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The origin of cancer remains one of the most important enigmas in modern biology. The prevailing paradigm
has failed to grasp a comprehensive view of the disease. Naturally, therapies developed under the current
assumptions are inadequate and cancer is practically an incurable disease. Meanwhile, descriptive studies
continuously extend the molecular complexity of cancer without an equivalent advancement in its
understanding. Furthermore, they tend to accumulate inconsistencies inexplicable under the classical view.
This paper presents a compelling theory of the origin of carcinomas. By hypothesis, a series of generic events
in epithelial tissues promoted by cellular aging and inflammation enables the reactivation of developmental
programs. The origin of carcinomas in vivo is described as the time-ordered cell state transitions undergone by
epithelial cells in the hyperplasia due to replicative senescence and inflammation towards a mesenchymal
undifferentiated endogenous cell state with cancerous behavior. In support of the theory, the molecular,
cellular, and histopathological evidence is critically reviewed. A plausible model for the origin of carcinomas
is presented to explain the mechanism underlying carcinogenesis from an evolutive and developmental
perspective. The implications of the hypothesis in the current strategies for cancer prevention and treatment
are discussed along with rational alternatives and some predictions for possible experimental validation.
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Introduction

Cancer is one of the leading causes of death worldwide. Every year 14 million people are diagnosed and 9
million will die from cancer. Despite the enormous amount of research and financial support during the last
seven decades, no significant differences have been observed in mortality rates ®. Late diagnosis has been
considered the main challenge in oncology since therapy is ineffective in advanced stages. Currently, over
half of the patients are diagnosed with metastatic disease 2 and 90% will experience therapy failure due to
tumor resistance or unbearable side effects 2. The initial favorable response in the control of tumor growth is
inexorably followed by the progression despite therapy in less than six months 4. Regarding toxicity, the
mortality derived from cancer therapeutics itself may appear in 50% of the cases during the first month of
application 5. The side effects are responsible for 20% of the suspension of the protocol since patients could
experience intolerable mucositis, myelosuppression, pulmonary fibrosis, cardiotoxicity, hepatotoxicity, and
nephrotoxicity 6 Strikingly, most antineoplastic agents and radiotherapy induce cancer in animals and
humans, including the oncologic patients in which they are called secondary cancers 7. Despite over 50 years
of research since the original protocols against cancer, the overall contribution of chemoradiation to survival
is less than 2% & and there is no convincing evidence that the newer and expensive agents outperform his
predecessors * 0, In essence, the lack of understanding of cancer itself, how it develops, and progresses
continues to halt the development of effective therapeutic strategies % 2,
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The prevailing paradigm for the origin of cancer is the somatic mutation theory. From this perspective, cancer
is a genetic disease in which DNA mutations lead to a cancerous phenotype *3. Despite the lack of success, the
rationale of therapy has been to kill cancer cells mostly with DNA poisons in combination with agents that
target the molecular alterations conferred by the acquired genetic traits 8. According to the somatic mutation
theory the genetic alterations allow cancer cells to proliferate uncontrollably, the ability to invade nearby and
distant tissues, thus compromising systemic functions that eventually cause death. The processes that are
considered altered in cancer cells are the proliferation signals, the evasion of growth suppression, the
resistance of cell death, the restoration of limitless replicative capacity, changes in energy metabolism, the
activation of invasion and migration. Furthermore, it assumes that cancer cells are constantly evolving due to
genomic instability and by a Darwinian mechanism cells become resistant to therapy and able to escape the
immune response. Additionally, mutations somehow confer tumors the capacity to reshape the tumor
microenvironment to support its progression by the reactivation of processes such as angiogenesis and
inflammation 4.

Despite the massive resources devoted to genomic sequencing of human cancers, in essence, it has not been
possible to find an underlying genetic cause for carcinogenesis. Most oncogenes and tumor suppressors play
crucial roles in the normal biology of cells 5. The somatic mutation theory is also challenged by several
experimental inconsistencies, for example, many carcinogens lack from mutagenic effects 2, cancer cells
show morphological and transcriptional convergence regardless of the initial cellular phenotype ¢, and
cancerous behavior can be adopted through processes of transdifferentiation 7. Notably, the reversion of the
malignant phenotype is possible through the induction of differentiation using chemical agents *8, vitamins ¢,
transcription factors 2°, and interactions with the extracellular matrix or the stroma 2%. Those findings are
incomprehensible with the current paradigm, and at the same time suggest an endogenous cellular state that
can be accessed or discarded according to the nature of the stimulus.

In this paper, an alternative framework to understand the emergence and progression of carcinomas is
proposed. In this hypothesis, it is considered that the functional, molecular, and developmental properties of
epithelial cells, together with their organization as tissue promote their transformation. In addition,
carcinomas share a pattern of histological progression and molecular events that suggest a generic process
underlying carcinogenesis. Hence, one of the premises is that cancer is organized by conserved mechanisms
operating behind the genetic alterations. Is proposed that hyperplasias enable the reactivation of
developmental processes and that malignant cells arise from cellular senescence using time-ordered cell state
transitions. In support of the idea, is provided a detailed overview of the molecular, cellular, and structural
process that allows the reiteration of embryonic programs in epithelial hyperplasia. To accomplish an
integrated hypothesis for the origin of carcinomas, this paper challenges the granted role of mutations,
senescence, inflammation, fibroblasts, stem cells, and the epithelial to mesenchymal transition in
carcinogenesis. Instead, the plasticity of epithelial cells induced by aging, inflammation, and tissue
rearrangements are considered the most important factors for in vivo carcinogenesis. Cancer as the
pathological outcome of the same mechanisms activated in development and during tissue regeneration.

The paper is organized into eight parts. The first presents the intrinsic plasticity of epithelial cells, the
progressive nature of carcinomas, and the conserved histological and molecular events during their
carcinogenesis. The second part covers the current role of senescent cells in carcinogenesis and their
susceptibility to transformation. The third part focuses on the epithelial to mesenchymal transition and the
mirroring of epithelial carcinogenesis with the spontaneous immortalization of epithelial cells in vitro. Part
fourth presents the theory of the origin of carcinoma and the impact of aging, inflammation, and structural
factors in tissues and their implication on the nature of metastasis. Part five covers aspects related to
inflammation and cellular plasticity. Section six is devoted to uncovering the elusive nature of myofibroblasts.
In part seven is discussed stemness as the cellular state with malignant behavior and cancer and chronic


https://doi.org/10.20944/preprints202101.0514.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021 doi:10.20944/preprints202101.0514.v1

diseases as part of development. The last section discusses the current strategies of cancer prevention and
therapy in the light of the hypothesis and suggests a rational alternative and some predictions for possible
experimental validation.

1. The epithelial cells and the transformation of the epithelium
1.1. The intrinsic plasticity of epithelial cells

Cancer that originates from epithelial tissue is called a carcinoma and is the most common type of neoplasia
in humans. Up to 85% of cancer diagnosed in adults begins in the skin, breast, endometrium, prostate, colon,
lung, pancreas, bladder, liver, or cervix 22, In general, epithelial tissues are constituted by two types of cells,
the epithelial cells that line the surface of a tissue or organ and the mesenchymal cells located in the
extracellular matrix. At the microscopic level, they are composed of epithelial cells attached to the basement
membrane, which establishes an axis of apical-basal polarity and they communicate with each other through
cell-cell interactions. Below the basement membrane is the stroma, which is formed by the three-dimensional
extracellular matrix synthesized by the mesenchymal cells. Broadly, epithelia form specialized three-
dimensional structures adapted to their physiological function, as is the case with secretory organs. These
tissues secrete glandular products mainly from the apical surface and some also from the basal surface.
Epithelial cells also have a polarized distribution of organelles with distinct apical and basolateral domains.
Transmembrane proteins have cytoplasmic tails that bind to elements of the cytoskeleton, forming protein
complexes necessary for their organization. These domains allow the polarity of the plasma membrane to be
established, they provide an adhesion site for intercellular junctions and anchoring for the molecules of the
intracellular signaling pathways responsible for the differentiation and survival of epithelial cells %.

Transcription factors with a conserved ETS domain (epithelium-specific) are considered specific to epithelia
and play a crucial role in their differentiation. This family of proteins has 26 members, which are important
mediators in the morphogenesis and development of epithelial tissues by regulating their gene expression. The
conserved ETS domain allows direct binding to promoter and enhancer regions of target genes crucial for the
proliferation and formation of the cellular interactions of epithelial cells. The studies of mice in which the
expression of ETS proteins was genetically eliminated revealed their importance in the correct differentiation
of the structures of epithelial tissues 2*. Some members of the family have been identified ubiquitously
expressed, however, a subgroup called ESE proteins (ETS specific of epithelium) are reserved for epithelial
tissues 2. These transcription factors are ESE-1, ESE-2, ESE-3, and the PDEF (Prostate-derived Ets factor).
The transcription factor ESE-1 is widely expressed in organs such as the lung, stomach, kidneys, colon, and
skin 2 27 ESE-3 is constitutively expressed in the lung epithelium, prostate, pancreas, salivary glands, and
trachea 28. PDEF is specifically expressed in the glandular epithelial cells of the prostate 2°. Finally, the
transcription factor ESE-2 is expressed from the extra-embryonic ectodermal lineage, it is essential for the
survival of the embryo and in the formation of the placenta in mammals. This protein is expressed in the
mammary gland, salivary gland, kidney, stomach, and skin 3°. Consistently, it has been found that the
silencing or downregulation of the ESE family of proteins is necessary for the loss of differentiation of the
epithelial phenotype and the generation of carcinomas 3.

Epithelial cells are terminally differentiated; however, they maintain great cellular plasticity that is evident
since the early stages of development. This intrinsic plasticity could be the origin of the susceptibility of
epithelial tissues to malignant transformation. Interestingly, the first type of differentiated tissue to emerge
during embryo development is the epithelia. From the eight-cell stage until the blastula, the blastomeres
adhere using the binding protein epithelial cadherin (E-cadherin) and syndecan. This allows the aggregation
of cells and the formation of a two-dimensional sheet. Differentiation of the epithelium is further promoted by
the interaction of receptors with components of the basal lamina. The second phenotype in appearing is
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mesenchymal, it arises from epithelial cells that undergo the process of epithelial to mesenchymal transition
(EMT). The mesenchymal phenotype basically emerges from the suppression of the factors that induce
epithelial differentiation 2. The increased expression of the zinc-finger binding transcription factor (Snail),
the Snail Family Transcriptional Repressor 2 (Slug), the twist family bHLH transcription factor 1 (Twistl),
the Twist-related protein 2 (Twist2), and the Zinc finger E-box-binding homeobox protein 1 (ZEB1) and
ZEB2 promote the downregulation of the ESE proteins. As a result, the E-cadherin and the epithelial
phenotype are substituted by the neural cadherin (N-cadherin), vimentin, and the rest of the mesenchymal
biomarkers and the eventual full acquisition of a fibroblastic morphology *2. The process of EMT begins in
the gastrulation with the breakdown of the basement membrane that underly the epiblast and is associated
with the effects of fibroblast growth factor (FGF) on cells of the primitive streak and with the activation of the
mesenchymal transcription factors such as Snail. The induction of EMT is completed with additional signals
that lead to the migration of cells within the primitive streak. These cells undergo the reverse process called
the mesenchymal to epithelial transition (MET) and originate the endoderm or remain differentiated in the
mesenchyme and create the mesoderm. This migration of mesenchymal cells through the embryo is essential
for proper morphogenesis *.

The intrinsic plasticity of epithelial cells displayed during embryo development resembles many of the
observed phenomena in the carcinogenesis of epithelial tissues. Therefore, the events that result in the
reactivation of such a process in the adult could be sufficient to initiate the malignant transformation of the
epithelium and its dissemination, which outcome is the lethal metastatic disease.

1.2. The carcinogenesis of epithelial tissues

The incidence of carcinomas increases exponentially with age, especially in patients suffering from chronic
inflammation. The relationship between aging, inflammation, and tumorigenesis is traditionally understood
from the genetic point of view of cancer. Namely, aging and inflammation increase the chances of developing
and accumulating random somatic mutations that eventually generate clones of epithelial cells with cancerous
characteristics 3. In contrast, a thoughtful examination of the histological progression of carcinomas in adults
suggests a robust pattern of cellular and molecular events that suggest developmental processes rather than
events generated by chance.

Histology is the study of the anatomy of cells and tissues and remains as the gold standard for cancer
diagnosis. No molecular studies have overcome the careful examination of tissues in the microscope. The
appearance of the epithelial tissue determines whether is normal, hyperplasic, or cancerous and its degree of
malignancy. The use of complementary techniques provides a deeper insight into the molecular events that
are taking place in the tissue by the identification of biomarkers. In this regard, current histological data
support the progressive nature of carcinomas %%, From this perspective, carcinomas are preceded by atypical
hyperplasia that in turn progress from typical hyperplasia. The presence of atypia increases five times the risk
of developing carcinomas. Therefore, atypical hyperplasia is considered the precursor of carcinoma in situ
(CIS), which in turn increases 10 times the relative risk of developing invasive carcinoma. The carcinoma
arising from the CIS then progresses from low to high histological grade (G1-G2-G3). The latter is a
classification that describes the cellular and nuclear characteristics of cells and stages its degree of
differentiation ¥7. Furthermore, the histological progression of carcinomas in humans is also recapitulated in
murine models of chemical carcinogenesis * (Fig. 1.).

It seems very unlikely that the temporal order of histological events during epithelial carcinogenesis is the
random result of genetic mutations and Darwinian selection. Instead, the progressive transformation of
epithelial tissues suits better the premises of cancer as a developmental disease. From this perspective, cancer
emerges by the reactivation of embryonic programs and not from novel traits earned by mutagenesis .
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Fig. 1. The progressive nature of carcinomas.
Hyperplasia is considered the precursor lesion of cancer that originates in epithelial tissues. The diagnosis of atypical hyperplasias
increases the risk of being subsequently diagnosed with invasive cancer “. In hyperplasias, are common the detection of biomarkers of
cellular senescence such as short telomeres, expression of the protein p16, and the infiltration of immune cells 3. As it progresses to
carcinoma, the recovery in the length of the telomeres, telomerase enzyme activity is observed while decreasing the presence of senescent
cells * %, In high-grade carcinomas, glandular histology and biomarkers of epithelial differentiation are lost “ 4’ together with an
increase in the expression of transcription factors of a mesenchymal phenotype, the presence of metastases ¢, and stem cell biomarkers .

The following section describes the molecular events that would trigger epithelial carcinogenesis during
aging, the role of inflammation, and the process that shapes the histological progression towards the gradual
loss of differentiation.

2. The aging of epithelial tissues
2.1. The hyperplasia stains positive for senescence

The hyperplasias of the epithelial tissue are characterized by the presence of senescent cells, but its
progression to carcinomas is accompanied by their lost 4 0. Therefore, the changes that hyperplasia
undergoes in vivo are crucial for the understanding of epithelial carcinogenesis. The presence of senescent
cells increases with age, mainly in tissues that contain mitotically competent cells 5%, which is consistent with
the steady proliferation of epithelial tissues for their renewal and the maintenance of functions 52. However,
inherent to the biochemistry of the replication of genetic material, telomeric DNA base pairs are lost in each
cell cycle. Telomeres are DNA sequences that, together with associated proteins, cover and stabilize the ends
of chromosomes and prevent them from degradation or fusion 3. Eventually, short telomeres activate a signal
of genetic damage that originate cell cycle arrest and the acquisition of the phenotype known as replicative
cellular senescence %*. Senescent cells coexist with short telomeres in hyperplasias and trace the mitotic rate
of the affected epithelial tissue .

The DNA damage response (DDR) is activated by telomere erosion %. In senescent cells are detected
structures in the telomeres known as the DNA repair foci, that are also formed during double-strand breaks .
One of the initial steps in the formation of those compartments is the phosphorylation of the histone family
member X (H2AX) by the ATM protein kinase (Ataxia telangiectasia mutated) %, which also activates the
proteins p53 and Chk2 (Checkpoint kinase 2) . In turn, p53 activates its transcriptional targets, such as the
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cyclin-dependent kinase inhibitor 1 (p21) % and PML (Promyelocytic leukemia protein) 5; both recognized
biomarkers of senescence 2. The p21 protein inhibits the activity of the cyclin-CDK 2/4 complexes and the
family of transcription factors E2F leading to cell cycle arrest 8. The PML protein is an essential component
of the nuclear bodies that also accumulate in the senescent cells . These compartments of proteins belong to
the nuclear matrix, a superstructure related to DNA replication, transcription, and epigenetic silencing .
PML recruits the proteins cyclin-dependent kinase inhibitor 2A (p16), p53, and the pRb / E2F complex to the
nuclear bodies and modulates the expression of genes associated with cellular senescence . The gene p16 is
located within the locus of the inhibitors of kinase (Ink4b/ARF/Ink4a) on chromosome 9p21. The locus
encodes three genes; p16 and using an alternative reading frame (ARF) is enabled the transcription of the
ARF protein product of CDKN2A (p14), and the cyclin-dependent kinase inhibitor 2B (p15) . The induction
of senescence recruits the polycomb proteins (PcG), the Jumonji domain-containing protein 3 (Jmjd3), the
enhancer of zeste homologue 2 (EZH2), and the Mixed lineage leukemia 1 protein (MLL1) to the locus
Ink4b/ARF/Ink4a . The dissociation of the PcG proteins and the activity of the histone demethylases and
methyltransferases result in the reconfiguration of chromatin and the transcriptional capability of cells 8. On
the other hand, the proteins p16 and p15 inhibit the activity of the cyclin-dependent kinase (CDK) 4 and 6
preventing both, the phosphorylation of Rb protein and the actions of the E2F 7°. Therefore, in senescence, the
reorganization of chromatin coexists with the cell-cycle arrest ™*. Besides, the pl4 protein increases the
activity of p53 by the negative regulation of its inhibitor the protein murine double minute 2 (Mdm2). Thus,
in senescent cells, the cell cycle arrest is temporarily amplified 72, but the epigenetic changes will have some
paradoxical consequences 3.

The cellular senescence was positioned as an irreversible arrest in the cell cycle which function in cancer as a
tumor suppressor. Hence, precancerous lesions should overcome senescence to restore proliferation ™ by
mutations or deregulation in the p16 and p53 signaling pathways ™. Later, the description of the secretory
phenotype of the senescent cells, not only reinforces the potential role of inflammation in the transformation
of the aged tissue but also offers a suitable explanation to overcome the molecular restrictions imposed in the
cell cycle. Namely, the increased production of the mediators of inflammation and reactive oxygen species
would lead to an increased chance of mutations that results in the abrogation of cellular senescence. The
secretion of senescent cells includes cytokines, chemokines, growth factors, and proteases "® which its
expression was found to be coordinated by the transcription nuclear factor kappa B (NF-xB) . This protein
itself portrays the process of inflammation, cancer development, and progression. The constitutive activation
of NF-xB is frequent in tumors and its effects include the induction of proliferation, migration, and the
inhibition of apoptosis 8. As consequence, the influence of the secretions of senescence cells on
inflammation, proliferation, and tissue microenvironment plays a bigger role in the current understanding of
the association of cellular aging and cancer. The premises are that in the initial phases of carcinogenesis, the
immune system destroys senescent cells but during aging their accumulation surpass the clearance and the
burden of inflammation became carcinogenic .

2.2. Overcoming the assumed role of cellular senescence

In this paper, a new role of senescent cells in epithelial carcinogenesis is considered. By hypothesis, the origin
of carcinoma is the result of cellular transitions from senescent cells. To fully embrace the proposal is
necessary to consider the replicative senescence as a cellular phenotype, and to explore the concept of cellular
transitions and their interplay with the histological context. It is hypothesized that hyperplasia is the most
plausible scenario to foster cellular transitions in vivo and cells arising from such events of transdifferentiation
are primed with cancerous behavior. Therefore, aging and inflammation induce a deregulated but still
endogenous cellular plasticity, which is the ultimate culprit for epithelial carcinogenesis.

The boundaries imposed in the concept of cellular senescence in carcinogenesis has been surpassed
consistently in cell cultures. The epithelial cells overcome senescence in the absence of mutations in the locus
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Ink4b/ARF/Ink4a & 8 and far from being irreversible &, the cellular state of senescence is now considered an
unstable condition from which cells eventually emerge #. Furthermore, cellular senescence can be viewed as
a cell fate since any cell regardless of its original lineage activates the same conserved program. The
senescence is accompanied by the loss of its initial cellular biomarkers, morphology, and transcriptome 8,
Cells accumulate in the G1/G2 phase of the cell cycle despite nutrients and growth factors . The metabolism
remains active, acquires a greater adhesion to the extracellular matrix, albeit with the loss cell-cell contacts.
The cells became secretory and more resistant to apoptosis . The structural rearrangements in the chromatin
of senescent cells are so significant that can be viewed by light microscopy. The variations in the nuclear
lamina are accompanied by the loss of heterochromatin domains and the gain of heterochromatic foci .
Further molecular studies showed that the epigenome of replicative senescent cells undergo significant
hypomethylation, and the result is the loss of repression of thousands of genes including those associated with
cancer development ,

The preceding is considered as a plausible endogenous event of epigenetic reprogramming in the epithelial
hyperplasia. Cell reprogramming refers to the induction of the loss of cell differentiation in somatic cells
towards an embryonic stem cell phenotype. In this context, the process of the epithelial cell undergoing
replicative exhaustion is viewed as the first cellular transition, which means a lineage conversion among
different cell phenotypes. The switch into another cell type of a different lineage through genetic
reprogramming is also called transdifferentiation. Under this view, the replicative senescence predisposes the
epithelia to carcinogenesis by epigenetic events. Once in the senescent state, the cell is prone to further
cellular transitions and the mechanism that links the abrogation of cellular senescence along with subsequent
events of dedifferentiation and carcinogenesis associates with inflammation. Observations of the
transformation of hyperplasias and cultures of epithelial cells provide evidence of this assumption.

3. The transformation of epithelial tissues
3.1. Beyond cellular senescence
The concept of immunosurveillance considers the elimination of cancer cells as one of the most important
functions of the immune system. For this reason, the infiltration of leukocytes in neoplasms was explained as
an attempt of our body to destroy premalignant cells. Paradoxically, several studies have been shown that the
infiltration of hyperplasias is positively correlated with their histological progression towards invasive
carcinomas 87,

According to the essential thesis of this paper, the senescent cells in vivo undergo another cellular transition
by the effect of the cytokines along with the structural changes fostered by the inflammation in the
microenvironment of the hyperplasia. The infiltration of cells of the immune system into epithelial
hyperplasias occurs due to the secretory phenotype of the senescent cells. The consequence is an
inflammatory cellular response that increases the concentration of cytokines creating a positive feedback loop.
Then, it is theorized that a certain threshold of inflammation is necessary before the induction of an EMT-like
transition in senescent cells, the result is cells that arise with cancerous behavior (Fig. 2.).

The relationship of the EMT with the suppression of cellular senescence in epithelial cells has been discussed
primarily in the context of cancer progression. Consistent with the suggested temporal order of cellular
transitions, it has been documented in the cultures of cancer cell lines that undergo senescence the emergence
of subpopulations of cells with high expression of the mesenchymal transcription factor Zeb. Furthermore, the
induction of oncogene overexpression first induces the senescence of cells, and upon the ectopic
overexpression of the mesenchymal transcription factor Twist, the cellular senescence is eliminated by the
induction of EMT. The effect of many oncogenic signals on senescent cells is accompanied by EMT and the
transformation from the flat cell phenotype to a fibroblast morphology and the upregulation of the
mesenchymal biomarkers %. The capacity of the soluble mediators of inflammation to induce EMT in cell
lines derived from carcinoma has been reviewed extensively ®L. The cytokines tumor necrosis factor alpha
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(TNFa), the transforming growth factor beta (TGFp), interleukin 1 beta (IL1p), and the interleukin 6 (IL6)
converge in the activation of the transcription factor NF-xB 2%, which constant stimulation upregulates the
expression of Snail, Slug, Twist, Zeb and the Forkhead Box C2 (FOXC2). In turn, the mesenchymal
transcription factors repress the locus Ink4b/ARF/Ink4a and the ETS transcription factors %%, The detection
of biomarkers of EMT and inflammation correlates with poor clinical outcomes, and the connection of the
mesenchymal proteins in surpassing senescence in vivo is supported by the inverse correlation of the
biomarkers in carcinomas . It can be said that all the characteristics to became a cancer cell are enabled
through a single process of transdifferentiation '®. Cells subjected to EMT acquire metastatic capacity,
resistance to apoptosis, immune evasion, stem cell qualities, and resistance to anti-cancer therapies.
Furthermore, the process of EMT can be induced also by changes in the extracellular matrix (ECM), such as
mechanical forces, matrix metalloproteinases (MMPs), and cytoskeletal rearrangements, hypoxia, pH,
chemotherapy; doxorubicin, gemcitabine, fluorouracil, bevacizumab, nivolumab and radiotherapy 1. The
epithelial tissue affected with infiltrated hyperplasia possesses favorable conditions for the induction of the
EMT in senescent cells from which emerge cells primed for carcinogenesis. The same order of cellular
transitions is observed in the spontaneous immortalization of epithelial cells, and suggest a principle, a
generic pattern that may be recreated during epithelial carcinogenesis in vivo.

Replicative cellular

senescence Mesenchymal stem cell
Epithelial cell proliferate EMT induced by
until telomere attrition cytokines

Abrogation of cellular
senescence

Fig. 2. Epithelial carcinogenesis is the consequence of cellular transitions.
The hypothesis considers that tissues exposed to cell proliferation eventually become enriched with senescent cells. The hyperplastic
lesions will be infiltrated by immune cells that may induce EMT of senescent cells in vivo. The result is a cell that emerges with the
ability to induce carcinomas. During the spontaneous immortalization of normal cells in vitro, the same series of cellular transitions is
experienced by epithelial cells that arise from senescence with markers of basal lineage such as vimentin adopting a fibroblast
morphology.

3.2. The order of cell immortalization
The study of primary cultures of normal human mammary epithelial cells has shown that cells can overcome
senescence since the tenth doubling time. Those cells lose the expression of p1l6 and beta-galactosidase and
resume proliferation. The overexpression of the proteins p53, p21, and the presence of chromosomal
abnormalities are common findings. They include translocations, deletions, rearrangements, telomeric
associations, polyploidy, and aneuploidy 8. Those reports also describe the gradual loss of epithelial markers
since the 15-30 doubling time and the transformation of the luminal phenotype (epithelial) to a fibroblast
morphology (basal or myoepithelial) with vimentin expression. The spontaneous immortalization over the
long-term passages is understood as the consequence of genetic damage that result in the loss of p16, and
telomerase reactivation 102, Regardless of the cause, this phenomenon implies an especially illustrative
connection between cellular senescence with EMT and supports the temporal order of cellular transitions
suggested by the hypothesis (Fig. 2.). Thus, the spontaneous immortalization of epithelial cells in vitro may
parallel the histological progression of carcinomas in vivo. The association of aging and inflammation with
the increased chances for carcinoma development could be reduced to cellular transitions. However, as
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outlined above the immortalization of normal epithelial cells, and the abrogation of cellular senescence by
inflammatory cytokines culminates with the emergence of cells morphological and transcriptional more
related to mesenchymal stem cells.

This hypothetical origin of carcinomas is incompatible with the notion that cancers from the epithelial tissue
must correspond with epithelial cells that acquire malignant traits by mutations. Furthermore, the cancers that
arise from mesenchymal tissues are sarcomas. To address these conceptual inconsistencies is necessary an
overview of the staging and prognosis of carcinoma. The following demonstrates that the hypothesis is more
compatible with the facts, although still controversial under current assumptions. For example, the five-year
relative survival rate of most carcinomas depends on the stage at diagnosis. In the TNM staging system, this
means a global stratification based on the size of the primary tumor, the affected lymph nodes, and the
presence of metastases . In the histological staging, the cancerous tissue is classified according to the
degree of differentiation. Low-grade carcinomas show characteristics of normal tissue and tend to grow
slowly. In contrast, high-grade cancers are poorly differentiated, lose the characteristics of normal epithelium,
tend to grow faster, and respond poorly to therapy. Histologic grade is a prognostic factor for overall survival
despite any TNM status. Essentially, in both systems, the probability of patients surviving more than five
years exceeds ninety percent unless they already present metastasis or high grade at diagnosis 1%.

A notorious event during the progression towards a carcinoma of high grade is the inversion in the ratio
epithelium to the stroma. In other words, the content of mesenchymal cells % and the expression of their
markers increase, such as vimentin, the alpha smooth muscle actin (a-SMA), N-cadherin, cadherin-11, and
secreted protein acidic and rich in cysteine (SPARC) 1%, outnumbering the epithelial proteins. Additionally,
the proportion of stromal content is an independent factor of poor prognosis 1°. Overall, it might be
considered that both, the immortalization of normal epithelial cells in vitro and the lethality of carcinomas in
vivo requires the adoption of mesenchymal traits.

3.3. The unavoidable fibroblasts contamination

Fibroblasts are considered the main effectors of fibrosis in normal or pathological conditions. The
conventional view of fibrosis during epithelial carcinogenesis depicts that cancer-associated fibroblasts are
cells programmed for the tumor to foster its progression %, These cells are the most abundant entity in the
carcinoma microenvironment and compelling evidence demonstrated their abilities to promote all the so-
called hallmarks of cancer 1. In contrast to normal fibroblasts, they possess an increased proliferation rate
and autocrine signaling. Over the years the presumed source of the cancer-associated fibroblasts has been
evolving with observations that indicate an origin in the resident fibroblasts, pericytes, bone marrow, and
more recently from epithelial cancer cells that undergo EMT in vivo 1%,

The investigation of the formation of fibrosis during inflammatory conditions clearly showed that normal
epithelial cells can assume a mesenchymal phenotype and contribute to the generation of connective tissue
associated with stromal proliferation and with scar formation 1°. With the arrival of more sophisticated
techniques, it was possible to gather conclusive evidence that not only does tumor epithelial cells in vivo give
rise to cancer-associated fibroblasts but also that cells emerge with the expression profile of cancer stem cells
109, The mesenchymal impurity of the carcinomas is an endless anomaly in the study of epithelial cancers. The
establishment of epithelial cell lines for the study of carcinogenesis has historically faced the phenomenon of
the emergence of fibroblasts along with the loss of the proliferative potential of epithelial cells 't. Even
current attempts for the ex vivo evaluation of the chemosensitivity of tumors deals with the contamination of
the samples by mesenchymal cells. Interestingly, the fibroblasts are more resistant to drugs than epithelial
cells derived from the same tumor 2. Despite the findings, at best, the fibroblasts remain relegated as
secondary players in epithelial carcinogenesis.

If the hypothesis is correct, the low-grade epithelial tumors are benign tissues in their way of transformation.
This implies that the real carcinoma begins once a certain threshold of restrictions is surpassed and the events
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of transdifferentiation and the stabilization of the mesenchymal phenotype are favored. This stage would
correspond with the high-grade carcinomas. These assumptions also explain the large difference in survival
between the well-differentiated tumors versus the high-grade carcinomas. Therefore, is theorized that
carcinomas are lethal once the mesenchymal phenotype is reached and stabilized. The previous stages are part
of the necessary process for the in vivo reprogramming. The proposal that the origin of carcinoma lies in the
mesenchymal cells that arise from senescence in epithelial hyperplasia can solve another recognized paradox.

In the presence of TGFB, the normal epithelial cells arrest their cell cycle. Thus, this cytokine was considered
a potential effective anticancer agent in the management of carcinomas. The studies showed that it restrains
the growth in early-stage tumors, however, an opposite effect resulted in advanced carcinomas. It was logical
to justify the apparent dual activity to the loss of the regulation in the TGFp pathway during carcinoma
progression, in which tumor cells shifted the signal into proliferation and invasion 3. According to the
hypothesis is expected that the TGFp presents the ability to foster tumor progression in advanced stages if
carcinomas are mesenchymal driven diseases. Observations from the immortalization of normal epithelial
cells indicate that the ability to sustain growth in presence of TGFJ develops along with the adoption of a
fibroblast-like morphology 2. This is also consistent with the carcinoma cell lines, in which the ability to
induce tumorigenesis is reserved for the cells with fibroblastic morphology 4. It is also not surprising that the
proliferation of mesenchymal stem cells can be stimulated by TGFB signaling . The unavoidable
progression of carcinomas towards independence from ligands explains the temporal responses observed
using hormonal agents or targeted therapy ‘6. The process is naturally understandable if the mesenchymal
undifferentiated cells are considered the phenotype responsible for carcinomas. Furthermore, is unnecessary
to invoke complicated mutational molecular mechanisms to understand the process of progression as a whole,
since the induction of cellular transitions allows a discrete change in the cellular phenotype along with the
shift into autocrine signals, the lack of anoikis, and the dedifferentiation of the epithelium. Additionally, the
mesenchymal cells that arise from senescence in epithelial hyperplasia emerge with stemness and the ability
to induce cancer, but more importantly, they explain the cellular plasticity at play in the advanced stages of
carcinoma. Based on the hypothesis, is next provided an attempt to understand the underlying order in the
middle of complexity at play during the histological progression of carcinomas.

4. The origin of carcinoma

4.1. More than mesenchymal
The process of EMT was temporally viewed as a mechanism reactivated by tumor cells to acquire an invasive
phenotype. However, an increased number of experiments found that EMT also explains the cancer stem cell
phenotype 7, the resistance to chemotherapy 8 11°, the immune system evasion, and the ability to induce
tumors and their heterogeneity 2. Consistent with the hypothesis, mesenchymal cells that emerge from
cellular transitions are not simple fibroblasts, the empirical evidence confirms that EMT generates cells with
the expression of the set of pluripotent genes, such as, SRY-Box Transcription Factor 2 (SOX2), the
homeobox pluripotency transcription factor (Nanog), the octamer-binding transcription factor 4 (Oct4), the
RNA-binding protein that regulates MRNA translation in embryonic stem cells (Lin28B), and the neurogenic
locus notch homolog protein 1 (Notchl) 17121, Despite being a small proportion of the tumor, the cancer stem
cells are considered the main culprits of tumor relapse after cancer therapy 2. Their functional
characterization to seed new tumors have been reviewed by the analysis of expression of cell surface markers,
the formation of mammospheres, and using the xenotransplantation limiting dilution assay %3 24, The
induction of EMT by inflammatory cytokines also generates cancer stem cells, and carcinomas show a
correlation among the biomarkers of the process of inflammation, EMT, and stemness. The increased levels
of proinflammatory cytokines in vivo has been linked with the induction of EMT and the accumulation of
cancer stem cells in tumors 25, Notwithstanding extensive empirical evidence indicating that the EMT might
be the source of most aspects relevant for cancer, its contribution to in vivo carcinogenesis remains at debate
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126 Since high-grade carcinomas are not a homogenous mass of mesenchymal stem cells and the metastasis
manifest an epithelial phenotype, to support the hypothesis it is necessary to explain the generation of
heterogeneity and metastasis. In the case of tumor heterogeneity is almost self-explanatory since the process
of EMT originates fibroblasts, cancer stem cells, vascular endothelial cells, and pericytes 1°° (reviewed in
section 6). On the other hand, the change in microenvironment enables the MET of tumor cells and offers a
compelling origin for the epithelial phenotype of metastasis. In the hormone-independent breast cancer cells
MDA-MB-231, which present in vitro a mesenchymal phenotype, the metastatic lesions that generate in mice
express the protein E-cadherin and display an epithelial phenotype %" 128, Furthermore, the process of MET
was triggered by the interaction of cells with the parenchyma of the lungs and bones. At the molecular level,
the reversion of EMT involves the negative regulation of the mesenchymal transcription factors product of the
downstream signals of the microenvironment while the epithelial proteins are activated ?° %, As is now
recognized, the induction of MET in vitro can reprogram fibroblasts into induced pluripotent stem cells
(iPSCs) that showed the expression of the transcription factors Oct4, the zinc finger-containing transcription
factor Krippel-like factor 4 (KLF4) along with the repression of the Snail 3L,

In general, the induction of epigenetic reprogramming in vivo as a result of the histological changes in the
hyperplasia suggests a plausible sequence of events for the reactivation of developmental programs that may
account for most observations during carcinogenesis. According to the hypothesis, at least two cellular
transitions are required for the generation of cancerous cells, however, the tumoral progression towards high-
grade carcinoma would need conditions in the tissue that foster the constant generation and maintenance of
the dedifferentiated cell states.

4.2. The Tissue Matters

The accumulation of senescent cells over the years compromises the renewal, structure, and function of the
tissues. Eventually, the burden of senescent cells in the hyperplasia would reach a threshold of inflammation
in which the cellular transitions towards the mesenchymal stem phenotype are attained. However, the
maintenance of the cancerous behavior and the increased rate of cellular transitions would need a permissive
microenvironment for carcinogenesis. This stage, perhaps, requires an extra input of proinflammatory
cytokines along with the irreversible loss of the extracellular matrix and cell-cell interactions. Hence, the
effects of senescence and inflammation in tissue architecture may explain the increased susceptibility to
carcinogenesis of the aged epithelial tissues.

The contribution of senescent cells to structural disruption include the secretion of epithelial growth factors
and proinflammatory cytokines that enhance the mitosis of epithelial cells and its eventual entry to senescence
182133 The monocyte chemoattractant protein 1 (MCP1) 3 is also liberated by senescent cells and upregulates
the migration and infiltration of monocytes, lymphocytes, and NK cells *3°. According to the hypothesis, is
possible that macrophage activation plays a major role in the progression of hyperplasia since its
transformation is consistently associated with their infiltration %, Macrophages are essential in normal
development and repair via tissue remodeling. Unlike the common view that tumor-associated macrophages
are a special type of cells reprogramed to sustain inflammation and tumor growth ¥, here is implied that the
positive feedback loop that emerges between senescent cells and the activated macrophages synergize for the
pathological transformation of the tissue in part by their production of MMPs and the degradation of the
structural constraints that normally impose a regulated cell behavior. The substrates of the MMPs include
many proteins in the extracellular matrix, proteinase inhibitors, cell surface receptors, and cell-cell adhesion
molecules 8. Both cell types express several MMPs that allow the cell detachment from the extracellular
matrix, the basal membrane, and cells 3. In this regard, clear evidence of the capacity of mechanical forces to
induce pluripotent stem cells has been presented ¥, The cell phenotype is coupled to cellular morphology and
stromal interactions through the signaling pathways that sense the mechanical stress of the cytoskeleton by the
focal adhesion kinase (FAK) that activates the transcription factor Yes-associated protein (YAP) and the
transcriptional co-activator with PDZ-binding motif (TAZ). These in turn are translocated to the nucleus and
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promote the transcription of genes associated with cell growth, resistance to apoptosis, and carcinogenesis.
Furthermore, the activation of the transcription factors YAP and TAZ is sufficient to induce cancer stem cells
140 Currently, is considered that tumors also reprogram normal fibroblast into cancer-associated fibroblast
since the only detected differences in them are the epigenetic pattern of methylation 142, The shift is associated
with a constant activation of NF-xB and the secretion of TGFp, IL6, MCPL1, the vascular endothelial growth
factor (VEGF), and MMPs. These secretions act autocrine, paracrine, and modify the organization and the
physical properties of the tissue microenvironment to promote fibroblast proliferation, the infiltration and
activation of macrophages and inflammation, the induction of EMT, metastasis, angiogenesis, and the
enrichment of cancer stem cells in the tumor microenvironment 42, On contrary, according to the hypothesis,
the cancer-associated fibroblasts correspond mostly with cells that arise from EMT, either from inflammation
or as the result of the stromal disruption, and would explain the gradual loss of senescent cells and the
increased stromal content during the progression to high-grade carcinoma. This stage implies the acquisition
of tumor autonomy and perhaps marks the irreversible arrow of carcinoma progression towards
dedifferentiation.

Overall, it is suggested that the first step in the origin of carcinomas involves the combination of an increased
number of senescent cells with the secretory phenotype, chronic inflammation, and mechanical disruption in
the hyperplasia. Then, its progression is allowed by the sustained levels of inflammation, the irreversible loss
of normal tissue architecture, and the amplification of the mesenchymal phenotype. The higher levels of
proinflammatory cytokines combined with relatively few possibilities of interactions with epithelial cells, and
the normal stroma that otherwise would prevent the cancerous phenotype results in the inexorable progression
to high-grade invasive carcinoma. In these tumoral conditions, the mesenchymal and the undifferentiated cell
phenotypes are preferentially sustained. However, the interaction of these cells with microenvironment clues
from the stroma, cells, parenchyma, and the oscillation of the endocrine milieu, such as the concentration of
oxygen, nutrients, and growth factors or the reduction in the levels of inflammation explain the tumor
heterogeneity and the formation of metastasis. On the other hand, it is likely that some dedifferentiated cells
that emerge within the tumor migrate and may differentiate into functional cells in healthy tissues, and most
importantly; the possibility that the underlying reason for the targeting of senescent cells by the immune
system, is the attempt to regenerate the tissue. In this sense, the origin of carcinoma is the pathological
consequence of a normal endogenous process of tissue regeneration.

5. Inflammation and cellular plasticity
5.1. Epithelial regeneration by cellular transitions

The notion of cancer as the result of overhealing is by no means new to pathology. As a result of the
hypothesis, a more encompassing view of epithelial carcinogenesis emerges and suggests an endogenous
mechanism by which the immune system undertakes the maintenance and rejuvenation of tissues by the
epigenetic reprogramming of damaged cells.

Inflammation has been linked to the pathophysiology of carcinomas and with almost every hallmark of the
cancer cell. Tumor tissues exhibit high levels of expression of cytokines compared to normal samples, and
their presence is also positively correlated with advanced tumor grade. Elevated serum levels of inflammation
are associated with adverse prognosis an increased number of metastases. The subsequent discovery that
cytokines can induce EMT and pluripotency in cancer cells renewed the interest in the relationship between
inflammation and cancer from a different perspective 3. However, it is important to notice that normal
epithelial cells exposed to interleukins experience the same effects ' 44, This implies an endogenous
mechanism by which inflammation induces cellular plasticity. In such a scheme, the outcome of the
epigenetic reprogramming in vivo of senescent cells might result in a recovery of the proliferative potential
along with normal epithelial phenotype. In the youth epithelia, the presence of stromal and cell interactions
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ensures the normal differentiation of the reprogramed cells and the outcome is the clearance of the secretions
of senescent cells and the resolution of inflammation.

Circumstantial evidence is emerging regarding the role of senescence, EMT, and inflammation in the
regeneration of tissues in vivo using epigenetic reprogramming . It turned out that the secretory phenotype
is essential for tissue repair, fibrosis reduction, and wound resolution *°. Furthermore, the locus
Ink4b/ARF/Ink4a and the production of IL6 were crucial for the induction of EMT and the expression of the
transcription factors cellular Myc (c-Myc), Oct4, Sox2, KIf4 during cell reprogramming and wound
regeneration in vivo 147,

The results can be interpreted as a mechanism of tissue renewal triggered by the senescent cells and
inflammation to induce epigenetic plasticity for the recovery of injured cells. In this scenario, the senescent
cells in the hyperplasia are cells with DNA damage that became inflamed, activate NF-xB, and release
proinflammatory cytokines and chemokines. The secretory phenotype attracts and activates the immune cells
that generate higher levels of tissue disruption and production of bioactive mediators. These situations would
promote the EMT in senescent cells since intrinsically are prone to reprogramming due to epigenetic
derepression. This event would allow access to an endogenous cell state with the abilities of self-repair, then,
the interactions of the dedifferentiated cell state with the normal tissue enable the proper instructions for the
attainment of the cell fate. Hence, stemness is transient, and the inflammation is resolved in the absence of
DDR. On the other hand, the combination of senescent cells with extended molecular damage and aberrant
structural microenvironment would sustain the generation of mesenchymal cells and the properties of cancer
stem cells. The lack of resolution of this attempt of healing would become the unavoidable histological
progression towards the lethal high-grade carcinoma. Hence, the origin of sporadic carcinomas is assumed as
the consequence of the endogenous process of healing in aged and inflamed tissues. The argument presented
above is based on common observations in carcinomas although from a different insight. In the next section it
is compared with the prevalent paradigm, alternative proposals, and then is provided a unified view of
epithelial carcinogenesis.

5.2. Cellular plasticity unifies the models of carcinogenesis

There are several features inherent to cancer, such as the genetic and chromatin damage, the disruption of
tissue during the formation of tumors and metastasis, the multistep nature of carcinogenesis, an association
with aging and inflammation, and the remarkable similitude with the process of wound healing and embryo
development 48, Accordingly, the models that have been proposed in the history of cancer research adopted
those observations into their premises. Through the years the dominant paradigms evolve, but essentially the
new findings were customized into their original assumptions. The following provides a brief description of
each, its premises, and their interpretations of the evidence.

The somatic mutation theory posits that the accumulation of mutations in the genetic material of epithelial
cells is favored as a function of time and the increased levels of inflammation. The effect of telomere attrition,
chemical exposure, infections, or radiation would be additive in the accumulation of mutations and the
chances of acquisition of malignant traits *°. However, most of the malignant features arguably conferred by
oncogenes and tumor suppressors play essential roles in the normal biology of cells %, the random events of
mutations and Darwinian selection hardly explain the transcriptional convergence of high-grade cancers 28,
and carcinogenesis does not require mutagenesis *2. Additionally, the reversion of the malignant behavior 2
and the acquisition of the cancer stem phenotype through events of transdiferentiation 17 challenges entirely
the logic of this theory. The whole cancer phenomenon is attributed to a series of fortuitous mutagenic events
in different cell phenotypes which then are associated with a fixed purpose in carcinogenesis. Hence, it
demands the creation of at least the cancer version of the normal stem cells, macrophages, fibroblasts, or the
pathological variants of senescence, EMT, and inflammation. As a result of the inconsistencies, this paradigm
is moving towards epigenetic mechanisms to sustain most of its original premises.
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The importance of tissue architecture in cancer development was neglected by the somatic mutation theory
although adapted to some extent by considering the effects of tumoral cells under its microenvironment %,
The theory of the field of tissue organization addresses this, being the stroma the primary target of
carcinogens. The tumorigenesis of epithelium is explained by considering that tissue disruption releases the
inherent proliferative and motile behavior of normal cells. Hence, provides an explanation for the induction of
differentiation when tumors are exposed to the normal stroma, as well as the opposite effect of the acquisition
of malignant behavior of normal cells in response to abnormal stroma .. Although offers no integral
explanation for the process of carcinogenesis, exposes the limitations of the somatic mutation theory, and
offer some relevant premises, for example, that tissue integrity throughout aging diminishes, that mutations
are unrelated to causality, that cancer is a developmental process, and the possibility of tumoral reversion.

On the other hand, the notion of cancer as a deregulated process of healing takes into account the association
of chronic inflammation, fibrosis, and tissue disruption with carcinogenesis **2. Wound healing shares many
features with tumorigenesis, such as the presence of activated immune cells, cell migration, angiogenesis,
fibroblast, myofibroblast, and cell proliferation, the generation of stroma, the induction of EMT, and the
production of mediators for tissue remodeling. Despite the suggestions that hyperplasia may transform by
overhealing, and that tissue regeneration and carcinogenesis are linked at the molecular level, findings
regarding this posture remained mostly descriptive.

The view of cancer as a developmental disease highlights that embryo and tumor development are parallel
processes since both originate from a single cell that undergoes accelerated proliferation and migration using
the same mechanisms. Since the nineteenth century, pathologists suggest that tumors are a deregulated
process of development, and using modern molecular techniques was confirmed the reactivation of the
mechanisms normally associated with embryo morphogenesis 6 153 1% However, the identification of the
EMT, MET in the generation of cancer stem cells and metastasis, and the embryonic transcriptional profile of
high-grade carcinomas was mainly relegated as the result of the promoting effects of the tumor
microenvironment over the mutated cancerous cells.

Regarding the position of cancer as an embryonic or primitive preexistent cell-state, the view of cancer as an
atavistic state posits that in case of adverse conditions, cells reactivate an ancestral genetic program that was
suppressed during evolution. This cellular state would correspond with functions associated with survival as a
unicellular form. Hence, mutations may reactivate an endogenous behavior already primed for carcinogenesis
155 Likewise, the proposal of cancer attractors suggests that cancer is the result of cellular states closely
related to embryonic programs, but unable to differentiate. In this context, mutations or microenvironment
perturbations would allow access to the cancerous phenotype '°6. Both perspectives agree on the
undifferentiated nature of the cancer cell, and that carcinogens would promote the activation of an
endogenous cellular state.

The main hypotheses of carcinogenesis have been integrated or overlapped in various degrees through the
years. Invariably, most of them coincide that the event of genesis is associated with chromosome instability or
genetic damage. The importance of mutations was greatly influenced by the study of the mutagenic effects of
viruses or chemicals that induce cancer. Hence, cancers should probably originate from mutations in genes of
DNA repair. These ideas were then incorporated in the two-hit model, which established the need for a second
key mutation for tumor progression especially in genes that control cell proliferation 4°. That model prevails
and is used to understand the multi-step nature of carcinogenesis. In other words, that most solid cancers are
preceded by focal proliferative lesions, in the case of carcinomas the hyperplasia.

The different positions can be contextualized in a unified view of epithelial carcinogenesis. Telomere attrition
due to replicative exhaustion justifies the presence of DNA damage in cells that originate the tumor. Instead
of considering that the cancerous phenotype is created by mutations, selective silencing, or activation of
genes, is proposed that this event generates unspecific transcriptional derepression that in the first instance
lead to a discrete change in the cellular phenotype from which emerge the senescent cell. Chromosomal
anomalies accumulate in senescent cells, which number increase in aged tissues and raise the level of immune
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cell infiltration due to the secretory phenotype. Those events explain the long relationship of aging and
inflammation with the susceptibility of carcinoma development. Moreover, imply the multistep process of
carcinogenesis since the hyperplasia provides the conditions for the first hit necessary for the transformation,
but still is insufficient for the invasive and lethal behavior. Then, the higher burden of senescent cells and the
infiltration of immune cells contribute to the structural changes in the stroma and the loss of cell interactions
that allow deregulated in vivo reprogramming that essentially drives progression. This stage would correspond
in a sense, with the second hit, the disappearance of senescent biomarkers, and the rise of proteins associated
with inflammation, EMT, and cancer stem cells. In this setting, the proposed series of cellular transitions and
the progression towards dedifferentiated carcinoma partially relate with some of the premises of the theory of
the field of tissue organization and with the view of cancer as a developmental disease that is the consequence
of endogenous programs and undifferentiated phenotypes.

The increased transcriptional derepression of somatic cells in response to endogenous molecular damage or
extracellular interactions results in the emergence of a mesenchymal stem-like phenotype that would drive the
genesis and progression of the sporadic carcinomas. In the setting of the high-grade lesions or large-sized
tumors, the disruption of the tissue and the high levels of inflammation are enough to stabilize the cancerous
phenotype and explain the lack of differentiation and the autonomy that epitomizes the advanced carcinoma.
The hypothesis of the origin of carcinomas presented in this paper might be considered a model since is
rooted in observations and proposes mechanisms. In the context of this model, carcinomas can be collapsed
for simplicity into a series of cellular transitions in which the original cellular phenotype, the magnitude, and
type of perturbation govern the level of cellular plasticity (Fig. 3.).

Cytokine levels or inflammation ———

Cell-cell or stromal interactions

Fig. 3. Inflammation and cellular plasticity.

1) Studies in vitro have shown that cytokines induce mitosis of competent epithelial cells until they enter replicative cell senescence. 2)
Cells can escape cell arrest and acquire fibroblast morphology using EMT. 3) Cells undergoing EMT can achieve the stem cell phenotype
if they continue exposed to high concentrations of proinflammatory cytokines. 4) Exposure to high levels of inflammation can induce
EMT in normal epithelial cells and result in the emergence of mesenchymal stem cells. 5) The epigenetic reprogramming of epithelial
cells into induced stem cells is possible with inflammation. 6) Stromal interactions induce several grades of differentiation and explain
tumor heterogeneity, 7) the formation of metastasis by induction of MET, 8) and the maintenance and healing of aged tissues. In the main
text is provided empirical evidence of each cellular transition.
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According to the hypothesis, the main driver in the discrete switch in phenotype associated with the cellular
transitions underlying carcinogenesis is epigenetic regulation. In line with the premises of the theory, growing
evidence points out that the transcription factor NF-xB integrates the stimulus from proinflammatory
cytokines and the structural change in tissues or the chromatin damage with the players of the epigenetic
regulation.

5.3. NF-«B links inflammation with cellular plasticity

Cancer cells are characterized by extensive epigenetic changes compared to their normal counterparts.
Epigenetics broadly refers to mechanisms that mediate the differential access to the genetic material by the
modification of the chromatin structure, namely, stable changes in gene expression that are independent of the
nucleotide sequence. Transcription is regulated by the degree of compaction between histones and genes
through the covalent modification of DNA or in the nucleosome and ATP-dependent chromatin remodeling.
Hence, the epigenetic marks create several genetic profiles from the same genetic code that govern the
singularity of each cell phenotype. The temporal regulation of the gene expression by the epigenetic process is
central for the appropriated cell fate commitment and differentiation 7. The epigenetic control mediated by
the enzymatic alteration of the structure of the chromatin is one of the most studied mechanisms in the
network of transcriptional regulation. The activity of DNA methyltransferases (DNMTS) results in
transcriptional repression due to chromatin compaction by the methylation of cytosines. The proteins that
modify the histones include methyltransferases (HMTs) and acetyltransferases (HATS). Histone methylation
occurs in lysine and arginine, whereas acetylation, on serine and threonine residues. The polycomb proteins
also mediate gene silencing by the formation of the polycomb repressive complexes (PRC) PRC1 and PRC2
that change the configuration of the chromatin and prevent the transcription. In the PRC2 the histone lysine
methyltransferase EZH2, acts together with the zinc finger protein SUZ12 (suppressor of zeste 12 homologue)
to catalyze the trimethylation on K27 histone H3 (H3K27me3), which is then recognized by PRC1, with
members such as the proto-oncogene Polycomb Ring Finger (Bmil) protein that maintains chromatin
silencing. Is considered that the more stable form of epigenetic repression and to maintain the cell identity and
differentiation is the silencing of genes by H3K27me3 and PRCs. However, the epigenetic marks can be
reversed by the activities of DNA demethylases (DNDMs), such as the Ten Eleven Translocation enzyme
(TET), the Lysine-Specific Demethylase 1 (LSD1), and the Jumonji C-terminal domain (JmjC), both histone
lysine demethylases (HDMs), and the histone deacetylases (HDACS), such as HDAC1 and HDAC2, and
Trithorax proteins (TRXG) that counteract the repression by PRCs 7.

The molecular mechanisms necessary to explain the events of transdifferentiation begin to be understood.
Interestingly, increasing reports suggest that NF-xB activation can erase cell identity through the induction of
enzymes that reshape the chromatin and enables the epigenetic reprogramming that manifests as cellular
plasticity that underlies carcinogenesis according to this manuscript.

Despite the activities of NF-xB are usually viewed as a process exclusive to the immune system or with tumor
progression, it is ubiquitously expressed, and its inhibition is lethal to any cell type. NF-xB suppresses the
pathways of cell death in normal and cancer cells and is essential in the regulation of normal epithelial
homeostasis 8. Since the NF-xB pathway is induced in response to changes in the environment, including
cytokines, radiation, oxidative stress, hormones, or growth factors, and by intracellular damage is
comprehensible its hyperactivation in cancer *°. The NF-kB transcription factor family has five members: the
transcription factor p65 subunit (RelA), the cellular homolog of v-Rel (c-Rel), the V-Rel Avian
Reticuloendotheliosis Viral Oncogene Homolog B (Rel B), the DNA binding subunit of the NF-xB (p50), and
the NF-xB p52 subunit (p52) which form various homo and heterodimers. In the resting state, NF-xB dimers
are in the cytoplasm in an inactive form, through their binding to inhibitory proteins known as inhibitors of
kB (IkBa, IkBp, and IxBe). The majority of stimulus that leads to NF-«kB activation converge on the IxB
kinase (IKK) complex, which is responsible for 1B phosphorylation and allow the nuclear translocation of
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NF-xB. Its transcriptional activities increase the expression of more than 500 genes, among them, the
chemokines, lymphokines, interferons, acute phase proteins, and their receptors, the enzymes cyclooxygenase
2 (COX-2), lipoxygenase 5 (LOX-5), and the nitric oxide synthase (NOS). The antiapoptotic proteins such as
the B-cell lymphoma 2 (Bcl-2), the Bcl extra-large (Bcl-xL), the Bcl-2-like protein 11 (Bim), the cellular
FLICE-inhibitory protein (c-FLIP), the X-linked inhibitor of apoptosis protein (XIAP), the membrane
proteins ATP-binding cassette transporters, the P-glycoproteins, the growth factors FGF8, the hepatocyte
growth factor (HGF), the bone morphogenetic protein 2 (BMP-2), BMP-4, the nerve growth factor (NGF),
VEGF, the placenta growth factor (PIGF), the epidermal growth factor receptor (EGF) and the human
epidermal growth factor receptor 2 (HER2). The transcription factors c-myc, the homeodomain transcription
factors (HOXSs), the proto-oncogene AP-1 Transcription Factor Subunit (JunB), p53, the E2F transcription
factor 3 (E2F3a), Twist, the E74 like ETS transcription factor 3 (EIf3), and the chromatin modifiers Bmil and
jmjD3. Traditionally, the mechanism that underlies the regulation of distinct sets of genes by NF-xB is
attributed to its different dimers and the association with several families of transcription factors specific to
each cell phenotype 26,

The activation of the NF-xB signaling pathway in carcinoma cell lines is linked with demethylation that
results in the upregulation of genes normally expressed in pluripotent embryonic stem cells 1. Furthermore,
the epigenetic reprogramming with the cytokines TGFp, TNFa, IL1, and IL6 increases the expression of the
markers CD44, CD133, Nanog, Bmil, Oct4, and vimentin 62 13 The molecular regulatory networks that
coordinate the events of transdifferentiation such as the EMT and the generation of cancer stem cells by
inflammatory cytokines involve the activation of Snail, Twist, Zeb, and epigenetic regulators by NF-«xB 164,
For example, the induction of Jmjd3 depends on the direct binding of NF-xB to a cluster of three kB sites in
its promoter. Then, Jmjd3 promotes site-specific H3K27me3 histone demethylation leading to transcriptional
derepression and cellular plasticity 6. The process of EMT involves the repression mediated by the PRCs of
epithelial genes through the initial recruitment of Snail, which binds to the E-box elements of the promoters.
Snail recruits PRC2 and interacts with EZH2 and SUZ12 to catalyze the H3K27me3 and silencing of gene
transcription by PRC1. Snail also mediates the recruitment of LSD1 to target genes that can trigger EMT and
cancer progression, in conjunction with additional epigenetic modifications. The formation of LSD1-Snail
complexes on gene promoters catalyzes the removal of methyl groups from the H3K4me3 activation mark
leading to the loss of transcriptional activation of epithelial genes. LSDL1 is highly expressed in several cancer
types and correlates with poor survival %4, During EMT, Twist directly activates Bmil expression and confer
the properties of cancer stem cells. The axis of NF-kB, Twist, and Bmil is essential for the repression of the
epithelial phenotype, the Ink4b/ARF/Ink4a locus, and to sustain the mesenchymal stem cell transcriptional
signature %, Snail and Twist can repress gene activity through deacetylation of gene promoters by recruiting
HDAC1 and HDAC2, which catalyze the removal of acetyl groups from lysine 9 and lysine 14 residues of
histone H3. Snail also promote the proteasomal degradation of p53 by HDACL1 deacetylation and recruit the
HMTs such as the euchromatic histone-lysine n-methyltransferase 2 (EHMT2) and the suppressor of
variegation 3-9 homolog 1 (SUV39H1), which act cooperatively to catalyze the trimethylation of H3K9 that
is required for the recruitment of DNMTSs. In turn, leads to the methylation of cytosine and guanine linked by
phosphate in a repeated sequence (CpG islands) in gene promoters that block the transcriptional activity by
the histone lysine methyltransferases 64, This mechanism was also found during the EMT induced by the
TGFp signaling to repress the epithelial genes. In mammary epithelial cells, TGFp also showed the induction
of Jmjd3, the removal of H3K27me3 marks, and the reactivation of the mesenchymal genes ¢7. The activation
of NF-xB by IL6 triggers an autocrine loop sufficient for the epigenetic switch from immortalized breast cells
to cancer stem cells %, IL6 can change the pattern of DNA methylation in cancer cells by inducing the
expression of DNMTs. The IL6 pathway is required for the CpG island methylation in promoters to repress
tumor suppressors such as p53, and the epigenetic reprogramming to drive cancer cells towards the stem
phenotype 64,
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The mechanical disruption of tissues and the disorganization of cells also activate inflammation by coupling
the signals of the integrin and Rac kinases with the NF-xB pathway through the activation of the IKK
complex %, Further, the comparison of the breast cancer cells HMT-3522 that grow in clusters versus a
variant of disorganized cells show the differential overexpression of 180 genes that share binding sites for
NF-xB. Additionally, the suppression of the transcriptional activities of NF-xB restores the formation of
clusters and the suppression of motility. The culture of HMT-3522 for 4 days in contact with an artificial
ECM and the presence of an inhibitor of IKK results in the reversion of the malignant phenotype and the
formation of structures with polarity and integrin expression 0. Related findings showed that breast cancer
cells depend on the sets of genes activated by NF-xB to sustain the basal phenotype and the invasiveness 1.
Hence NF-kB governs the malignant cell phenotype but is a reversible process in the presence of normal
stromal signals and downregulation of inflammation.

The induction of inflammation also comes from intracellular inputs. For example, following irradiation or
chemotherapeutic drugs that induce DNA breaks, the ATM Kkinase is activated and phosphorylates H2AX,
leading to the recruitment of several other proteins involved in the DDR. The activation of ATM
phosphorylates the NF-xB essential modulator (NEMO), which in turn, induces NF-xB activity ™.
Furthermore, the hormone-independent phenotype of breast cancer cells requires the activation of ATM in
response to H2AX foci in the chromatin. The potential protumorigenic consequence of a constantly activated
DDR has been observed in the mammary gland, in which the induction of the cytokine IL6 activates NF-xB
and ignite a positive inflammatory signaling loop, that perpetuate the proliferative signaling and the
acquisition of mesenchymal stem traits 7.

Overall, mutations appear inadequate to explain the complex behavior and cell heterogeneity observed during
epithelial carcinogenesis. Some attempts to justify the acquisition of elaborated instructions for malignancy
propose as the source the chromosome abnormalities such as breakages, fusions, and aneuploidy 72,
Aneuploidy can be induced by local microenvironmental changes, confers increased survival, and is
associated with inflammation and metastasis 1”°. Seems logical that large genomic rearrangements are more
effective in inducing adaptation than single-gene mutations. Among the multiple factors that have been
proposed to induce chromosomal instability and aneuploidy are telomere dysfunction, stress, and DNA
damage that also increased during the histological progression of solid tumors. However, increasing evidence
support that the activity of the chromatin modifiers underlies chromosomal instability and aneuploidy since
neither aneuploidy nor mutations are exclusive of cancer cells. Thousands of mutations occur in differentiated
cells of healthy individuals and appear to be essential in the physiology of normal cells. Regarding
aneuploidy, although is associated with cellular senescence and telomere attrition, it also temporarily
increases in response to a normal regenerative stimulus. For example, the number of aneuploidies in

hepatocytes rise in function of proliferation to restore the liver mass in vivo but is reestablished to normal '+
176

Here, is proposed that the prominent presence of chromosomal aberrations in cancer is the result of chromatin
rearrangements that lead to large-scale genetic changes that modify the expression of many genes at once and
allow events of transdifferentiation according to environmental and intracellular inputs. The secretory
phenotype of the senescence cells is ruled by NF-kB activation in response to telomere attrition since is
sensed as DDR. In turn, intracellular inflammation in senescent cells within the hyperplasia loss
transcriptional repression that makes them prone to epigenetic reprogramming. At the level of tissue, the
change in morphology of senescent cells, the immune infiltration, and the combined secretions of cytokines
and MMPs disrupt the interactions with the extracellular matrix and among cells that otherwise would restrict
the cellular plasticity. The gradual overthrow of the constrains at both levels result in the hyperactivation of
the NF-xB pathway and increased epigenetic plasticity that fuels the progression to high-grade carcinoma in
which the mesenchymal stem states are self-sustained, amplified, and intrinsically motile. The selective
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evolutive advantage of linking the signal of adversity with transcriptional derepression is clear since cellular
dediferrentiation would provide the necessary mechanisms for self-renewal and survival. However, in aged
tissues, the chances for carcinogenesis clearly overthrow the process of healing. Hence, the irreversible nature
of carcinoma progression is towards dedifferentiation and metastasis. In line with the premises adopted in this
paper, the endogenous genetic damage and the aberrant tumor microenvironment lead to transcriptional
derepression mediated by cellular inflammation. NF-xB recruits and interacts with epigenetic regulators
creating feedback molecular loops that regulate cellular plasticity and link inflammation with epigenetic
reprogramming. The coupling of the extracellular and intracellular perturbations to epigenetic reprogramming
by the degree of activity of NF-xB and the magnitude of plasticity results in the dynamic and reversible nature
of cellular transitions that have been challenging the attempt to conceptualize a fixed purpose for each of the
processes or phenotypes involved in carcinogenesis. Furthermore, explains the elusive nature of EMT, MET,
and the cancer stem cells during the histological progression of the carcinomas in vivo.

6. The enigma of myofibroblasts
6.1. The emergence of myofibroblast
The origin and the mechanisms that regulate the emergence, clearance, or persistence of myofibroblasts have
been elusive. Myofibroblasts exert traction forces in the extracellular matrix and synthesize its components
during connective tissue remodeling and epithelialization in wound healing and disappear afterward.
However, in organ fibrosis, these cells are persistent and predict its progression to carcinoma. The
proliferation of myofibroblasts is also present in tumor desmoplasia and is associated with poor prognosis 177

The hypothesis predicts that cells in transit of the second cellular transition in vivo would exhibit a temporal
hybrid phenotype between senescent and the mesenchymal cells. Interestingly, the stromal cells that
correspond with this profile are the myofibroblasts that display the markers of replicative senescence and
mesenchymal stem cells. Consistently with the proposal presented in this manuscript, myofibroblasts are not
only involved in fibrosis and cancer but also well known for their transient appearance in the process of tissue
homeostasis and wound healing. According to the hypothesis, the phenomenon of myofibroblasts is related to
aging and inflammation of the parenchyma, in which mostly the resident epithelial cells undergo senescence
and initiate the process of healing. However, in conditions of severe tissue disruption, inflammation, or
catastrophic chromosomal damage the events of dedifferentiation are persistent. In such conditions, the
myofibroblasts are robustly produced from several cell types and novel discoveries in the field of fibrosis
unveil its intrinsic plasticity and its protumorigenic potential.

Cells that have been involved in the proliferation of the stroma are the resident fibroblastic and mesenchymal
stem cells along with cells from the bone marrow and perivasculature. Using more recent technology,
epithelial cells showed to account for most of the fibroblastic cells during organ fibrosis and in the
desmoplasia associated with carcinoma 8. Hence, the process of EMT became the most studied cellular
transition in cancer biology and fibrotic diseases associated with inflammation. However, the cellular
plasticity endowed by inflammation not only underlies the process of transdifferentiation of epithelial cells
into fibroblasts but also in endothelial cells, adipocytes, and pericytes. These cells can transdifferentiate by
EMT in cells that can behave as fibroblasts, myofibroblasts, or mesenchymal stem cells. In the case of
epithelial cells, the cuboidal shape along with the expression of E-cadherin and zonula occludens-1 (ZO-1) is
lost and turn into a spindle-shaped cell that expresses the fibroblast-specific protein (FSP1) or the a-SMA in
the case of the myofibroblast 178, Interestingly, the fibroblast detected in preneoplasic lesions and chronic
inflammatory conditions also express the markers of senescence 17°. These cells are also present in the injured
tissues limiting the accumulation of fibrosis and facilitated their resolution and healing. According to the
expression of o-SMA these cells correspond with myofibroblasts, that exhibit cellular plasticity and
multipotency . In line with the continuum of cellular transitions proposed in this paper, those events
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correspond with the transition of senescent cells by EMT into mesenchymal stem cells with self-renewal and
multipotency, hence, that intrinsically harbors properties for healing or carcinogenesis.

The endothelial cells, multipotent monocytes, fibrocytes, pericytes, adipocytes, and local fibroblasts, also
dedifferentiate into myofibroblasts in response to external or internal stimuli - 182, Increasing studies show
that the adoption of the fibroblastic program confers the cells with the intrinsic potential to be activated for
differentiation into subtypes of fibroblast-like cells and several non-mesenchymal lineages. Hence, the current
view of fibroblasts is as not terminally differentiated cell types, that exhibit heterogeneity in response to
differences in the endocrine milieu, the neighboring cell phenotypes, mechanical forces, and its position in the
tissue. The ability to sense the changes in the ECM, the autocrine and paracrine signals influences the

epigenetic regulation that translates into transcriptional changes and may explain the plasticity of fibroblasts
182,183

The induction of EMT and the maintenance of the fibroblastic phenotype in adult tissues is associated with
the stimulation of soluble growth factors, cytokines, and the influence of the extracellular matrix. In response
to those events, the resident epithelial cells and fibroblasts can dedifferentiate into myofibroblasts 4. During
fibrosis, the ligands of the Wnt, Notch, and Sonic hedgehog pathways, such as the TGFB, BMP, EGF, HGF,
and FGF are commonly involved in the regulation of myofibroblast differentiation. The onset of fibrosis has
been associated with changes in the mechanical forces of the tissue that activate the fibroblasts and the
production of TGFp that in turn induces the proliferation of myofibroblasts and the accumulation of collagen
185 In carcinomas, the differentiation of fibroblast to myofibroblast and its proliferation is also regulated by
TGFB. Regardless of their origin, myofibroblasts display a malignant phenotype resistant to apoptosis 6. In
other chronic inflammatory diseases such as rheumatoid arthritis, the fibroblasts that proliferate in the affected
joints also resemble immature malignant cells. They behave differently from normal fibroblasts, shown
invasive potential and properties of mesenchymal stem cells. Furthermore, it has been suggested that resident
stromal cells undergo dedifferentiation in vivo by the conditions of hypoxia and proinflammatory cytokines in
the affected joints 7.

6.2. The multipotency of fibroblasts
The fibroblasts represent the heterogeneous mesenchymal cells which are extensively found in conjunction
with almost every cell type as the primary system of interstitial support. Classically, is considered that the
stromal connective tissue found in all organs is derived from mesothelial tissue and that the function of the
fibroblasts is mainly to synthesize the ECM including the collagen, proteoglycans, fibronectin, laminins,
glycosaminoglycans, and in the formation of scar tissue. However, current evidence supports their active role
in restoring the function of tissues by transdifferentiation into several cell types &,

Vimentin is the major structural component of the intermediate filaments used for fibroblast identification,
which functions include contractility, migration, and proliferation. Other than vimentin and morphology, the
biomarkers that precisely define the fibroblasts remain to be fully understood. The set of transcription factors
that seem essential in the maintenance of the fibroblastic phenotype are the Paired related homeobox 1 (Prrx
1), the paired-related homeobox protein SHOT (Shox2), the AP-1 Transcription Factor Subunit (c-fos), Slug,
and Twistl 1, However, during fibrogenesis, the mesenchymal cells acquire traits of embryonic cells and
become highly proliferative ®. Furthermore, the origin of myofibroblasts is also tightly linked to
upregulation of genes expressed during early embryonic development **°. In this regard, the consensus is that
mesenchymal stem cells and fibroblasts can be distinguished by the differential expression of genes
associated with developmental programs and the stromal functions. Mesenchymal stem cells show ubiquitous
activation of the germline programs, with the activity of transcription factors of ectoderm, endoderm, and
mesoderm. The transcription factors that differentiate them from normal fibroblasts are the expression of the
ETS variant transcription factor 1 (ETV1), the ETVS5, the forkhead box protein P1 (FOXP1), the GATA-
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binding factor 6 (GATAG), the high mobility group AT-Hook 2 (HMGA?2), KLF12, the PR-domain zinc
finger protein 16 (PRDM16), the single-minded family BHLH transcription factor 2 (SIM2) and SOX11 %%,
Moreover, the mesenchymal stem cells also possess higher grades of hypomethylation ¥ and increased
expression of the pluripotent marker Oct4 compared to fibroblast %2, Therefore, seems logical to employ
fibroblasts to obtain mesenchymal stem cells. A task that has been successfully accomplished in vitro with the
transcription factors SOX2, OCT4, KLF4, and ¢-MYC %, or using a mixture of chemical inhibitors and
growth factors 2. However, fibroblasts are highly plastic by endogenous mechanisms. Their multipotency
was first described in studies that show its chondrogenic differentiation in response to mechanical stimulation.
Consistently, fibroblasts show transcriptional diversity and heterogeneity relative to the mechanical forces
that experience due to structural changes, position, and the endocrine milieu in different tissues %2,
Furthermore, they share features that were considered exclusive of the mesenchymal stem cells. For example,
they express the surface markers CD90, CD105, CD166, and upon appropriate conditions differentiate into
adipocytes, chondrocytes, osteocytes, hepatocytes, neurons, myocytes, or pancreacytes *** 1%, Hence, both are
administered as a form of cell therapy for stroke, heart failure, COPD, liver damage, osteogenesis imperfecta,
Duchenne, Muscular Dystrophy, and cosmetical procedures 8. Due to their inherent immunomodulatory
properties are also used in inflammatory and autoimmune diseases and to fasten recovery 1%, Their injection
into affected tissues is followed by differentiation to functional cells 7. However, several studies show that
mesenchymal stem cells also stimulate tumor development % and form teratomas in vivo 1%, raising concerns
about the safety of this type of therapy.

Fibroblasts are also the most used cells to obtain iPSCs. In turn, these cells can be cultured to produce induced
mesenchymal stem cells (iMSC) using MSC medium, inhibitors of the kappaB kinase epsilon, the TGF-
B/Activin type | receptor, BMP4, or growing the cells in precoated surfaces with gelatin, collagen, or
synthetic polymers 1%°. Not surprisingly, an endogenous mechanism that induces the spontaneous
transformation of fibroblasts is telomere attrition due to replicative senescence. As previously reviewed, the
senescent program is essentially the same despite the original phenotype, and fibroblasts also remain in arrest
while undergoing changes in morphology, gene expression, metabolism, and epigenetics. The early molecular
events also involve the recruitment of proteins activated by DDR 2% and the induction of NF-«xB 2%, The
careful examination of the effects of cell passage in fibroblasts founds a gradual decrease of methylation,
differentiation, and the emergence of mesenchymal stem traits and tumor behavior. Fibroblasts undergoing
cellular senescence arise with the molecular, structural, and contractile features of myofibroblasts.
Additionally, the fibroblasts obtained from carcinomas are usually senescent and positive for the expression
of the myofibroblast marker a-SMA % 180 Seems plausible that fibroblast dedifferentiation into
mesenchymal stem cells with tumor behavior in vivo is driving by epigenetic rearrangements associated with
cellular aging, inflammation, and structural cues. According to the hypothesis, in the setting of progression or
the advanced stages of the disease, is expected that several cell types, including cells in the stromal
compartment or derived from the bone marrow, can dedifferentiate to myofibroblasts with cancerous behavior
by the same series of cellular transitions.

6.3. The EMT is linked to embryonic programs
The epithelial cells are the precursors of the endoderm and mesoderm using developmental pathways. During
gastrulation, the epithelial cells acquire plasticity by EMT and adopt the fibroblastic phenotype and motility
for normal embryo development. The activation of the mesenchymal transcription factors is mediated by the
TGFB, Wnt, and Notch pathways and their proper functioning avoid death during gastrulation or defects in
morphogenesis 22, The coupling of EMT with an embryonic transcriptome involves the machinery of
epigenetic remodeling. The overexpression of Snail, Zeb, or Twist on normal, immortalized, or cancerous
epithelial cells result in the activation of Bmil, stemness, and tumor-initiating capacity. The process of EMT
in vivo is followed by Bmil induction and the enrichment of stem markers in carcinomas. Bmil
overexpression represses the effectors of cellular senescence and increases self-renewal and multipotency in
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adult and embryonic stem cells. During EMT induced by inflammation, NF-xB activates the mesenchymal
transcriptional factors and the enzymes of epigenetic remodeling. The activation of Twist directly binds the
Bmil promoter and confer cancer stem cell properties, represses the epithelial phenotype, the
Ink4b/ARF/Ink4a locus, and preserves the mesenchymal stem phenotype 2%,

According to the hypothesis, cellular plasticity is the result of epigenetic derepression, in which the original
cell type and the magnitude of the stimulus are the main factors that limit the degree of cellular
reprogramming. Is likely that cellular plasticity is increasing as the physiological levels of cytokines rise and
the restrictions imposed by the stroma diminishes. Hence, carcinogenesis in vivo is self-organized and the
tangible evidence is the typical histological progression of carcinomas. Essentially, at the core of the
advanced carcinomas is deregulated cellular plasticity due to inflammation and the result is the stemness.
Tumors and metastasis are the natural consequence of the subsequent partial differentiation of cancer cells in
response to environmental changes that restrain chromatin derepression. A great body of current literature
supports a bigger role of physical forces, tissue homeostasis, cellular aging, and inflammation on epigenetics,
cell behavior, and plasticity that may ultimately result in carcinogenesis.

Consistent with the model, studies have shown that maintenance of the fibroblastic shape, the malignancy,
and stemness in vitro requires high levels of proinflammatory cytokines that upon decrease, induce the
reversal into an epithelioid morphology #. The mesenchymal stem cells also become heterogeneous due to
spontaneous differentiation or maturation associated with the production of ECM 2%4 295, The experimentally
silencing of Sox2 2%, Twistl, or Slug decreases Bmil overexpression, abolishes stemness, the invasiveness,
and enables the differentiation towards a luminal phenotype 2°%. Hence, the connection of inflammation,
transcriptional derepression, and stemness is likely the molecular basis of the cellular plasticity driving
carcinogenesis.

Recent evidence shows that full malignancy is associated with cells that exhibit a hybrid phenotype. Their
multipotency is enough to explain the tumor growth and cell heterogeneity in vivo 2%, The finding of the
expression of markers from several lineages in the hybrid malignant cells is expected considering the current
view of the molecular biology of stem cells. Furthermore, imply a more comprehensive and unified view of
cancer as the result of development.

7. Cancer and development
7.1. Transcriptional derepression and stemness
The study of stem cells has revealed that they do not express a specific set of genes or signaling pathways to
sustain their multipotency. Instead, is suggested that stemness is a transient trait, characterized by having
many potentials but no specialization. The transcriptional hyperactivity is considered the main responsible for
the plasticity of the stem cells and implies that is a cell state produced as the result of repressing
differentiation 2°7. Furthermore, the analysis of embryonic stem cells showed the overexpression of genes
related to chromatin-remodeling, transcription and that differentiation correlates with a reduction of
transcriptional activity 2. Consistently, the activity of the transcription factors Oct4, Nanog, Sox2, KIf4, and
c-Myc collectively occupy 10% of the promoters in the human genome and repress genes implicated in
differentiation. Moreover, the PcG, DNA methyltransferases, and stem transcription factors are associated
with the upregulation of transcription in stem cells 2°°. Another interesting feature is the structural coupling of
the cytoskeleton with the nucleus of stem cells that allow the sense of mechanical signals from the cell
microenvironment and translate them into transcriptional multipotency 2%°. In general, the emergence of stem
cells and their maintenance is strongly influenced by environmental factors and the dynamics of cell growth,
inducing heterogeneity in cell-cell interactions, cytokines, oxygen, growth factors, geometry, and mechanical
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forces 21 22, Some niches induce stemness in vivo by paracrine effects and mechanical interactions. Hence,
the cell microenvironment plays a major role in stemness, and these cellular states cannot be defined in
isolation. Conceptually, niches of stem cells can be viewed as domains in which a group of cells and their
structural and endocrine interactions result in stemness. This is also consistent with their apparent elusive
presence, its nature as a cell state that requires an induction, and its particular spatial location in tissues.
Through the comparison of different stem cell systems, some traits suggest generic characteristics of the
relationship between stem cells and their supporting niche in vivo. It is proposed that the stemness is inducing
by a combination of proximity to the basal lamina and other cell types that activate the JAK-STAT, TGF,
and Wht-signaling 2*3. The cultures of stem cells also indicate that stemness is a property induced by
unspecific stressors. Among the conditions that induce and sustain stemness in vitro include hypoxia 2%,
oxidative stress 2%°, radiation 26, chemotherapy agents 27, DNA damage 28, ECM degradation with proteases,
and the four pluripotency factors (Oct4, c-Myc, KIf4, and Sox2). Stem cells need to grow in serum-free
culture media enriched with growth factors such as the BMPs, TGFB, TNFa, and under hypoxic conditions,
otherwise, they start to differentiate 2. In response to adverse non-lethal conditions, any cell can undergo
stemness that enables access into survival mechanisms and process of renewal that are normally silenced
during differentiation to optimally perform highly specific tasks associated with the different cell phenotypes
that are necessary for multicellularity. Hence, seem that stemness is a transient robust cell state that can be
accessed for self-preservation, but once the conditions are suitable for survival, cells can differentiate
according to environmental cues. Furthermore, the normal biology of the stem cells is implicated in every
aspect of the so-called hallmarks of cancer (Fig. 4.).
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Fig. 4. Tumorigenic capabilities conferred by stemness.

Transcriptional derepression reconfigures several cellular processes largely associated with carcinogenesis. The metabolism of stem cells
is characterized by the conversion of glucose to lactate despite the presence of enough oxygen to sustain the complete oxidation of
glucose-derived carbons. These cells are heavily reliant on glucose and glutamine to proliferate 2> 22°, Transcription factors that
characterize stem cells downregulate p16 and p53 proteins preventing apoptosis 2% 222, Stem cells possess an increased mechanism of
DNA repair, detoxifying enzymes, and overexpression of ABC transporters 22, In stem cells, telomerase is activated and maintains
telomere length, and confers cellular immortality %*. Pluripotent stem cells showed chromosomal instability in long term cultures.
Additionally, stem cells showed to acquire aneuploidy reminiscent of malignant cell transformation 22, Stem cells constitutively activate
NF-kB (cellular inflammation) to sustain an undifferentiated cell phenotype 2. Stem cells lack anoikis and have an inherent ability to
migrate, which is as important as their capacity for self-renewal and to differentiate, enabling them to maintain tissue homeostasis and
mediate repair and regeneration 6. Additionally, stem cells acquire mechanisms for immune evasion 227,
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The comparison of cancer stem cells and embryonic stem cells reveals an absence of differences at
transcriptional 7 228 22% and functional level 7. Therefore, it has been suggested that the only difference
between them is the microenvironment 2, Is tempting to speculate that in parallel to normal stem niches, the
epithelial tissues during carcinogenesis create aberrant compartments that foster transcriptional derepression
and a deregulated access to stemness.

Cells that undergo senescence experience changes in chromatin, nucleus, and PcG proteins associated with
transcriptional derepression. It can be argued that senescent cells are a step closer to stemness. Those features
might underlie the reported closer epigenetic relationship between the senescent and cancer cells .
According to the fundamental thesis in this paper, entry to senescence and tissue disruption during aging, in
essence, make cells prone to dedifferentiation. Cellular aging reshapes the epigenetic landscape and links
inflammation with regeneration and cancer. The possible outcomes are already codified in the genome and
govern the entire course of carcinogenesis implying that the degeneration of tissues that underlies chronic
diseases are part of the developmental process.

7.2. An unexpected, unified view of chronic diseases

Embryos originate from a cell that undergoes accelerated proliferation and migration through processes that
parallels carcinogenesis. Long before the genomic era, the use of a simple microscope was enough to propose
that cancer may be the product of an aberrant developmental process. In 1859, the pathologist Rudolf
Virchow suggested that tumors originate on the same principles that operate during embryonic development.
Later on, in the 1960s the ectopic implantation of normal embryos resulted in teratocarcinoma 2! and the
injection of these cells into the blastocyst induced their differentiation in normal tissues 2. The cells extracted
from these tumors were incorporated into functional tissues and expressed genes associated with
differentiated phenotypes in healthy mice. In contrast, the cells that were kept in vitro were unable to express
the sets of genes observed in vivo. Overall, those experiments exhibit an interesting facet of cancer; in which
embryonic stem cells generate neoplasms in absence of mutagenesis and that carcinogenesis can be reversed
by differentiation. Unfortunately, those results were regarded as rarities exclusives of teratomas and is likely
that most modern molecular biologists are unaware. Furthermore, few researchers are even concerned about
the inconsistencies in the current cancer field and rarely question their conceptual framework. Despite the
historical delay, the late twentieth century witnessed the resurgence of evidence indicating that embryonic
programs are involved in almost every aspect associated with cancer %. Furthermore, an increasing number
of studies in carcinomas correlate the infiltration of immune cells in vivo with the enrichment of embryonic
stem cell markers and progression to higher histological grades 22 A remarkable finding was the
transcriptional convergence into embryonic stem cell programs of high-grade tumors irrespective of the
germinal cell layer or original tissue 6. Additionally, stemness has been envisioned as the non-specific
emergent product of the loss of the transcriptional repression 2%7. Altogether, the evidence is consistent with
the notion presented in this paper that carcinogenesis is a generic process in which somatic cells flow through
cellular transitions towards dedifferentiation and stemness.

During early embryo development, when the embryonic totipotent cells reach the eight cell-stage, the first
differentiated cell type that appears is the epithelial, and just a few divisions afterward arise the second cell
type, the mesenchyme 33. During embryogenesis, senescence act as a transient form of plasticity in which
cells eventually resume proliferation and contribute to the morphogenesis of tissues 23, The process is broadly
similar to the premises of the model, and suggests, that aging foster its reiteration by replicative senescence
and chronic inflammation that may result in cancers. The robust emergence of the same basic cell phenotypes
and the directionality of the observed cellular transitions suggests a genetic program that imposes the same
functional and structural constraints to govern both, embryo development and epithelial carcinogenesis.
Importantly, there is no reason to limit the argument to cancer since the emergence of most chronic diseases
seems to follow the same order of cellular transitions.
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Several tissues gradually undergo fibrosis with aging, including the skin, lung, liver, pancreas, and heart.
Progressive fibrosis is a major cause of morbidity and mortality associated with repeated epithelial injuries
and accumulation of myofibroblasts. The process of fibrosis is caused by the hyperproliferation of fibroblasts
and the production of abnormal amounts of EMC that replace the normal structure of the parenchyma. The
result is the functional impairment of organs and sometimes persistent fibrosis . The therapeutic options for
organ fibrosis are handicapped by an incomplete understanding of the molecular mechanisms. Likewise,
despite the current multitarget approaches to cope with cardiovascular diseases, diabetes mellitus, and
cancers, they remain the principal causes of morbidity and mortality among adults in industrialized countries.

The model presented for the origin of carcinomas provides a mechanistic explanation of the underlying causes
of fibrosis and steatosis accompanying the degeneration, the loss of function, and in some cases the
transformation of tissues during aging from an evolutionary and molecular perspective. First, it is assumed
that cellular senescence precedes the onset of most chronic diseases. Second, that inflammation and
infiltration in the affected tissues accelerate their degeneration by increasing their susceptibility to cellular
transitions. Finally, the cellular transition into mesenchymal phenotypes underlies fibrosis and steatosis.
Being developmental biology the study of the mechanisms that govern the development of organisms from
fertilization to senescence; epithelial carcinogenesis and chronic diseases seems to be part of the same
processes that determine the loss of functions associated with aging. From an evolutionary perspective, the
involution of the parenchyma makes sense since epithelial tissues are highly dependent on ligands produced
by other specialized cells and are fine-tuned by structural interactions. In contrast, cells that undergo
transdifferentiation into fibroblasts are more robust to adverse conditions. Thus, carcinogenesis could be
viewed as an extreme consequence of the same conserved process that originates the rest of the chronic
diseases, and the mesenchymal enrichment of tissues embraced as the logical consequence of the systemic
conditions in aged patients.

The role of cells that undergo EMT or similar transitions during the fibrosis of vessels, hearth, liver, kidney,
and pancreas is now increasingly recognized as an essential process for tissue degeneration in disease and
aging 2% 25, The hypothesis implies that terminally differentiated cells can transdifferentiate into fibroblasts
after senescence and explain the myofibroblasts expressing beta-galactosidase in the fibrosis of aged tissues.
Thus, unifying the process of aging and chronic diseases under the same theoretical framework proposed for
carcinogenesis. In essence, the hypothesis suggests that the involution of tissues is mediated by
dedifferentiation and transdifferentiation in vivo. Furthermore, implies that the organized deterioration of
tissues is precoded and the onset of chronic diseases and their manifestations are byproducts of the process.
Consistent with this view, even when fibrosis is inevitable, the likelihood of tumorigenesis decreases by the
downregulation of inflammation. Hence, the dynamics of aging and the associated diseases are ruled by
development and its interplay with lifestyle. Overall, the cellular plasticity gained in aged tissues, their
functional deterioration, and the eventual death is mainly the result of the unidirectional nature of DNA
replication. Telomere length plays a major role in the possible number of cell divisions before the onset of a
DDR response that induces cellular inflammation, transcriptional derepression, and ultimately cellular
plasticity.

Regarding leukemias, its onset is preceding by the myelodysplastic syndrome that is characterized by cells
with chromosome alterations and biomarkers of senescence 2%. Furthermore, the development of
myeloproliferative disorders is associated with bone marrow fibrosis, and the leukemogens disrupt its stroma
237 Upon evolution from chronic to acute leukemia, the chromosomal abnormalities increases, and the
markers of cell dedifferentiation diminish 2%, In the blast crisis, which is the final stage of the disease, the
cells become unresponsive to therapy and present stem cell gene signatures 3. The overall process is then
remarkably similar with the premises of this manuscript and suggest a principle. Although the details
provided were oversimplified, and the molecular biology of each chronic disease on its own can be extremely
complex; it emerges an underlying and valuable simplicity. If the theory presented in this paper is correct,
some strategies of cancer prevention and therapy should be reassessed.


https://doi.org/10.20944/preprints202101.0514.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021 doi:10.20944/preprints202101.0514.v1

8. Reshaping cancer prevention and therapy

8.1. Cancer and lifestyle

The contribution of genetic factors in cancer development represents only 5% of cases, while the rest is
attributed to environmental factors. Therefore, sporadic cancers are considered lifestyle diseases where most
cases are associated with unhealthy habits or infections 24°, Consequently, the policy for cancer prevention
focuses on reducing the use of tobacco and alcohol, avoid obesity, the proper management of infections, and
dietary advice 2*%. Several investigations have addressed the potential mechanisms of lifestyle on cancer
development. In this contribution, current knowledge was integrated to illustrate the global effect of lifestyle
in epithelial carcinogenesis according to the hypothesis.

Diet is one of the most important factors for cancer development but also one of the most complex to
understand. Even on a conceptual level, the term healthy diet is poorly defined. Nonetheless, several lines of
evidence support that a diet based on fruits, vegetables, and whole grains is protective against cancer even in
the presence of risk factors and reduces overall mortality among survivors. Importantly, the protective effect
of a diet with an emphasis on plants extends to the rest of the chronic diseases 24> 23, The concept of dietary
pattern aid to define the type of diet associated with the protective effect in epidemiological studies. In the
case of cancer, a healthy dietary pattern refers to a diet high in fruits, vegetables, poultry, fish, whole grains,
and a low daily fat intake. In the opposite case, a diet with a high content of red meat, processed meats,
refined sugars, sweet foods, and a high fat intake is considered unhealthy 244,

The effect of foods in blood biomarkers shows the integrated changes induced by dietary patterns in
physiology and their potential impact on carcinogenesis. A healthy dietary pattern induces low levels of
insulin, insulin-like growth factor (IGF-1), estrogen, testosterone, and proinflammatory cytokines such as
TNFa, IL6, and C-reactive protein (CRP) 2*247_ In turn, chronic exposure to low levels of these ligands
results in low activation of the insulin receptor (IR), the mTOR protein (mammalian Target of Rapamycin),
the estrogen receptor (ER), the androgen receptor (AR), the leptin receptor (Ob-R), and cytokine receptors, as
well as their signaling pathways 248250, Genetic, pharmacological, or dietary manipulation of these pathways
increases longevity and delays the onset of all chronic diseases, including cancer 25% 25!, Healthy diets, being
rich in plants, are also characterized by a low content of calories and fat, they are rich in fiber, therefore, they
have a low glycemic index and are considered incomplete sources of amino acids 252, Dietary interventions
that involve those factors increase lifespan through mechanisms conserved in evolution. Examples include the
caloric restriction, protein, or amino acid restriction (such as asparagine, glutamate, or methionine), or the
ingestion of complex carbohydrates 2°3-2%, The antiaging effects of these dietary strategies result in the
negative modulation of the insulin / IGF-1 signaling pathway and that of mTOR, which are the most
important regulators of lifespan in humans 2

Healthy diets are also rich in bioactive phytochemicals such as terpenes and phenolic compounds capable of
exerting direct effects on the extension of longevity by modulating insulin / IGF-1 signaling pathways,
MTOR, activated protein kinase by adenine monophosphate (AMPK), NF-xB, the NAD-dependent protein
sirtuin deacetylase (SIRT1), and the sex hormone receptors 2. The high fiber content exerts indirect effects
through the proliferation of commensal bacteria that reduce systemic inflammation through their interactions
with the mucosa-associated lymphoid tissue and the generation of regulatory T cells 2°8, Healthy diets are also
associated with high consumption of monounsaturated and polyunsaturated fatty acids that, when
metabolized, generate resolvins and other anti-inflammatory ligands of the receptor peroxisome proliferator
activated gamma (PPAR-y), Toll-like receptors (TLRs), G protein-coupled receptor 120 (GPR120), COXs,
and LOXs with antagonism in the activation pathways of NF-xB 2%°. The ingestion of diets rich in complex
carbohydrates and polyunsaturated fatty acids decreases the levels of insulin, IGF-1, estrogen, testosterone,
and proinflammatory cytokines such as TNFa, IL6, and CRP 247, In addition, the low circulating levels of
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biomarkers of inflammation are associated with a delay in the onset of all chronic diseases ?°. Adherence to
healthy diets shows lower levels of biomarkers of cellular aging 6%, hyperplasias 2%, prevents EMT, and
delays tumor progression 263, Overall, healthy dietary patterns modulate epithelial carcinogenesis by slowing
the rate of cell growth, proliferation, metabolism, and systemic inflammation. In doing so, they
comprehensively delay aging, the accumulation of senescent cells, tissue infiltration, and inflammatory levels,
resulting in a low probability of cellular transitions (Fig. 5.).

In contrast, obesity and unhealthy diets promote higher circulating levels of proinflammatory cytokines, sex
hormones, insulin, and growth factors 264, An unhealthy lifestyle is associated with obesity and the early onset
of chronic diseases 2%. Is currently considered that obesity and western diets promote accelerated aging 26,
Moreover, obesogenic diets promote the accumulation of senescent cells 27, induce EMT and tumor
progression 268, In the case of infections, is proposed that the etiological agents age and induce inflammation
in some specific tissues since the process is mediated by receptors. Therefore, only the affected tissues
increase cellular turnover and immune responses because of infection. Thus, the human papillomavirus,
Helicobacter pylori, and schistosomiasis generate carcinogenesis of the cervical, gastric, and bladder
epithelia, respectively. In the case of smoking and alcoholism, a similar event occurs, since due to the location
some tissues are more exposed, or due to their activities in processes of detoxification are also highly affected.
This fundamentally explains the preferential carcinogenesis of the lungs and liver respectively, and the
association of both with oropharyngeal cancer.

-Insulin &
ad
-IGF1 ~
-Estrogen =
-TNFa -
-IL6
-CRP
-Testosterone
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Fig. 5. Healthy diets modulate carcinogenesis by slowing cell growth, proliferation, metabolism, and inflammation.
Blood biomarkers reflect the systemic response to diet. These studies indicate that a healthy dietary pattern induces low levels of insulin,
IGF-1, estrogen, testosterone, and proinflammatory cytokines such as TNFa, IL6, and CRP. Chronic exposure to low levels of these
ligands results in low activity of the IR, the mTOR protein, the ER, the AR, Ob-R, and cytokine receptors, and their signaling pathways.
In general, healthy dietary patterns reduce the accumulation of senescent cells and inflammation of the tissues, so the conditions for the
cellular transitions involved in epithelial carcinogenesis are not favorable.

In this theoretical framework, the effect of lifestyle on carcinogenesis converges in the modulation of aging
and inflammation. It proposes a mechanistic and integrative overview of the most important regulators of the
process considering the premises of the model. In conclusion, seem that a healthy lifestyle delays cellular
aging and downregulates systemic inflammation resulting in cancer prevention, but ultimately it increases
lifespan by slowing the process of development. In the following section, this type of view is transferred to
cancer therapy in an effort to explain its failure along with an alternative that arises from the hypothesis.
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8.2. Cytotoxic therapy promotes cancer.

Surgery is the central component of the curative treatment for localized solid tumors 26°. Cancer in situ is
curable using surgical resection as the only therapeutic strategy 8 Regarding early-stage invasive
carcinomas, the contribution of surgery to the relative survival rate at 10 years surpasses 90% 270, Therefore,
several studies suggest that most of the beneficial effect of cancer therapy is attributed to the removal of
tumor burden 2 271 Although the 5-year relative survival rate of patients diagnosed and treated with low-
grade carcinomas is greater than 90%, they eventually progress to high-grade carcinomas and die from causes
associated with cancer 37 22, The invasive metastatic cancers are responsible for 90% of cancer mortality >3
and the only therapeutic option at this stage, due to relapses or tumor progression during treatment is
palliative systemic therapy. In other words, surgery is not part of the treatment, only chemotherapy, and
radiation. The use of cytotoxic therapies at advanced stages for palliative purposes or to increase survival is at
a debate since high-grade tumors and metastases do not respond. However, the use of aggressive
antineoplastic treatments is frequent in terminal patients despite the lack of therapeutic response. The net
result is an increased cost and a reduction in the quality of life without a clear benefit for patient survival 272,
In contrast, a growing number of studies indicate that surgical resection of the primary tumor and larger
metastases improve survival even in patients with high-grade metastatic cancers 2% 274, This suggests that
most of the benefits of cancer treatment are derived almost exclusively from the removal of the cancerous
tissues.

Historically, the therapeutic failure in cancer has been attributed to late diagnosis. In other words, tumors are
detected when they already acquired most of the molecular mechanisms necessary to resist the treatment.
However, studies have shown that resistance, metastasis, and aggressive behavior arise relatively quickly 27>,
Lack of tumor response to treatment may occur from the first therapeutic regimen or after a temporal response
276 Therapy is usually a combination of cytotoxic drugs and radiation to avoid the chances of developing
resistance. However, they fail to eradicate cancer cells, and patients often relapse within months to a year
after treatment. Furthermore, recurrences generally manifest a greater degree of malignancy and do not
respond to therapy 2" 278, Tumor progression in the presence of therapy is traditionally understood by
Darwinian mechanisms of positive selection mediated by the acquisition or modification of genetic traits. The
hypothesis of cancer stem cells was recently added to explain treatment failure and tumor recurrence. This
position considers that a small subset of cells in the tumor possess this cellular phenotype, the ability to self-
renew and differentiate into tumor cells. Hence, they would be inherently resistant to cancer therapy and
responsible for tumor recurrence 2”°. Like many other phenomena in cancer, the origin of cancer stem cells
and their role in carcinogenesis is not fully accepted. However, the last decade has validated the ability of
chemotherapy and radiotherapy to induce stem cells within tumors 2 280-282,

Most of the antineoplastics drugs, including the alkylating agents, antimetabolites, antimitotics, antibiotics,
and epipodophyllotoxins are carcinogenic since they induce malignant tumors and secondary cancers 7 2%,
The generation of neoplasms or the progression towards aggressive behavior has also been documented for
radiotherapy 2'® 284 and targeted therapies such as bevacizumab 2% and imatinib 2%, Most of the tumors
induced by cytotoxic therapy are acute myeloid leukemias, followed by solid tumors of the breast, bone, lung,
prostate, ovary, bladder, and brain 7 23 287 The use of neoadjuvant chemotherapy (applied before surgery)
also seems to promote tumor aggressiveness and recurrence negatively affecting survival 2. One of the
responses of the tumor to therapy is an increased transcriptional signature of embryonic stem cells & 216, In
this regard, recent evidence indicates a relationship between senescence, EMT, and increased expression of
embryonic genes with events triggered by antitumor strategies 118 28929,

The hypothesis of epithelial carcinogenesis as the product of cellular transitions promoted by cellular aging
and inflammation suggests a mechanism by which the current treatment is not only ineffective but accelerates
cancer progression. Molecular responses to the non-lethal adverse conditions imposed by treatment promote
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transcriptional derepression, inflammation and enable the emergence of undifferentiated cell states
endogenously resistant and associated with a negative prognosis. Under this view, current cytotoxic therapies
are doomed to failure in their attempts to cure cancer. According to the postulates of the hypothesis, the
detrimental effects of cytotoxic therapy are mediated by the increase in the systemic load of senescent cells
that translates into inflammation and accelerated cellular aging. Consequently, the EMT and events of
dedifferentiation are promoted, increasing organ fibrosis and the emergence of cells with malignant and
metastatic behavior that are stabilized in inflammatory conditions.

Current cytotoxic therapy leads to systemic events that promote accelerated tumor progression. Most patients
exhibit transient pancytopenia caused by extensive damage to the bone marrow components 2% 2%2, These
histological changes provide the basis for the generation of leukemias in response to cytotoxic therapy. In the
first phase, the decrease in tumor burden and proinflammatory cytokines generate the partial or complete, but
always temporal responses associated with cancer therapy. However, in a second phase, the continuation of
the therapeutic regimen increases cell damage, senescence, dysbiosis, fibrosis, and the functional loss of many
tissues. The cytokines produced by all damaged somatic cells, would overcome the initial reduction that
manifest as cachexia. From here, the systemic conditions would only favor accelerated progression.

The antineoplastic drugs cyclophosphamide, fluorouracil, cisplatin, methotrexate, adriamycin, and etoposide
induce cachexia 2°* 2%, The drivers of cachexia are the cytokines TNFa, IL6, IL1, CRP, and TGFp. The
elevated levels of these cytokines generate insulin and IGF-1 resistance, which hinders the metabolism of
glucose and amino acids in the skeletal muscle while favoring lipolysis in adipose tissue and the oxidation of
fatty acids. The metabolic state is reminiscent of fasting but in feeding conditions. For this reason, the
syndrome of cachexia is characterized by the wasting of the skeletal muscle and adipose tissue despite the
presence of an adequate caloric intake. As cachexia progresses, cancer patients deplete the reserves in adipose
and muscle tissue, generating weakness, motor difficulty, and cardiopulmonary dysfunction 2%, Cachexia is
found in 80% of late-stage cancer patients, frequently along with metastasis and unresponsive tumors.
Furthermore, those patients usually cannot tolerate the side effects of cytotoxic therapy. Their involuntary
weight loss is accompanied by immunosuppression, lack of wound repair, fibrosis, and systemic dysfunction,
which decrease their quality of life and negatively affect the prognosis. It has been estimated that cachexia is
responsible for 40% of cancer death 2. As expected, the use of parenteral nutrition or diets with calorie
surplus is ineffective against the effects of cachexia. In the advanced stages, the secretions of the tumor
masses are sufficient to generate cachexia. Proinflammatory cytokines reprogram the metabolism of the hosts
for the mobilization of nutrients towards the tumor masses. Overall, those inflammatory and metabolic
mechanisms increase tumor progression at expense of the host 2%,

The physiological conditions by which tumor nutrition is favored remarkably resemble embryonic
development. During the second half of gestation, the maternal reserves are mobilized to allow the fetal
exponential growth. The production of glucose, amino acids, and fatty acids in the bloodstream is increased
due to insulin resistance, gluconeogenesis, proteolysis, and lipolysis. These effects are mediated by insulin,
IGFs, glucagon, catecholamines, cytokines, and leptin. Insulin resistance in the mother ensures proper sparing
of nutrients and energy to the fetus to fulfill the anabolic pathways since its metabolism is relatively
independent of the activity of insulin. Also, the fetus overexpresses proteins related to the transport and
metabolism of nutrients, among which glucose, lactate, ketoacids, amino acids, and fatty acids stand out. The
anaerobic metabolism of these substrates is the main source of energy and growth 27, All of the mechanism
described has been considered the metabolic characteristics of tumors 2%, However, the reactivation of
developmental events seems to naturally explain the metabolic process responsible for cancer cachexia.

Given the above arguments, the direct effect of cytotoxic therapy might result in a net increase in cellular
transitions towards a mesenchymal stem cell phenotype. At the same time, therapy induces cachexia, which
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indirectly favors the maintenance of the dedifferentiated phenotypes and their metabolic and migratory
activities. Meanwhile, the nutritional and inflammatory status of the host is at disadvantage. The approach to
cancer as a developmental disease provides a simple explanation for therapeutic failure in advanced stage
carcinomas.

Since the 1970s, cytotoxic agents and radiation therapy have been an important part of the treatment of most
low-grade carcinomas despite their little contribution to survival. Likewise, they are used in the palliative
treatment of high-grade carcinomas regardless of their null effectiveness. The incorporation of drugs directed
at molecular targets was irrelevant in survival since most signaling pathways are highly redundant and the
complete blockade of essential elements is lethal for the host 2%°. Hence, for the most part, high-grade cancers,
remain untreatable and incurable diseases 2’*. Furthermore, since the first requirement in the guideline for the
search for new anticancer agents is the cytotoxicity at very low concentrations 2% is foresee that during the
next years the new marketed molecules as antineoplastic drugs, will suffer from the same problems as the
current agents, essentially, they will be very toxic and fail to cure cancer.

8.3. Paving the way for tumor reversion.

Countless experiments demonstrate the ability of tumor cells to differentiate. The first observations that tumor
cells could originate a normal tissue come from studies carried out with teratomas in 1907 3%, while the
regression and differentiation of an epithelial tumor were possible in 1962 through its implantation in normal
tissue 301, However, tumor differentiation with a pharmacological agent was possible until 1988. All-trans
retinoic acid (ATRA) allowed complete remissions in cases of acute promyelocytic leukemia (APML) by
inducing terminal differentiation of leukemic cells to granulocytes. With this type of treatment, more than
75% of patients diagnosed with APML are cured. The implementation of differentiation therapy in leukemias
seems logical since many of them are characterized by the accumulation of immature lymphoid cells 3%,
However, in the rest of the neoplasms, the genocentric view of cancer conceptually weakens the therapeutic
potential of induction of differentiation in at least two fundamental points. It does not consider that solid
tumors are generated by immature precursor cells and postulates that cancer cells are unable to differentiate
since possess an aberrant genetic code. The scarce events of cell differentiation in tumors were reconciled
with the conventional genetic approach by attributing them to the activation of endogenous differentiation
pathways that were unaltered during carcinogenesis.

On the contrary, in the hypothesis of epithelial carcinogenesis as a product of discrete cellular transitions, it is
implicit that solid tumors are also originated from undifferentiated precursor cells. In addition, this approach
allows the understanding of tumor reversion by inducing differentiation even in the presence of genomic
damage. In the theoretical framework presented here tumor reversion is achieved through the induction of cell
differentiation. In this view, the modulation of proliferation, senescence, and the inflammatory pathways with
pharmacological agents modifies the epigenetic landscape to induce cell differentiation. The use of molecules
from diverse chemical and structural nature can induce the attainment of a differentiated phenotype even in
the absence of specific instructions (as would be the case of the stroma, of specific lineage growth factors,
etc.) or conventional pharmacological interactions (Fig. 6.).

The objective of differentiation therapies in cancer is primarily to induce phenotypic maturation to decrease
aggressive tumor behavior 3%, Preclinical studies to assess the capacity of drugs to induce differentiation in
solid tumors are scarce but are consistent with the premises of the model. For example, the use of troglitazone
in patients with liposarcoma, demonstrated histological changes consistent with differentiation into adipocytes
304 and the use of ATRA in nasopharyngeal carcinoma increases the expression of epithelial markers 3. The
molecular mechanism of both events of differentiation converges in the regulation of NF-xB and upregulation
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of transcription factors that induce the normalization of tumor tissues towards organized histology that
expresses markers of differentiated cells 304 3%,

Fig. 6. Mutationless carcinogenesis, differentiation in absence of instructions.

The DNA acts as a robust network to structural changes, that is, most mutations do not affect the epigenetic landscape. Cells can
differentiate into normal phenotypes despite mutations, and cancer can be induced in the absence of mutations. A) Mutations or genomic
damage do not confer malignant traits, but rather activate and perpetuate the DDR and cellular inflammation (NF-xB), causing a
significant loss of the mechanisms of transcriptional repression. B) This leads to the modification of the epigenetic landscape and allows
the affected cells access to a multipotent state with a transcriptional profile of embryonic cells and the potential to induce cancer. Most
carcinogens converge on these mechanisms, including cellular senescence. Telomere attrition facilitates the acquisition of chromosomal
damage, which is established as DDR, cellular inflammation, and increased transcriptional activity. Proinflammatory cytokines and EMT
also allow access to a transcriptional state with a configuration similar to the mesenchymal stem cell. Therefore, nonspecific mutations
allow access to the cell state that causes cancer. Similarly, ligands of diverse structural and chemical nature can lead to cell differentiation
by altering the epigenetic landscape and essentially reducing cellular inflammation.

The induction of structural and functional changes in cancer cells related to phenotypic maturation is called
cytoeducation 3%, The study of the mechanism underlying the reversion of the malignant phenotype in cell
cultures is growing and among the molecules with this type of effects is the ATRA 397 3% g, 25-
dihydroxyvitamin D3 1°, the coumarins daphnetin and 5-methoxy-6,7-methylenedioxycoumarin 3% 310, the
flavan-3-ols, such as catechin and epicatechin, and the flavonoids wogonin and apigethrin 3. The exposition
of cancer cells to these compounds causes the inhibition of the cell cycle and the cancer-associated signaling
pathways, including NF-«B 3% Is expected that the elucidation of the mechanisms by which some agents
induce the differentiation of cancer cells eventually allows the establishment of more rational strategies for
the treatment of cancer. This approach will lead to the development of less toxic agents to improve the
organization of the affected tissues and the expression of epithelial markers. This would guarantee a delay in
progression accompanied by an increase in survival. Based on the same rationale, the optimization of this type
of therapy requires the surgical removal of tumor masses, the use of antiinflammatory and antiproliferative
agents in conjunction with a healthy lifestyle to increase the chances of tumor reversal. We hope that the
implementation of this type of strategy for cancer treatment will lead to an increased rate of remissions and
eventually the chronic management of the disease.
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9. Conclusion

Through the studying of epithelial carcinogenesis was developed an integrated theory that reconciles disperse
results in an evolutive and developmental framework of the underlying causes of cancer. The rationale of the
mechanistic association of aging and inflammation with sporadic carcinomas was uncovered and suggests the
basis for the study of chronic diseases as part of the developmental process. The hypothesis of epithelial
carcinogenesis as the result of cellular transitions promoted by cellular aging and inflammation considers
cancer an endogenous cell state that matches the transcriptome of stem cells. Proposes that sporadic
carcinomas are mainly the result of the reactivation of developmental processes in hyperplasias and implies
that epithelial cells undergoing replicative senescence are susceptible to reprogramming in vivo using cellular
transitions promoted by inflammation. These transitions are driven by transcriptional derepression that
enables stemness, healing, and cancer. Although it might seem controversial, it provides a natural explanation
of paradoxes accumulated in the field, and most importantly a rational basis for the therapeutic failure in
cancer. The result of this theoretical endeavor offers a simple model to capture knowledge from the ever-
increasing complexity in the molecular and cellular biology of cancers. Derived from the insights of the
hypothesis the role of lifestyle and therapy was critically reviewed and some encouraging strategies for the
management of carcinomas are provided. In conclusion, the underlying order in carcinogenesis suggests that
is a disease resulting from the process of development and its interplay with lifestyle.
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