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1. Introduction

Free vibration analysis leads to the determination of the natural frequencies of structures. Natural frequencies are
important for the analysis of the response of structures subjected to dynamic loadings such as wind, earthquake,
traffic, etc. Various studies have focused on the free vibration analysis of Timoshenko beams. Kocatirk et al. [1]
used Lagrange equations to examine the free vibration characteristics of Timoshenko beams. Gurg6ze [2] used
the Lagrange multiplier method to determine the free vibration characteristics of a cantilevered Euler—Bernoulli
beam with a tip mass where a spring—mass system is attached to it. Yesilce et al. [3] studied the free vibration of a
multi-span Timoshenko beam carrying multiple spring—mass systems; the natural frequencies were calculated by
using the secant method and the mode shapes were presented in graphs. Ghannadiasl et al. [4] used the Green
functions to analytically solve the case of beams with various boundary conditions resting on an elastic Winkler
foundation and subjected to an axial load; the Green function method was utilized to evaluate the free vibration of
the Timoshenko beam. Osadebe et al. [5] proposed a model for the free vibration analysis of a Timoshenko beam
in which the finite element method was applied in conjunction with the energy method; the Timoshenko beam
was divided into two virtual beams, namely, an Euler—Bernoulli beam and a shear layer beam. Kruszewski [6]
presented a theoretical analysis of the effect of transverse shear and rotary inertia on the natural frequencies of a
uniform cantilevered Timoshenko beam. In the present paper, an analytical solution to the free vibration analysis
of a uniform Timoshenko beam is presented, together with a material law describing the relationship between the
curvature, the bending moment, the bending stiffness, the shear force, the shear stiffness, and the natural
frequency. Based on this material law, closed-form expressions of efforts and deformations are derived. The
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natural frequencies of single-span beams and beams with spring—mass systems are then determined by solving the
eigenvalue problem.

2. Materials and Methods

2.1 First-order vibration analysis

The sign conventions adopted for bending moments, shear forces, and displacements are illustrated in Figure 1.

Figure 1. Sign conventions for bending moments, shear forces, and displacements.

For free vibration analysis, the balance of forces and moments applied on a Timoshenko beam element yields
oV (x,t) o'W (xt)

)
OX Ao
M (x,1) o%p" (x,1)
T v xt)=—pl L2 2
P (x,t)=-p pe 2

where LL is the beam’s mass per unit length, p is its mass per unit volume ([L=pA), A is the cross-sectional area, |

is the second moment of area, M" is the bending moment, V" is the shear force, w” is the beam deflection (in the

positive downward direction), and ¢ is the rotation of the cross section (positive in the clockwise direction).

According to the Timoshenko beam theory, the bending moment and the shear force are related to the deflection

and the rotation of the cross section as follows.

M”(x,t) =—El M 3
OX
V(x,t) = KGAX(%—J(XJ)J 4)

Differentiating Equation (2) with respect to x, and combining the result with Equations (1) and (3) yields

2 * 2u0 " 2 *
oM (x,t)_ﬂa W (xt) p oM (xt) 0 (5)
ox? ot? E ot

A harmonic vibration being assumed, M"(x,t), V" (x,t), w'(x,t), and ¢(x,t) can be expressed as follows:
W (X, t) = w(X) xsin(wt + ) (62)
@ (X,1) = p(x) xsin(wt + ) (6b)
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M7 (x,t) = M (X) xsin(awt + 8) (60)
V7 (x,1) =V (X) xsin(awt + ) (6d)
Here, m is the circular frequency of the beam. Substituting Equations (6a) and (6¢) into Equation (5) yields
2 2
d g/'z(x) + P2 M (%) + o w(x) =0 -
X
The application of Equations (6a), (6¢), and (6d) to Equations (3) and (4) with rearrangement yields
dw(x) V (x)
= o(X) +—22 (8)
dx #(x) xkGA
M (x) = —£1 32(X). ©)
dx

Substituting Equations (6b), (6c), and (6d) into Equation (2) yields
dM (x)

—V (X) = pl & x p(X) (10)
dx
The combination of Equations (8) and (10) yields

plo’ dM (x) , dw(x)
1- V = - plo*———=, 11
( KGAJX ) a7 Tdx )
(p1o® —kGA)x p(X) = M) _ A d";’(x) - (12)

X

Differentiating both sides of Equation (8) with respect to x yields
d’w(x) _ de(x) . dV (x)
dx’ dx &xGA dx

(13)

Substituting Equations (9) and (11) into Equation (13) and rearranging yields the following material law which
combines bending, shear, curvature, and natural frequency:
d*w(x lo*., M(X) 1 d*M(x
(00, q Pl MO _ 1 d'M() _

2 +( 2
dx xKGA El xGA dx

0 (14)

The coefficient of free vibration is denoted by ¢, the coefficient of rotary inertia by kg, and the bending shear

factor by a.
o’ = gEl 1(zd*) (152)
ke, = 1 /(AI%) (15b)
a = El /(kGAI?) (15¢)
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Applying Equations (15a) to (15c¢) to Equations (7) and (14) yields

dzg/'z(x) Tk, Iizlvl (X) + SEI I%W(x) -0 (16)
21909 L 1ok )M —at? M) g a7)

dx?

Differentiating Equation (16) twice with respect to x and combining it with Equation (17) yields

d*M (x) 1 d®M ()
e +¢(a+kR,)|—2>< e

_¢(1—¢akR,)|i4M(X)=0_ (18)

The application of Equations (15a) to (15c) to Equations (7), (11) and (12) yields

JEI 112 xw(x) =12 &M ) _ g M%), (19)
3
GEI 17 x (gaky, —1)x1p(x) = g +kg )] aM (x) +1° d g/lg(x) , (20)
X
3
(1 gaky, ) IV () = (1+ gy, )] M) 129 2/'3(") . @)
X
The solution of Equation (18) for low-frequency modes (1— <|>ockR. >0) is as follows:
M (x) = A cosh (fl + B, sinh 51 Xic cosg2 + D, sin 52 , (22)
. \/—¢(a+ kR.)+J¢2(a+ )’ +4¢(1—¢akR. ) o
2
£, :\/¢(a+le)+\/¢2(a+le)2+4¢(1_¢ale) , (24)
2

with integration constants A, B, C4, and D;.

Itis noted that  ¢° (t +Kgy ) +4¢(1— gk, ) = ¢[¢(a— Ko, ) +4] >0

The application of Equations (22), (23), and (24) to Equations (19), (20), and (21) yields the following
expressions for the deflection, the rotation of the cross section, and the shear force.

¢EI/szw(x):—Al(4§12+¢kR,)coshflTX—Bl(§12+¢le)sinhﬁlTX+ (25)
. X
C, (& ¢kR.)cos§2 +D(&" ~ ke Jsing,
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SELI x(gaky, —1)x1g(X) = & (&2 + pkey + dor) A sinh glIL (26)
. X
51(%81 + @Kg, + par) B, cosh 51 +4, (52 — @Ky, —@a)C sin g, |_

+6,(=&" + Phey + ) D; s 52,5

(1= garky, )< IV (X) = & (L+ gk + gy £2) A sinh §1|5+ @)
51(1+¢kR| +kRI§1 )B COSh 51 +§2( 1 ¢kRI +kRI§2 )C S|n§2

X
+‘§2 (1+ ¢le 2 - le 522) D1 Cos 52 T

The solution of Equation (18) for high-frequency modes (1- ¢akg, < 0) is as follows:

M (Xx) = Alcos@:1 +B sin a:l XiC cos§2 +D sin 52 (27a)
. \/¢(a +Ka) +J¢2(a o )+ g (1-gaky,) o
. J¢(a+ )~ 0 (@ +2kR. Y +46(1—gaky, ) -

The application of Equations (27a), (27b), and (27c) to Equations (19), (20), and (21) yields the deflection, the
rotation of the cross section, and the shear force.

2.2 First-order vibration analysis of a beam with a mass, spring, or spring—mass
system at its end

The stiffness of the spring is Kp, and the concentrated mass is Mp. We set

K, =k, xEI/IP, (28a)
M,=mxul, (28b)
W =El/12xw. (280)

We analyze here the case of a cantilevered beam carrying a tip mass at the beam’s end, as represented in Figure 2.
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Mp

L |

Figure 2. Cantilevered beam with a tip mass.

At the beam’s end with the mass, the bending moment is M; = 0. The balance of vertical forces (combined with
Equations (15a), (28b), and (28c)) yields

2 .
Vi-M o xw, =0—1V,—m W =0 (29)

Let us now analyze a cantilevered beam with a tip mass and spring support as shown in Figure 3.
/ :

% 3!

L

Figure 3. Cantilevered beam with a tip mass and spring support.

At the beam’s end with the mass, the bending moment is M; = 0. The balance of vertical forces (combined with
Equations (15a), (28a), (28b), and (28c)) yields,

5 R R
Vi+ K w -M o xw, =01V, +(k, —m ¢W, =0. (30)

Let us now analyze a cantilevered beam carrying a spring—mass system at the beam’s end, as represented in
Figure 4. The deflection of the mass is denoted by Wip.

j
g "

L

Figure 4. Cantilevered beam with a spring—mass system.

At the beam’s end with the mass, the bending moment is M; = 0. The balance of vertical forces (combined with
Equations (15a), (28a), (28b), and (28¢)) yields

V,—M o xw,, =01V, -m @\, =0 (312)
M pa)z X Wy = K x (Wyy —w,) — (kp* — mp*¢5)WiM = kai (31b)


https://doi.org/10.20944/preprints202101.0501.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 January 2021 d0i:10.20944/preprints202101.0501.v1

TIMOSHENKO BEAM THEORY FREE VIBRATION ANALYSIS

2.3 First-order vibration analysis of a beam with an intermediate mass, spring, or
spring—mass system
The transition equations express the continuity of the deflection and rotation of the cross section (Equations (25)
and (26)) and the equilibrium of the bending moment and the balance of vertical forces (Equations (22) and (27)).

In case of a mass on a spring support, the transition equations are as follows.

W, =W, — @EI /17 xw, =gEl /1> xw, (32a)
@y =@, = gEIN? ><(¢0‘le _1)X|§0i| = gEI /1* ><(¢0‘le _1)X|¢ir (32b)
M, =M, (32c)

V=V, + Kow, =M 0’ xw, =0 IV, IV, +(k, —-m )W, =0 (32d)

In case of a concentrated mass, Equations (32a), (32b), and (32c) apply. The balance of vertical forces yields

V, =V, =M o xw, =01V, —IV, —-m_"gW, =0 (33)

In case of a spring—mass system, Equations (32a), (32b), and (32c) apply. The balance of vertical forces yields
2 _ * —
2 * *
Moo x Wy, =K x (W, —w, ) = (K, —m, @)W, = I(p’\N'

. (34b)
2.4  First-order dynamic stiffness matrix of the Timoshenko beam

The analysis conducted here applies for 1— ¢okg, > 0 (low-frequency modes).

The sign conventions for bending moments, shear forces, displacements, and rotations adopted for use in

determining the element stiffness matrix in local coordinates are illustrated in Figure 5.

Vk: Wk

Figure 5. Sign conventions for moments, shear forces, displacements, and rotations for the stiffness
matrix

Let us define the following vectors,

S=[V;M;V;M, T (352)
V:[Wi;¢i;wk;¢k ]T (350)
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The dynamic element stiffness matrix in local coordinates of the Timoshenko beam is denoted by Ky gyn.

The relationship between the aforementioned vectors is as follows:

§=Kmmxv (35)

Considering the sign conventions adopted for bending moments and shear forces in general (see Figure 1) and for
bending moments and shear forces in the element stiffness matrix (see Figure 5), we can set the following static

compatibility boundary conditions:

V,=-V(x=0) (364)
M; =M (x=0) (36h)
V, =V (x=1) 50
M, =—-M(x=I) (36d)

Considering the sign conventions adopted for the displacements and rotations in general (see Figure 1) and for
displacements and rotations in the member stiffness matrix (see Figure 5), we can set the following geometric

compatibility boundary conditions:

W(x=0)=w (37a)
Ax=0)=q (37b)
wix=I)=w (37¢)
Ax=1)=q (37d)

The application of Equations (22) and (27) to Equations (36a) to (36d) yields Equation (38) below.

—(1-gaky )l 0 0 0] [V
0 1 0 0 y M, _ (38)
0 0 (1—¢akR, )I 0 V,
i 0 0 0 -1 [M, |
0 651(1+¢le2 + kRI 512) 0 52 (1+¢le2 - kRI 522) _A_L_
1 0 1 0
2 2 2 2 2 2 2 2 Bl
51(1+¢kRI +kRI€1 ) 51(1+¢kRI +kRI 51 ) 52(_1_¢kRI +kRI§2 ) +§2(1+¢kRI _kRI 52 ) X C
xsinh & xcosh & xsin &, XC0S¢&, Dl
cosh & sinh & cos &, sin &, 1 -
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The application of Equations (25) and (26) to Equations (37a) to (37d) yields Equation (39) below.

1 0 0 0 1 [w ]
El |0 I(gaky -1) O 0 ?, (39)
P70 0 1 o |“lw|”
0 0 0 lgaky -1 | [ o
_(512 + ¢kRI ) 0 (522 _¢kR| ) 0 - -
0 & (&7 + gk + gx) 0 & (=&, + kg +ga)

—(&2+ kg Joosh &, —(&7 +¢ky, )sinh & (&7 =gk Jeosé, (&7 —gky Jsing, |
51(512 +gky +da) §1(§12 + ke, +da) §2(§22 —Pky —9a) 52(—522 +gKg, +da)

xsinh & xcosh & xsin ¢, xC0S¢&,

pU HO |—\w |—>

Converting Equations (38) and (39) to matrix notation yields

TSX§=MSX6 (40a)
¢%xTV x\7=MVx6 (400)

where the vector C and the matrices Ts, Ms, My, and Ty, are defined as follows in Equations (41a) to (41e).

C =[A;B,;C,;D,] (41a)
—(1-gaky )l 0 0 0]
_ 0 1 0 0 (41b)
S
0 0 (1-gaky )l O
0 0 0 1]
i 0 G+ Pky" +ke &) &1+ P k&) |
1 0 1 0
MS = 951(1+¢le2 +kRI§lz) 51(1+¢kR|2 +kRI ‘512) 52 (_1_¢le2 + kRIfZZ) +§2 (:I'-i_¢le2 _kRI§22)
xsinh & xcosh & xsiné, XC0S¢&,
cosh & sinh & cos¢&, sin &,
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1 0 0 0
(41d)
:_|0 l(gaky, —1) O 0
o 0 1 0
0 0 0 I(gaky, -1)
i _(512 +¢kRI ) 0 (522 _¢kR| ) 0 |
0 §1(§12 +@Kg, + ) 0 S (_522 +¢Kg +9c)
My =| —(&2+gky Jeosh &, —(&3+¢ky Jsinh g (&7 —gky Je0sE, (&7 —gky )sing,
‘51(9512 +¢le +¢0() 631(6312 +¢le +¢0£) 52 (522 _¢le —¢0!) ‘fz (_522 +¢kR| +¢0£)
| xsinh ¢ xcosh & xsin¢é, XC0S &, |
The combination of Equations (35c), (40a), and (40b) yields
K p.ayn ng%sz_lxMS xM, " xT, (42)

2.5
The stiffness of the Winkler foundation is K,,. We set

First-order vibration analysis of a beam resting on a Winkler foundation

K, =k, xEIl*. (43)
Equation (1) then becomes
oV (x,t)_K W (xt) = i O*W (X,1) (44)
OX ot’
The analysis continues similarly to that in Section 2.1. Thus, Equation (18) becomes
d*M (x 1 d*M(x . 1
( ) [¢( +kR|) k :||2A+(1_¢akm)(kw —¢)|—4|\/|(X)=0 (45)

The solution of Equation (45) yields the formulation of M(x) with four integration constants. The deflection w(x),

the rotation of the cross section ¢(x), and the shear force are determined as follows.

B (g, ) =42 T i v @
EL/1x gk ~1)x (@K, ) <o) = @
[ k) -k, @t A0 TV

dx
10
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. dM (x) d*M (x)
(1_¢ale)(¢_kw )XIV(X)=(¢+¢2kR|2_ w ) ¢le|3—3 (48)
2.6 Second-order vibration analysis of a beam resting on a Winkler foundation
The axial force N is assumed to be constant.

When the shear force is replaced by the transverse force T (x), Equations (1) and (2) become
oT " (x,t w(x,t
TD k(1) = —( ) (49)
OX ot’
* * 2 *
* X
OX OX ot
The transverse force — shear force relationship is as follows:
dw(x
T(X)=V(X)+N ( )- (51)

Differentiating Equation (50) with respect to x and combining it with Equations (49) and (3) yields

O*M”(X, t) azw*(x,t) oW (XD pdMI(xt)

K w'(x,t)=0- (52)
o x: T ar  E o W (%)
The separation of variables (Equations (6a) to (6d)) applied to Equations (52) and (50) yields
d’M(x) ., d*w(x) pa) )
e +N e - M(x)+(,ua) —Kw)xw(x)zo, (53)
AMO9 |, N IVC) 140 = ples xp(x). (54)
dx dx
Substituting Equation (51) into Equation (54) yields
dM (x
d( )—V(X) = plo® x(X). (55)
X

Equations (55) and (10) are identical. The combination of Equations (8) and (55) yields Equations (11), (12), (13),
and (14). The combination of Equations (11) and (51) yields,

plo dM (X) pla’ | dw(x)
1- xT(X) = NQl-———)-pl —_—. 56
(KGA) ()= A= on) P17 gy 0
The combination of Equations (8) and (55) yields
(plo* — kGA)x p(x) = M09 KkGAXx dv(\jl(x) : (57)
X

The combination of Equations (14) and (53) yields

11
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2 y _ N dZM(X)_ pa)z_ pla) N
(o™ =K, ) xw(x) = (1+K'GA) ™ (E (1- A EI)M() (58)

Differentiating both sides of Equation (58) twice with respect to x and combining the result with Equation (14)

yields

4 2 2 2\ 42
(1+ N )d M4(X)+ o l0) _(1_pla) )l_ K, —uw’ \d Mz(X)+ (59)
kGA ) dx E xGA " El kGA dx

lo’® | K, — pw’
(1_/1)<GA) Elﬂ M) =0

The axial force N can be expressed as follows:

N=k><E|/|2. (60)

Substituting Equations (15a), (15b), (15c), (43), and (60) into Equation (59) yields
d“M (X) d*™ (x)
4

(1+ka) [k, @+ gla+ k) —k(A-ga kR,)]1

(61)

(1-dakg, )(kw* _¢)|_4 M(x)=0

The solution of Equation (61) yields the formulation of M(x) with four integration constants. Equations (58), (57),
and (56) are used to determine the deflection w(x), the rotation of the cross section ¢(x), and the transverse force

as follows.

EL/12x ($—k,")xw(x) = ~(L+ ka)l? dzd“iz(x) [Pk —K (L gk )IM(x) @2

El/1° x (gaky —1)x(p—k, ) xlp(x) = (63)
[l +ke) K, @ — k(A gark ) T 4 (11 k) d?’(';’x'3(x>
(1—¢akR,)x(kW*—¢)><IT(x)=[kw*_¢ k(- gaky )~ ¢kR.]} dl\g)EX) R
k(1 darky, ) — gk, | L ke )P 21()()

Equations (61), (62), (63), and (64) depend on the following parameters:

12
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A=1+ka (65)
B= —kw*a +d(a+Ky ) —K@A—-daky,) (65b)
. 65
C = (- gaky (K, —¢) =)
A=B*—4AC (65d)
E = gkg, — (1—daky, )k (65€)
The following cases are analyzed herein.
Case 1: A>0 -B/A>0 C/A>0
M (x) = A cosh 51 + B, sinh 51 +C, cosh 52 + D, sinh 52 (66a)
& =\/(—Bi\/Z)/2A (66b)
Case 2: A>0 C/A<0
M (x) = A cosh 51 + B, sinh 51 +C, cos 52 + D, sin 52 (66c)
& =\/($B+\/Z)/2A (66d)
Case 3: A>0 -B/A<0 C/IA>0
M (x) = A cos 51 +B,sin 51 +C, cos §2 + D, sin 52 (66e)
51'2:\/(81\/X)/2A (66f)
Case 4: A=0 -B/A > 0
M (x) = A cosh 51 + 8151 X cosh 51 +C, sinh 51 + D1§1 X sinh 51 (669)
& =~-B/2A (66h)
Case 5: A=0 -B/A<O0
M (x) = A cos 51 + 5151 Cos 51 +C,;sin 51 + D1§l —sin (fl (66i)
& =VBI2A (66i)
Case 6: A<O
M (x) = A cosh 51 X COS 52 + B, cosh 51 xsin 52 —+ (66K)
C,sinh 51 ><cos§2 + D, sinh 51 xsin 52 (66l)

£ 1:;3_+ B> A
2oAl2l 2A Vaar an?

13
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For each case the deflection w(x), the rotation of the cross section ¢(x), and the transverse force T(x) are
determined using Equations (54), (55), and (56), respectively. The eigenvalue problem is solved and the
condition for the case is checked.

3. Results and Discussion

3.1 First-order vibration analysis of Timoshenko beams
We determine herein the vibration frequencies of beams with various support conditions. The frequencies are
calculated for different values of bending shear factor and coefficients of rotary inertia.

The results presented here apply for 1— ¢pakg, > 0 (low-frequency modes).

The details of the analysis and results are listed in Appendix A and in the supplementary files “Vibration analysis
of a pinned—pinned beam”, “Vibration analysis of a fixed—pinned beam”, “Vibration analysis of a fixed—free
beam”, and “Vibration analysis of a fixed—fixed beam”.

The vibration frequency is o, where

El El |

O=\px |—5 =A% | =5 7
ul ul

The coefficients A are listed in Table 1 below.

Table 1. Natural frequencies (first mode) of Timoshenko single-span beams with various boundary conditions.

Pinned—pinned beam

o= El/xGAI?
0.005 0.010 0.020 0.050
kg = 0.005 9.4254 9.2284 8.8672 7.9873
kr) = 0.010 9.2284 9.0505 8.7206 7.8995
Kg) = 0.015 9.0427 8.8814 8.5795 7.8130
Fixed—pinned beam
o= El/xGAI?
0.005 0.010 0.020 0.050
kg1 =0.005  14.1395 13.4088 12.2220 9.9416
kg1 =0.010 13.8341 13.1651 12.0560 9.8659
Kri=0.015  13.5449 12.9307 11.8930 9.7895
Fixed—fixed beam
o= El/xGAI?
0.005 0.010 0.020 0.050
kg =0.005  19.6360 18.0282 15.6938 11.9004
kg1 =0.010 19.2636 17.7840 15.5720 11.8705
Kri =0.015  18.9052 17.5433 15.4493 11.8400

For the case of a fixed—free beam, the results obtained in the present study are compared to those obtained by
Kruszewski [6] in Table 2 below.
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Table 2. Natural frequencies (first mode) of a Timoshenko fixed—free beam.

Fixed—free beam: Present study

o= El/xGAI2
0.005 0.010 0.020 0.050
Kri = 0.005 3.4378 3.4009 3.3301 3.1394
Kri =0.010 3.4009 3.3659 3.2985 3.1159
kri=0.015 33650 3.3318 3.2677 3.0927
Fixed—free beam: KruszewskKi [6]
o= El/xGAI2
0.005 0.010 0.020 0.050
Kr) = 0.005 3.4378 3.4009 3.3300 3.1393
Kg) = 0.010 3.4009 3.3659 3.2985 3.1159
Kri = 0.015 3.3650 3.3318 3.2677 3.0927

The results are identical.

3.2 First-order vibration analysis of a Timoshenko beam with a mass, spring, or
spring—mass system at its end

The results presented here apply for 1 — ¢akg, > 0 (low-frequency modes).

Timoshenko beams with the following values of o and kg, were analyzed: a =0.020, kg1 = 0.01.

The case of a cantilevered beam carrying a tip mass at the beam’s end as represented in Figure 2 was
considered.

Details of the analysis and results are listed in Appendix B and in the supplementary file “Vibration analysis of a
cantilevered beam carrying a tip mass”.
The coefficients A (Equation (59)) for the natural frequencies (the first modes) are listed in Table 3 below.

Table 3. Natural frequencies (first mode) of a Timoshenko beam carrying a tip mass at the beam’s end.

m,"
0.25 0.50 0.75 1.00 2.00 3.00 5.00
A 2.3662 1.9375 1.6797 1.5031 1.1211 0.9330 0.7345

Let us now analyze the case of a cantilevered beam with a tip mass and spring support as shown in Figure 3.
Details of the analysis and results are listed in Appendix B and in the supplementary file “Vibration analysis of a

cantilevered beam with a tip mass and spring support”. The coefficients A are listed in Table 4 below.
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Table 4. Natural frequencies (first mode) of Timoshenko beams with a tip mass and spring support.

*

My
0.50 1.00 2.00 5.00
kp*: 0.10 1.9713 1.5294 1.1407 0.7470

ko =050 2.1009 1.6303 1.2160 0.7963
ko =1.00 2.2523 1.7481 1.3041 0.8541
ko =3.00 27747 2.1556 1.6087 1.0536
ko =10.00  4.0934 3.1917 2.3850 1.5629
ko =100.0 10.1012  8.6664 6.6854 4.4179
ko=500.0 11.8355  11.7926 116374  12.3926

It is noted that with small values of spring stiffness, the values of the natural frequencies converge towards those
for the case with a tip mass (Table 3), and with high values of spring stiffness, the values of the natural

frequencies converge towards those for the fixed—pinned beam (12.0560, see Table 1).

Let us now analyze the case of a cantilevered beam carrying a spring—mass system at the beam’s end as
shown in Figure 4. Details of the analysis and results are listed in Appendix B and in the supplementary file
“Vibration analysis of a cantilevered beam carrying a spring—mass system”.

The coefficients A are listed in Table 5 below.

Table 5. Natural frequencies (first mode) of Timoshenko beams with a spring—mass system at the beam’s end.

my*
0.50 1.00 2.00 5.00
kp*: 0.10 3.3551 3.3546 3.3544 3.3542

ko =0.50 0.9164 0.6505 0.4636 0.3019
ko =1.00 1.1933 0.8519 0.6061 0.3849
kp=3.00 15911 1.1662 0.8391 0.5362
kp=4.00  1.6665 1.2322 0.8908 0.5707
ko =10.00  1.8215 1.3794 1.0115 0.6542
ko =100.00  1.9255 1.4897 1.1087 0.7249

It is noted that with small values of spring stiffness, the values of the natural frequencies converge towards those
for the fixed—free beam (3.2985, see Table 2), and with high values of spring stiffness, the values of the natural

frequencies converge towards those for the case with the tip mass (Table 3).
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3.3 Second-order vibration analysis of Timoshenko beams

We now determine the dynamic response of beams subjected to an axial load. An elastic Winkler foundation was
not considered. A pinned—pinned beam and a fixed—pinned beam were considered.

We set the following values of o and kg, : a = 0.020, kg1 = 0.01.

The natural frequencies (first mode) were determined for various values of the axial load. Table 6 below lists the
results. Details of the analysis and results are listed in Appendix C and in the supplementary files “Vibration
analysis of a pinned—pinned beam with an axial load” and “Vibration analysis of a fixed—pinned beam with an
axial load”.

Table 6. Natural frequencies (first mode) of Timoshenko beams under axial load.

Pinned—pinned beam

k
-5.00 -3.00 -1.00 1.00 3.00 5.00
A 5.4710 6.9559 8.1749 9.2340 10.1831 11.0507
Fixed—pinned beam
k
-5.00 -3.00 -1.00 1.00 3.00 -5.00
A 9.7373 10.7311 11.6328 12.4635 13.2375 13.9648

Ghannadiasl [4] analytically solved the case of beams with various boundary conditions resting on an elastic
Winkler foundation and subjected to an axial load. The case of a beam without an elastic Winkler foundation is
analyzed here. The beams have the following characteristics:  Poisson’s ratio v = 0.25, Timoshenko shear

coefficient k =2/3, and coefficient of rotary inertia Kgi =0.01.

e Ll o 0x({1+0.25)x0.01 = 0.0375

a=—2 X —X 2
xGAL- x G AL 2/3
N =—0.6><7z2><ﬂ —k=-5.922
L2

X

Detailed results are listed in the aforementioned supplementary files.

Table 7 lists the results of Ghannadiasl [4] and those obtained in the present study.

Table 7. Free vibration of Timoshenko beams under axial load.

Pinned—pinned beam Fixed—pinned beam
Ghannadiasl [4] 3.46646 7.32425
Present study 3.46648 7.32425

The results are identical.
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4, Conclusions

The material law developed in this study enables closed-form solutions of first-order and second-order vibration
analysis of Timoshenko beams. Vibration analysis of a beam with a spring, a mass or a spring—mass system was
conducted. Systems with an intermediate spring, mass, or spring—mass system were also analyzed. For single-
span beams, closed-form formulations of matrices expressing the boundary conditions were presented (for the

case where 1— ¢pakg, > 0); the natural frequencies were determined by solving the eigenvalue problem (the
determinants of the matrices were set to zero). Closed-form expressions of first-order dynamic stiffness matrices

with local coordinates were also determined (for the case where 1— dakg, > 0).
Regarding the numerical results, the following can be stated:
v The natural frequencies decreased with increasing bending shear factor.
The natural frequencies decreased with increasing coefficient of rotary inertia.
The natural frequencies decreased with increasing concentrated mass.
The natural frequencies increased with increasing spring stiffness. However, in the spring—mass system,
with small values of spring stiffness, the frequencies first decreased.
v The natural frequencies increased with increasing tensile force.
v’ The natural frequencies decreased with increasing compressive force.
The following aspects not treated in this study could be analyzed:

v Positions of discontinuity (supports, springs, hinges), stepped beams, and multi-span beams, since the
closed-form expressions of bending moments, shear forces or transversal forces, rotations of the cross
sections, and deflections are known.

The following aspects were not treated in this study:

v Tapered beams.

v' Beams subjected to damping.

v" The significance of the frequency for ¢akg = 1.
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5. Data Availability Statement
The data and code that support the findings of this study are available upon reasonable request.

6. Patents

Supplementary Materials: The following files were uploaded during submission:
e Vibration analysis of a pinned—pinned beam;
Vibration analysis of a fixed—pinned beam;
Vibration analysis of a fixed—free beam;
Vibration analysis of a fixed—fixed beam;
Vibration analysis of a cantilevered beam carrying a tip mass;
Vibration analysis of a cantilevered beam with a tip mass and spring support;
Vibration analysis of a cantilevered beam carrying a spring—mass system:;
Vibration analysis of a pinned—pinned beam with an axial load:;
Vibration analysis of a fixed—pinned beam with an axial load.
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Appendix A

Pinned—pinned beam: Detailed results are listed in the supplementary file “Vibration analysis of a pinned—
pinned beam”. The boundary conditions (Equations (22) and (25)) are as follows.

M(x=0)=0—>A+C, =0 (A1)
w(x = 0) :0_)_'6‘1(512 + ¢k, )+C1(§22 _¢kRI):O (A2)
M(x=1)=0—> A cosh& +B;sinhg +C cosé, +D;siné, =0 (A3)

w(x=1)=0——A (&7 + kg Jcosh & — B, (&7 + kg, )sinh & + (A
C,(& — ke )08 &, + D, (&7 — gky )siné, =0

Matrix notation of the boundary conditions is as follows.
[M ]x C=0 (A5)
C=[A B C, D] (A6)

To determine the frequency of free vibration, the determinant of the matrix [M] was set to zero. The matrix was
then as follows.

1,00 0,00 1,00 0,00

£1% kg 0,00 &,°- Ok 0,00

cosh&1 sinhE1 cos&2 sing2
-(&12+ Okgi) cosh&, -(&12*‘ Okg) sinhEq (&22‘ Okg) cos& (&22' Okg)) sin&

Fixed—pinned beam: Detailed results are listed in the supplementary file “Vibration analysis of a fixed—pinned
beam” with the following matrix.

&1~ Pk 0,00 E2" Ok 0,00
0,00 Ea(E’+ Pkei+ ) 0,00 Eo(-E2°+ dkp + 010)
cosh&1 sinhE1 cos&2 sing2
{(Ex’+ Okp) coshEy (£ dkp)sinhEs  (Ex- dkn) cosEr  (E2’- dk) sinks

Fixed—fixed beam: Detailed results are listed in the supplementary file “Vibration analysis of a fixed—fixed
beam” with the following matrix.

€17 kg 0,00 £, bk, 0,00
0,00 E:l(galz'l' Okp + o)) 0,00 &2("%22"' Okr + L))
@1(&12*‘ Ok + o) x &1(@12"' Okgi+ aud)x éz('&zz*‘ Ok + 0U)x

gz(ézz‘ Okg) - o) sinE,

sinh&1 cosh&, cos&,

-(§12+ OKgi) coshE, -(@12*' OKg) sinh&; (&22‘ Okgi) cosE, (&22' Okgi) sink,
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Fixed—free beam: Detailed results are listed in the supplementary file “Vibration analysis of a fixed—free beam”
with the following matrix.

£1%- Pk 0,00 E,%- Ok 0,00
0,00 E1(E1"+ Okp + L) 0,00 Ex(-E2°+ Dkris 0)
cosh&1 sinh&1 cos&2 sing2
E1(1+ dkp + E1(1+ dkg” + Eo(-1- dkp + E5(1+ dkp” -
kei&1%)sinhE1 kei&1%)coshE1 Kei&5")sinE2 Kei€2”)cosE2

Kruszewski [6] presented the following equation (Equation (14) in [6]) for the determination of natural
frequencies:

kB(k32 + kRIe) . | ,
Vl - h-SQkRIE'kBé sin kpB sinh kpa + [k-B?(kSQ - kRIe) " 2] cos kpB cosh kpa = 0

where the parameters kg, ks, kg, o, and 3 are defined in [6] in Equations (3a), (3b), (3c), and (5).

2 -

The following equivalences were noted between the parameters considered by Kruuszewski [6] and those considered
in the present study (PS):

ks’ = a, Ke = &, kri*(K) = kri(PS)

Appendix B

The case of a cantilevered beam carrying a tip mass at the beam’s end was considered. Detailed results are
listed in the supplementary file “Vibration analysis of a cantilevered beam carrying a tip mass”.
The boundary conditions (Equations (22), (25), (26), (27), and (29)) were as follows.

W(XZO):O_)_(flz+¢kR|)A1+(§22_¢kR|)C1:O (B1)
p(x=0)=0— 51(9512 +@Ke +9a)B, +&, (_6522 +¢Kg +9a)D, =0 (B2)
M(x=1)=0—> Acosh& +B;sinh& +C cosé, + D, siné, =0 (B3)
JEI Ilzxw(x= 1) = W, =—A (& +gky, Jcosh & —B, (&7 + kg, )sinh & + (B4)

Cl(égzz _¢le )003682 + D1(§22 _¢le )Sin 952

(1_ gake, ) xIV, =& L+ gk, 4 Key 6812)A1 sinh & +& (1+ gk, ?+ Key 512) B,coshé,  (B5)
+§2 (_1_ ¢kRI i + kRI §22)C1 sin 52 + 52 (1+ ¢kRI = kRI éz) D1 cos 52

IV, —m," W, =0 (B6)
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The boundary conditions can be expressed as in Equation (A5):

C=[A B C D W IV] (87)

The determinant of the matrix [M] was set to zero. The matrix was then as follows.

(& +ka) 0 (&*~dka) 0 0 0

0 (& +ky +da) 0 &5 +dky +ga) O 0

coshg sinhg cos¢, sing, 0 0
_(512+¢kR|)COSh‘§1 —(§2+¢I<R,)sinh§l (9322 _¢kR|)COS§2 (522 _¢kRI)Sin§2 —¢ 0

Grgky" +ka &) Glrdky +ky&)) S(L-dk " +he&) Sk’ Ky &) 0
xsinh& xcosh& xsiné, xC0S¢&,
0 0 0 0 -m ¢ 1

The case of a tip mass and spring support as represented in Figure 3 was considered. Detailed results are listed
in the supplementary file “Vibration analysis of a cantilevered beam with a tip mass and spring support”.

The boundary conditions (Equations (B1), (B2), (B3), (B4), and (B5)) were applied. Equation (B6) was replaced
by Equation (30).

The boundary conditions can be expressed as in Equations (A5) and (B7).

The determinant of the matrix [M] was set to zero. The matrix was then as follows.

& +ka) 0 (&° iy | 0 0 0

0 E(E +key +40) 0 E(-E +dky +dd) 0 0

coshé sinhg 00s<, siné, 0 0

A& +dkg Jooshs &+ JsitnE (&7 gy JomsE, (&7~ Jsing 4 0

§(1+¢km2 +le ‘512) §(1+¢le2 +le éz) é(_l_d(mz +le 522) é(1+¢ﬂ<m2 _le 522) 0 —(1—¢akR )
xsinh& xcoshg xsing, XC0S &, |
0 0 0 0 K, —mg) 1

The case of a cantilevered beam carrying a spring—mass system at the beam’s end as represented in Figure 4
was considered. Detailed results are listed in the supplementary file “Vibration analysis of a cantilevered beam
carrying a spring—mass system”.

The boundary conditions (Equations (B1), (B2), (B3), (B4), and (B5)) were applied. Equation (B6) was replaced
by Equations (31a) and (31b).

The boundary conditions can be expressed as in Equation (A5):

C=[A B C D W IV W,] (88)
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The determinant of the matrix [M] was set to zero. The matrix was then as follows.

_(§2+¢kR') 0 (522_¢le) 0 0 0 0

O 51 (512 + ¢kRI + W) O 52 (_522 + ¢kR| + ¢a) O 0 0

cosh ¢ sinh& cos¢é, siné, 0 0 0

_(612 +¢le )COShfl _(512 +¢le )Sinhé (522 _¢le )COS§2 (522 _¢le )Siné _¢ 0 0

é(1+ ¢kRI2 + le 512) 5]_(1+¢le2 + le 512) 52 (_1_¢kR|2 + kRI 522) 52 (1+¢le2 _kRI gzz)

xsinh & xcosh & xsing, XC0S¢&,
0 0 0 0 0 1 —mp*¢
i 0 0 0 0 —kp* 0 (kp* - mp*¢)_
Appendix C
Without a Winkler foundation, the solution to Equation (61) is as follows (Equations (66¢) and (66d)).
M (x) = A cosh 51 + B, sinh 51 +C, cos 4‘2 + D, sin §2 (C1)
&, :\/(¢B+JZ)/2A (€2)

The parameters A, B, and A are defined in Equations (65a), (65b), and (65d), respectively.

Substituting Equations (C1) and (65a) to (65¢) into Equations (62) and (63) yields the following.

PENI1®xw(x) = (-AZ’ ~E)Acosh X b (-AZ2 - E)Blsinhe;llﬁ (C3)

+(AE? -E)C, cosf2 +(A§2 E)Dlsinleﬁ

EN 112 x(gaky, —1)xlp(x) = (BE + AE®) A sinh glﬁ (c4)

+(BE+ AZ))B,COSN & T+ (-BE, + AE’)C,SiN &, T+ (BE, — AS")D,00sE, -
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For the pinned—pinned beam, the determinant of the matrix expressing the boundary conditions (M(x = 0) = 0;

w(x =0)=0; M(x =1) =0; w(x = 1) = 0) was set to zero. The matrix was then as follows.

1,00 0,00 1,00 0,00

A& -E 0,00 AL’ -E 0,00

cosh&l sinh§1 cos&2 sin&2
(-A&l2 - E) cosh&; (-Af‘;l2 - E) sinh&; (Aéz2 - E) cos&; (Aizz -E) sin&,

For the fixed—pinned beam, the determinant of the matrix expressing the boundary conditions (w(x = 0) = 0;

o(x=0)=0; M(x=1)=0; w(x =1) =0) was set to zero. The matrix was then as follows.

A& -E 0,00 A& -E 0,00
0,00 BE, + AL, 0,00 BE,- AL,
coshﬁl sinh&l cosE_>2 sin§2
(-A&:°-E)coshEy  (-A&"-E)sinhGy  (A&"-E)cosEy (A&’ - E) sink,

References

[1]  T. Kocatiirk, M. Simsek: Free vibration analysis of Timoshenko beams under various boundary
conditions. Journal of Engineering and Natural Sciences, January 2005

[2] M. Gurgoze:  On the eigenfrequencies of a cantilever beam with attached tip mass and a spring-mass
system. Journal of Sound and Vibration (1996) 190(2), 149-162. https://doi.org/10.1006/jsvi.1996.0053

[3] Y. Yesilce, O. Demirdag, S. Catal: Free vibrations of a multi-span Timoshenko beam carrying
multiple spring-mass systems. Sadhana Vol. 33, Part 4, August 2008, pp. 385-40L1.

https://doi.org/10.1007/s12046-008-0026-1.

[4] A. Ghannadiasl, M. Mofid: An analytical solution for free vibration of elastically restrained Timoshenko
beam on an arbitrary variable Winkler foundation and under axial load. Lat. Am. J. Solids Struct. 12 (2015)
2417-2438. https://doi.org/10.1590/1679-78251504

[5] N. N. Osadebe, J.C. Agunwamba, M.E. Onyia, E.O. Rowland-Lato: Free Vibration Analysis of
Timoshenko Beam Using Energy Separation Principle. IJSER vol 9, Issue 2, February 2018

[6] Kruszewski, Edwin T: Effect of transverse shear and rotary inertia on the natural frequency of a uniform
beam. National advisory committee for aeronautics, Technical note 1909
https://ntrs.nasa.gov/search.jsp?R=19930082587

23


https://doi.org/10.20944/preprints202101.0501.v1

