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Abstract: This study presents an exact solution to the free vibration analysis of a uniform Timoshenko beam 

using an analytical approach, a harmonic vibration being assumed. The Timoshenko beam theory covers cases 

associated with small deflections based on shear deformation and rotary inertia considerations. In this paper, a 

momentshear forcecircular frequencycurvature relationship was presented. The complete study was based on 

this relationship and closed-form expressions of efforts and deformations were derived. The free vibration 

response of single-span systems, as well as that of springmass systems, was analyzed; closed-form formulations 

of matrices expressing the boundary conditions were presented and the natural frequencies were determined by 

solving the eigenvalue problem. Systems with intermediate mass, spring, or springmass system were also 

analyzed. Furthermore, first-order dynamic stiffness matrices in local coordinates were derived.  Finally, second-

order analysis of beams resting on an elastic Winkler foundation was conducted.  The results obtained in this 

paper were in good agreement with those of other studies.  

 

Keywords: Timoshenko beam; rotary inertia; momentshear forcecircular frequencycurvature relationship; 
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1. Introduction 

Natural frequencies are important for the analysis of the response of structures subjected to dynamic loadings 

such as wind, earthquake, traffic, etc. Free vibration analysis leads to the determination of the natural frequencies 

of structures. Various studies have focused on the free vibration analysis of Timoshenko beams. Kocatürk et al. 

[1] used Lagrange equations to examine the free vibration characteristics of Timoshenko beams. Gürgöze [2] used 

the Lagrange multiplier method to determine the free vibration characteristics of a cantilevered EulerBernoulli 

beam with a tip mass where a springmass system is attached to it. Yesilce et al. [3] studied the free vibration of a 

multi-span Timoshenko beam carrying multiple springmass systems; the natural frequencies were calculated by 

using the secant method and the mode shapes were presented in graphs. Ghannadiasl et al. [4] used the Green 

functions to analytically solve the case of beams with various boundary conditions resting on an elastic Winkler 

foundation and subjected to an axial load; the Green function method was utilized to evaluate the free vibration of 

the Timoshenko beam. Osadebe et al. [5] proposed a model for the free vibration analysis of a Timoshenko beam 
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A harmonic vibration being assumed, M*(x,t), V*(x,t), w*(x,t), and *(x,t) can be expressed as follows:  

                                                                                                                                                                (6a) 

                                                                                                                                                                (6b) 

                                                                                                                                                                (6c) 

                                                                                                                                                                (6d)                        

Here,  is the circular frequency of the beam. Substituting Equations (6a) and (6c) into Equation (5) yields 

                                                                                                                                                                  (7)                   

The application of Equations (6a), (6c), and (6d) to Equations (3) and (4) with rearrangement yields 

                                                                                          ,                                                                       (8) 

                                                                                      .                                                                           (9) 

Substituting Equations (6b), (6c), and (6d) into Equation (2) yields 
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The combination of Equations (8) and (10) yields 
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Differentiating both sides of Equation (8) with respect to x yields 
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Substituting Equations (9) and (11) into Equation (13) and rearranging yields the following relationship which 

combines bending, shear, curvature, and circular frequency: 
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The coefficient of free vibration is denoted by , the coefficient of rotary inertia by kRI, and the bending shear 

factor by . 

                                                                                                                                                                       (15a) 

                                                                                                                                                                       (15b) 

                                                                                                                                                                       (15c)                

Applying Equations (15a) to (15c) to Equations (7) and (14) yields                                                                                    
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 Differentiating Equation (16) twice with respect to x and combining the result with Equation (17) yields                        

                                                                                                                                                         .             (18) 

The application of Equations (15a) to (15c) to Equations (7), (11) and (12) yields 
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The solution of Equation (18) for low-frequency modes (1 kRI  0) is as follows: 
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The application of Equations (22), (23), and (24) to Equations (19), (20), and (21) yields the following 

expressions for the deflection, the rotation of the cross section, and the shear force.  

 
                                                                                                      (25) 
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The application of Equations (25) and (26) to Equations (37a) to (37d) yields Equation (39) below.  

 

 

 

 

 

 

 

 

 

 

 

Converting Equations (38) and (39) to matrix notation yields 

                                                                                                                                                                 (40a)               

                                                                                                                                                                 (40b)               

where the vector      and the matrices TS, MS, MV, and TV are defined as follows in Equations (41a) to (41e).                   

                                                                                                                             (41a)     
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The combination of Equations (35c), (40a), and (40b) yields 

                                                                                                                                                                    (42)                    

 

2.5 First-order vibration analysis of a beam resting on a Winkler foundation  

The stiffness of the Winkler foundation is Kw. We set 
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The analysis continues similarly to that in Section 2.1. Thus, Equation (18) becomes 

 

                                                                                                                                                                           (45) 

The solution of Equation (45) yields the formulation of M(x) with four integration constants. The deflection w(x), 

the rotation of the cross section (x), and the shear force are determined as follows.  

 

                                                                                                                                                                          (46) 
                                                                                                                                             

 

                                                                                                                                                                          (47) 

 

 

 
 
                                                                                                                                                                           (48) 
 

2.6 Second-order vibration analysis of a beam resting on a Winkler foundation  

The axial force N is assumed to be constant. 

When the shear force is replaced by the transverse force T*(x), Equations (1) and (2) become  

                                                                                                 ,                                                                    (49) 

                                                                                                                              .                                       (50) 

The transverse force  shear force relationship is as follows: 

                                                                            .                                                                                         (51) 

Differentiating Equation (50) with respect to x and combining it with Equations (49) and (3) yields 

                                                                                                                                                     .             (52) 

The separation of variables (Equations (6a) to (6d)) applied to Equations (52) and (50) yields 

                                                                                                                                            ,                      (53)                     

                                                                                                    .                                                              (54)                     
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 Substituting Equation (51) into Equation (54) yields 

                                                                             .                                                                                     (55) 

Equations (55) and (10) are identical. The combination of Equations (8) and (55) yields Equations (11), (12), (13), 

and (14). The combination of Equations (11) and (51) yields, 

 

                                                                                                                                     .                            (56) 

 The combination of Equations (8) and (55) yields 

                                                                                                                .                                                  (57) 

The combination of Equations (14) and (53) yields 

                                                                                                                                                          .          (58)    

Differentiating both sides of Equation (58) twice with respect to x and combining the result with Equation (14) 

yields 

     
                                                                                                                                                                  (59) 

                                                                                                               

                                                                                                                                                                      

 

The axial force N can be expressed as follows: 
 
                                                                                                 .                                                                    (60) 

 
Substituting Equations (15a), (15b), (15c), (43), and (60) into Equation (59) yields   
 

                                                                                                                                                                       (61) 
                                                                                                                                                                                              

  

The solution of Equation (61) yields the formulation of M(x) with four integration constants. Equations (58), (57), 

and (56) are used to determine the deflection w(x), the rotation of the cross section (x), and the transverse force 

as follows.  

 

2( )
( ) ( )

dM x
V x I x

dx
    

2 2
2( ) ( )

1 ( ) (1 )
I dM x I dw x

T x N I
GA dx GA dx

     
 

   
         

   

2 2 2
2

2

( )
( ) ( ) (1 ) (1 ) ( )w

N d M x I N
K w x M x

GA dx E GA EI

  
 

 
        

 

24 2 2 2

4 2

22

( ) ( )
1 (1 )

(1 ) ( ) 0

w

w

KN d M x I N d M x

GA dx E GA EI GA dx

KI
M x

GA EI

  
  

 


         
   


 

 
4 2

*
4 2 2

*
4

( ) 1 ( )
1 ( ) (1 )

1
(1 )( ) ( ) 0

w RI RI

RI w

d M x d M x
k k k k k

dx l dx

k k M x
l

    

 

         

  

2/N k EI l 

2 ( ) ( )
( ) ( )

dM x dw x
I GA x GA

dx dx
        

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 September 2021                   doi:10.20944/preprints202101.0501.v2

https://doi.org/10.20944/preprints202101.0501.v2


TIMOSHENKO BEAM THEORY FREE VIBRATION ANALYSIS 

13 
 

 

                                                                                                                                                                             (62) 
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                                                                                                                                                                               (64) 

 

 

 

 

Equations (61), (62), (63), and (64) depend on the following parameters: 

                                                                                                                                                                        (65a) 

                                                                                                                                                                        (65b) 

                                                                                                                                                                        (65c) 

                                                                                                                                                                        (65d) 

                                                                                                                                                                        (65e) 

 
The following cases are analyzed herein. 
 

Case 1:    0 -B/A  0 C/A  0 

                                                                                                                                                            (66a) 

 

                                                                                                                                                                         (66b)    

Case 2:    0  C/A  0 

                                                                                                                                                            (66c) 
 

                                                                                                                                                                         (66d) 

Case 3:    0 -B/A  0 C/A  0 

                                                                                                                                                            (66e) 
 

                                                                                                                                                                         (66f) 
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Case 4:   = 0 -B/A  0  

                                                                                                                                                                (66g) 
 

                                                                                                                                                                             (66h) 

Case 5:   = 0 -B/A  0  

                                                                                                                                                                (66i) 
 

                                                                                                                                                                            (66j) 

Case 6:    0   

                                                                                                                                                               (66k) 
 

                                                                                                                                                                         (66l) 

 

 

 

 

For each case the deflection w(x), the rotation of the cross section (x), and the transverse force T(x) are 

determined using Equations (54), (55), and (56), respectively.  The eigenvalue problem is solved and the 

condition for the case is checked. 

 

3. Results and Discussion 

3.1   First-order vibration analysis of Timoshenko beams 
We determine herein the vibration frequencies of beams with various support conditions. The frequencies are 

calculated for different values of bending shear factor and coefficients of rotary inertia.  

The results presented here apply for 1 kRI  0 (low-frequency modes). 

 
The details of the analysis and results are listed in Appendix A and in the supplementary files “Vibration analysis 

of a pinnedpinned beam”, “Vibration analysis of a fixedpinned beam”, “Vibration analysis of a fixedfree 

beam”, and “Vibration analysis of a fixedfixed beam”. 

The vibration frequency is , where                                                      .   

                                                                                                    .                                                                 (67) 

 
 
The coefficients  are listed in Table 1 below.  

4 4

EI EI
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Table 1.  Natural frequencies (first mode) of Timoshenko single-span beams with various boundary conditions.  

Pinnedpinned beam 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 9.4254 9.2284 8.8672 7.9873 

kRI= 0.010 9.2284 9.0505 8.7206 7.8995 

kRI= 0.015 9.0427 8.8814 8.5795 7.8130 

Fixedpinned beam 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 14.1395 13.4088 12.2220 9.9416 

kRI= 0.010 13.8341 13.1651 12.0560 9.8659 

kRI= 0.015 13.5449 12.9307 11.8930 9.7895 

Fixedfixed beam 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 19.6360 18.0282 15.6938 11.9004 

kRI= 0.010 19.2636 17.7840 15.5720 11.8705 

kRI= 0.015 18.9052 17.5433 15.4493 11.8400 

 
For the case of a fixedfree beam, the results obtained in the present study are compared to those obtained using  

Kruszewski [6] in Table 2 below.  

 

Table 2.  Natural frequencies (first mode) of a Timoshenko fixedfree beam.   

Fixedfree beam: Present study 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 3.4378 3.4009 3.3301 3.1394 
kRI= 0.010 3.4009 3.3659 3.2985 3.1159 
kRI= 0.015 3.3650 3.3318 3.2677 3.0927 

Fixedfree beam: Kruszewski [6] 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 3.4378 3.4009 3.3300 3.1393 

kRI= 0.010 3.4009 3.3659 3.2985 3.1159 

kRI= 0.015 3.3650 3.3318 3.2677 3.0927 

 
The results are identical.  
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3.2   First-order vibration analysis of a Timoshenko beam with a mass, spring, or 

springmass system at its end 
 

The results presented here apply for 1  kRI  0 (low-frequency modes). 

Timoshenko beams with the following values of  and kRI were analyzed:   = 0.020, kRI = 0.01. 

 

The case of a cantilevered beam carrying a tip mass at the beam’s end as represented in Figure 2 was 

considered. 

Details of the analysis and results are listed in Appendix B and in the supplementary file “Vibration analysis of a 
cantilevered beam carrying a tip mass”. 

The coefficients  (Equation (59)) for the natural frequencies (the first modes) are listed in Table 3 below.  
 

Table 3.  Natural frequencies (first mode) of a Timoshenko beam carrying a tip mass at the beam’s end. 

 mp

 

  0.25 0.50 0.75 1.00 2.00 3.00 5.00 

 2.3662 1.9375 1.6797 1.5031 1.1211 0.9330 0.7345 
 

 
Let us now analyze the case of a cantilevered beam with a tip mass and spring support as shown in Figure 3. 

Details of the analysis and results are listed in Appendix B and in the supplementary file “Vibration analysis of a 

cantilevered beam with a tip mass and spring support”. The coefficients  are listed in Table 4 below.  

 

Table 4.  Natural frequencies (first mode) of Timoshenko beams with a tip mass and spring support. 

mp

 

  0.50 1.00 2.00 5.00 

kp
*= 0.10 1.9713 1.5294 1.1407 0.7470 

kp
*= 0.50 2.1009 1.6303 1.2160 0.7963 

kp
*= 1.00 2.2523 1.7481 1.3041 0.8541 

kp
*= 3.00 2.7747 2.1556 1.6087 1.0536 

kp
*= 10.00 4.0934 3.1917 2.3850 1.5629 

kp
*= 100.0 10.1012 8.6664 6.6854 4.4179 

kp
*= 500.0 11.8355 11.7926 11.6374 12.3926 

 
It is noted that with small values of spring stiffness, the values of the natural frequencies converge towards those 

for the case with a tip mass (Table 3), and with high values of spring stiffness, the values of the natural 

frequencies converge towards those for the fixedpinned beam (12.0560, see Table 1).    
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Let us now analyze the case of a cantilevered beam carrying a springmass system at the beam’s end as 

shown in Figure 4. Details of the analysis and results are listed in Appendix B and in the supplementary file 

“Vibration analysis of a cantilevered beam carrying a springmass system”. 

The coefficients  are listed in Table 5 below.  

Table 5.  Natural frequencies (first mode) of Timoshenko beams with a springmass system at the beam’s end. 

mp*  
  0.50 1.00 2.00 5.00 

kp
*= 0.10 3.3551 3.3546 3.3544 3.3542 

kp
*= 0.50 0.9164 0.6505 0.4636 0.3019 

kp
*= 1.00 1.1933 0.8519 0.6061 0.3849 

kp
*= 3.00 1.5911 1.1662 0.8391 0.5362 

kp
*= 4.00 1.6665 1.2322 0.8908 0.5707 

kp
*= 10.00 1.8215 1.3794 1.0115 0.6542 

kp
*= 100.00 1.9255 1.4897 1.1087 0.7249 

 

It is noted that with small values of spring stiffness, the values of the natural frequencies converge towards those 

for the fixedfree beam (3.2985, see Table 2), and with high values of spring stiffness, the values of the natural 

frequencies converge towards those for the case with the tip mass (Table 3).    

 
3.3   Second-order vibration analysis of Timoshenko beams 

We now determine the dynamic response of beams subjected to an axial load. An elastic Winkler foundation was 

not considered. A pinnedpinned beam and a fixedpinned beam were considered.   

We set the following values of  and kRI :   = 0.020, kRI = 0.01. 

The natural frequencies (first mode) were determined for various values of the axial load. Table 6 below lists the 
results. Details of the analysis and results are listed in Appendix C and in the supplementary files “Vibration 

analysis of a pinnedpinned beam with an axial load” and “Vibration analysis of a fixedpinned beam with an 
axial load”. 
 

Table 6.   Natural frequencies (first mode) of Timoshenko beams under axial load.  
 

Pinnedpinned beam 
  k 
  -5.00 -3.00 -1.00 1.00 3.00 5.00 

  5.4710 6.9559 8.1749 9.2340 10.1831 11.0507 

Fixedpinned beam 
 k 

  -5.00 -3.00 -1.00 1.00 3.00 -5.00 

 9.7373 10.7311 11.6328 12.4635 13.2375 13.9648 
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Ghannadiasl [4] analytically solved the case of beams with various boundary conditions resting on an elastic 
Winkler foundation and subjected to an axial load. The case of a beam without an elastic Winkler foundation is 

analyzed here. The beams have the following characteristics: Poisson’s ratio  = 0.25, Timoshenko shear 

coefficient  =2/3, and coefficient of rotary inertia kRI = 0.01. 
 
                                                                                                  = 0.0375 

                                                               k = -5.922 
 
Detailed results are listed in the aforementioned supplementary files. 
 
Table 7 lists the results of Ghannadiasl [4] and those obtained in the present study. 

 
Table 7.   Free vibration of Timoshenko beams under axial load.  

 

 Pinnedpinned beam Fixedpinned beam 

Ghannadiasl [4] 3.46646 7.32425 

Present study 3.46648 7.32425 
 

The results are identical. 

 
4.  Conclusions 

The momentshear forcecircular frequencycurvature relationship developed in this study enabled closed-form 
solutions of first-order and second-order vibration analysis of Timoshenko beams. The vibration analysis of 

beams with a spring, a mass or a springmass system was conducted. Systems with an intermediate spring, mass, 

or springmass system were also analyzed. For single-span beams, closed-form formulations of matrices 

expressing the boundary conditions were presented (for the case where 1 kRI  0); the natural frequencies 
were determined by solving the eigenvalue problem (the determinants of the matrices were set to zero). Closed-
form expressions of first-order dynamic stiffness matrices with local coordinates were also determined (for the 

case where 1 kRI  0). 
Regarding the numerical results, the following can be stated: 
 The natural frequencies decreased with increasing bending shear factor. 
 The natural frequencies decreased with increasing coefficient of rotary inertia. 
 The natural frequencies decreased with increasing concentrated mass. 

 The natural frequencies increased with increasing spring stiffness. However, in the springmass system, 
with small values of spring stiffness, the frequencies first decreased. 

 The natural frequencies increased with increasing tensile force. 
 The natural frequencies decreased with increasing compressive force. 

The following aspects not treated in this study could be analyzed: 
 Positions of discontinuity (supports, springs, hinges), stepped beams, and multi-span beams, since the 

closed-form expressions of bending moments, shear forces or transversal forces, rotations of the cross 
sections, and deflections are known. 

The following aspects were not treated in this study: 

2 2
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 Tapered beams.  
 Beams subjected to damping.  

 The significance of the frequency for  kRI = 1. 
 

5.  Data Availability Statement 
The data and code that support the findings of this study are available upon reasonable request. 

6.  Patents 
 
Supplementary Materials: The following files were uploaded during submission: 

 Vibration analysis of a pinnedpinned beam; 

 Vibration analysis of a fixedpinned beam; 

 Vibration analysis of a fixedfree beam; 

 Vibration analysis of a fixedfixed beam; 

 Vibration analysis of a cantilevered beam carrying a tip mass;  

 Vibration analysis of a cantilevered beam with a tip mass and spring support; 

 Vibration analysis of a cantilevered beam carrying a springmass system; 

 Vibration analysis of a pinnedpinned beam with an axial load; 

 Vibration analysis of a fixedpinned beam with an axial load. 

 
Author Contributions: 
 
Conflicts of Interest:  The author declares no conflict of interest. 

 

Appendix A: Single-span beams with various support conditions 

Pinnedpinned beam: Detailed results are listed in the supplementary file “Vibration analysis of a pinned 

pinned beam”. The boundary conditions (Equations (22) and (25)) are as follows. 

                                                                                                                                                                    (A1) 

                                                                                                                                                                    (A2) 

                                                                                                                                                                    (A3) 

                                                                                                                                                                    (A4) 

 

Matrix notation of the boundary conditions is as follows. 

                                                                                                                                                                    (A5) 

                                                                                                                                                                    (A6) 
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To determine the frequency of free vibration, the determinant of the matrix [M] was set to zero. The matrix was 

then as follows. 

 

 

 

 

 

 

Fixedpinned beam: Detailed results are listed in the supplementary file “Vibration analysis of a fixedpinned 

beam” with the following matrix. 

 

 

 

 

 

 

 

Fixedfixed beam: Detailed results are listed in the supplementary file “Vibration analysis of a fixedfixed 

beam” with the following matrix. 
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(B5) 
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The boundary conditions can be expressed as in Equation (A5): 

                                                                                                                                                                         (B7) 

The determinant of the matrix [M] was set to zero. The matrix was then as follows. 

 

 

 

 

 

 

 

 

The case of a tip mass and spring support as represented in Figure 3 was considered. Detailed results are listed in the 

supplementary file “Vibration analysis of a cantilevered beam with a tip mass and spring support”. 

The boundary conditions (Equations (B1), (B2), (B3), (B4), and (B5)) were applied. Equation (B6) was replaced by 

Equation (30). The boundary conditions can be expressed as in Equations (A5) and (B7). 

The determinant of the matrix [M] was set to zero. The matrix was then as follows. 
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The case of a cantilevered beam carrying a springmass system at the beam’s end as represented in Figure 4 was 

considered. Detailed results are listed in the supplementary file “Vibration analysis of a cantilevered beam carrying a 

springmass system”. The boundary conditions (Equations (B1), (B2), (B3), (B4), and (B5)) were applied. Equation 

(B6) was replaced by Equations (31a) and (31b). 

The boundary conditions can be expressed as in Equation (A5): 

                                                                                              .                                                                       (B8) 

The determinant of the matrix [M] was set to zero. The matrix was then as follows. 

 

 

 

 

 

 

 

 

 

Appendix C: Second-order vibration analysis of Timoshenko beams  

Without a Winkler foundation, the solution to Equation (61) is as follows (Equations (66c) and (66d)).  
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The parameters A, B, and  are defined in Equations (65a), (65b), and (65d), respectively. 

Substituting Equations (C1) and (65a) to (65e) into Equations (62) and (63) yields the following. 
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Pinnedpinned beam: the determinant of the matrix expressing the boundary conditions (M(x = 0) = 0; w(x = 0) 

= 0; M(x = l) = 0; w(x = l) = 0) was set to zero. The matrix was then as follows. 

 

 

 

 

 

Fixedpinned beam: the determinant of the matrix expressing the boundary conditions (w(x = 0) = 0;    (x = 0) 

= 0; M(x = l) = 0; w(x = l) = 0) was set to zero. The matrix was then as follows.  
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