the Hooke problem, before the interest in the accidental degeneracies
arose [22,23]. Fock [22] pointed out that for the bound states the hydrogen atom has a hidden symmetry
SO(4) and an appropriate representation of the group can account for the degeneracy. In connection with
Fock’s work, Jauch and Hill [24] showed that the 2− D harmonic oscillator has an algebraic structure
of su(2) which is doubly-isomorphic to the so(3) algebra possessed by the 2− D hydrogen atom. The
transformation of the radial equation from the hydrogen atom to that of the harmonic oscillator or vice
verse was studied by Schrödinger [25] and others [26]. The same problem in arbitrary dimensions has
also been discussed from the supersymmetric interest [27]. In the post-KS era, the relation between the
three dimensional Coulomb problem and the four dimensional harmonic oscillator was also investigated
by implementing the KS transformation or its variations in the Schrödinger equation. See ref. [28] and
references therein. The duality of radial equations with multi-terms of power potentials was studied in
connection with the quark confinement [29–31].

The time transformation of the form ds = Cηrηdt used in classical mechanics is in principle integrable
only along a classical trajectory. In other words, the fictitious time s is globally meaningful only when
the form of r(t) as a function of t is known. In quantum mechanics, such a transformation is no longer
applicable due to the lack of classical paths. Hence it is futile to use any kind of time transformation
formally to the time-dependent Schrödinger equation. The Schrödinger equation subject to the duality
transformation is a time-independent radial equation possessing a fixed energy and a fixed angular
momentum. The classical time transformation is replaced in quantum mechanics by a renormalization
of the time-independent state function [32]. In summary, the duality transformation applicable to the
Schrödinger equation consists of (i) a change of radial variable, (ii) an exchange of energy and coupling
constant, and (iii) a transformation of state function. Having said so, when it comes to Feynman’s path
integral approach, we should recognize that the classical procedure of regularization prevails.
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Feynman’s path integral is based on the c-number Lagrangian and, as Feynman asserted [33], the
path of a quantum particle for a short time dt can be regarded as a classical path. Therefore, the local time
transformation associated with the duality transformation in classical mechanics can be revived in path
integration. In fact, the Newton-Hooke duality plays an important role in path integration. Feynman’s
path integral in the standard form [33,34] provides a way to evaluate the transition probability from a point
to another in space (the propagator or the Feynman kernel). The path integral in the original formulation
gives exact solutions only for quadratic systems including the harmonic oscillator, but fails in solving the
hydrogen atom problem. However, use of the KS transformation enables to convert the path integral for
the hydrogen atom problem to that of the harmonic oscillator if the action of Feynman’s path integral is
slightly modified with a fixed energy term. In 1979, Duru and Kleinert [35], formally applying the KS
transformation to the Hamiltonian path integral, succeeded to obtain the energy-dependent Green function
for the hydrogen atom in the momentum representation. Again, with the help of the KS transformation,
Ho and Inomata (1982) [36] carried out detailed calculations of Feynman’s path integral with a modified
action to derive the energy Green function in the coordinate representation. In 1984, on the basis of the
polar coordinate formulation of path integral (1969) [37], without using the KS variables, the radial path
integral for the hydrogen atom was transformed to that for the radial harmonic oscillator by Inomata
for three dimensions [38] and by Steiner for arbitrary dimensions [39]. Since then a large number of
examples have been solved by path integration [40,41]. Applications of the Newton-Hooke duality in
path integration include those to the Coulomb problem on uniformly curved spaces [42], Kaluza-Klein
monopole [43], and many others [41]. The idea of classical regularization also helped to open a way to
look at the path integral from group theory and harmonic analysis [40,44,45]. The only work that discusses
a confinement potential in the context of path integrals is Steiner’s [46].

As has been briefly reviewed above, the Newton-Hooke duality and its generalizations have been
extensively and exhaustively explored. In the present paper we pursue the dual relation (power-duality)
between two systems with arbitrary power-law potentials from the symmetry point of view. While most
of the previous works deal with equations of motion, we focus our attention on the symmetry of action
integrals under a set of duality operations. Our duality discussion covers the classical, semiclassical and
quantum-mechanical cases. In Section 2, we define the dual symmetry by invariance and reciprocity of the
classical action in the form of Hamilton’s characteristic function and specify a set of duality operations.
Then we survey comprehensively the properties of the power-duality. The energy-coupling exchange
relations contained as a part of the duality operations lead to various energy formulas. In Section 3, we
bring the power-duality defined for the classical action to the semiclassical action for quantum mechanical
systems. We argue that the power-duality is basically a classical notion and breaks down at the level of
angular quantization. To preserve the basic idea of the dual symmetry in quantum mechanics, we propose
as an ad hoc procedure to treat angular momentum L as a continuous parameter and to quantize it only
after the transformation is completed. A linear motion in a fractional power-law potential is solved as an
example to find the energy spectrum by extended use of the classical energy formulas. We also discussed
the dual symmetry of the supersymmetric (SUSY) semiclassical action. Although we are unable to verify
general power duality, we find a way to show the Coulomb-Hooke symmetry in the SUSY semiclassical
action. Section 4 analyzes the dual symmetry in quantum mechanics on the basis of an action having wave
functions as variables. The energy formulas, eigenfunctions and Green functions for dual systems are
discussed in detail, including the Coulomb-Hooke problem. We also explore a quark confinement problem
as an application of multi-power potentials, showing that the zero-energy bound state in the confinement
potential is in the power-dual relation with a radial harmonic oscillator. Section 5 gives a summary of the
present paper and an outlook for the future work. Appendix A presents the Newton-Hooke-Morse triality
that relates the Newton-Hooke duality to the Morse oscillator.
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2. Power-Law Duality as a Symmetry

Duality is an interesting and important notion in mathematics and physics, but it has many faces [47].
In physics it may mean equivalence, complementarity, conjugation, correspondence, reciprocity, symmetry
and so on. Newton’s law and Hooke’s law may be said dual to each other in the sense that a given orbit of
one system can be mapped into an orbit of the other (one-to-one correspondence), whereas they may be a
dual pair because the equation of motion of one system can be transformed into the equation of motion for
the other (equivalence).

In this section, we pursue a view that the power duality is a symmetry of the classical action in the
form of Hamiltonian’s characteristic function, and discuss the power duality in classical, semiclassical and
quantum mechanical cases.

2.1. Stipulations

Let us begin by proposing an operational definition of the power duality. We consider two distinct
systems, A and B. System A (or A in short), characterized by an index or a set of indices a, consists
of a power potential Va(r) ∼ ra and a particle of mass ma moving in the potential with fixed angular
momentum La and energy Ea. Similarly, system B (B in short), characterized by an index or a set of indices
b, consists of a power potential Vb(r) ∼ rb and a particle of mass mb moving in the potential with fixed
angular momentum Lb and energy Eb.

If there is a set of invertible transformations ∆(B, A) that takes A to B, then we say that A and B are
equivalent. Naturally, the inverse of ∆(B, A) denoted by ∆(A, B) = ∆−1(B, A) takes B to A.

Let X(a, b) and X(b, a) = X−1(a, b) be symbols for replacing the indices b by a and a by b, respectively.
If B becomes A under X(a, b) and A becomes B under X(b, a), then we say that A and B are reciprocal to
each other with respect to ∆(B, A). If A and B are equivalent and reciprocal, we say they are dual to each
other. Since each of the two systems has a power potential, we regard the duality so stipulated as the power
duality.

The successive applications of ∆(A, B) and X(a, b) transform A to B and change B back to A.
Consequently the combined actions leave A unchanged. In this sense we can view that the set of operations,
{∆(A, B), X(a, b)}, or its inverse, {∆(B, A), X(b, a)}, is a symmetry operation for the power duality.

If a quantity Qa belonging to system A transforms to Qb while ∆(B, A) takes system A to system B,
then we write Qb = ∆(B, A)Qa. If Qb can be converted to Qa by X(a, b), then we write Qa = X(a, b)Qb
and say that Qa is form-invariant under ∆(B, A). If Qa = Qb, then Qa is an invariant under ∆(B, A). If every
Qa belonging to system A is an invariant under ∆(B, A), then ∆(B, A) is an identity operation.

2.2. Duality in the classical action

The power duality in classical mechanics may be most easily demonstrated by considering the action
integral of the form of Hamilton’s characteristic function, W(E) = S(t) + Et, where S is the Hamilton’s
principal function and E is the energy of the system in question. The action is usually given by Hamilton’s
principal function,

S(τ) =
∫ τ

dt L̄ =
∫ τ

dt
[m

2
~̇r 2 −V(~r)

]
(1)

which leads to the Euler-Lagrange equations via Hamilton’s variational principle. If the system is
spherically symmetric, that is, if the potential V(~r) is independent of angular variables, then the action
remains invariant under rotations. If the system is conservative, that is, if the Lagrangian is not an explicit
function of time, then the action is invariant under time translations. In general, if the action is invariant
under a transformation, then the transformation is often called a symmetry transformation.
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For a conserved system, we can choose as the action Hamilton’s characteristic function,

W(E) =
∫ τ

dt {L̄ + E} = S(τ) + Eτ , E = −∂S(τ)
∂τ

. (2)

Insofar as the system is conservative, both the principal action S(τ) and the characteristic action W(E)
yield the same equations of motion. For the radial motion of a particle of mass m with a chosen value of
energy E and a chosen value of angular momentum L in a spherically symmetric potential V(r), the radial
action has the form,

W(r,t)(E) =
∫

It
dt

{
m
2

(
dr
dt

)2
− L2

2mr2 −V(r) + E

}
, (3)

where It = τ(E) 3 t is the range of t. We let a system with a specific potential Va be system A and append
the subscript a to every parameter involved. In a similar manner, we let a system with Vb be system B
whose parameters are all marked with a subscript b. For system A with a radial potential Va(r), we rewrite
the action (3) in the form,

W(r,t)(Ea) =
∫

Iϕ

dϕ
◦
t

{
ma

2
◦
t
−2
(

dr
dϕ

)2
+

L2
a

2mar2 −Ua(r)

}
, (4)

with
Ua(r) = Va(r)− Ea, (5)

where ϕ is some fiducial time, Iϕ 3 ϕ is the range of integration, and
◦
t= dt/dϕ.

In (4), as is often seen in the literature [30–32], we change the radial variable from r to ρ by a bijective
differentiable map,

R f : r = f (ρ) ⇔ ρ = f−1(r), (6)

where f is a positive differentiable function of ρ, 0 < r < ∞ and 0 < ρ < ∞. With this change of variable

we associate a change of time derivative from
◦
t to

◦
s by a bijective differentiable map,

◦
Tg:

◦
t= g(ρ)

◦
s ⇔ ◦

s=
◦
t

g( f−1(r))
. (7)

In the above, we assume that both r and ρ are of the same dimension and that s has the dimension of time

as t does. As a result of operations R f and
◦
Tg on the action (4), we obtain

W(r,t)(Ea) =
∫

Iϕ

dϕ
◦
s

{
ma

2
f ′2

g
◦
s
−2
(

dρ

dϕ

)2
+

gL2
a

2ma f 2 − gUa( f (ρ))

}
, (8)

whose implication is obscure till the transformation functions f and g are appropriately specified.

Suppose there is a set of operations ∆, including R f and
◦
Tg as a subset, that can convert W(r,t)(Ea) of

(8) to the form,

W(ρ,s)(Eb) =
∫

Iϕ

dϕ
◦
s

{
mb
2
◦
s
−2
(

dρ

dϕ

)2
+

L2
b

2mbρ2 −Ub(ρ)

}
, (9)

with
Ub = Vb(ρ)− Eb, (10)
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where Vb(ρ) is a real function of ρ, and Eb is a constant having the dimension of energy. Then we identify
the new action (9) with the action of system B representing a particle of mass mb which moves in a potential
Vb(ρ) with fixed values of angular momentum Lb and energy Eb. If Wξa(Ea) = X(a, b)Wξb(Eb) where
ξa = (r, t) and ξb = (ρ, s), then Wξa(Ea) is form-invariant under ∆. Since W(ρ,s)(Ea) is physically identical
with W(r,t)(Ea), if W(ρ,s)(Ea) = X(a, b)W(ρ,s)(Eb), then we say that system A represented by W(r,t)(Ea) is
dual to system B represented by W(ρ,s)(Eb) with respect to ∆.

2.3. Duality transformations

In an effort to find such a set of operations ∆, we wish, as the first step, to determine the transformation

functions f (ρ) of (6) and g(ρ) of (7) by demanding that the set of space and time transformations {R f ,
◦
Tg}

preserves the form-invariance of each term of the action. In other words, we determine f (ρ) and g(ρ) so
as to retain (i) form-invariance of the kinetic term, (ii) form-invariance of the angular momentum term and
(iii) form-invariance of the shifted potential term.

In the action W(r,t)(Ea) of (8), the functions f (ρ) and g(ρ) are arbitrary and independent of each other.
To meet the condition (i), it is necessary that g = µ f ′2 where µ is a positive constant. Then the kinetic term
expressed in terms of the new variable can be interpreted as the kinetic energy of a particle with mass

M : mb = ma/µ. (11)

In order for the angular momentum term to keep its inverse square form as required by (ii), the
transformation functions are to be chosen as

f (ρ) = Cηρη , g(ρ) = µC2
ηη2ρ2η−2, (12)

where η is a non-zero real constant and Cη is an η dependent positive constant which has the dimension
of r1−η as r and ρ have been assumed to possess the same dimension. With (12), the angular momentum
term of (8) takes the form, L2

b/(2mbρ2), when the mass changes by M of (11), and the angular momentum
La transforms to

L : Lb = ηLa. (13)

So far the forms of f (ρ) and g(ρ) in (12) have been determined by the asserted conditions (i) and (ii),
even before the potential is specified. This means that (iii) is a condition to select a potential V(r) pertinent
to the given form of g(ρ). More explicitly, (iii) demands that gUa(r) must be of the form,

gUa = Vb(ρ)− Eb, (14)

where Vb(ρ) is such that Va(ρ) = X(a, b)Vb(ρ). Therefore, the space-time transformation {R f ,
◦
Tg} subject

to the form-invariance conditions (i) - (iii) is only applicable to a system with a limited class of potentials.
The simplest potential that belongs to this class is the single-term power potential Va(r) = λara where

λa ∈ R and a ∈ R. The corresponding shifted potential is given by

Ua(r) = λara − Ea (15)

which transforms with (12) into

gUa(r) = µλaCa+2
η η2ρaη+2η−2 − µC2

ηη2ρ2η−2Ea. (16)
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Under the condition (iii) the expected form of the shifted potential is

Ub(ρ) = gUa(r) = λbρb − Eb, (17)

where λb ∈ R and b ∈ R. Comparison of (16) and (17) gives us only two possible combinations for the
new exponents and the new coupling and energy,

b = aη + 2η − 2 and 2η − 2 = 0, (18)

λb = µCa+2
η η2λa and Eb = µC2

ηη2Ea (19)

and

b = 2η − 2 and aη + 2η − 2 = 0, (a 6= −2), (20)

λb = −µC2
ηη2ρ2η−2Ea and Eb = −µCa+2

η η2λa , (21)

Note that a = −2 is included in the first combination but excluded from the second combination.
In the following, we shall examine the two possible combinations in more detail by expressing the

admissible transformations in terms of the exponents,

η1 = 1, ηa = 2/(a + 2) (a 6= 0,−2), (22)

and separating the set of ηa into two as

η+ = {ηa|a > −2}, η− = {ηa|a < −2}. (23)

Chandrasekhar in his book [12] represents a pair of dual forces by (a− 1, b− 1). In a way analogous to his
notation, we also use the notation (a, b) via η for a pair of the exponents of power potentials when system A
and system B are related by a transformation with η. We shall put the subscript F to differentiate the pairs
of dual forces from those of dual potentials as (a− 1, b− 1)F = (a, b) whenever needed. Caution must be
exercised in interpreting (0, 0) which may mean limε→0(±ε,±ε), limε→0(±ε,∓ε) and purely (0, 0) (see the
comments in below Subsections). We shall refer to the sets of pairs (a, b) related to the first combination
(18)-(19) and the second combination (20)-(21) as Class I and Class II, respectively.

2.3.1. Class I

Class I is the supplementary set of self-dual pairs. Equation (18) of the first combination implies

C1 : η1 = 1, a = b ∈ R, (24)

which is denoted by (a, a) via η1. In this case, (12) yields f (ρ) = C1ρ and g(ρ) = µC2
1 where C1 and µ are

arbitrary dimensionless constants. With these transformation functions, (6) and (7) lead to a set of space
and time transformations whose scale factors depend on neither space nor time,

R1 : r = C1ρ, (25)

and
◦
T1:

◦
t= µC2

1
◦
s . (26)
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Associated with the space and time transformations (25) and (26) are the scale changes in coupling and
energy, as shown by (19),

E1 : λa → λb = (µCa+2
1 )λa, Ea → Eb = (µC2

1)Ea. (27)

According to (11), the mass also changes its scale,

M1 : mb = ma/µ. (28)

From (13) and (24) follows the scale-invariant angular momentum,2

L0 : Lb = La. (29)

In this manner we obtain a set of operations ∆1 = {C1,R1,
◦
T1,E1,M1,L0} that leaves form-invariant the

action for the power potential system. System B reached from system A by ∆1 can go back to system A by
X(a, b). Hence, system A is dual to system B. Notice, however, that ∆1 leads to a self-dual pair (a, a) via η1

for any given a ∈ R. In particular, (0, 0) = limε→0(±ε,∓ε).

Remark 2.1: Class I consists of self-dual pairs (a, a) via η1 for all a ∈ R. All pairs in this class are
supplemental in the sense that they are not traditionally counted as dual pairs. Since ∆1 is a qualified set of
operations for preserving the form-invariance of the action, we include self-dual pairs of Class I in order to
extend slightly the scope of the duality discussion.

Remark 2.2: The space transformation R1 of (25) is a simple scaling of the radial variable as C1 > 0.
The scaling is valid for any chosen positive value of C1. Hence it can be reduced, as desired, to the identity
transformation r = ρ by letting C1 = 1. Those dual pairs linked by scaling may be regarded as trivial.

Remark 2.3: The scale transformation with C1 > 0 induces the time scaling
◦
T1 whereas the time has

its own scaling behavior. The change in time (26) integrates to t = C1µs + ν where ν is a constant of
integration. The resulting time equation may be understood as consisting of a time translation t = t′ + ν, a
scale change due to the space scaling t′ = C1s′, and an intrinsic time scaling s′ = µs. The time translation,

under which the energy has been counted as conserved, is implicit in
◦
T1. The scale factor µ of time scaling,

independent of space scaling, can take any positive value. If C1 = 1 and µ = 1, then
◦
T1 becomes the

identity transformation of time,
◦
t=
◦
s.

Remark 2.4: The scale change in mass mb = µma is only caused by the intrinsic time scaling t = µs. If
µ = 1, then the mass of the system is conserved. Conversely, if ma = mb is preferred, the time scaling with
µ = 1 must be chosen. The time scaling in classical mechanics has no particular significance. In fact, it
adds nothing significant to the duality study. Therefore, in addition to the form-invariant requirements (i) -
(iii), we demand (iv) the mass invariance ma = mb = m by choosing µ = 1. In this setting the time scaling
occurs only in association with the space-scaling. In accordance with the condition (iv), we shall deal with
systems of an invariant mass m for the rest of the present paper.

2 We use the subscript 0 for trivial transformations representing an identity.
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Remark 2.5: If C1 = 1 and µ = 1, then operations, E1, M1, and L0, become identities of respective
quantities. Thus ∆1 for C1 = 1 and µ = 1 is the set of identity operations, which we denote ∆0. The set of
operations ∆1 for C1 > 0 is trivial in the sense that it is reducible to the set of identity operations ∆0.

Remark 2.6: If Class I is based only on the scale transformation, it may not be worth pursuing. As
will be discussed in the proceeding sections, there are some examples that do not belong to the list of
traditional dual pairs (Class II). In an effort to accommodate those exceptional pairs within the present
scheme for the duality discussion, we look into the details hidden behind the space identity transformation
r = ρ. The radial variable as a solution of the orbit equations, such as the Binet equation, depends on
an angular variable and is characterized by a coupling parameter. In application to orbits, the identity
transformation r = ρ means r(θ; λa) = ρ(θ̃; λb), which occurs when θ → θ̃. The angular transformation
θ̃ = θ + θ0 where −2π < θ0 < 2π causes a rotation of a given orbit ρ(θ̃; λb) = r(θ; λa) = r(θ̃ − θ0; λa)

about the center of force by θ0. For instance, the cardioid orbit r = r0 cos2(θ/2) in a potential with power
a = −3 maps into ρ = r0 sin2(θ̃/2) by a rotation θ̃ = θ + π. This example belongs to the self-dual pair
(−3,−3) via η = 1. In this regard, we argue that the identity transformation includes rotations about the
center of forces. Of course, the rotation with θ0 = 0 is the bona fide identity transformation.

Remark 2.7: Suppose two circular orbits pass through the center of attraction. It is known that the
attraction is an inverse fifth-power force. If the radii of the two circles are the same, then the inverse
fifth-power force is self-dual under a rotation. If the radii of the two circles are different, the two orbiting
objects must possess different masses. A map between two circles with different radius, passing through
the center of the same attraction, is precluded from possible links for the self-dual pair (−4,−4) by the
mass invariance requirement (iv).

Remark 2.8: If C1 < 0 in (25), either r or ρ must be negative contrary to our initial assumption.
However, when we consider the mapping of orbits, as we do in Remark 2.6, we recognize that there is a
situation where the angular change θ → θ̃ induces ρ(θ̃; λb) = −r(θ; λa) = r(θ;−λa). For instance, consider
an orbit given by a conic section r = p/(1 + e cos θ) where p > 0 and −1/e < cos θ ≤ 1. If e > 1, then it
is possible to find θ̃ such that −1 ≤ cos θ̃ < −1/e by θ → θ̃. Consequently the image of the given orbit
is ρ(θ̃; p) = r(θ̃; p) = −r(θ; p) < 0. Certainly the result is unacceptable. The latus rectum p is inversely
proportional to λa. Hence in association with the sign change in coupling λa → λb = −λa, we are able to
obtain a passable orbit ρ(θ̃,−p) = r(θ̃;−p) = −r(θ;−p) > 0. The orbit mapping of this type cannot be
achieved by a rotation. To include the situation like this in the space transformation, we formally introduce
the inversion,

Ri : r → −ρ, (30)

and treat it as if the case of C1 = −1. Then we interpret the negative sign of the radial variable as a result
of a certain change in the angular variable θ involved in the orbital equation by associating it with a sign
change in coupling so that both r and ρ remain positive. If µ = 1, the inversion causes no change in time,
mass, energy, and angular momentum, but entails, as is apparent from (27), a change in coupling,

λa → λb = (−1)aλa. (31)

The inversion set ∆1 with C1 = −1 and µ = 1, denoted by ∆i, is partially qualified as a duality
transformation. The reason why ∆i is ”partially” qualified is that it is admissible only when a is an
integer. Notice that (−1)a appearing in (31) is a complex number unless a is an integer. As λa and λb are
both assumed to be real numbers, a must be integral. Having said so, in the context of the inversion, we
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need a further restriction on a. The sign change in coupling is induced by the inversion only when a is an
odd number. Since ∆i is not generally reducible to the identity set ∆0, it is non-trivial.

2.3.2. Class II

Class II is the set of proper (traditional) dual pairs. Equation (20) of the second combination can be
expressed as

C2 : η = 2/(a + 2) with b = −2a/(a + 2) , (a 6= −2). (32)

which implies that a pair (a, b) = (a,−2a/(a + 2)) is linked by ηa when a 6= −2. The above operation C2

may as well be given by

C′2 : η = (b + 2)/2 with a = −2b/(b + 2) , (b 6= −2), (33)

which means a pair (a, b) = (−2b/(b + 2), b) linked via η = (b + 2)/2. Another expression for C2 is

C′′2 : η = (b + 2)/2, with (a + 2)(b + 2) = 4 , (a 6= −2, b 6= −2), (34)

which is a version of what Needham [16] calls the Kasner-Arnol’d theorem for dual forces. If a 6= 0 and
b 6= 0,

η = 2/(a + 2) = (b + 2)/2 = −b/a , (a 6= −2, b 6= −2), (35)

from which follows that to every (a, b) via ηa there corresponds (b, a) via η−1
a if a 6= 0,−2. If |a| � 1,

then b ≈ −a and (a, b) ≈ (a,−a). Hence (0, 0) = lima→0(a,−a) via η+, which overlaps with (0, 0) =

lima→0(a, a) of Class I in the limit but differs in approach. In the above ηa stand for η with a fixed a.
In this case, the transformation functions of (12) can be written as f (ρ) = Caρηa and g(ρ) =

µC2
a η2

a ρ2ηa−2 where Ca = Cηa . Here we choose µ = 1 by the reason stated in Remark 2.4. The change of
radial variable (6) and the change of time derivative (7) become, respectively,

Ra : r = Caρηa , (36)

and
◦
Ta:

◦
t= C2

a η2
a ρ2ηa−2 ◦s . (37)

Equation (21) of the second combination, associated with {Ra,
◦
Ta}, yields the coupling-energy exchange

operation,
Ea : λb = −C2

a η2
a Ea , Eb = −Ca+2

a η2
a λa , (a ≷ −2). (38)

The time scaling has been chosen so as to preserve the mass invariance (11),

M0 : mb = ma = m, (39)

and the scale change in the angular momentum follows from (13) with ηa,

La : Lb = ηaLa. (40)

Now we see that each of the sets ∆a = {Ca,Ra,
◦
Ta,Ea,M0,La} preserves the form-invariance of the action

(4) with a power potential. The form-invariance warrants that X(a, b)∆a = ∆b. Hence system B is dual
to system A with respect to ∆a. Let ∆± = {∆a; a ≷ −2}. The set ∆+ links a > −2 and b > −2 of (a, b),
whereas ∆− relates a < −2 to b < −2. No ∆a links a ≷ −2 to b ≶ −2. Hence there is no pair (a, b)
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consisting of a ≷ −2 and b ≶ −2.

Remark 2.9: Class II consists of proper dual pairs (a, b) linked by ∆±, which have been widely discussed
in the literature [7,12,16,17,30,31]. Here a and b are distinct except for two self-dual pairs, (0, 0) via η+ and
(−4,−4) via η−.

Remark 2.10: Note that the time transformation (37) is not integrable unless the time-dependence of
the space variable (i.e., the related orbit) is specified.

Remark 2.11: The scale factor C1 appeared in Case I was dimensionless. A space transformation of (12)
for a given value of ηa contains a constant Cηa which has a dimension of ra/(a+2). Let Cηa = Cada where Ca

and da are a dimensionless magnitude and the dimensional unit of Cηa , respectively. Use of an appropriate
scale transformation which is admissible as seen in Case I enables Ca to reduce to unity. More over, the
dimensional unit may be suppressed to da = 1. Therefore, if desirable, the space transformation (36) may
simply be written as r = ρηa without altering physical contents.

Remark 2.12: Let (a, b) be a dual pair satisfying the relation (a + 2)(b + 2) = 4. Then the left element
(a, ) of (a, a) maps via (a, b) into (b, ), and the right element ( , a) into ( , b). Hence the self-dual pair (a, a)
can be taken by (a, b) to the self-dual pair (b, b). Schematically,

(a, a)
(a,b)−→ (b, a)

(a,b)−→ (b, b).

We call ((a, a), (b, b)) a grand dual pair.

2.4. Graphic presentation of dual pairs

A dual pair (a, b) is presented as a point in a two-dimensional a− b plane as shown in Fig.1. All
self-dual pairs (a, a) of Class I are on a dashed straight line a = b denoted by η1. Every dual pair (a, b) of
Class II is shown as a point on two branches η± of a hyperbola described by the equation (a + 2)(b + 2) = 4
of (34). The graph for Class II is similar to the one given by Arnol’d for dual forces [7].

Among the dual pairs of Class I, there are pairs (a, a) linked by scale transformations (inclusive of
rotations), which cover all real a, and those (a, a) related by the inversion, which are defined only when a
is an odd number. In this regard, every pair (a, a), occupying a single point on η1, plays multiple roles.
While the pairs linked by scale transformations admissible for all real values of a form a continuous line
η1 indicated by a dashed line, those pairs linked by the inversion appear as discrete points on η1 and are
indicated by circles.

The hyperbola representing all pairs of Class II has its center at (−2,−2), transverse axis along b = a,
and asymptotes on the lines a = −2 and b = −2. The bullets indicate all pairs (a, b) via η± with integral
a’s; namely, (−1, 2) via η = 2, (0, 0) via η = 1, (−3,−6) via η = −2, and (−4,−4) via η = −1. There are
no integer pairs other than those listed above in Class II. The square represents the dual pair (−1/2, 2/3)
to be discussed in Section III D. On the branch of η+, a dual pair (a, b) via η+ and its inverse pair (b, a) via
η−1
+ are symmetrically located about the transverse axis η1. Since both (a, b) and (b, a) signify that system

A and system B are dual to each other, the curves η± have redundancy in describing the A− B duality.
An example is the Newton-Hooke duality for which two equivalent pairs (−1, 2) via η = 2 and (2,−1) via
η = 1/2 appear in symmetrical positions on η+.

We notice that there are two special points on the graph. They are the intersections of η1 and η±;
namely, (0, 0) with η = 1, and (−4,−4) with η = ±1. The former is an overlapping point of η1 and η+
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Figure 1. The solid line shows the allowed combinations of dual pairs (a, b) of power laws. The dashed
line indicates the symmetry axis (a, b)↔ (b, a). The bullets show the only dual pairs where both a and b
are integers representing the Newton-Hook duality. The square represents the duality pair discussed in
Section 4.4.
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where η = 1. The latter is like an overhead crossing of η1 and η− where the pair belonging to η1 is linked
by a transformation with η = 1 while the one belonging to η− is linked with η = −1.

In approaching the crossing of η1 and η+, the pair (0, 0) at η1 = 1 has a limiting behavior as
(0, 0) = limε→0(±ε,±ε), while (0, 0) at η+ = 1 behaves like (0, 0) = limε→0(±ε,∓ε) via η = 1. As has
been mentioned earlier, (a, b) = (a− 1, b− 1)F. However, the counterpart of (0, 0) is not exactly equal
to (−1,−1)F. The potential corresponding to the inverse force F ∼ 1/r is V ∼ ln r. Thus, it is more
appropriate to put symbolically (−1,−1)F = (ln, ln). Yet, (0, 0) 6= (ln, ln). Consider Va(r) = λarε. For ε

small, Va(r) ≈ λa(1 + ε ln r), which gives rise to the force F ≈ κ/r where κ = λaε. As long as κ can be
treated as finite, (ε,−ε) ≈ (−1,−1)F. Chandrasekhar [12] excluded (−1,−1)F from the list of dual pairs
on physical grounds. We exclude (ln, ln) because the logarithmic potential, being not a power potential,
lies outside our interest.

By analyzing Corollaries and Propositions in the Principia, Chandrasekhar [12] pointed out that
Newton had found not only the Newton-Hooke dual pair but also the self-dual pairs (2, 2), (−1,−1) and
(−4,−4). He also mentioned that (−3,−6) was not included in the Prinpicia. For a integral, there are only
two grand dual pairs ((−1,−1), (2, 2)) and ((−3,−3), (−6,−6)). In Fig.1, (2, 2) and (−1,−1) are marked
with triangles on η1, while (−3,−3) and (−6,−6) are marked with diamonds on η1.

2.5. Classical orbits

Here we discuss the orbital behaviors for the dual pairs in relation with energy and coupling.

First, we consider self-dual pairs (a, a) of Class I. If an effective shifted potential is defined by
Ue f f (r) = U(r) + L2/(2mr2), the space transformation r = C1ρ induces

Ue f f
a (r) = λara +

L2
a

2mr2 − Ea, ⇒ Ue f f
b (ρ) = Ca+2

1 λaρa +
L2

a
2mρ2 − C2

1 Ea, (41)

resulting in self-dual pairs (a, a) for any real a. The space transformation includes scale transformations
r = C1ρ with C1 > 0, identity transformation r = ρ (inclusive of rotations), and inversion formally defined
by r = −ρ.

Statement 2.1: System A and system B linked by a scale transformation are physically identical but
described in different scale. Typically an orbit of system A maps to an orbit of system B similar in shape
but different in scale.

Statement 2.2: In the limit C1 → 1, the two orbits become congruent (identical) to each other.
Any self-dual pair (a, a) due to a scale transformation is reducible to a trivial pair (a, a) linked by
the identity transformation. However, in dealing with the orbital behaviors, we have to look into
the angular dependence of radial variables by allowing the identity transformation r = ρ to contain
r(θ) = ρ(θ̃) = r(θ̃ − θ0) with θ → θ̃ = θ + θ0, which represents a rotation of a given orbit about the center
of force by θ0.

The inversion r → −ρ entails λb = (−1)aλa, as is apparent from (41). If a is an even number, the sign
change in coupling does not occur. Hence the inversion for even a cannot properly be defined and must
be precluded. Only when a is odd, the inversion is meaningful. However, we have to notice that orbits
in a potential with a > 0 are all bounded if λa > 0 and all unbounded if λa < 0. Under the inversion,
the sign of λa changes, so that a bound orbit with Ea > 0 is supposed to go to an unbounded orbit with

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   



14 of 51

Eb = Ea > 0. It is uncertain whether there are such examples to which the inversion works.

Statement 2.3: If a is a negative odd number, under the inversion, an orbit in an attractive (repulsive)
potential maps to an orbit in a repulsive (attractive) potential, keeping the energy unchanged.

In the Principia, Newton proved that if an orbit passing through the center of attraction is a circle
then the force is inversely proportional to the fifth-power of the distance from the center (Corollary I to
Proposition VII). From Corollary I of Proposition VII and other corollaries in the Principia Chandrasekhar
[12] shows in essence that if an object moves on a circular orbit under centripetal attraction emanating
from two different points on the circumference of the circle then the forces from the two points exerted on
the orbiting object are of the same inverse fifth-power law. Then he suggests, in this account, that the
inverse fifth power law of attraction is self-dual for motion in a circle. In contrast to Chandrasekhar’s
view on the self-dual pair (−4,−4), we maintain that (−4,−4) can be understood as a member of Class I
and Class II. The circular orbit in an attractive potential Va(r) = λar−4, which occurs when Ea = 0, can
be described by the equation r = 2Ra cos θ where Ra =

√
−λam/(2L2

a) is the radius of the circle and
−π/2 < θ < π/2 is the range of θ. The scale transformation r = C1ρ with C1 > 0 converts the orbit
equation into ρ = 2Rb cos θ where Rb = Ra/C1. Apparently it is consistent with the requirements Lb = La

and λb = C−2
1 λa of (41). Thus the radius of the circle is rescaled while the center of force is fixed at

the origin and the range of θ is unaltered. The inverse fifth-power law of attraction may be viewed as
self-dual under a scale change for motion in a circle. If the identity map r = ρ may include a rotation
r(θ) → ρ(θ̃) = r(θ̃ − θ0), then ρ(θ̃) = 2R cos(θ̃ − θ0) with the angular range −π/2 + θ0 < θ̃ < π/2 + θ0.
In particular, if θ0 = π, then ρ(θ̃) = −2R cos(θ̃) with π/2 < θ̃ < 3π/2. The circular orbit maps into itself,
though rotated about the center of force. In this sense, the inverse fifth-power law of attraction is self-dual
under a rotation for motion in a circle. In much the same way, the inverse fifth-power force, whether
attractive or repulsive, may be considered as self-dual under a scale change and a rotation for motion in
any other orbits. Hence the self-dual pair (−4,−4) linked by the scale transformation (including rotations)
is a member of Class I. The same self-dual pair (−4,−4) has another feature as a member of Class II which
will be discussed in Remark 2.13.

Secondly, we consider dual pairs (a, b) of Class II.
All dual pairs (a, b) of Class II are subject to the proper dual transformation ∆I I . The members a and b

of each pair obey the Kasner-Arnol’d formula (a + 2)(b + 2) = 4, and are related via η = 2/(a + 2) (or
η = −b/a if a 6= 0). These dual pairs belong to branch η+ if a > −2, and branch η− if a < −2.

Now the space and time transformations r = Caρ2/(a+2) and
◦
t= C2

ηη2ρ−2a/(a+2) ◦s induce the
energy-coupling exchange,

λb = −C2
ηη2Ea , Eb = −Ca+2

η η2λa, (42)

where Cη > 0 and a 6= −2. Hence the effective shifted potential transforms as

Ue f f
a (r) = λara +

L2
a

2mr2 − Ea, ⇒ Ue f f
b (ρ) = −C2

±η2
±Eaρb +

η2
±L2

a
2mρ2 + Ca+2

± η2
±λa (43)

where a 6= −2 and b = −2a/(a + 2).
The two equations in (42) are not simply to exchange the roles of energy and coupling. They also

provide a useful relation between Ea and Eb. In general Ea depends on λa. So we let Ea = Ea(λa), and
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invert it as λa = E−1
a (−λb/η2C2

η) with the help of the first equation of (42). Substitution of this into the
second equation of (42) yields

Eb = −η2Ca+2
η E−1

a

(
− λb

η2C2
η

)
. (44)

which shows that Eb depends on Ea through the coupling λa.

Statement 2.4: For a dual pair (a, b) of Class II, if the coupling dependence of Ea is explicitly known,
then Eb can be determined by (44), and vice versa.

From (42) there follow four possible mapping patters,

(0) (Ea = 0, λa R 0) =⇒ (Eb Q 0, λb = 0)

(1) (Ea > 0, λa < 0) =⇒ (Eb > 0, λb < 0)

(2) (Ea < 0, λa < 0) =⇒ (Eb > 0, λb > 0)

(3) (Ea > 0, λa > 0) =⇒ (Eb < 0, λb < 0)

(4) (Ea < 0, λa > 0) =⇒ (Eb < 0, λb > 0)

In the above, pattern (0) implies that any zero energy orbit of system A goes to a rectilinear orbit of system
B with no potential. Patterns (1) - (4) imply that any positive energy orbit of system A, regardless of the
sign of λa, maps to an orbit of system B with a coupling λb < 0, and any negative energy orbit of system
A, independent of λa, maps to an orbit of system B with a coupling λb > 0.

The dual pairs (a, b) of Class II can be grouped into those on η+ and those on η−. Furthermore, the
pairs of the first group can be divided into two parts for η+ > 1 and 0 < η+ < 1. If we let η>

+ denote the
part for η+ > 1, then η>

+ = {−b/a| − 2 < a < 0, b > 0}. Similarly, let η<
+ denote the part for 0 < η+ < 1.

Then η<
+ = {−b/a| a > 0,−2 < b < 0} = {−a/b| − 2 < a < 0, b > 0}. Thus η<

+ = [η>
+ ]
−1. It is

sufficient to consider the set η>
+ . The same can be said for the second group on η−. We take up only the set

η>
− = {−b/a| − 4 < a < −2, b < −4}.

For the case of η>
+ , λa > 0 (< 0) implies a repulsion (attraction), while λb > 0 (< 0) means an

attraction (repulsion). There are no negative energy orbits in a repulsive potential with λa > 0 and in
an attractive potential with λb > 0. For η>

− , both λa > 0 and λb > 0 are repulsive, and both λa < 0 and
λb < 0 are attractive. In any repulsive potential with λa > 0 or λb > 0, no negative energy orbits are
present. Pattern (4) is not physically meaningful. Taking these features of potentials into account, we can
restate the implication of the relations in (42) as follows.

Statement 2.5: Under the proper duality transformation ∆I I , if −2 < a < 0 (i.e., b > 0), then any
positive energy orbit in the potential of system A, whether attractive or repulsive, maps to an orbit in a
repulsive potential of system B, and any negative energy (bound) orbit maps to a positive energy (bound)
orbit in an attractive potential. If a > 0 (i.e., −2 < b < 0), then the above situations are reversed. If
−4 < a < −2 (i.e., b < −4), then any positive orbit in an attractive potential maps to a positive orbit under
attraction, any negative bound orbit in an attractive potential maps to a positive orbit under repulsion,
and any positive orbit under repulsion maps to a negative bound orbit in an attractive potential. Even for
the case where a < −4 (i.e., −4 < b < −2), the mapping patterns are the same as those for −4 < a < −2.
In all cases, zero energy orbits map to force-free rectilinear orbits.
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This is a modified version of Needham’s statement made in supplementing the Kasner-Arnol’d
theorem [16].

Remark 2.13: The pair (−4,−4) has another feature as a point on η−, that is, as a member of Class II.
From (42), it is obvious that λb = 0 for the circular zero energy orbit. Hence the duality transformation ∆I I
maps the orbit into a force-free rectilinear orbit. According to Statement 2.4, any positive energy orbit must
map to an orbit in an attractive potential, and any negative energy orbit maps to an orbit in a repulsive
potential. Therefore, the self-dual pair (−4,−4) Newton established is not a member of Class II. It must be
(−4,−4) on η1, belonging to Class I.

In what follows, we make remarks on the Newton-Hooke pairs and related self-dual pairs.

Remark 2.14: Statement 2.4 applies to the pair (−1, 2). The mapping patterns (0) - (3) works in going
from the Newton system with a = −1 to the Hooke system with b = 2. Namely, (0) the zero energy orbit
of the attractive Newton system maps to a rectilinear orbit; (1) a positive unbound orbit of the attractive
Newton system maps to a positive unbound orbit of the repulsive Hooke system; (2) a negative energy
bound orbit of the attractive Newton system maps to a positive energy bound orbit of the attractive Hooke
system; and (3) a positive unbound orbit of the repulsive Newton system maps to a negative unbound
orbit of the repulsive Hooke system. Since there are no negative orbits for the repulsive Newton system
and the attractive Hooke system, pattern (4) is irrelevant.

Remark 2.15: In view of the orbit structure, we study in more detail the mapping process from the
Newton system to the Hooke system. As is well-known, for the motion in the inverse-square force, the
orbit equation in polar coordinates has the form,

r =
p

1 + e cos θ
, (45)

where p is the semi-latus rectum, e the eccentricity. The orbit is of conic sections and the origin of the
coordinates is at the focus closest to the pericenter of the orbit. The angle θ is between the position of the
orbiting object and the direction to the pericenter located at r = rmin and θ = 0. The semi-latus rectum, the
semi-major axis, and the eccentricity of the orbit are determined by p = −L2

a/(mλa), ā = −λa/(m|Ea|),
and e =

√
1 + (2L2

aEa/mλ2
a), respectively. If the inverse square force is attractive, i.e., if λa < 0, then ā > 0,

p > 0, and 1 > cos θ > −1/e. If repulsive, i.e., if λa > 0, then ā < 0, p < 0 and −1 < cos θ < −1/e.

(i) For the bound motion, Ea < 0, e < 1 and p = ā(1− e2) > 0. The equation (45) describes an elliptic
orbit with semi-major axis ā and eccentricity e. Apparently, rmin = ā(1− e). For the duality mapping, a
more suited choice is the orbit equation expressed in terms of the eccentric anomaly ψ,

r = ā(1− e cos ψ), (46)

which may be put in the form,

r = ā
{
(1 + e) cos2(ψ/2) + (1− e) sin2(ψ/2)

}
. (47)
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Here ψ is related to the polar angle θ by tan(θ/2) = [(1 + e)/(1− e)]1/2 tan(ψ/2). Since r = C2ρ2, use of
(47) leads to

ρ =
[
α2 cos2(ψ/2) + β2 sin2(ψ/2)

]1/2
, (48)

where
α =

√
ā(1 + e)/C2 , β =

√
ā(1− e)/C2 . (49)

Let ρ =
√

u2 + v2 in cartesian coordinates, and let

u = α cos(ψ/2), v = β sin(ψ/2). (50)

Then it is clear that the trajectory drawn by ρ is given as an ellipse,

u2

α2 +
v2

β2 = 1, (51)

with semi-major axis α and semi-minor axis β, centered at the origin of the u− v plane. It is obvious
that ρmin =

√
ā(1− e)/C2 is the semi-minor axis of the ellipse on the u− v plane. The above calculation

shows that the elliptic Kepler orbit with semi-major axis ā and eccentricity e maps to an ellipse with
semi-major axis α =

√
ā(1 + e)/C2 and eccentricity ε =

√
2e/(1 + e) . The semi-major and semi-minor

axes of the resultant ellipse depend on the scaling factor C2. With different values of C2, a Kepler ellipse
of eccentricity e is mapped to ellipses of different sizes having a common eccentricity ε. In general, the
resultant ellipse having eccentricity ε is not similar to the Kepler orbit with eccentricity e. If e = 0, then
ε = 0. Namely, a circular orbit of radius ā under an inverse-square force maps to a circle with radius
α =
√

ā/C2 . With a particular scale C2 = 1/
√

ā, the mapped circle is congruent to the original orbit. In
the limit e→ 1, the Kepler orbit becomes a parabola with Ea = 0, which maps to a force-free rectilinear
orbit described by (u, v) = (ρ, 0).

(ii) If Ea > 0, then e > 1 and ā > 0 for λa < 0. The semi-latus rectum in (45) must be modified as
p = ā(e2 − 1) > 0. Again cos θ < −1/e. The orbit is a branch of a hyperbola with semi-major axis ā and
eccentricity e. The center of attraction is at the interior focus of the branch, so that rmin = ā(e− 1). In much
the same fashion that the eccentric anomaly is used in (46), we introduce a parameter ψ related to the angle
θ by tan(θ/2) = [(e + 1)/(e− 1)]1/2 tanh(ψ/2). Here cosh ψ > 1/e. Now the orbit equation in parametric
representation is

r = ā(e cosh ψ− 1), (52)

which may further be written as

r = ā
{
(e− 1) cosh2(ψ/2) + (e + 1) sinh2(ψ/2)

}
, (53)

whose minimum occurs when ψ = 0. Correspondingly, ρ =
√

r/C2 is expressed as

ρ =
[
α2 cosh2(ψ/2) + β2 sinh2(ψ/2)

]1/2
, (54)

where
α =

√
ā(e− 1)/C2 , β =

√
ā(e + 1)/C2 . (55)
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Hence ρmin =
√

ā(e− 1)/C2 . Letting

u = α cosh(ψ/2), v = β sinh(ψ/2), (56)

we obtain ρ =
√

u2 + v2 and the equation for a hyperbola having two branches,

u2

α2 −
v2

β2 = 1, (57)

which has the semi-major axis α =
√

ā(e− 1)/C2 and the eccentricity ε =
√

2e/(e− 1) . Thus the positive
energy orbit in the attractive inverse potential, given by a branch of the hyperbola, maps to a positive
energy orbit given by either branch of a hyperbola whose center coincides with the center of the repulsive
Hooke force.

(iii) For a repulsive potential with λa > 0 such as the repulsive Coulomb potential, the orbit equation
(45) describing a hyperbola holds true insofar as Ea > 0, i.e., e > 1. Since p = −L2

a/(mλa) < 0 for λa > 0,
the semi-lotus rectum must be replaced by p̃ = −p. At the same time, the angular variable has to be
changed from θ to θ̃ where cos θ < −1/e and cos θ̃ > −1/e. The conversion of the hyperbolic equation
(45) for the attractive potential to the hyperbolic equation for the repulsive potential,

r̃ =
p̃

1 + e cos θ̃
, (58)

is indeed the inversion process mentioned in Remark 2.8. Since (45) and (58) have the same form, we can
follow the procedure given in (ii) to show that under r̃ =

√
ρ/C2 the positive energy orbit in the repulsive

inverse potential, given by a branch of the hyperbola, maps to a negative energy orbit given by either
branch of a hyperbola whose center coincides with the center of the repulsive Hooke force.

Remark 2.16: In connection with Remark 2.14, we look at the self-dual pairs (−1,−1) and (2, 2) which
do not belong to Class II. Apparently the two pairs are closely related to each other via the Newton-Hooke
pair (−1, 2), so as to form a grand dual pair ((−1,−1), (2, 2)). As they are both on η1, each of them is
self-dual under scale changes and rotations. In addition, (−1,−1) is self-dual under the inversion. From
(iii) of Remark 2.15, it is clear that due to the inversion the orbit equation takes the form (45). There the
angular range for θ̃ is θe < θ̃ < 2π − θe where θe = cos−1(−1/e). Hence the resultant orbit has the center
of orbit at the exterior focus. This means that a hyperbolic orbit in attraction with the center of force at
the interior focus maps to the conjugate hyperbola in repulsion with the center of force at the exterior
focus. In contrast, any rotation maps a hyperbolic orbit under attraction (repulsion) into a hyperbolic
orbit under attraction (repulsion). In summary, the inversion maps a hyperbolic orbit under attraction
into a hyperbolic orbit under repulsion, whereas any rotation takes a hyperbolic orbit under attraction
(repulsion) to a hyperbolic orbit under attraction (repulsion). According to Chandrasekhar’s book [12],
what Newton established for (−1,−1) and (2, 2) are that the attractive inverse square force law is dual
to the repulsive inverse square force law, and that the repulsive linear force law is dual to itself. Thus
we are led to a view that Newton’s (−1,−1) is due to the inversion and his (2, 2) is due to a rotation.
Finally we wish to point out that by the mapping patterns (1) and (3) of (−1, 2) a hyperbolic orbit of the
attractive Newton system, whether attractive or repulsive, maps to a hyperbolic orbit of the repulsive
Hooke system. In other words, the pair of forces (attraction, repulsion) for (−1,−1) goes to the pair of
force (repulsion, repulsion) for (2, 2) with the help of (−1, 2). This is compatible with the assertion that
Newton’s two self-dual pairs form the grand dual pair ((−1,−1), (2, 2)) via (−1, 2).
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2.6. Classical energy formulas

We have used the energy-coupling exchange relations,

E : Eb = −η2Ca+2λa, λb = −η2C2Ea, (59)

as essential parts of the power-duality operations. They demand primarily that the roles of energy and
coupling be exchanged. Using these relations, we can also derive energy formulas which enable us to
determine the energy value of one system from that of the other when two systems are power-dual to each
other.

In general Ea depends on λa, La and possibly other parameters. So let the energy function be
Ea = E(λa, La, wa) where wa represents those additional parameters. Then we pull λa out from the inside
of E as

λa = E−1(Ea, La, wa). (60)

Now we insert this coupling parameter λa into the first equation of (59). Substituting the second relation
Ea = −λb/(η2C2) and the angular momentum transformation La = Lb/η to the right-hand side of (60),
we can convert the first relation of (59) into an energy formula,

Eb(λb, Lb, wb) = −η2Ca+2E−1(−λb/(η2C2), Lb/η, wa(wb)). (61)

Thus, if Ea is known, then Eb can be determined without solving the equations of motion for system B. By
making an appropriate choice of C, the value of λb may be specified by the second relation of (59).

Alternatively, let us combine the two relations in (59) by eliminating the constant C to get another
energy formula,

Eb = −η2λa

(
− λb

η2Ea

)1/η

. (62)

This formula can be rearranged to the symmetric form,[
4(a + 2)−2|λa|−2/(a+2)|Ea|

]a
=
[
4(b + 2)−2|λb|−2/(b+2)|Eb|

]b
. (63)

Note that the signs of the energies and coupling constants are related via (59). See also the four patterns
discussed in Statement 2.4 above.

When the parameters w contained in Ea are invariant, that is, wa = wb, under the duality operations,
the last equation suggests that there is some positive function F (L, w), independent of λa and λb, such
that

|Ea(λa, La, w)| = (a + 2)2

4
|λa|2/(a+2)

{
F
(√

2/(a + 2) La, w
)}1/a

, (64)

|Eb(λb, Lb, w)| = (b + 2)2

4
|λb|2/(b+2)

{
F
(√

2/(b + 2) Lb, w
)}1/b

, (65)

where L =
√
(a + 2)/2 La =

√
(b + 2)/2 Lb. If such a function is specified for Ea by (64), then Eb can be

determined by (65) with the sign to be obtained via (59). Notice that (65) is useful as an energy formula to
find Eb only when Ea has the form of (64).

Remark 2.17 As an example, let us consider the Newton-Hooke dual pair for which (a, b) = (−1, 2),
η = −b/a = 2 and r = Cρ2. Let system A be consisting of a particle of mass m moving around a large
point mass M� m under the influence of the gravitational force with λa = −GmM < 0. Let system B be
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an isotropic harmonic oscillator with λb = 1
2 mω2 > 0. Then, as the exchange relations of (59) demand,

Ea < 0 and Eb > 0. Hence the orbits of the two systems are bounded. This means that the Newton-Hooke
duality occurs only when both systems are in bound states.

Suppose the total energy of the particle is given in the form,

Ea =
L2

a

2mr2
min

+
λa

rmin
= E(λa, La, rmin), (66)

where rmin is the minimum value of the radial variable r and λa = −GmM. Then we obtain the inverse
function,

λa = E−1
(
−λb/4C2, La, rmin

)
= − L2

a
2mrmin

− λbrmin
4C2 . (67)

With this result, the formula (60) immediately leads to the energy of the Hooke system in the form,

Eb =
L2

b
2mρ2

min
+ λbρ2

min (68)

where Lb = 2La and ρmin =
√

rmin/C . Although λb may be interpreted as Hooke’s constant, its detailed
form 1

2 mω2 cannot be determined by the energy formula. Noticing that Ea is a constant, we let κ =√
−2mEa. If we choose C = mω/(2κ), then we have λb = 1

2 mω2 from the second relation of (59). With the
same choice of C, we have mωρ2

min = 2κrmin.
Suppose the energy of system A is alternatively given in the form,

Ea = −
2π2mλ2

a
(J + 2πLa)2 , (69)

where J is the radial action variable, J =
∮

dr pr, or more explicitly,

J = 2
∫ rmax

rmin

dr

√
2m
(

E− λa

r
− L2

2mr2

)
, (70)

which is a constant of motion. Let Ea of (69) be put into the form given via (64) then we may identify

F
(√

2/(a + 2) La, J
)
=
[

J/(2π) + (
√

2(La)/
√

2
]2

/(2m). (71)

From this follows {
F
(√

2/(b + 2) Lb, J
)}1/2

= [J/(2π) + (Lb)/2] /
√

2m (72)

Since the first relation of (59) indicates that Eb > 0 for λa < 0, the relation (65) together with λb = 1
2 mω2

results in
Eb = (ω/2π)(2J + 2πLb), (73)

which is an energy expression of the Hooke system obtainable from the Hamilton-Jacobi equation.
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2.7. Generalization to multi-term power laws

In the following, on a parallel with Johnson’s treatment [31], we examine how the duality can be
realized with a sum of power potentials (i.e., a multi-term potential) in the present framework.

Let the potential Va be a sum of N distinct power potentials as

Va(r) =
N

∑
i=1

λai r
ai , ai > −2 , (ai 6= aj for i 6= j) (74)

where λai is the coupling constant of the i-th sub-potential in Va. Then R and
◦
T take the shifted potential

in (16) to

gUa(r) =
N

∑
i=1

λai η
2ρ2η−2+aiη − η2ρ2η−2Ea. (75)

Let us pick one of the terms in the sum in (75), say, the i = k term, and make its exponent zero by letting

η = ηk =
2

ak + 2
, ak > −2 , (76)

where η is k-dependent. If the exponent of the i = k′ term, instead of the k 6= k′ term, is made vanishing,
then η is to be given in terms of ak′ where ak′ 6= ak. Since k = 1, 2, . . . , N, there are N possible choices of
η. Thus it is appropriate to write η in (76) with the subscript k as ηk. Apparently, ηk is a possible one of

{η1, η2, . . . , ηN}. Let the operations R and
◦
T for η = ηk be denoted by Rk and

◦
Tk, respectively.

For the remaining potential terms (i 6= k) and the energy term in (75), we rename the exponents of ρ

as

bk = −
2ak

ak + 2
, bi =

2(ai − ak)

ak + 2
, i 6= k , (77)

which can easily be inverted to express ak and ai in terms of bk and bi in the same form. These relations are
equivalent to the conditions on the exponents,

Ck : (ak + 2)(bk + 2) = 4, (ai − ak)(bi − bk) = aibi. (78)

From (77) there also follows bi > −2 for all i if ai > −2 for all i. The first relation of (78) leads to alternative
but equivalent expressions of η in (76),

ηk = −
bk
ak

=
bk + 2

2
=

2
ak + 2

. (79)

To Rk and
◦
Tk, we have to add two more operations,

Lk : Lbk
= ηkLak , (80)

and
Wk : λbk

= −η2
k Ea, Ebk

= −η2
k λak , and λbi

= η2
k λai , i 6= k. (81)

Then, we express the shifted potential of (75) in the new notation as

gUa(r) = Vbk
(ρ)− Ebk

= Ubk
(ρ) (82)
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where

Vbk
(ρ) =

N

∑
i=1

λbi
ρbi . (83)

The set of operations ∆k = {Rk,
◦
Tk,Ck,Lk,Wk} transforms the radial action of the A system into

Wρ(Ebk
) =

∫
Iϕ

dϕ
◦
s

{
m
2
◦
s
−2
(

dρ

dϕ

)2
−

L2
bk

2mρ2 −Ubk
(ρ)

}
. (84)

Thus we find the duality between the A-system and Bk-system with respect to ∆k. Again, this duality is
only one of the N dualities; there are N pairs of dual systems, (ak, bk) for k = 1, 2, ..., N.

3. Power-duality in the semiclassical action

The power-duality argument made for the classical action in Section 2 can easily be carried over to
the semiclassical action. In semiclassical theory the power-duality is a relationship between two quantum
systems which are not mutually interacting. In studying such a relationship, there are two distinct
approaches; one is to pay attention to a reciprocal relation between two systems, and the other to pursue
a deeper connection between the quantum states of two systems (see Remark 3.1). Our power-duality
argument is of the former approach, taking reciprocity as a heuristic guiding. Special care will have to be
exercised though, when dealing with the quantum structure of each system.

3.1. Symmetry of the semiclassical action

The action in semiclassical theory is of the form, W =
∫

dq p, which is Hamilton’s characteristic
function and essentially the same as that in (2). The semiclassical action for the radial motion reads

W =
∫

dr
√

2m
(

E−V(r)− h̄2L2/(2mr2)
)

. (85)

Here the classical angular momentum L is replaced by h̄L. Customarily the semiclassical angular
momentum (divided by h̄) of (85) is given by the Langer-modified form,

L = `+ (D− 2)/2, ` = 0, 1, 2, ... (86)

if it is defined in D dimensions. Let us write the semiclassical action for system A as

Wa =
∫

dr
√
−2m

[
h̄2L2

a/(2mr2) + Ua(r)
]

(87)

where Ua(r) = Va(r)− Ea. After the change of variable r = f (ρ), the action (87) of system A becomes

Wa =
∫

dρ

√
−2m

[
h̄2L2

ag/(2m f 2) + gUa( f )
]

, (88)

where f ′ = dr/dρ and g = f ′2. The following substitutions

R : f (ρ) = Cρη , (89)

L : La = Lb/η, (90)

gUa = Ub, (91)
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lead the action (88) to

Wb =
∫

dρ

√
−2m

[
h̄2L2

b/(2mρ2) + Ub(ρ)
]
, (92)

which is taken as the action for system B. Here we have assumed ma = mb = m (i.e., µ = 1). We shall also
assume that two mutually power-dual systems are by definition in the same dimensions (i.e., Da = Db = D).

Only when the potential of system A is a power potential, Ub(ρ) in (92) can be brought to the
form Vb(ρ) − Eb. The change of variable R : r = Cρη with the choice C2 : η = 2/(a + 2) gives
g(ρ) = η2C2ρ−aη . Hence, for Va( f ) = λaCaρaη , we have g(ρ)Va( f ) = η2Ca+2λa and gEa = η2C2Eaρb

where b = −aη = −2a/(a + 2). After performing the energy-coupling exchange,

E : λa = −Eb/(η2Ca+2), Ea = −λb/(η2C2), (93)

we obtain
g(λara − Ea) = λbρb − Eb. (94)

In effect, under the operation of g, the following transformations have taken place,

gVa(r)→ −Eb, gEa → −Vb(ρ), (95)

where Va = λara and Vb(ρ) = λbρb.
In this manner, transforming the action Wa of (87) to Wb of (92) by the duality operations, we have

Wa = Wb, that is, ∫
dr
√

2m(Ea − λara)− h̄2L2
a/r2 =

∫
dρ
√

2m(Eb − λbρb)− h̄2L2
b/ρ2 . (96)

It is also apparent that Wa = X(a, b)Wb with ξa = r and ξb = ρ. Thus we see that the semiclassical action
(85) is form-invariant under the set of duality operations, {R,L,C,E}.

Although we have presented in the above the power-duality features of the semiclassical action similar
to those in the classical case, we have not taken account of the possibility that the angular momentum L
is a discretely quantized entity given in terms of the angular quantum number ` = 0, 1, 2, ... by (86). It is
natural to expect that the operation L : Lb = ηLa of (90) implies the equality,

`b + (Db − 2)/2 = η`a + η(Da − 2)/2. (97)

In addition, if we demand that `a = 0 corresponds to `b = 0, then (97) can be separated into two equalities,

`b = η`a, Db = η(Da − 2) + 2. (98)

Either (97) or (98) suggests that the allowed values of `b differs from those of `a unless η = 1. This means
that the condition ` = 0, 1, 2, ... in (86) cannot be imposed on system A and system B at the same time.
Although the transformations in (97) and (98) are invertible, they cannot preserve the Langer-form (86) of
the angular momentum in the two systems. In other words, they are not reciprocal relations between the
two systems. Insofar as operation L implies the equalities (97), the semiclassical action with the Langer
modification is not form-invariant under the set of operations {R,L,C,E}. Then, we may have to draw a
conclusion that the power-duality valid in the classical action breaks down in the semiclassical action due
to the quantized angular momentum term.

In the above we have observed that the power-duality is incompatible with the angular quantization.
By the same token, the energy-coupling relations of E in (93) may have to be examined. In the semiclassical
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action, the energy E and the coupling λ may be treated as parameters. However, the implication of the
exchange relations in (93) becomes ambiguous after quantization. It is not clear whether Ea in (93) is one
of the energy eigenvalues of system A or it represents the energy spectrum of the system. As an aid of
clarification, we study one of the energy formulas resulting from combining the two relations in (93),

Eb = −η2λa

(
− λb

η2Ea

)1/η

, (99)

which has been given in Section 2 as a classical energy formula. To see if it will work in quantum mechanics,
let us employ, e.g., the Coulomb-Hooke duality, the quantum counterpart of the Newton-Hooke duality,
and test (99). We assume that Ea and Eb in (99) represent the spectra of system A and system B, respectively.
According to (99), the energy spectrum Eb of the hydrogen atom with the Coulomb coupling λb = −e2

is expected to follow from the spectrum Ea of the three-dimensional isotropic harmonic oscillator with
frequency ω =

√
2λa/m. For this pair of systems, (a, b) = (2,−1) and η = −b/a = 1/2. Given

Ea(nr, `a) = h̄ω(2nr + `a + 3/2) with nr = 0, 1, 2, ... and `a = 0, 1, 2, ..., the formula (99) immediately
yields Eb = −(me4/2h̄2)(nr + `a/2 + 3/4)−2. Here n = nr + `a/2 + 3/4 = 3/4, 5/4, 7/4, .... The result is
not the energy spectrum of the hydrogen atom that is commonly known. Evidently, a naive application
of the energy formula (99) fails at the level of angular quantum numbers. By contrast, if we consider
the states of a four-dimensional oscillator which possess `a = 0, 2, 4, ..., then n = nr + `b + 1 = 1, 2, 3, ...
via `b = `a/2, which matches the principal quantum number of the hydrogen atom. In other words,
the energy formula (99) suggests that the spectrum of the hydrogen atom can be composed of "half the
states" of the four dimensional isotropic harmonic oscillator.3 The relation between the oscillator in four
dimensions and the hydrogen atom in three dimensions is not reciprocal in (99). The alternative scheme is
not the Coulomb-Hooke duality that we pursue (see Remark 3.1). The Coulomb-Hooke duality in quantum
mechanics will be discussed again in Section 4.3.

In an effort to make the power duality meaningful in semiclassical theory, we shall take a view
that the power duality is basically a classical notion. Accordingly, for the duality discussions, all physical
objects such as L, E and λ, should be treated as classical entities, i.e., continuous parameters. Then we
consider quantization as a process separate from the duality operations. The duality is a classical feature
of the relation between two systems, whereas quantization is associated with the micro-structures of each
system. None of duality operations can dictate how the quantum structure of each system should be. The
equality of (93) which is compatible with reciprocity must not imply the non-reciprocal equality of (97).
It is necessary to dissociate duality operations from quantization. Technically, we deal only with those
continuous parameters for the duality discussions, and replace them as a post duality-argument activity
by appropriately quantized counterparts when needed for characterizing each quantum system. From this
view, the power duality of the semiclassical action has already been established at the equality (96) with
follow-up substitutions La = `a + (D− 2)/2, (`a = 0, 1, 2, ..) and Lb = `b + (D− 2)/2, (`b = 0, 1, 2, ...). It
is helpful to introduce the dot-equality .

= to signify the equality amended by substitutions of quantized
entities. The power-duality of the semiclassical action in the amended version may be exhibited by∫

dr
√

2m(Ea − λara)− h̄2(`a + (D− 2)/2)2/r2

.
=
∫

dρ

√
2m(Eb − λbρb)− h̄2(`b + (D− 2)/2)2/ρ2 . (100)

3 To be more precise, the set {`a = 0, 2, 4, ..., Da = 4} for the oscillator and the set {`b = 0, 1, 2, ..., Db = 3} for the H-atom are in
one-to-one correspondence.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   



25 of 51

3.2. The semiclassical energy formulas

In the preceding section, we have adopted the Coulomb-Hooke duality to test (99), and failed.
However, it should be recognized that if the energy spectrum of the three dimensional radial oscillator
is given in the form Ea(nr, La) = h̄ω(2nr + La + 1) without requiring La = `a + 1/2, then the energy
formula (99) together with La = 2Lb yields Eb(nr, Lb) = −(me4/2h̄2)(nr + Lb + 1/2)−2 which reduces
to the desired Coulomb spectrum Eb(ν, Lb) = −(me4/2h̄2)(nr + `b + 1)−2 after ad hoc substitution of
Lb = `b + 1/2 with `b ∈ N0. So long as L, E and λ are treated as continuous parameters, the energy
formula (99) derived from the exchange relations (93) should work for semiclassical systems provided that
those parameters are eventually replaced by their quantum counterparts.

In semiclassical theory, the bound state energy Ea of system A can be evaluated by carrying out the
integration on the left-hand side of (96) between two turning points. Namely, we calculate for Ea the
integral

Ja = 2
∫ r′′

r′
dr
√

2m(Ea − λara)− h̄2L2
a/r2 , (101)

where r′ and r′′ are the turning points of the orbit where the integrand vanishes. The quantity Ja is indeed
an action variable defined for a periodic motion by

∮
dq p. It is a constant depending on Ea, λa, and La. By

letting it be a constant Na multiplied by 2πh̄,

Ja(Ea, λa, La) = 2πh̄Na, (102)

and solving (102) for Ea, we obtain the classical bound state energy as a function of parameters λa, La and
Na,

Ea = Ea(λa, La, Na). (103)

Once the classical energy Ea of system A is given in terms of λa, La and Na, when system A and system B
are power-dual to each other, we can determine the energy Eb of system B, with the help of the operations
L and E, as a function of λb, Lb and Nb. Since Wa = Wb as shown in (96), it is obvious that Na = Nb. As
the former equality is a consequence of the duality operations, so is the latter equality. Hence the equality
Na = Nb is a consequence but not a part of duality operations. So, we let N = Na = Nb. With the energy
function (103), the semiclassical energy formula stemming from (99) is

Eb(λb, Lb, N) = −η2λa

(
− λb

η2Ea(λa, Lb/η, N)

)1/η

, (104)

which can be rearranged as the classical case in the following form

|Ea(λa, La, N)| = 1
4
(a + 2)2|λa|2/(a+2)

{
F
(√

2/(a + 2) La, N
)}1/a

(105)

|Eb(λb, Lb, N)| = 1
4
(b + 2)2|λb|2/(b+2)

{
F
(√

2/(b + 2) Lb, N
)}1/b

(106)

where F (L, N) is a function common to both systems. The signs for both energy relations are determined
as in the classical case via the signs of the coupling constants, i.e., sgn Ea = −sgn λb and sgn Eb = −sgn λa.

Alternatively, expressing an explicit form of the energy function (103) by E(λa, La, N) as

Ea = E(λa, La, Na), (107)
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and inverting (107) to take λa out, we have

λa = E−1(Ea, La, N). (108)

Then we use the angular momentum transformation L of (90) and the energy-coupling exchange relations
E of (93) to write down the bound state energy formula for Eb as

Eb(λb, Lb, N) = −η2Ca+2E−1(−λb/(η2C2), Lb/η, N), (109)

which is essentially the same as the energy formula (104).
To convert the classical energy Ea in (103) to a quantum spectrum, we replace the parameters La and

N by their corresponding quantized entities. The angular momentum is quantized in the Langer form
La

.
= `a + (D− 2)/2. The Wentzel-Kramers-Brillouin (WKB) quantization formula for the radial motion,

∮
dr pr = 2πh̄

(
nr +

1
2

)
, nr = 0, 1, 2, ... (110)

asserts that
N .

= nr + 1/2 , nr = 0, 1, 2, ... (111)

Substitution of the Langer-modified angular momentum (86) and the WKB quantization (111) in the
classical energy function of (103) yields the energy spectrum,

Ea(nr, `a)
.
= Ea(λa, `a − 1 + D/2, nr + 1/2), (112)

where nr = 0, 1, 2, ... and `a = 0, 1, 2, ... Similarly, after substitution of the Langer form (86) to Lb and the
WKB quantization (111) to N, the semiclassical energy formula (109) leads to the energy spectrum of
system B,

Eb(nr, `a)
.
= −η2Ca+2E−1

(
−λb/(η2C2), (`b − 1 + D/2)/η, nr + 1/2

)
(113)

where nr = 0, 1, 2, . . . and `b = 0, 1, 2, . . ..

3.3. A system with a non-integer power potential and zero-angular momentum

As a simple but non-trivial example, we study a non-integer power potential system with L2 = 0 (see
Remark 3.5). Let system A be the case. Bound states of system A occur only when (i) λa < 0, a < 0 with
Ea < 0 or (ii) λa > 0, a > 0 with Ea > 0. The integral (101) with La = 0, denoted Ja(Ea, λa, 0), is reducible
to a beta function under either condition (i) or (ii). Suppose system A be under condition (i). Then it goes
to a beta function as

Ja(Ea, λa, 0) = M(Ea, λa)
∫ 1

0
dz z−

a+2
2a −1(1− z)

3
2−1 = M(Ea, λa)B

(
− a + 2

2a
,

3
2

)
(114)

where we have let z = (Ea/λa)r−a and M(Ea, λa) =
√
−2mλa/a2(Ea/λa)(a+2)/2a. As in (102), we express

the right-hand side of (114) by the parameter N as

M(Ea, λa)B
(
− a + 2

2a
,

3
2

)
= 2πh̄N, (115)
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which we solve for Ea to find the energy function Ea = E(λa, 0, N),

Ea = −(−λa)
2

a+2

(√
2m

h̄|a|π B
(
− a + 2

2a
,

3
2

))− 2a
a+2

N
2a

a+2 . (116)

Now the WKB condition (111) yields the energy spectrum of system A,

Ea(n)
.
= −(−λa)

2
a+2

(√
2m

h̄|a|π B
(
− a + 2

2a
,

3
2

))− 2a
a+2 (

n +
1
2

) 2a
a+2

, (117)

where n = 0, 1, 2, . . .. The bound state energy spectrum of system B can be independently calculated in a
similar fashion, and the WKB quantization (111), separately applied to system B, will lead to a spectrum
similar to but different from the spectrum of system A in (117). Insofar as system B is power-dual to
system A, the bound state energy spectrum of system B can be obtained via the formula (113). Inverting
the λa dependent function (116), we obtain

λa = E−1(Ea, 0, N) = −(−Ea)
(a+2)/2

(√
2m

h̄|a|π B
(
− a + 2

2a
,

3
2

))a

N−a. (118)

Utilizing this inverted function and the WKB condition (111) in the energy formula (113), we arrive at the
energy spectrum of system B,

Eb(n)
.
= λ

2
b+2
b

(√
2m

h̄|b|π B
(

1
b

,
3
2

))− 2b
b+2 (

n +
1
2

) 2b
b+2

, n = 0, 1, 2, ... (119)

which is independent of the arbitrary constant C appearing in (109). In the above, we have also changed a
to b by using the relations, a = −2b/(b + 2) and ηa = −b. Apparently, the spectrum (119) is very similar
in form with the spectrum of system A in (109) but is not identical. The relations (93) suggest that Eb > 0
for λa < 0 and λb > 0 for Ea < 0. Hence system B has bound states with Eb > 0 only when b > 0. This
means that system B is under condition (ii) and that the energy spectrum (119) is for the case where λb > 0,
b > 0 with Eb > 0. In particular, if Va(r) = λa/

√
r with λa < 0, the spectrum resulting from (117) is

Ea=−1/2(n)
.
=

λa

2

(
−mλa

h̄2

)1/3 (
n +

1
2

)−2/3
, n = 0, 1, 2, . . . . (120)

For the dual partner potential Vb(ρ) = λbρ2/3 with λb > 0, the spectrum follows from (119) as

Eb=2/3(n)
.
= 2λb

(
8h̄2

9mλb

)1/4 (
n +

1
2

)1/2
, n = 0, 1, 2, . . . . (121)

3.4. Duality in SUSY semiclassical formulas

Let us begin this section with a brief comment on the semiclassical quantization in supersymmetric
quantum mechanics (SUSYQM). In SUSYQM, there are semiclassical quantization formulas similar to
WKB’s. A unified form of them for a radial motion is∫ r′′

r′
dr
√

2m(E−Φ2(r)) = πh̄
(

ν +
1
2
+

∆
2

)
, ν = 0, 1, 2, . . . , (122)
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defined for the partner Hamiltonians H±. In (122), E is the eigenvalue of H±, and Φ(r) is the superpotential
which is a solution of the Riccati equation in the form

Φ2(r)± h̄√
2m

dΦ(r)
dr

−V(r)−
h̄2(L2 − 1

4 )

2mr2 = 0 (123)

where V(r) is a potential function, r′ and r′′ denote the turning points defined by Φ2(r′) = E = Φ2(r′)
with r′ ≤ r′′, and L = `+ (D− 2)/2 with ` = 0, 1, 2, . . .. There, ∆ is the Witten index whose values are
∆ = ±1 for good SUSY and ∆ = 0 for broken SUSY.4 The quantization condition for good SUSY was found
by Comtet, Bandrauk, and Campell [48]. The broken SUSY case and the general formulation of the form
(123) were derived by Eckhardt [49] and independently by Inomata and Junker [50]. It is known that both
the Comtet-Bandrauk-Campbell (CBC) formula for good SUSY and the Eckhardt-Inomata-Junker (EIJ)
condition for broken SUSY yield the exact energy spectra for many shape-invariant potentials. For detail,
see reference [51].

Now we wish to study the power-duality in SUSY semiclassical action on the left-hand side of (122)
only for the H− case. Let us write the action of system A as

Wa =
∫ r′′

r′
dr
√

2m(Ea −Φ2
a(r)), (124)

where Ea is the eigenvalue of H−. Suppose the superpotential in (124) has the form,

Φa(r) = ε
√

λara/2 − h̄√
2m

µa

r
, (125)

where ε = ±1 and a in the shoulder of r is an arbitrary real number. The potential term appearing in the
SUSY semiclassical action (124) is the squared-superpotential rather than the usual potential V(r). For the
superpotential (125), it is

Φ2
a(r) = λara + λa′ r

a′ +
h̄2µ2

a
2mr2 , (126)

where
a′ = (a− 2)/2, λa′ = −εh̄µa

√
2λa/m. (127)

Then we have

Φ2
a(r)−

h̄√
2m

dΦa(r)
dr

= λara +

(
1 +

a
4µa

)
λa′ r

a′ +
h̄2µa(µa − 1)

2mr2 . (128)

Evidently, Φa(r) of (125) satisfies the Riccati equation (123) with a two-term power potential,

Va(r) = λara + (1 + a/(4µa)) λa′r
a′ , (129)

provided that
a′ = (a− 2)/2, µa = La + 1/2. (130)

In (129), a is arbitrary but a′ is dependent on a as given by the first condition of (127). If both a and a′ are
assumed to be independent and arbitrary, the superpotential of the form (125) cannot be a solution of

4 SUSY stands for supersymmetry. If H± are the partner Hamiltonians, then spec(H−) \ {0} = spec(H+) for good SUSY, and
spec(H−) = spec(H+) for broken SUSY.
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the Riccati equation. The quantity on the left-hand side of (128) is a SUSY effective potential, denoted by
V(−)

a (r), that belongs to the Hamiltonian H−. It is related to Va(r) of (129) by

V(−)
a (r) = Φ2

a(r)−
h̄√
2m

dΦa(r)
dr

= Va(r) +
h̄2(L2 − 1

4 )

2mr2 . (131)

The superpotential (125) works for the radial oscillator and the hydrogen atom in a unified manner as it
contains the two as special cases:

(1) Radial harmonic oscillator with a = 2, a′ = 0, λa =
1
2 mω2, λa′ = −h̄ωµa, µa = La +

1
2 , ε = 1 :

Φa(r) =

√
m
2

ωr− h̄√
2m

µa

r
, (132)

V(−)
a (r) =

1
2

ω2r2 +
h̄2µa(µa − 1)

2mr2 − h̄ω(µa + 1/2), (133)

Ea −Φ2
a = (Ea + h̄ωµa)−

1
2

mω2r2 − h̄2µ2
a

2mr2 . (134)

The CBC quantization of (122) with ∆ = −1 yields

Ea = 2h̄ων, ν ∈ N0, (135)

which corresponds to the energy spectrum in quantum mechanics,

EQM
a (ν, `) = Ea + h̄ωµa = h̄ω(2ν + `+ D/2− 1/2), (136)

if µa = La + 1/2 = `+ D/2− 1/2 with ` ∈ N0.

(2) Hydrogen atom with a = 0, a′ = −1, ε = 1, λa = me4/(2h̄2µ2
a), λa′ = −e2, µa = La +

1
2 :

Φa(r) =

√
2m

2h̄µa
e2 − h̄√

2m
µa

r
, (137)

V(−)
a (r) = − e2

r
+

h̄2µa(µa − 1)
2mr2 +

me4

2h̄2µ2
a

, (138)

Ea −Φ2
a =

(
Ea −

me4

2h̄2µ2
a

)
+

e2

r
− h̄2µ2

a
2mr2 . (139)

The CBC result is

Ea = EQM
a (ν, `) + me4/(2h̄2µ2

a) = −
me4

2h̄2(ν + `+ D/2− 1/2)2
+

me4

2h̄2(`+ D/2− 1/2)2
, (140)

where ν, ` ∈ N0.

Next we change the radial variable r by

R : r = f (ρ) = Cρη , ⇔ ρ = f−1(r) = C−1/ηr1/η . (141)

and let the system described by the new variable be system B. Upon application of (141), the action Wa of (124)
transforms to

Wb =
∫ ρ′′

ρ′
dρ
√

2m f ′2(Ea −Φ2
a), (142)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   



30 of 51

where f ′ = d f (ρ)/dρ and

Ea −Φ2
a = Ea − λara − λa′ ra′ − h̄2µ2

a
2mr2 , a′ = (a− 2)/2 . (143)

Since f ′2 = η2C2 η2η−2,

f ′2(Ea −Φ2
a) = η2C2Eaρ2η−2 − η2C2+aλaρaη+2η−2 − η2C2+a′λa′ρ

a′η+2η−2 − h̄2η2µ2
a

2mρ2 . (144)

If there is such a parameter η that f ′2(Ea −Φ2
a) takes the form,

Eb −Φ2
b = Eb − λbρb − λb′ρ

b′ −
h̄2µ2

b
2mρ2 , (145)

with
b′ = (b− 2)/2, (146)

then the action is form-invariant under (141) and reciprocal, that is, Wa = Wb and Wa = X̂(a, b)Wb. In the
X̂(a, b)-operation, we have temporarily let r = ξa and ρ = ξb. We have also assumed that X̂(a, b) takes b′ = (b− 2)/2
to a′ = (a− 2)/2. Furthermore, (145) together with (146) implies that the new superpotential Φb(ρ) has the same form
as that of Φa(r) in (125), namely,

Φb(r) = ε
√

λbrb/2 − h̄√
2m

µb
r

. (147)

If this were the case, we could establish the general power-duality of the action (124) with the superpotential (125).
Unfortunately there is no way to transform system A with an arbitrary power a to system B satisfying the conditions
(145) and (146). Therefore, with the superpotential (125), we are unable to demonstrate in a general term the power-dual
symmetry in SUSY semiclassical quantization. To our knowledge, no qualified superpotential supporting the general
power-duality in SUSY semiclassical action has ever been reported.

Although we have to give up pursuing the general power-duality, we may find cases where duality occurs
within the present scheme. For a dual symmetry, the form-invariance of the superpotential Φ(r) is not an essential
requirement, but it is necessary that f ′2(Ea − Φ2

a(r)) is reducible to the form Eb − Φ2
b under the transformation

r = f (ρ) = Cρη . There are two options for η to reduce the left-hand side of (144) to the form of (145) under different
conditions than (146). Namely,

(i) η = 2/(a + 2) = 1/(a′ + 2), a, a′ 6= −2,

(ii) η = 2/(a′ + 2) = 4/(a + 2), a, a′ 6= −2.

Let D̂(b, a) be such an operator that D̂(b, a)Wa = Wb under the change of variable (141). Since (141) with option (i) or
(ii) is invertible, the operator has an inverse. Hence Wa = D̂−1(b, a)Wb in addition to Wa = Wb. Although the strict
reciprocity is broken, we can talk about the power-dual symmetry in this relaxed sense.

Option (i): Transformation r = Cρ2/(a+2) in (141) brings

Eb −Φ2
b = Eb − λbρb − λb′ρ

−1 −
h̄2µ2

b
2mρ2 . (148)

which contains a Coulomb-like potential in addition to a power potential for any value of a other than a = −2
(a′ = −2). Option (i) must be associated with the substitutions,

Eb = −η2C2+aλa, λb = −η2C2Ea, λb′ = η2C2+a′λa′ , µb = ηµa, (149)

and
η =

2
a + 2

=
1

a′ + 2
, b = − 2a

a + 2
, b′ = −1. (150)
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The second relation in (149) may be used to determine the constant C of the transformation (141).

Option (ii): Transformation r = Cρ2/(a′+2) yields

Eb −Φ2
b = Eb − λbρ2 − λb′ρ

b′ −
h̄2µ2

b
2mρ2 , (151)

where a Hooke potential appears in addition to a power potential for any a 6= −2. Option (ii) comes with

Eb = −η2C2+a′λa′ , λb′ = −η2C2Ea, λb = η2C2+aλa, µb = ηµa, (152)

and

η =
2

a′ + 2
=

4
a + 2

, b = 2, b′ = − 2a′

a′ + 2
= −2(a− 2)

a + 2
. (153)

Again, the second relation of (152) is able to fix the constant C.

Example 1. The Coulomb-Hooke duality: Option (i) is appropriate for the Hooke to Coulomb transition with a = 2,
a′ = 0, b = −1 and b′ = −1. By r = Cρ1/2,

Ea −Φ2
a = (Ea + h̄ωµa)−

1
2

mω2r2 − h̄2µ2
a

2mr2 . (154)

transforms to

Eb −Φ2
b =

(
Eb −

me4

2h̄2µ2
b

)
+

e2

ρ
−

h̄2µ2
b

2mρ2 , (155)

where

Eb −
me4

2h̄2µ2
b

= −1
8

mω2C4, C2 =
4e2

Ea + h̄ωµa
, µb =

1
2

µa. (156)

Combining the first and the second relation of (156) gives

Eb = − 2me4

h̄2(Ea/h̄ω + µa)2
+

me4

2h̄2µ2
b

. (157)

which can be converted to the QM spectrum for the hydrogen atom

EQM
b (ν, `) = Eb −

me4

2h̄2µ2
b

= − me4

2h̄2(ν + `+ D/2− 1/2)2
, (158)

by substitution of Ea = 2h̄ων and µa = 2µb = 2(`+ D/2− 1/2).
Option (ii) is for the Coulomb to Hooke transition with a = 0, a′ = −1, b = 2 and b′ = 2. By ρ = C−1r2, the

equation (155) for the hydrogen atom transforms back to the equation (154) for the radial oscillator. The constant C−1

appearing in the variable transformation is the inverse of C obtainable from the second relation of (156). Obviously,
for the Coulomb-Hooke pair, option (ii) is the inverse of option (i). This confirms that the Coulomb-Hooke dual
symmetry is valid in the SUSY semiclassical action.

Example 2. A confinement problem: Option (i) and option (ii) may be used to study a confinement potential for
which the superpotential (125) is of the form,

Φa(r) = ε
√

λar1/2 − h̄√
2m

µa

r
, (ε = 1, λa > 0). (159)

Correspondingly, we have

Ea −Φ2
a(r) = Ea − λar + εh̄µa

√
2λa

m
r−1/2 − h̄2µ2

a
2mr2 . (160)
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Option (i) with a = 1 (a′ = −1/2) gives η = 2/3. By r = Cρ2/3, (159) transforms to

Eb −Φ2
b(ρ) = Eb − λbρ−2/3 − λb′ρ

−1 −
h̄2µ2

b
2mr2 , (161)

where

Eb = −4
9

C3λa, λb = −4
9

C2Ea, λb′ = −ε
4
9

h̄µbC3/2
√

2λa

m
, µb =

2
3

µa. (162)

The result (161) is not particularly interesting because it is not integrable. However, it is interesting that the limit
λb → 0 implies Ea → 0. Hence the states in the vicinity of the zero-energy state of system A may be approximated by
a set of states of the hydrogen atom.

Option (ii) with a′ = −1/2 implies η = 4/3. The transformation r = Cρ4/3 reduces Ea −Φ2
a(r) of (160) to the

form,

Eb −Φ2
b = Eb − λbρ2/3 − λb′ρ

2 −
µ2

b h̄2

2mρ2 , (163)

where

Eb = ε
16
9

h̄µaC3/2
√

2λa

m
, λb = −16

9
C2Ea, λb′ =

16
9

C3λa, µb =
4
3

µa. (164)

In the limit λb → 0, system B becomes a radial harmonic oscillator with the coupling constant, λb′ > 0. Thus the
states of system A in the vicinity of Ea = 0 may be approximated by those of such a radial harmonic oscillator. The
confinement problem will be revisited in Section 2.4.

Remark 3.1 The duality relation between system A and system B is reciprocal in the sense that the two systems
are bijectively mapped to each other. Hence, if system A is dual to system B then system B is dual to system A.
For instance, the Newton-Hooke duality in classical mechanics is reciprocal. The Newton-Hooke duality is the
Hooke-Newton duality. The map from the Newton system to the Hooke system is bijective. By contrast, it has been
known [52–54] that all the states of the hydrogen atom in three dimensions correspond to half the states of the isotopic
harmonic oscillator in four dimensions. The map from the three dimensional Coulomb system (of `cou = 1, 2, 3, . . .) to
the four dimensional oscillator (of `osc = 2, 4, 6, ...) is injective. Hence all the states of the oscillator as a Hooke system
(with `osc = 0, 1, 2, ...) cannot be mapped back to the Coulomb system (with `cou = 0, 1, 2, ...). The relation between the
Coulomb system and the Hooke system at the level of the quantum structures is not reciprocal [53,55].

Remark 3.2 The Langer replacement,
√
`(`+ D− 2)→ `+ (D− 2)/2, is an ad hoc procedure introduced so as

to be consistent with the quantum mechanical results [56]. In the literature [31], it has been suggested to regard the
angular momentum L appearing in the Schrödinger equation as a continuous parameter since an arbitrary inverse
square potential can be added to make the quantized angular momentum continuous. This reasoning, however,
would make Langer’s replacement nonsensical.

Remark 3.3 Recall that η = −b/a for a dual pair (a, b) and that `b = η`a and Db − 2 = η(Da − 2). Although η

can be any positive real number, in the following, we list a few examples of relevant numbers and relations for integral
values of η:

η (a, b) `a = 0, 1, 2, ... `b = 0, 1, 2, ... Da = 2, 3, ...
2 (−1, 2) `b = 0, 2, 4, ... `a = 0, 1/2, 1, ... Db = 2Da − 2
3 (−4/3, 4) `b = 0, 3, 6, ... `a = 0, 1/3, 2/3, ... Db = 3Da − 4
4 (−3/2, 6) `b = 0, 4, 8, ... `a = 0, 1/4, 1/2, ... Db = 4Da − 6

For example, from the line of η = 2, we see that the states of the Coulomb system in Da = 3 correspond to half the
states of the Hooke system in Db = 4. System A and system B cannot be reciprocal as long as the equality `b = η`a is
assumed.
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Remark 3.4 The time transformation
◦
T has no role to play because the semiclassical action does not explicitly

depend on time as a solution of the stationary Hamilton-Jacobi equation.

Remark 3.5 The condition L2 = 0 assumed for the example in (117), if the Langer replacement (86) is employed,
implies ` = 0, which occurs only in two dimensions.

Remark 3.6 The spectrum (120) for a = −1/2 is similar to the approximate result obtained from an exact solution
of Schrödinger’s equation in one dimension [57].

Remark 3.7 The action on either side of (96) is not always integrable in closed form. Suppose the power a of the
potential Va be a non-zero integer. Then there are a few integrable examples. If a = 2,−1 or −2 then the action of
system A is reducible to an elementary function, and if a = 6, 4, 1,−3,−4 or −6 then it can be expressed in terms of an
elliptic function. Therefore, (2,−1), (−3,−6), (−4,−4), (1,−2/3), (4,−1/3) and (6,−3/2) are integrable dual pairs
(a, b) when a is an integer other than 0 and −2 though b is not necessarily an integer. To a = −2, there corresponds the
self-dual pair (−2,−2) with η = 1.

4. Power-duality in quantum mechanics

The main object to be studied for the power-duality in quantum mechanics is the energy eigenequation of the
form Ĥ|ψ〉 = E|ψ〉 where Ĥ is the Hamiltonian operator for a system in a power-law potential. Since one of the
key operations in the power-duality transformation is the change of variable r = Cρη , we have to deal with the
eigenequation in the radial coordinate representation, that is, the radial Schrödinger equation. In the context of the
duality argument, the radial Schrödinger equation with power-law potentials have been exhaustively explored in the
literature [29–31]. There is little room available to add something new. The aim of this section is, however, to present
from the symmetry point of view the power-duality of the radial Schrödinger equation in parallel to the classical and
semiclassical approaches. The power-duality in the path integral formulation of quantum mechanics is important but
is not included in the present paper.

4.1. The action for the radial Schrödinger equation

The stationary Schrödinger equation for a D dimensional system in a central-force potential V(r) can be separated
in polar coordinates into a radial equation and an angular part. The radial Schrödinger equation has the form,{

− h̄2

2m

(
d2

dr2 +
D− 1

r
d
dr

)
+

h̄2`(`+ D− 2)
2mr2 + V(r)− E

}
R`(r) = 0. (165)

In the above equation, the angular contribution appears in the third term, which stems from L̂2Ym
` (r/r) = `(`+ D−

2)Ym
` (r/r) where L̂ is the angular momentum operator and Ym

` (r/r) is the hyperspherical harmonics. Substituting
R`(r) = r(1−D)/2ψ`(r) reduces it to a simplified differential equation on the positive half-line,{

− h̄2

2m
d2

dr2 +
h̄2(L2 − 1/4)

2mr2 + V(r)− E

}
ψ`(r) = 0, (166)

where
L = `+ (D− 2)/2, ` = 0, 1, 2, .... (167)

For the sake of simplicity, we shall call equation (166) the radial equation and ψ`(r) the wave function. The angular
quantity L in (167) is precisely the same as Langer’s choice (86) in the semiclassical action (see Remark 4.1). Under
operation L : La = Lb/η, the same problem that we have encountered in the semiclassical case should recur with
the equality (167). Therefore, again, we adopt the view that the power-duality is basically a classical notion and
follow the steps taken previously to circumvent the problem. Namely, for the duality argument, we treat L and E in
(166) as continuous parameters. Only after the duality is established, we replace the parameters by their quantized
counterparts. We consider that operation L applies only to the angular parameter and that La = Lb/η does not imply
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`a + D/2− 1 = (`b + D/2− 1)/η. The last equality breaks the reciprocity that `a ∈ N0 and `b ∈ N0. The relation (167)
holds true for each quantum system as an internal structure being independent of duality operations.

Suppose that system A has a two-term power potential Va(r) = λara + λa′ ra′ where a 6= a′. Defining the modified
potential,

Ua(r) = λara + λa′ ra′ − Ea, (168)

we write the radial equation (166) as {
d2

dr2 −
L2

a − 1/4
r2 − 2m

h̄2 Ua(r)

}
ψa(r) = 0. (169)

Since we ignore the relation (167) for a while, we have dropped the subscript ` of the state function ψa(r). The radial
equation (169) for system A is derivable from the following action integral,

Wa =
∫

σa

drLa

(
dψ∗a (r)

dr , dψa(r)
dr ; ψ∗a (r), ψa(r)

)
, (170)

having a fixed range σa 3 r and the Lagrangian of the form,

La =
dψ∗a (r)

dr
dψa(r)

dr
+

(
L2

a − 1/4
r2 +

2m
h̄2 Ua(r)

)
ψ∗a (r)ψa(r)

−1
2

d
dr

(
ψ∗a (r)

dψa(r)
dr

+ ψa(r)
dψ∗a (r)

dr

)
, (171)

where ψ∗a (r) is the complex conjugate of ψa(r). Here we assume that the wave function ψa(r) and its derivative are
finite over the integration range σa. The last term of (171) is completely integrable, so that it contributes to the action
as an unimportant additive constant. Use of the equality,

dψ∗a (r)
dr

dψa(r)
dr

= −ψ∗a (r)
d2ψa(r)

dr2 +
d
dr

(
ψ∗a (r)

dψa(r)
dr

)
, (172)

enables us to put the Lagrangian (171) into an alternative form,

L′a = −ψ∗a (r)

{
d2ψa(r)

dr2 −
(

L2
a − 1/4

r2 +
2m
h̄2 Ua(r)

)
ψa(r)

}

+
1
2

d
dr

(
ψ∗a (r)

dψa(r)
dr

− ψa(r)
dψ∗a (r)

dr

)
. (173)

The Euler-Lagrange equation, resulted from δW/δψ∗a = 0,

d
dr

 ∂La

∂
(

dψ∗a
dr

)
− ∂La

∂ψ∗a
= 0, (174)

readily yields, with either of La or L′a, the radial equation (169). Since La is symmetric with respect to ψ(r) and ψ∗(r),
the complex conjugate of (169) can be derived from it. However, L′a is inappropriate for deriving the radial equation
for ψ∗a (r). For now we put L′a aside even though there is no need for complex conjugation of the radial equation.
For studying the power-duality in quantum mechanics, we focus our attention on the action Wa of (170) with the
Lagrangian (171) rather than the radial equation (169).

The symmetry operations that we consider for the power-duality in quantum mechanics are as follows

R : r = f (ρ) = Cρη (C > 0), (175)

L : Lb = ηLa, (176)

E : Eb = −η2Ca+2λa, λb = −η2C2Ea, (177)
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C : η = 2/(a + 2) = (b + 2)/2, (a 6= −2, b 6= −2), (178)

B : λb′ = λa′ (2/(a + 2))2 Ca′+2, b′ = 2(a′ − a)/(a + 2), (179)

F : ψa(r) = h(ρ)ψb(ρ). (180)

In (180), h(ρ) is a continuous positive real function of ρ.
As dr goes to dρ, the integration range of (170) changes from σa 3 r to σb 3 ρ. Under (175) and (180), the first

term of the Lagrangian (171) transforms as

dψ∗a (r)
dr

dψa(r)
dr

=
h2

f ′2

{
dψ∗b (ρ)

dρ

dψb(ρ)

dρ
−
[

d
dρ

(
h′

h

)
−
(

h′

h

)2
]

ψ∗b ψb

}
+

h2

f ′2
d

dρ

(
h′

h
ψ∗b ψb

)
. (181)

By choice, we let h2(ρ) = f ′(ρ). Then the second term on the right-hand side of (181) reduces to the Schwarz derivative

S [ f ] =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
(182)

divided by 2 f ′. The third term of (181) can be decomposed to two terms by using the relation,

d
dr

(ψ∗a (r)ψa(r)) =
h2

f ′
d

dρ
(ψ∗b (ρ)ψb(ρ)) +

2hh′

f ′
ψ∗b ψb. (183)

Therefore,

dψ∗a (r)
dr

dψa(r)
dr

− 1
2

d
dr

[
d
dr

(ψ∗a (r)ψa(r))
]
=

1
f ′

{
dψ∗b (ρ)

dρ

dψb(ρ)

dρ
− 1

2
S [ f ]ψ∗b ψb

}
− 1

2 f ′
d

dρ

[
d

dρ
(ψ∗b (ρ)ψb(ρ))

]
.

(184)
The angular term of the Lagrangian (171) transforms as

L2
a − 1/4

r2 ψ∗a (r)ψa(r) =
1
f ′

g(L2
a − 1/4)

f 2 ψ∗b (ρ)ψb(ρ) (185)

where g denotes f ′2 as in the classical and semiclassical cases. The energy-potential term of (171) changes as

2m
h̄2 Ua(r)ψ∗a (r)ψa(r) =

2m
h̄2 gUa( f (ρ))ψ∗b (ρ)ψb(ρ). (186)

Moreover, we let f (ρ) = Cρη as defined by (175). Then S [ f ] = −(η2 − 1)/2, g = C2η2ρ2η−2 and g/ f 2 = C2η2ρ2.
Hence, we have

g(L2
a − 1/4)/ f 2 − (1/2)S [ f ] = (η2L2

a − 1/4)/ρ2, (187)

which results in (L2
b − 1/4)/ρ2 under L : Lb = ηLa. Changing the variable by (175) and making the energy-coupling

exchange by (177) result in

g(ρ)Ua(Cρη) = −Ebρaη+2η−2 + Ca′+2λb′ρ
a′η+2η−2 + λbρ2η−2, (188)

which is written as
Ub(ρ) = λbρb + λb′ρ

b′ − Eb (189)

with the help of (178) and (179). Namely, Ua(r) goes to Ub(ρ) by Ub(ρ) = g(ρ)Ua(r). Consequently, we obtain
Wa = Wb or, emphasizing the parameter dependence of the Lagrangian,∫

σa

drLa(λa, La, Ua) =
∫

σb

dρLb(λb, Lb, Ub), (190)
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where

Lb =
dψ∗b (ρ)

dρ

dψb(ρ)

dρ
+

(
L2

b − 1/4
ρ2 +

2m
h̄2 Ub(ρ)

)
ψ∗b (ρ)ψb(ρ)−

1
2

d
dρ

(
ψ∗b (ρ)

dψb(ρ)

dρ
+ ψb(ρ)

dψ∗b (ρ)

dρ

)
. (191)

The last term of (191) is completely integrable and contributes to Wb as an unimportant constant. We identify Lb of
(191) with the Lagrangian of system B, use of which leads to the radial equation for system B,{

d2

dρ2 −
L2

b − 1/4
ρ2 − 2m

h̄2 Ub(ρ)

}
ψb(ρ) = 0. (192)

Apparently the form of the Lagrangian is preserved under the set of power-duality operations, {R,L,C,E,B,F}.
Furthermore, with the Lagrangians La of (171) and Lb of (191), the equality (190) implies that the action W of (170) is
invariant under the same set of operations. By (190) the complex conjugate of the radial Schrödinger equation (166) is
as well assured to be form-invariant.

To complete the procedure, as we have done for the semiclassical case, we must replace in an ad hoc manner each
of the angular momentum parameters by the quantized form `+ (D− 2)/2 with ` = 0, 1, 2, . . .. Using the dot-equality
introduced in Section 3.1, we write the form-invariance of the action amended by the angular quantization with
`a, `b ∈ N0, ∫

σa

drLa(λa, `a + (D− 2)/2, Ua)
.
=
∫

σb

dρLb(λb, `b + (D− 2)/2, Ub), (193)

which warrants that the radial Schrödinger equation (166) with the angular quantization (167) is form-invariant under
the set of duality operations, {R,L,C,E,B,F}. In this modified sense we claim that two quantum systems with
Va(r) = λara + λa′ ra′ and with Vb(ρ) = λbρb + λb′ρ

b′ are in power-duality provided that (a + 2)(b + 2) = 4.

4.2. Energy formulas, wave functions and Green functions

In arriving at the invariance relation (190), we have seen the equality drLa = dρLb under the duality operations.
The relation (190) is valid with the alternative Lagrangian L′ of (173), suggesting drL′a = dρL′b. The last equality in
turn leads to {

d2

dr2 −
L2

a − 1/4
r2 − 2m

h̄2 Ua(r)

}
ψa(r) =

1
h3

{
d2

dρ2 −
L2

b − 1/4
ρ2 − 2m

h̄2 Ub(ρ)

}
1
h

ψa( f (ρ)) (194)

where f ′ = h2 = Cηρη−1. Let Ha(r) be the Hamiltonian for system A in the r-representation, that is,

Ha(r) = −
h̄2

2m
d2

dr2 +
h̄2(L2

a − 1/4)
2mr2 + λara + λa′ ra′ . (195)

Similarly, we define Hb(ρ) for system B. By using the exchange symbol X(b, a), we have Hb(ξb) − Eb =

X(b, a){Ha(ξa)− Ea} where ξa = r and ξb = ρ. Then the equality (194) may be put into the form,

{Ha(r)− Ea}ψa(r) =
1
h3 {Hb(ρ)− Eb}ψb(ρ), (196)

when ψa(r) = h(ρ)ψb(ρ) with r = f (ρ) and f ′ = h2. Evidently, the radial equation (169), expressed as {Ha(r)−
Ea}ψa(r) = 0, implies {Hb(ρ)− Eb}ψb(ρ) = 0.

4.2.1. Energy formulas

To find the energy spectrum of system A, we usually solve the radial equation of (169) by specifying boundary
conditions on ψa(r). Suppose we found a solution ψa(r; ν) compatible with the given boundary conditions when
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the energy parameter took a specific value Ea(ν) characterized by a real number ν. This solution may be seen as an
eigenfunction satisfying

Ha(r)ψa(r; ν) = Ea(ν)ψa(r; ν). (197)

Since operation F demands ψa(r; ν) = ψa( f (ρ); ν) = h(ρ)ψb(ρ; ν), the equation (197) should imply via the equality
(196)

Hb(ρ)ψb(ρ; ν)〉 = Eb(ν)ψb(ρ; ν). (198)

This shows that the number ν is a dual invariant being common to Ea(ν) and Eb(ν). As has been repeatedly mentioned
earlier, the duality operations cannot interfere the internal structure of each quantum system. In general, there are
a number of solutions for the given boundary conditions. Thus ν may be representing a set of numbers. Then we
understand that the value of ν is preserved by F. For a while, however, we treat ν as another parameter and express
the energy Ea as a function of λa, La and ν,

Ea = Ea(λa, La, ν). (199)

This corresponds to the energy function Ea(λa, La, N) in the semiclassical case. We convert this energy function to the
energy spectrum of system A by replacing the parameters La and ν to their quantum counterparts. If we restrict our
interest to bound state solutions, the parameter ν is to be replaced by a set of discrete numbers ν = 0, 1, 2, . . .. Also
putting the angular parameter La into the Langer form (167), we obtain the discrete energy spectrum of system A,

Ea(`a, ν) = Ea(λa, `a + D/2− 1, ν), (200)

where `a ∈ N0 and ν ∈ N0.
Since the energy functions Ea(λa, La, ν) and Eb(λb, Lb, ν) are related by the classical energy formulas, (60) and

(64)-(65), the corresponding energy spectra Ea(`a, ν) and Eb(`b, ν) can be related by the same formulas provided the
angular parameter and the quantum parameter are properly expressed in terms of quantum numbers. Knowing
the energy spectrum of the form Ea(`a, ν) = E(λa, La, ν) for system A, we can determine the energy spectrum Eb of
system B by

Eb(`b, ν) = −η2Ca+2E−1(−λb/(η2C2), Lb/η, ν), (201)

where Lb = `b + D/2− 1 with `b ∈ N0. For the bound state spectrum, ν = 0, 1, 2, . . ..
If the energy spectrum of system A is given in the form

Ea(`a, ν) = ±1
4
(a + 2)2|λa|2/(a+2)

[
F
(√

2/(a + 2) (`a + D/2− 1), ν
)]1/a

(202)

then the energy spectrum of system B is given by

Eb(`b, ν) = ±1
4
(b + 2)2|λb|2/(b+2)

[
F
(√

2/(b + 2) (`b + D/2− 1), ν
)]1/b

. (203)

These relations are the same as the semiclassical relations (104 and (105) where the signs are determined by the signs
of the coupling constants, sgn Ea = −sgn λb and sgn Eb = −sgn λa.

4.2.2. Wave functions

The wave function transforms as ψa(r; La, ν) = h(ρ)ψb(ρ; Lb, ν). Therefore, if an eigenfunction of system A is
given, then the corresponding eigenfunction of system B can be determined by

ψb(ρ; Lb, ν) =
1

h(ρ)
ψa(Cρη ; Lb/η, ν), (204)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   



38 of 51

where Lb = `b + D/2− 1 with `b ∈ N0. Both ψa(r) and ψb(ρ) as eigenfunctions are supposed to be square-integrable,
and each of them must be normalizable to unity. However, even if ψa(r) is normalized to unity, it is unlikely that ψb(ρ)

constructed by (204) is normalized to unity. This is because∫ ∞

0
dr |ψa(r)|2 =

∫ ∞

0
dρ g(ρ) |ψb(ρ)|2 = 1 (205)

where g(ρ) = [ f ′(ρ)]2 = [h(ρ)]4 = C2η2ρ2(η−1). In this regard, if system A and system B are power-dual to each other,
the formula (204) determines ψb(ρ) of system B out of ψa(r) of system A except for the normalization.

4.2.3. Green functions

The Green function G(r, r′; z) = 〈r|Ĝ(z)|r′〉 is the r-representation of the resolvent Ĝ(z) = (z− Ĥ)−1 where
z ∈ C\spec Ĥ and Ĥ is the Hamiltonian operator of the system in question. Let E(ν) and |ψ(ν)〉 be the eigenvalue of
Ĥ and the corresponding eigenstate, respectively, so that Ĥ|ψ(ν)〉 = E(ν)|ψ(ν)〉. For simplicity, we consider the case
where ν ∈ N0. Assume the eigenstates are orthonormalized and form a complete set, that is,

〈ψ(ν)|ψ(ν′)〉 = δν,ν′ , ∑
ν∈N0

|ψ(ν)〉〈ψ(ν)| = 1. (206)

From the completeness condition in (206), it is obvious that

Ĝ(z) = ∑
ν∈N0

|ψ(ν)〉〈ψ(ν)|
z− E(ν)

. (207)

Hence, the Green function can be written as

G(r, r′; z) = ∑
ν∈N0

ψ∗(r′; ν)ψ(r; ν)

z− E(ν)
. (208)

Use of Cauchy’s integral formula leads us to the expression,

ψ∗(r, ν)ψ(r′; ν) =
1

2πi

∮
Cν

dz G(r, r′; z), (209)

where the closed contour Cν counterclockwise encloses only the simple pole z = E(ν) for a fixed value of ν. Note that
we will deal only with radial, hence one-dimensional, problems where no degeneracies can occur. Multiplying both
sides of (209) by two factors v(r) and v(r′) yields

ψ̃∗(r, ν)ψ̃(r′; ν) =
1

2πi

∮
Cν

dz G̃(r, r′; z), (210)

where ψ̃(r; ν) = v(r)ψ(r; ν) and G̃(r, r′; z) = v(r)v(r′)G(r, r′; z).
For instance, the Green function G(r, r′; E) for the radial Schrödinger equation (165) is related to the Green

function G(r, r′; E) for the simplified radial equation (166) by

G(r, r′; E) = (r r′)(1−D)/2G(r, r′; E) (211)

as the wave functions of (165) and (166) are connected by R`(r) = r(1−D)/2ψ`(r).
Suppose the Green functions of system A and system B are given, respectively, by

ψ∗a (r; ν)ψa(r′; ν) =
1

2πi

∮
Cν

dz Ga(r, r′; z), (212)

and
ψ∗b (ρ; ν)ψb(ρ

′; ν) =
1

2πi

∮
Cν

dz Gb(ρ, ρ′; z). (213)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   



39 of 51

By comparing these two expressions, we see that if ψa(r; ν) = h(ρ)ψb(ρ; ν) then

Ga(r, r′; Ea(ν)) = h(ρ)h(ρ′)Gb(ρ, ρ′; Eb(ν)). (214)

The above result is obtained without considering the detail of the Hamiltonian. In the following, an alternative
account is provided for deriving the same result by using the Hamiltonian explicitly. Let Ĥa be the Hamiltonian
operator of system A such that 〈r|Ĥa − Ea|r′〉 = (Ha(r)− Ea)〈r|r′〉. Then it is obvious that

{Ha(r)− Ea}Ga(r, r′; Ea) = −δ(r− r′). (215)

According to (194), equation (215) implies

{Hb(ρ)− Eb}
1
h

Ga( f (ρ), f (ρ′); Ea) = −h3(ρ)δ( f (ρ)− f (ρ′)). (216)

From the relations, ∫
dr |r〉〈r| =

∫
dρ f ′(ρ)| f (ρ)〉〈 f (ρ′)| =

∫
dρ |ρ〉〈ρ′| = 1, (217)

there follows |ρ〉 = h(ρ)| f (ρ)〉. Hence we have, 〈ρ|ρ′〉 = h(ρ)h(ρ′)〈 f (ρ)| f (ρ′)〉, that is, δ(r− r′) = δ( f (ρ)− f (ρ′)) =
[h(ρ)h(ρ′)]−1δ(ρ− ρ′). Thus we arrive at the radial equation satisfied by the Green function of system B,

{Hb(ρ)− Eb}Gb(ρ, ρ′; Eb) = −δ(ρ− ρ′), (218)

if the Green function transforms as

Ga(r, r0; Ea, La) = h(ρ)h(ρ′)Gb(ρ, ρ′; Eb, Lb). (219)

Substitution of La = `a + D/2− 1 with `a ∈ N0 and Lb = `b + D/2− 1 with `b ∈ N0 into (219) results in

Ga(r, r′; Ea, `a + D/2− 1) .
= h(ρ)h(ρ0)Gb(ρ, ρ′; Eb, `b + D/2− 1), (220)

which is not an equality as `a ∈ N0 and `b ∈ N0 are assumed. Insofar as system B is power-dual to system A, the
Green function of system B can be expressed in terms of the Green function of system A as

Gb(ρ, ρ′; Eb, `b + D/2− 1, λb, λb′ ) = [( f ′(ρ) f ′(ρ′)]−1/2Ga
(

f (ρ), f (ρ′); Ea, (`b + D/2− 1)/η, λa, λa′
)

(221)

where f (ρ) = Cρη and the parameters Ea, λa and λa′ are given via the relations (177) and (179) in terms of Eb, λb and
λb′ . This relation is an equality even though (220) is a dot equality. An expression similar to but slightly different from
(221) has been obtained by Johnson [31] in much the same way.

4.3. The Coulomb-Hooke dual pair

Again, we take up the Coulomb-Hooke dual pair to test the transformation properties shown in Section 3.1.
Let system A be the hydrogen atom with λa = −e2 < 0 and system B a radial oscillator with λb = 1

2 mω2 > 0. So
(a, b) = (−1, 2) and η = −b/a = 2. Both systems are assumed to be in D dimensional space. The Coulomb system has
the scattering states (Ea > 0) as well as the bound states (Ea < 0). However, the exchange relations (177) prohibits the
process (Ea > 0, λa < 0)⇒ (Eb > 0, λb > 0). The Coulomb-Hooke duality occurs only when the Coulomb system is
in bound states.

The energy relations: Suppose we know that the energy spectrum of system A has the form,

Ea(λa, La, ν) = − me4

2h̄2(ν + La + 1/2)2
, (222)
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where λa = −e2, ν ∈ N0 and La = `b + D/2− 1 with `a ∈ N0. Then the formula (202) leads to

F
(√

2La, ν
)
=

h̄2

2m

[
ν + (

√
2La)/

√
2 + 1/2

]2
. (223)

Careful use of this result in the formula (203) enables us to determine the energy spectrum of system B. Namely,

Eb(λb, Lb, ν) = 4
√

λb

√
h̄2

2m

[
ν + (Lb/

√
2)/
√

2 + 1/2
]1/2

. (224)

Substituting λb = mω2/2 and Lb = `b + D/2− 1 in (224), we reach the standard expression for the energy spectrum
of the isotropic harmonic oscillator in D-dimensional space,

Eb(`b, ν) = h̄ω(2ν + `b + D/2) (`b, ν ∈ N0). (225)

Wave functions: The radial equation (166) for the Coulomb potential V(r) = −e2/r can easily be converted to the
Whittaker equation [58] {

d2

dx2 −
L2 − 1/4

x2 +
k
x
− 1

4

}
w(x) = 0, (226)

where L = `+ D/2− 1 (` ∈ N0). In the conversion, we have let x = 2κr, k = me2/(h̄2κ) = ka, h̄κ =
√
−2mE, L = La

and w(x) = ψa(x/(2κ)). This set of replacements is indeed a duality map for the self-dual pair (a, a) = (−1,−1). The
Whittaker functions, Mk,L(x) and Wk,L(x), are two linearly independent solutions of the Whittaker equation (226). For

|x| small, Mk,L(x) ∼ xL+ 1/2 and Wk,L(x) ∼ − Γ(2L)
Γ(L−k+1/2) x−L+ 1/2. If −π/2 < arg x < 3π/2 and |x| is large, then

Mk,L(x) ∼ Γ(2L + 1)

{
eiπ(L−k+ 1

2 )e−x/2xk

Γ(L + k + 1
2 )

+
ex/2x−k

Γ(L− k + 1
2 )

}
, (227)

and, if x /∈ R− and |x| is large,
Wk,L(x) ∼ e−x/2xk[1 + O(x−1)]. (228)

The first solution Mk,L(x) vanishes at x = 0 as L > −1/2 but diverges as |x| → ∞ unless k− L− 1
2 ∈ N0, whereas the

second solution Wk,L(x) diverges at x = 0 but converges to zero as |x| → ∞.
The solution for the Coulomb problem is given in terms of the Whittaker function,

ψa(r; La, ν) = Na(La) Mν+La+
1
2 , La

(2κr), (229)

where ka is replaced by ν + La + 1/2. For the bound state solution which vanishes at infinity, we have to let
ν = 0, 1, 2, . . .. In this case, ka = ν + La + 1/2 implies the discrete spectrum Ea(λa, La, ν) in (222).

Since the Whittaker function Mk,µ(z) is related to the Laguerre function L2µ
ν (z) as

Mµ+ν+ 1
2 , µ(z) =

Γ(2µ + 1)Γ(ν + 1)
Γ(2µ + ν + 1)

e−z/2zµ+ 1
2 L2µ

ν (z), (230)

the eigenfunction may also be expressed in terms of the Laguerre function as

ψa(r; La, ν) = Na(La)
Γ(2La + 1)Γ(ν + 1)

Γ(ν + 2La + 1)
e−κr(2κr)La+

1
2 L2La

ν (2κr), (231)

which is normalized to unity with

Na(La) =
h̄κ/
√

me2

Γ(2La + 1)

√
Γ(ν + 2La + 1)

Γ(ν + 1)
. (232)
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The radial equation for the Hooke system with Vb(ρ) =
1
2 mω2ρ2, too, can be reduced to the Whittaker equation

by letting
y = (mω/h̄)ρ2, L = Lb/2, k = Eb/(2h̄ω) = kb, w(y) = y1/4ψb(y), (233)

which form a duality map for (b, c) = (2,−1). Here Lb = `b + D/2− 1 with `b ∈ N0. The bound state solution for the
radial oscillator is given by

ψb(ρ; Lb, ν) = Nb(Lb)
1
√

ρ
Mν+ 1

2 Lb+
1
2 , 1

2 Lb

(mω

h̄
ρ2
)

. (234)

The choice kb = (2ν + Lb + 1)/2 with ν ∈ N0 makes the solution (234) the eigenfunction belonging to the energy
Eb(ν, `b) in (224). In terms of the Laguerre function, it reads

ψb(ρ; Lb, ν) = Nb(Lb)
Γ(Lb + 1)Γ(ν + 1)

Γ(ν + Lb + 1)
e−(mω/2h̄)ρ2

(mω

h̄
ρ2
)(Lb+

1
2 )/2

LLb
ν

(mω

h̄
ρ2
)

, (235)

which is normalized to unity with

Nb(Lb) =
(4mω/h̄)1/4

Γ(Lb + 1)

√
Γ(ν + Lb + 1)

Γ(ν + 1)
. (236)

The process of going from (229) to (234) is rather straightforward. First we notice that η = −b/a = 2 for the
Coulomb-Hooke pair (a, b) = (−1, 2). Then we use the relation λb = −η2C2Ea, λb = mω2/2 and h̄κ =

√
−2mEa

to get C = mω/(2h̄κ). Hence operation R : r = Cρη with η = 2 yields 2κr = (mω/h̄)ρ2. In addition, we apply
L : La = Lb/2. Consequently, we have the right hand side of (204) for a = −1, η = 2 and h(ρ) =

√
mω/(h̄κ)ρ1/2 in

the form,
√

h̄κ/mω
1
√

ρ
ψa((mω/2h̄κ)ρ2; Lb/2, ν) = Ñb(Lb)

1
√

ρ
Mν+ 1

2 Lb+
1
2 , 1

2 Lb

(mω

h̄
ρ2
)

, (237)

which coincides with the eigenfunction for the radial oscillator in (234) except for the normalization factor. In (237),

Ñb(Lb) =
√

h̄κ/mωNa(Lb/2), (238)

which differs from Nb(Lb) of (236) due to the difference of factors,
√

h̄2κ3/(me2)(mω/h̄)−1/2 6=
√

2(mω/h̄)1/4. The
wave function of the radial oscillator can be determined by the radial wave function of the hydrogen atom except for
its normalization.

The Green functions: The Green function of interest, Ga(r, r′; E, L), obeys the radial equation,{
d2

dr2 −
L2 − 1/4

r2 − 2m
h̄2 V(r) +

2m
h̄2 E

}
Ga(r, r′; E, L) = −2m

h̄2 δ(r− r′), (239)

where Va(r) = λara + λa′ ra′ . The boundary conditions we impose on it are

lim
r→0

G(r, r′; E, L) = 0 and lim
r→∞

G(r, r′; E, L) < ∞. (240)

Let ψ(1)(r) and ψ(2)(r) be two independent solutions of the radial equation (166). Let us assume that ψ(1)(r)
remains finite as r → ∞ while the second solution obeys ψ(2)(0) = 0. With these solutions, following the standard
procedure[59], we can construct the Green function G(r, r′; E, L) as

G(r, r′; E, L) =
2m

h̄2W [ψ(1), ψ(2)]

{
ψ(1)(r)ψ(2)(r′), r > r′

ψ(1)(r′)ψ(2)(r), r′ > r
(241)

whereW [·, ·] signifies the Wronskian.
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For the Coulomb problem with Va(r) = −e2r−1, we let ψ(1)(r) = Wka , La (2κr) and ψ(2)(r) = Mka , La (2κr). Then
we calculate the Wronskian to get

(2κ)−1W [Wk,L(2κr), Mk,L(2κr)] =W [Wk,L(x), Mk,L(x)] = − Γ(2L + 1)
Γ(L− k + 1

2 )
, (242)

where we have use the property,

W [Wk,L(x), Mk,L(x)] = (dy/dx)W [Wk,L(y), Mk,L(y)]. (243)

Substituting this result in the formula (241), we obtain the radial Green function for the Coulomb problem,

Ga(r, r′; Ea, La) = −
m

h̄2κ

Γ(La − ka +
1
2 )

Γ(2La + 1)
Wka , La (2κr>) Mka , La (2κr<), (244)

where r> = max{r, r′} and r< = min{r, r′}. We have also set κ =
√
−2mEa h̄ and ka = me2/(h̄

√
−2mEa), both of

which are in general complex numbers. The resultant Green function is a double-valued function of Ea. It contains the
contribution from the continuous states (corresponding to the branch-cut along the positive real line on Ea) as well as
the bound states (corresponding to the poles on the negative real axis). The poles of G(r, r′; La, Ea) on the Ea-plane
occur when La − ka +

1
2 = −ν with ν ∈ N0, yielding the discrete energy spectrum (222).

Similarly, for the radial oscillator with Vb(ρ) = (m/2)ω2ρ2, we let ψ(1)(ρ) = Wkb ,Lb
((mω/h̄)ρ2) and ψ(2)(ρ) =

Mkb ,Lb
((mω/h̄)ρ2). Use of the property,

W [χ(y)Wk,L(y), χ(y)Mk,L(y)] = [χ(y)]2W [Wk,L(y), Mk,L(y)], (245)

for a differentiable function χ(y), together with (243) and (242), enables us to evaluate the Wronskian and to get to the
Green function for the radial oscillator,

Gb(ρ, ρ′; Lb, Eb) = −
1

h̄ω
√

ρρ′
Γ( 1

2 Lb − kb +
1
2 )

Γ(Lb + 1)
Wkb , 1

2 Lb

(mω

h̄
ρ2
>

)
Mkb , 1

2 Lb

(mω

h̄
ρ2
<

)
, (246)

where kb = Eb/(2h̄ω). Since G(ρ, ρ′; lb, Eb) is not a multi-valued function of Eb, it has no branch point on the Eb-plane
and contains no contribution corresponding to a continuous spectrum, but has poles at kb = ν + 1

2 Lb +
1
2 with ν ∈ N0

yielding the discrete energy spectrum (225).
Finally, we compare the Green function for the bound state of the Coulomb problem (244) and the Green function

for the radial oscillator (246). The Gamma functions and the Whittaker functions in (244) are brought to those in
(246) by transformations r = Cρ2 with C = mω/(2h̄κ), La = Lb/η with η = 2, and ka = kb. Although the first two
transformations are two of the dual operations, the last one must be verified. Since ka = me2/(h̄2κ) = −mλa/(h̄2κ)

and λa = −Eb/(4C), it immediately follows that ka = Eb/(2h̄ω) = kb provided C = mω/(2h̄κ). For the bound state
problem, ka = ν + La +

1
2 and kb = ν + 1

2 Lb +
1
2 . Hence, it is apparent that ka = kb when La = Lb/2. The extra

function in (219) is now given by h(ρ)h(ρ′) =
√

mω/(h̄κ)
√

ρρ′. Hence the prefactor m/(h̄2κ) in (244) divided by the
extra function gives rise to the prefactor (h̄ω

√
ρρ′)−1 in (246). In this fashion, Ga(r, r′; La, Ea) of (244) is completely

transformed into Gb(ρ, ρ′; Lb, Eb) by the duality procedures with C = (mω/2h̄κ). By letting Lb = `b + D/2− 1 with
`b ∈ N0, we can see that the formula (221) works well for the Coulomb-Hooke pair.

4.4. A confinement potential as a multi-term power-law example

One of the motivations that urged the study of power-law potentials was the quark-antiquark confinement
problem. See, for instance, references [29–31]. Here we examine a two-term power potential as a model of the
confinement potential.

Let system A consist of a particle of mass m confined in a two-term power potential,

Va(r) = λara + λa′ ra′ , (247)
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where λa 6= 0, λa′ 6= 0, a 6= a′, a 6= 0, and a′ 6= 0. Let system B be power-dual to system A and quantum-mechanically
solvable. Then we expect that some quantum-mechanical information can be obtained concerning the confined system
A by analyzing the properties of system B. As we have seen earlier, when system A and system B are dual to each
other, the shifted potential of system A,

Ua(r) = λara + λa′ ra′ − Ea, (248)

transforms to that of system B,
Ub(ρ) = λbρb + λb′ρ

b′ − Eb, (249)

by
Ub(ρ) = g(ρ)Ua( f (ρ)). (250)

Here r = f (ρ) = Cρη , g(ρ) = C2η2ρ2η−2, η = 2/(a + 2) = −b/a, and

b′ = 2(a′ − a)/(a + 2) λb′ = λa′η
2Ca′+2. (251)

Note also that the exchange relations,

Eb = −η2Ca+2λa, λb = −η2C2Ea, (252)

play an essential role in verifying the equality (250).
First, we wish to tailor the potential of system A to be a confinement potential. To this end, we set the following

conditions.
(i) System B behaves as a radial harmonic oscillator (λb = 0, λb′ > 0, b′ = 2)
(ii) System A has a bound state with Ea = 0 and its potential is asymptotically linearly-increasing (λa′ > 0, a′ = 1).

Since we are unable to solve analytically the Schrödinger equation for system B with (249) in general, we consider
the limiting case for which λb → 0, that is, we employ for the potential of system B

Ub(ρ) = lim
λb→0

Ub(ρ) = λb′ρ
b′ − Eb. (253)

According to the second relation of (252), the limit λb → 0 implies Ea → 0. Hence we study only the zero-energy state
of system A by assuming that it exists and is characterized by an integral number ν0. We denote the zero-energy by
Ea(ν0). There are only a few exactly soluble nontrivial examples with Ub of (253). Our choice is the one for the radial
harmonic oscillator with b′ = 2 and λb′ > 0,

Ub(ρ) = λb′ρ
2 − Eb (λb′ > 0). (254)

Namely, we consider that system B behaves as the radial harmonic oscillator with frequency Ω =
√

2λb′/m and
angular momentum Lb. Since b′ = 2 implies 2(a′ − a)/(a + 2) = 2 as obvious from (251), the corresponding potential
of system A is

Va(r) = λar(a′−2)/2 + λa′ ra′ . (255)

Next we assume that a possible confinement potential behaves asymptotically as a linearly increasing function. Thus,
letting a′ = 1 and λa′ > 0 in (255), we have

Va(r) = λar−1/2 + λa′ r, (λa < 0, λa′ > 0). (256)

If λa > 0, then Va(r) > 0 for all r, and the assumed zero-energy state cannot exist. For λa < 0, the effective potential of
system A,

Ve f f
a (r) =

(L2
a − 1

4 )h̄
2

2mr2 − |λa|r−1/2 + |λa′ |r, (257)

can accommodate the zero-energy state provided that λa and λa′ are so selected that Ve f f
a (r1) < 0 where r1 is a

positive root of dVe f f
a (r)/dr = 0. Here La = Lb/η and La = `a + D/2− 1 with `a ∈ N0. In this manner, we are able

to obtain the confinement potential (256) which is asymptotically linearly increasing and may accommodate at least
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Figure 2. The effective potential (257) related to the eigenfunctions (266) for ν0 = 0, 1, 2, 3, 4 from top to
bottom. The parameters and units are set to `a = λa′ = 1, D = 3 and 2m = h̄ = 1, respectivly.
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the assumed zero-energy state. Figure 2 shows the effective potential (257) of system A for `a = 1, D = 3, λa′ = 1 and
ν0 = 0, 1, 2, 3, 4 in units 2m = h̄ = 1.

Since a′ = 1, we have a = (a′ − 2)/2 = −1/2, η = 2/(a + 2) = 4/3 and b = −aη = 2/3. The last information
concerning b is unimportant insofar as λb → 0 is assumed. The second relation of (251) demands that

C = (9λb′/16λa′ )
1/3 . (258)

Therefore, the first relation of (252) yields

Eb = −4
3

λa

√
λb′

λa′
. (259)

On the other hand, since system B behaves as a radial harmonic oscillator with frequency Ω =
√

2λb′/m and angular
momentum Lb, its energy spectrum is given by

Eb(ν0, `b) = h̄Ω (2ν0 + Lb + 1), (260)

where ν = ν0 is fixed by Ea(ν0) and Lb = `b + D/2− 1 with `b ∈ N0. Letting Lb = (4/3)La in (260) and interpreting
that Eb of (259) represents an allowed value in the spectrum (260), we observe that the coupling constant λa may take
one of the values specified by the set of (ν0, `a) via

λa = −3
4

√
2λa′ h̄

2

m
(2ν0 + (4/3)La + 1), (261)

where La = `a + D/2− 1 with `a ∈ N0.
The energy eigenfunction of the radial oscillator has been given in (234). Replacing (mω/h̄) in the previous

result by β = mΩ/h̄ =
√

2mλb′ /h̄, we write down the eigenfunction of the present oscillator as

φb(ρ; Lb, ν0) = Nb(Lb, ν0, β)
1
√

ρ
Mν0+

1
2 Lb+

1
2 , 1

2 Lb

(
βρ2
)

, (262)

which is normalized to unity with

Nb(Lb, ν0, β) =
(4β)1/4

Γ(Lb + 1)

√
Γ(ν0 + Lb + 1)

Γ(ν0 + 1)
. (263)
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Moreover, utilizing the eigenfunction just obtained, we construct the eigenfunction for the zero-energy state in the
confinement potential (256) by following the simple prescription φa(r) = h(ρ)φb(ρ). For the pair (a, b) = (−1/2, 2/3),
the two variables r and ρ are related by r = Cρ4/3 with C given in (258). Since ρ2 = C−3/2r3/2 and C−3/2 =

(4/3)
√

λa′/λb′ , we let

α =
4
3

β

√
λa′

λb′
=

4
3

√
2mλa′

h̄
, β =

√
2mλb′

h̄
, (264)

and
βρ2 = αr3/2. (265)

Multiplying φb(ρ) of (262) by h(ρ) =
√

dr/dρ =
√

4C/3ρ1/6, and substituting (264) and Lb = (4/3)La into φb(ρ), we
arrive at the eigenfunction for the zero-energy state of system A,

φa(ρ; La, ν0) = Na(La, ν0, α) r−1/4 Mν0+
2
3 La+

1
2 , 2

3 La

(
αr3/2

)
, (266)

where La = `a + D/2 − 1 with `a ∈ N0. Here the factor Na(La, ν0, α) that normalizes φa(ρ) to unity cannot be
determined by Nb((4/3)La, ν0, (3/4)α

√
λb′/λa′ ). Corresponding to the value of λa specified in (261) by the set

(ν0, `a), the eigenfunction φa(ρ; `a, ν0) is characterized by the same set (ν0, `a) of numbers.
The Green function of system A obeys the inhomogeneous radial equation,{

d2

dr2 −
L2

a − 1/4
r2 − 2me2

h̄2

(
λar−1/2 + λa′ r

)
+

2me2

h̄2 Ea

}
Ga(r, r′; Ea, La) = −

2m
h̄2 δ(r− r′). (267)

Since the Green function for the radial oscillator has been given in (246), we can write down the Green function
Gb(ρ, ρ′; Eb(ν0)) of system B with λb = 0 as

Gb(ρ, ρ′; Eb, Lb) = −
m

h̄2β

1√
ρρ′

Γ( 1
2 Lb − kb +

1
2 )

Γ(Lb + 1)
Wkb , 1

2 Lb
(βρ2

>
) Mkb , 1

2 Lb
(βρ2

<
), (268)

where kb = Eb/(2h̄Ω). The pole of Gb(ρ, ρ′; Eb) that corresponds to Eb(ν0) occurs when kb(Lb, ν0) = ν0 +
1
2 Lb +

1
2

where ν0 is a non-negative integer.
The Green function Ga(r, r′; Ea, La) of system A at Ea = 0 can be found by substituting (265) together with

h(ρ) =
√

4/3C3/8r1/8,
1
2

Lb =
2
3

La,

into h(ρ)h(ρ′)Gb(ρ, ρ′; Eb, Lb). Namely,

Ga(r, r′; Ea = 0, La) =
4
3

C3/4(rr′)1/8 Gb

(
(r/C)3/4, (r′/C)3/4; Eb =

16
9
|λa|,

4
3

La

)
, (269)

where C has been given in (258). Explicitly, we have

Ga(r, r′; Ea, La) = −
4m

3h̄2α
(rr′)−1/4 Γ( 2

3 La − ka +
1
2 )

Γ( 4
3 La + 1)

Wka , 2
3 La

(αr3/2
>

) Mka , 3
2 La

(αr3/2
<

). (270)

where α and β have been given by (264). The pole corresponding to Ea(ν0) = 0 occurs when ka = ν0 + (2/3)La + 1/2
and La = `a + D/2− 1. We have to remember that the Green function (269) is meaningful only in the vicinity of Ea = 0.

Remark 4.1 The angular momentum L in (167) is identical in form to that used in the semiclassical case (86).
However, no Langer-like ad hoc treatment has been made in the Schrödinger equation. The angular contribution
`(`+ D− 2) and an additional contribution (D− 1)(D− 3)/4 from the kinetic term due to the transformation of base
function, R`(r) to ψ`(r), make up the term L2 − 1/4 in the effective centrifugal potential term of (169).
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Remark 4.2. The time transformation T needed in classical mechanics takes no part in the power duality of
the stationary Schrödinger equation. Instead, the change of the base function plays an essential role. While T

assumes dt = g(ρ)ds, the state function changes as ψa(r) = [g(ρ)]1/4ψb(ρ). The possible connection between the time
transformation and the change of state function has been discussed in the context of path integration for the Green
function in [32]. So long as the stationary Schrödinger equation is concerned, there is no clue to draw any causal
relation between T and F. However, one might expect that T would play a role in the time-dependent Schödinger
equation. If the energy-coupling exchange operation E of (93) is formally modified as

E′ : gVa(r)→ −ih̄
∂

∂s̄
, gih̄

∂

∂t̄
→ −Vb(ρ), (271)

then the time-dependent radial Schrödinger equation,[
− h̄2

2m
d2

dr2 +
h̄2(L2

a − 1/4)
2mr2 + Va(r)

]
ψa(r) = ih̄

∂ψa(r)
∂t̄

, (272)

transforms into [
− h̄2

2m
d2

dρ2 +
h̄2(L2

b − 1/4)
2mρ2 + Vb(ρ)

]
ψb(ρ) = ih̄

∂ψb(ρ)

∂s̄
, (273)

under the set of {R,L,E′,F}. It is important that t̄ and s̄ are not necessarily connected by T; they are basically
independent time-like parameters. In conclusion, the time transformation T has no role in the time-dependent
Schrödinger equation.

Remark 4.3 More on time transformations. Since we are dealing with the action integral (170) rather than the
Schrödinger equation, it is easy to observe that the time transformation T in the classical action in Section 2 is closely

related to the transformation F of wave functions in the quantum action (170). Recall that T :
◦
t= g(ρ)

◦
s where g = f ′2

with f = Cρη , and that
dt Ua = ds gUa = ds Ub. (274)

From (171) and (190), we have
dr Uaψ∗a ψa = dρ f ′h2Uaψ∗b ψb = dρ Ubψ∗b ψb, (275)

where g = f ′h2 = f ′2. Comparing (274) and (275), we see that dt = gds in classical mechanics corresponds to
dr ψ∗a ψa = g dρ ψ∗b ψb in quantum mechanics. In other words, dr ψ∗a ψa has the same transformation behavior that dt
does. In this respect, we may say that the role of T in classical mechanics is replaced by F in quantum mechanics.

5. Summary and Outlook

In the present paper we have revisited the Newton-Hooke power-law duality and its generalizations from the
symmetry point of view.

(1) We have stipulated the power-dual symmetry in classical mechanics by form-invariance and reciprocity
of the classical action in the form of Hamilton’s characteristic function, and clarified the roles of duality operations
{C,R,T,E,L}. The exchange operation E has a double role; it may decide the constant C appearing in the
transformation r = Cρη , while it leads to an energy formula that relates the new energy to the old energy.

(2) We have shown that the semiclassical action is symmetric under the set of duality operations {C,R,E,L}
without T insofar as angular momentum L is treated as a continuous parameter, and observed that the power-duality
is essentially a classical notion and breaks down at the level of angular quantization. To preserve the basic spirit
of power-duality in the semiclassical action, we have proposed an ad hoc procedure in which angular momentum
transforms as Lb = ηLa, as the classical case, rather than `b = η`a; after that each of L is quantized as L = `+ D/2− 1
with ` ∈ N0. As an example, we have solved by the WKB formula a simple problem for a linear motion in a fractional
power potential.

(3) We have failed to verify the dual symmetry of the supersymmetric (SUSY) semiclassical action for an arbitrary
power potential, but have succeeded to reveal the Coulomb-Hooke duality in the SUSY action.
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(4) To study the power-dual symmetry in quantum mechanics, we have chosen the action in which the variables
are the wave function ψ(r) and its complex conjugate ψ∗(r) and from which the radial Schrödinger equation can
be derived. The potential appearing in the action is a two-term power potential. We have shown that the action is
symmetric under the set of operations {C,R,E,L} plus the transformation of wave function F provided that angular
momentum L is a continuous parameter. Again the ad hoc procedure introduced for the semiclassical case must be
used in quantum mechanics. Associated with F is the transformation of Green functions from which we have derived
a formula that relates the new Green function and the old one. We have studied the Coulomb-Hooke duality to verify
the energy formula and the formula for the Green functions. We also discussed a confinement potential and the
Coulomb-Hooke-Morse triality.

There are more topics that we considered important but left out for the future work. They include the power-dual
symmetry in the path integral formulation of quantum mechanics, the Coulomb-Hooke duality in Dirac’s equation,
and the confinement problem in Witten’s framework of supersymetric quantum mechanics. Feynman’s path integral
is defined for the propagator (or the transition probability) with the classical action in the form of Hamilton’s principal
function, whereas the path integral pertinent to the duality discussion is based on the classical action in the form of
Hamilton’s characteristic function. Since the power-dual symmetry of the characteristic action has been shown, it
seems obvious that the path integral remains form-invariant under the duality operations, but the verification of it is
tedious. As is well-known, Dirac’s equation is exactly solvable for the hydrogen atom. There are also solutions of
Dirac’s equation for the harmonic oscillator. However, the Coulomb-Hooke duality of Dirac’s equation has never been
established. The situation is similar to Witten’s model of SUSYQM. Using the same superpotential as that used for the
semiclassical case in Section 4, we may be able to show the Coulomb-Hooke symmetry and handle the confinement
problem in Witten’s framework.

Appendix The Coulomb-Hooke-Morse triality

In this Appendix, we wish to present the Coulomb-Hooke-Morse triality that relates the Morse oscillator to the
Coulomb-Hooke duality. Specifically, letting system A be the hydrogen atom (for the Coulomb system), system B
be the radial harmonic oscillator (for the Hooke system) and system C be the Morse oscillator, we deal with their
triangular relation. The Morse oscillator is a system obeying the one-dimensional Schrödinger equation [60],

− h̄2

2m
d2ψc(ξ)

d2ξ
+ (Vc(ξ)− Ec)ψc(ξ) = 0, ξ ∈ R, (A1)

where
Vc(ξ) = D1 e−2αξ − 2D2 e−αξ , α, D1, D2 > 0, (A2)

which is the Morse potential in a slightly modified form. The potential (A2), being not a power-law potential, is beyond
the scope of the main text. It is yet interesting to observe how the Morse oscillator is related to the Coulomb-Hooke
duality. It is straightforward, if one follows the general transformation procedure [32] for the Schrödinger equation, to
transform (A1) directly to the Schrödinger equation for each of the hydrogen atom and the radial harmonic oscillation.
Here, to focus our attention on their trial nature, we place the Whittaker function at the center of the triangular relation.
In fact, the Schrödinger equation (A1) is easily transformed to the Whittaker equation (226) under the substitutions

x = γ e−αξ , γ =

√
8mD1
h̄α

(A3)

Lc =

√
−2mEc

h̄α
, kc =

√
2mD2

2

h̄2α2D1
, (A4)

w(x) = x1/2ψc(ξ). (A5)

Hence the bound state solution of (A1) can be expressed in terms of the Whittaker function as

ψc(ξ) = Nc eαξ/2 Mkc ,Lc

(
γ e−αξ

)
, (A6)
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subject to the condition

kc = ν + Lc +
1
2

, ν ∈ N0. (A7)

The last condition yields the energy spectrum,

Ec = −
h̄2α2

2m


√

2mD2
2

h̄2α2D1
−
(

ν +
1
2

)
2

, ν = 0, 1, 2, . . . <

√
2mD2

2

h̄2α2D1
− 1

2
. (A8)

The Morse oscillator solution ψc(ξ) in (A6) may be compared with the Coulomb bound state solution ψa(r) and
the Hooke oscillator solution ψb(ρ) given, respectively, by

ψa(r) = Na Mka ,La (2κr) , (A9)

with
ka = ν + La +

1
2

ν ∈ N0, (A10)

and
ψb(ρ) = Nb ρ−1/2 Mkb , 1

2 Lb

(mω

h̄
ρ2
)

, (A11)

with
kb = ν +

1
2

Lb +
1
2

ν ∈ N0. (A12)

The bound state conditions (A10) and (A12) lead to the energy spectrum of the Coulomb system (A) and that of the
Hooke system (B), respectively, when

ka = me2/(h̄2κ) , h̄κ =
√
−2mEa , La = `+ 1/2 , ` ∈ N0 , (A13)

kb = Eb/(h̄ω) , Lb = `+ 1/2 , ` ∈ N0 . (A14)

The triality relations are schematically shown below,

Morse Morse
CA ↙ ↖ BC AC ↗ ↘ CB

Coulomb −→ Hooke Coulomb ←− Hooke
AB BA

and the dual transformations AC, CB and BA are given by

AC : 2κr = γe−αξ , ka = kc, La = Lc, ψa(r) = e−αξ/2ψc(ξ)

CB : γe−αξ = (mω/h̄)ρ2, kc = kb, Lc = (1/2)Lb, e−αξ/2ψc(ξ) = ρ−1/2ψb(ρ)

BA : (mω/h̄)ρ2 = 2κr, kb = ka, (1/2)Lb = La, ρ−1/2ψb(ρ) = ψa(r)

which are all invertible. Although none of the energy formulas discussed earlier for the power-duality works when
the Morse (non-power-law) potential is involved, transforming one of the bound state conditions to another suffices
as each condition generates an energy spectrum. Let χ(ks, ηsLs) represent the condition ks − ηsLs − 1

2 = ν where
s = a, b, c, and ηa = ηc = 1 and ηb = 1/2. The map χ(ks, ηsLs) ⇒ χ(ks′ , ηs′Ls′ ) induces Es ⇒ Es′ .

χ(kc, Lc) Ec
CA ↙ ↖ BC ⇒ CA ↙ ↖ BC

χ(ka, La) −→ χ(kb, 1
2 Lb) Ea −→ Eb

AB AB
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Finally, it must be mentioned that this triangular relation has been discussed in the context of so-called shape
invariant potentials in supersymmetric quantum mechanics [61]. It may also be worth pointing out that the three
systems share the SU(1, 1) dynamical group [40,45].
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