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Abstract

The non-inertial effects on spin-0 scalar particle that interacts with
scalar potentials of Cornell-type in cylindrical system and Coulomb-
type in the magnetic cosmic string space-time using Kaluza-Klein the-
ory is analyzed. We show that the energy eigenvalue and eigenfunction
depend on the global parameters characterizing the space-time, and
the gravitational analogue of the Aharonov-Bohm effect for bound
states is observed.
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1 Introduction

The relativistic quantum dynamics of spin-0 and spin-1
2

particle in the space-

time background produced by topological defects using Kaluza-Klein theory

(KKT) [1, 2, 3] have been investigated. Topological defects play an important

role in various physical systems, such as, in condensed matter physics system

[4, 5, 6, 7] where, topological defects analogue to cosmic strings appear in

phase transitions in liquid crystals [8, 9]. Geometric quantum phases [10]

is a quantum mechanical phenomena that describe phase shifts acquire by

the wave-function of a quantum particle. A well-known such quantum phase
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is the Aharonov-Bohm effect [11, 12, 13] due to the presence of quantum

flux produced by topological defects space-time. In the relativistic quan-

tum system, this effect has investigated, such as, with scalar potential un-

der torsion effects in cosmic string space-time [14, 15, 16, 17], bound states

solution of spin-0 scalar particle in cosmic string space-time [18, 19]. In

the context of Kaluza-Klein theory, this effect has studied with or without

potential of various kind in the five-dimensional cosmic string space-time

[20, 21, 22, 23, 24, 25], and in the five-dimensional Minkowski space-time

[26, 27, 28].

Non-inertial eects related to rotation have been investigated in the rel-

ativistic quantum system, such as, on a Dirac particle [29], in relativistic

Landau-He-McKellar-Wilkens quantization [30], on a neutral particle [31],

on the Dirac oscillator [32], on a scalar field in the space-times with a space-

like dislocation and a spiral dislocation [33], on scalar boson in cosmic string

space-time [34], on spin-0 scalar particle in cosmic string space-time [35],

on DKP equation with a magnetic cosmic string [36], on scalar field in the

space-time with a magnetic screw dislocation [37], on the Dirac oscillator in

cosmic string space-time [38], and KG-oscillator in cosmic string space-time

with a spacelike dislocation [39].

In this work, we solve KG-equation with a scalar potential of Cornell-

type in cylindrical system using Kaluza-Klein theory under the effects of

rotation and analyze a relativistic analogue of the Aharonov-Bohm effect.

Subsequently, we analyze the same relativistic system using a Coulomb-type

scalar potential.

2 spin-0 scalar particle in rotating magnetic

cosmic string space-time with potential

In the context of Kaluza-Klein theory [1, 2, 3], the metric with a magnetic

quantum flux (Φ) passing along the symmetry axis of the string in five-
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dimension is given by [21]

ds2 = −dt2 + dr2 + α2 r2 dφ2 + dz2 + (dy + κAφdφ)2, (1)

where the gauge field given by

Aφ = κ−1 Φ

2π
(2)

such that ~B = ~∇ × ~A = −κ−1 Φ δ2(~r) [21]. Here y = x4 is the fifth spatial

coordinate having ranges 0 < y < 2π a where, a is the radius of the compact

dimension of y, and κ is the Kaluza constant [21]. The parameter α = (1−
4µ) [40, 41] where, µ is the linear mass density of the string. In gravitation

and cosmology, we assume the values of the parameter α are in the ranges

0 < α < 1.

To introduce a uniform rotation in the above space-time, considering the

transformation φ→ φ+ω t [31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43] into the

line-element (1), where ω is the velocity of constant rotation of the rotating

frame, which gives us the following line element

ds2 = −[1− ω2 (α2 r2 + κ2A2
φ)] dt2 + dr2 + dz2 + dy2 + 2κAφ dy dφ

+ (α2 r2 + κ2A2
φ) dφ2 + 2ω κAφ dy dt+ 2 (α2 r2 + κ2A2

φ)ω dt dφ,(3)

By consequence of the rotating frame and in order to make the component

g00 remain negative, we extract the information on the radial coordinate

0 ≤ r <

√
1−κ2 A2

φ ω
2

αω
, that is, the radial coordinate in the background dened by

the metric (3) is restrict to the range above. We can note that, in addition to

the velocity of rotation of the uniformly rotating frame, the above inequality

is determined by the parameter related to the quantum ux Φ of the KKT.

We can also note that, for r >

√
1−κ2 A2

φ ω
2

αω
, we have that the particle is placed

outside of the light-cone [44].

The relativistic quantum dynamics of spin-0 scalar particle with a scalar

potential S(r) by modifying the mass term m→ m+S(r) in five-dimensional
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space-time is described by[
1√
−g

∂M(
√
−g gMN ∂N)− (m+ S)2

]
Ψ = 0, (4)

where M,N = 0, 1, 2, 3, 4 with g = −α2 r2 is the determinant of the metric

tensor with gMN its inverse.

By considering the line-element (3) into the Eq. (4), we obtain the fol-

lowing differential equation:[
−
(
∂

∂t
− ω ∂

∂φ

)2

+
∂2

∂r2
+

1

r

∂

∂r
+

1

α2 r2

(
∂

∂φ
− κAφ

∂

∂y

)2

+
∂2

∂z2
+

∂2

∂y2

]
Ψ

= (m+ S)2 Ψ. (5)

Since the line-element (2) is independent of t, φ, z, y. One can choose the

following ansatz for the function Ψ as:

Ψ(t, r, φ, z, y) = ei (−E t+l φ+k z+q y) ψ(r), (6)

where E is the total energy of the particle, l = 0,± 1,± 2, .. ∈ Z, and k, q

are constants.

Substituting the ansatz (6) into the Eq. (5), we obtain the following

equation:[
d2

dr2
+

1

r

d

dr
+ (E + l ω)2 − k2 − q2 − (l − κ q Aφ)2

α2 r2
− (m+ S)2

]
ψ(r) = 0.

(7)

Case A : Interactions with Cornell-type potential

The Cornell-type potential consists of linear plus Coulomb-like term is

a particular case of the quark-antiquark interaction [45, 46]. The Coulomb

potential is responsible at small distances or short range interactions and

linear potential leads to confinement of quark. This type of potential is

given by [17]

S(r) =
ηc
r

+ ηL r (8)
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where ηc, ηL are the potential parameters.

Substituting eqs. (3) and (8) into the Eq. (7), we obtain the following

equation: [
d2

dr2
+

1

r

d

dr
+ λ− j2

r2
− η2

L r
2 − a

r
− b r

]
ψ(r) = 0, (9)

where

λ = (E + l ω)2 − k2 − q2 −m2 − 2 ηc ηL,

j =

√
(l − qΦ

2π
)2

α2
+ η2

c ,

a = 2mηc,

b = 2mηL. (10)

Introducing a new variable ρ =
√
ηL r, Eq. (9) becomes[

d2

dρ2
+

1

ρ

d

dρ
+ ζ − j2

ρ2
− ρ2 − η

ρ
− θ ρ

]
ψ(ρ) = 0, (11)

where

ζ =
λ

ηL
, η =

a
√
ηL

, θ =
b

η
3
2
L

. (12)

Suppose the possible solution to Eq. (11) is

ψ(ρ) = ρj e−
1
2

(ρ+θ) ρH(ρ). (13)

Substituting the solution Eq. (13) into the Eq. (11), we obtain

H ′′(ρ) +

[
γ

ρ
− θ − 2 ρ

]
H ′(ρ) +

[
−β
ρ

+ Θ

]
H(ρ) = 0, (14)

where

γ = 1 + 2 j,

Θ = ζ +
θ2

4
− 2 (1 + j),

β = η +
θ

2
(1 + 2 j). (15)
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Equation (14) is the biconfluent Heun’s differential equation [23, 24, 14, 47,

48] and H(ρ) is the Heun polynomials.

The above equation (14) can be solved by the Frobenius method. We

consider the power series solution [49]

H(ρ) =
∞∑
i=0

ci ρ
i (16)

Substituting the above power series solution into the Eq. (14), we obtain the

following recurrence relation for the coefficients:

cn+2 =
1

(n+ 2)(n+ 2 + 2 j)
[{β + θ (n+ 1)} cn+1 − (Θ− 2n) cn] . (17)

And the various coefficients are

c1 =

(
η

γ
+
θ

2

)
c0,

c2 =
1

4 (1 + j)
[(β + θ) c1 −Θ c0]. (18)

We must truncate the power series by imposing the following two condi-

tions [23, 24, 14, 26, 27, 28]:

Θ = 2n, (n = 1, 2, ...)

cn+1 = 0. (19)

By analyzing the condition Θ = 2n, we get the following second degree

expression of the energy eigenvalues En,l:

λ

ηL
+
θ2

4
− 2 (1 + j) = 2n

⇒ En,l = −ω l ±

√√√√√k2 + q2 + 2 ηL

n+ 1 + ηc +

√
(l − qΦ

2π
)2

α2
+ η2

c

.(20)

6

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   doi:10.20944/preprints202101.0511.v1

https://doi.org/10.20944/preprints202101.0511.v1


Now, we impose additional recurrence condition cn+1 = 0 to find the

individual energy levels and wave-functions one by one as done in [23, 24, 14].

For n = 1, we have Θ = 2 and c2 = 0 which implies from Eq. (18)

c1 =
2

β + θ
c0 ⇒

(
η

1 + 2 j
+
θ

2

)
=

2

β + θ

η3
1L −

a2

2 (1 + 2 j)
η2

1L − a b (
1 + j

1 + 2 j
) η1L −

b2

8
(3 + 2 j) = 0 (21)

a constraint on the potential parameter η1L. This algebraic third degree

equation has at least one real root and it is exactly this solution that gives

us the allowed value of the potential ηL for the lowest state of the system

and one can obtain first degree polynomial solution to H(ρ) for the radial

mode n = 1.

Therefore, the ground state energy level for n = 1 is given by

E1,l = −ω l ±

√√√√√k2 + q2 + 2 η1L

2 + ηc +

√
(l − qΦ

2π
)2

α2
+ η2

c

. (22)

And the radial wave-function is

ψ1,l = ρ

√
(l− qΦ

2π )2

α2 +η2
c e
− 1

2

(
2m√
η1L

+ρ
)
ρ

(c0 + c1 ρ) , (23)

where

c1 =
1
√
η1L

 2mηc(
1 + 2

√
(l− qΦ

2π
)2

α2 + η2
c

) +m

 c0. (24)

Then by substituting the real solution of η1L from Eq. (21) into the

equation (22) together with (23)–(24), one can obtained the ground state

energy level and corresponding eigenfunction for the radial mode n = 1.

Case B : Interactions with Coulomb-type potential

7
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We consider ηL → 0 into the scalar potential S. Thus the Coulomb

potential is given by

S(r) =
ηc
r
, (25)

This kind of potential has used to study position-dependent mass systems

[23, 27, 50, 51] in the relativistic quantum mechanics.

The radial wave-equations Eq. (9) becomes[
d2

dr2
+

1

r

d

dr
+ λ̄− j2

r2
− a

r

]
ψ(r) = 0, (26)

where λ̄ = (E + ω l)2 − k2 − q2 −m2.

The above equation can be expressed as [52]

ψ′′(r) +
1

r
ψ′(r) +

1

r2
(−ξ1 r

2 + ξ2 r − ξ3)ψ(r) = 0 (27)

where

ξ1 = −λ̄ , ξ2 = −a , ξ3 = j2. (28)

The energy eigenvalues En′,l is given by:

(2n′ + 1)
√
ξ1 − ξ2 + 2

√
ξ1 ξ3 = 0

⇒ En′,l = −ω l ± m

√√√√√1 +
k2

m2
+

q2

m2
− η2

c(
n′ + 1

2
+

√
(l− qΦ

2π
)2

α2 + η2
c

)2 ,(29)

where n′ = 0, 1, 2, .....

The wave-function is given by

ψn′,l(r) = |N |n′,l r
√

(l− qΦ
2π )2

α2 +η2
c e−
√
k2+q2+m2−(En′,l+ω l)

2 r ×

L

(
2

√
(l− qΦ

2π )2

α2 +η2
c

)
n′ (2

√
k2 + q2 +m2 − (En′,l + ω l)2 r), (30)

where |N |n′,l is the normalization constant and L
(2 j)
n′ (r) is the generalized

Laguerre polynomials.
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In both cases we have observed that the angular momentum number

l is shifted, l → l0 = 1
α

(l − qΦ
2π

), an effective angular quantum number.

Therefore, the relativistic energy eigenvalues and eigenfunction depends on

the geometric quantum phase [13]. Thus, we have that, En,l(Φ + Φ0) =

En,l∓τ (Φ), where Φ0 = ± 2π
q
τ with τ = 0, 1, 2, .. This dependence of the

relativistic energy level on the geometric quantum phase gives us a relativistic

analogue of the Aharonov-Bohm effect for bound states. Furthermore, due

to the effects of rotation, a contribution to the relativistic energy levels that

gives rise to a Sagnac-type effect [29, 53, 54, 55] is observed in both cases.

3 Conclusions

We have investigated rotating effects on scalar particle subject to Cornell-

type potential in cylindrical system and subsequently with Coulomb-type

scalar potential in the magnetic cosmic string space-time using Kaluza-Klein

theory. We have started our discussion in all cases through the restriction on

the radial coordinate r that arises from the uniformly rotating frame and the

topology of the space-time. We have obtained the bound states solution of the

quantum system and analyze the effects on the eigenvalue and eigenfunction.

In Case A, we have considered a Cornell-type scalar potential into the system

and arrived the biconfluent Heun’s differential equation form. Finally using

the power series expansion method, we have solved the differential equation

and obtained the energy eigenvalues and eigenfunction by truncating the

power series solution. Then analyzing the recurrence condition cn+1 = 0 for

each radial mode, for example, the radial mode n = 1, we have evaluated the

ground state energy level (22) and the eigenfunction (23)–(24) and others are

in the same way. One can see that the lowest state is defined by the radial

mode n = 1 instead of n = 0. This effect arises due to the presence of Cornell-

type potential in the quantum system. In Case B, we have considered a

Coulomb-type scalar potential and obtained the energy eigenvalues (29) and
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eigenfunction (30) by using the Nikiforov-Uvarov method.

Equations (20) and (29) gives us the spectrum of energy of a scalar particle

subject to a Cornell-type and Coulomb-type scalar potential, respectively in

the magnetic cosmic string space-time in a uniformly rotating frame. The

contributions to the relativistic energy levels that stem from the topology

of the magnetic cosmic string are given by the effective angular momentum,

l → l0 =
(l− qΦ

2π
)

α
. Since there is no interaction between the scalar particle

and the topological defects, the presence of the effective angular momentum

in the relativistic energy levels means that there exists an analogue of the

AharonovBohm effect. Besides, we can observe a Sagnac-type effect by the

presence of the coupling between the angular velocity ω and the angular

momentum quantum number l.
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