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Effects of uniform rotation and Cornell-type potential
on KG-scalar particle in Kaluza-Klein theory
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Abstract

The non-inertial effects on spin-0 scalar particle that interacts with
scalar potentials of Cornell-type in cylindrical system and Coulomb-
type in the magnetic cosmic string space-time using Kaluza-Klein the-
ory is analyzed. We show that the energy eigenvalue and eigenfunction
depend on the global parameters characterizing the space-time, and
the gravitational analogue of the Aharonov-Bohm effect for bound
states is observed.
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1 Introduction

The relativistic quantum dynamics of spin-0 and Spin—% particle in the space-
time background produced by topological defects using Kaluza-Klein theory
(KKT) [1, 2, 3] have been investigated. Topological defects play an important
role in various physical systems, such as, in condensed matter physics system
[4, 5, 6, 7] where, topological defects analogue to cosmic strings appear in
phase transitions in liquid crystals [8, 9]. Geometric quantum phases [10]
is a quantum mechanical phenomena that describe phase shifts acquire by

the wave-function of a quantum particle. A well-known such quantum phase
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is the Aharonov-Bohm effect [11, 12, 13| due to the presence of quantum
flux produced by topological defects space-time. In the relativistic quan-
tum system, this effect has investigated, such as, with scalar potential un-
der torsion effects in cosmic string space-time [14, 15, 16, 17], bound states
solution of spin-0 scalar particle in cosmic string space-time [18, 19]. In
the context of Kaluza-Klein theory, this effect has studied with or without
potential of various kind in the five-dimensional cosmic string space-time
20, 21, 22, 23, 24, 25], and in the five-dimensional Minkowski space-time
26, 27, 28].

Non-inertial eects related to rotation have been investigated in the rel-
ativistic quantum system, such as, on a Dirac particle [29], in relativistic
Landau-He-McKellar-Wilkens quantization [30], on a neutral particle [31],
on the Dirac oscillator [32], on a scalar field in the space-times with a space-
like dislocation and a spiral dislocation [33], on scalar boson in cosmic string
space-time [34], on spin-0 scalar particle in cosmic string space-time [35],
on DKP equation with a magnetic cosmic string [36], on scalar field in the
space-time with a magnetic screw dislocation [37], on the Dirac oscillator in
cosmic string space-time [38], and KG-oscillator in cosmic string space-time
with a spacelike dislocation [39].

In this work, we solve KG-equation with a scalar potential of Cornell-
type in cylindrical system using Kaluza-Klein theory under the effects of
rotation and analyze a relativistic analogue of the Aharonov-Bohm effect.
Subsequently, we analyze the same relativistic system using a Coulomb-type

scalar potential.
2 spin-0 scalar particle in rotating magnetic
cosmic string space-time with potential

In the context of Kaluza-Klein theory [1, 2, 3], the metric with a magnetic

quantum flux (®) passing along the symmetry axis of the string in five-
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dimension is given by [21]
ds® = —dt* + dr* + o r* d¢® + dz* + (dy + r Aydg)?, (1)

where the gauge field given by

L e

A, =
¢l€27‘(’

(2)
such that B = V x A = —x 1 ®§2(7) [21]. Here y = 2* is the fifth spatial
coordinate having ranges 0 < y < 27 a where, a is the radius of the compact
dimension of y, and & is the Kaluza constant [21]. The parameter a = (1 —
4 1) [40, 41] where, u is the linear mass density of the string. In gravitation
and cosmology, we assume the values of the parameter o are in the ranges
0<a<l

To introduce a uniform rotation in the above space-time, considering the
transformation ¢ — ¢ +wt [31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43] into the
line-element (1), where w is the velocity of constant rotation of the rotating

frame, which gives us the following line element

ds® = —[1—w2(a2r2+ﬁ2Ai)]dt2+dr2—|—dz2—|—dy2+2/<aA¢dyd¢
+ (%1 + 1A dg? + 2wk A dy dt + 2(a®r? + KAL) w dt do,(3)

By consequence of the rotating frame and in order to make the component
Joo remain negative, we extract the information on the radial coordinate
0<r< —W, that is, the radial coordinate in the background dened by
the metric (3) is restrict to the range above. We can note that, in addition to
the velocity of rotation of the uniformly rotating frame, the above inequality
is determined by the parameter related to the quantum ux ® of the KKT.
We can also note that, for r > —”1_22(;4350)2
outside of the light-cone [44].

The relativistic quantum dynamics of spin-0 scalar particle with a scalar

, we have that the particle is placed

potential S(r) by modifying the mass term m — m+S(r) in five-dimensional


https://doi.org/10.20944/preprints202101.0511.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021

space-time is described by
1
—— O (vV=99"" On) — (m + 5)*| ¥ =0, (4)
e
where M, N = 0,1,2,3,4 with ¢ = —a?r? is the determinant of the metric
tensor with ¢M?¥ its inverse.
By considering the line-element (3) into the Eq. (4), we obtain the fol-

lowing differential equation:
_ g_wi 2+a_2+12+L E—HAE 2+a_2_|_a_2
ot 0¢ or?2  ror  a?r? \0¢ ¢ dy 022 0y?

Since the line-element (2) is independent of ¢, ¢, z,y. One can choose the

following ansatz for the function U as:
U(t,r, ¢, 2,y) = ' THHTTD 4 (1), (6)

where F is the total energy of the particle, [ = 0,+£1,£2,.. € Z, and k,q
are constants.
Substituting the ansatz (6) into the Eq. (5), we obtain the following

equation:

? 1d (I —rqAy)?
bt Y (E4lwl—kr—p oA 9)? —0.
st () ¢ = (m 8)] ()

(7)
Case A : Interactions with Cornell-type potential

The Cornell-type potential consists of linear plus Coulomb-like term is

a particular case of the quark-antiquark interaction [45, 46]. The Coulomb

potential is responsible at small distances or short range interactions and

linear potential leads to confinement of quark. This type of potential is
given by [17]

S(r) :7+77Lr (8)

4
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where 7., 1 are the potential parameters.
Substituting egs. (3) and (8) into the Eq. (7), we obtain the following

equation:

where

, (1 —42)°
j = \/—aﬁ +n2,

a = 2mn,,

b = 2mmng. (10)

Introducing a new variable p = /i r, Eq. (9) becomes

? 1d j° 2 7
bt — (- =10 =0, 11
[dpg pdpcpzp p p| ¥(p) (11)
where \ )
a
C —_ , /,7 e — , 9 = —. 12
nL NG 77[%, (12)
Suppose the possible solution to Eq. (11) is
v(p) = p 7200 H(p). (13)
Substituting the solution Eq. (13) into the Eq. (11), we obtain
" g ' p B
H"(p) + S 02 H'(p) + -, 79 H(p) =0, (14)
where
v =142,
92
@=§+Z—2(1+j),
0 .
f=n+50+2). (15)
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Equation (14) is the biconfluent Heun’s differential equation [23, 24, 14, 47,
48] and H(p) is the Heun polynomials.
The above equation (14) can be solved by the Frobenius method. We

consider the power series solution [49]
H(p) =Y e (16)
i=0

Substituting the above power series solution into the Eq. (14), we obtain the

following recurrence relation for the coefficients:

1

n+2)(n+2+2y) {B+0(n+1)} 1 —(©—=2n)c,]. (17)

And the various coefficients are

_(n 0
Cl_<’}/+2> Co,

1
1047) [(B+0) c1 —Ocl. (18)

Coy =

We must truncate the power series by imposing the following two condi-

tions [23, 24, 14, 26, 27, 28]:

© = 2n, (n=12..)
Cn+1 — 0. (19)

By analyzing the condition © = 2n, we get the following second degree
expression of the energy eigenvalues E, ;:
A 62

2l _o2(1+4)=2n
PR (1+7)

_ B)2

= L, =—-wlt |[K2+¢+2n n—{—l—i—nc—{—\/(%—i—ng 20)
a
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Now, we impose additional recurrence condition ¢,.; = 0 to find the
individual energy levels and wave-functions one by one as done in [23, 24, 14].

For n = 1, we have © = 2 and ¢, = 0 which implies from Eq. (18)

2 N < n_ . 9) 2
= ¢ T )= =
CE A 1+25 2) B+6
2 ' 2
3 a 9 147 b ,
- —ab(——= ——=B8+25)=0 21

a constraint on the potential parameter n; . This algebraic third degree
equation has at least one real root and it is exactly this solution that gives
us the allowed value of the potential 1, for the lowest state of the system
and one can obtain first degree polynomial solution to H(p) for the radial
mode n = 1.

Therefore, the ground state energy level for n = 1 is given by

(Z—QP
Eyy=—-wlx |K2+¢@+2mp |24+ %ﬂ”ﬁ - (22)

And the radial wave-function is

507 o —1( 2 +p)p
Yy =pV e e 2V (co+cip), (23)
where
1 2mm,
1 o +m| co. (24)

q®
mr (1 19 (17042?)2 . 7]?)

Then by substituting the real solution of 7, from Eq. (21) into the
equation (22) together with (23)—(24), one can obtained the ground state

energy level and corresponding eigenfunction for the radial mode n = 1.

Case B : Interactions with Coulomb-type potential

7
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We consider 1, — 0 into the scalar potential S. Thus the Coulomb

potential is given by

S(r)y =", (25)

r
This kind of potential has used to study position-dependent mass systems

23, 27, 50, 51] in the relativistic quantum mechanics.

The radial wave-equations Eq. (9) becomes

2 1d - 5
AL 2 () =0, (26)

where A = (E +wl)? — k* — ¢ — m?.

The above equation can be expressed as [52]

W) + )+ g (o — &) 0(r) = 0 (27)
where
51 = _5\ ) 52 =—a , 63 = jz‘ (28>

The energy eigenvalues FE,; is given by:

20 +1)VE —&+2V66 =0
2

2 ¢
= By, =-wl+m 1+_2+q_2_ e
m

m (1-42)?
n+ 3+ Z +n?

£29)

where n’ =0,1,2,.....

The wave-function is given by

)2

Una(r) = [Nlwyr 12 R mE(By e

(2\/‘ 50 2 )
L ” (2 \/k2 +q*+m?— (B, +wl)?r), (30)

n/

where |N|,/,; is the normalization constant and Lff,j) (r) is the generalized

Laguerre polynomials.
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In both cases we have observed that the angular momentum number
[ is shifted, | — Iy = i(l — %), an effective angular quantum number.
Therefore, the relativistic energy eigenvalues and eigenfunction depends on
the geometric quantum phase [13]. Thus, we have that, E, ;(® + &) =
E, 1% (®), where &y = £ 27”7' with 7 = 0,1,2,.. This dependence of the
relativistic energy level on the geometric quantum phase gives us a relativistic
analogue of the Aharonov-Bohm effect for bound states. Furthermore, due
to the effects of rotation, a contribution to the relativistic energy levels that

gives rise to a Sagnac-type effect [29, 53, 54, 55| is observed in both cases.

3 Conclusions

We have investigated rotating effects on scalar particle subject to Cornell-
type potential in cylindrical system and subsequently with Coulomb-type
scalar potential in the magnetic cosmic string space-time using Kaluza-Klein
theory. We have started our discussion in all cases through the restriction on
the radial coordinate r that arises from the uniformly rotating frame and the
topology of the space-time. We have obtained the bound states solution of the
quantum system and analyze the effects on the eigenvalue and eigenfunction.
In Case A, we have considered a Cornell-type scalar potential into the system
and arrived the biconfluent Heun’s differential equation form. Finally using
the power series expansion method, we have solved the differential equation
and obtained the energy eigenvalues and eigenfunction by truncating the
power series solution. Then analyzing the recurrence condition ¢,,; = 0 for
each radial mode, for example, the radial mode n = 1, we have evaluated the
ground state energy level (22) and the eigenfunction (23)—(24) and others are
in the same way. One can see that the lowest state is defined by the radial
mode n = 1 instead of n = 0. This effect arises due to the presence of Cornell-
type potential in the quantum system. In Case B, we have considered a

Coulomb-type scalar potential and obtained the energy eigenvalues (29) and
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eigenfunction (30) by using the Nikiforov-Uvarov method.

Equations (20) and (29) gives us the spectrum of energy of a scalar particle
subject to a Cornell-type and Coulomb-type scalar potential, respectively in
the magnetic cosmic string space-time in a uniformly rotating frame. The
contributions to the relativistic energy levels that stem from the topology
of the magnetic cosmic string are given by the effective angular momentum,
I — 1y = %—gg) Since there is no interaction between the scalar particle
and the topological defects, the presence of the effective angular momentum
in the relativistic energy levels means that there exists an analogue of the
AharonovBohm effect. Besides, we can observe a Sagnac-type effect by the
presence of the coupling between the angular velocity w and the angular

momentum quantum number /.
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