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1. Introduction 

Free vibration analysis leads to the determination of the natural frequencies of structures. Natural frequencies are 
important for the analysis of the response of structures subjected to dynamic loadings such as wind, earthquake, 
traffic, etc. Various studies have focused on the free vibration analysis of Timoshenko beams. Kocatürk et al. [1] 
used Lagrange equations to examine the free vibration characteristics of Timoshenko beams. Gürgöze [2] used 
the Lagrange multiplier method to determine the free vibration characteristics of a cantilevered EulerBernoulli 
beam with a tip mass where a springmass system is attached to it. Yesilce et al. [3] studied the free vibration of a 
multi-span Timoshenko beam carrying multiple springmass systems; the natural frequencies were calculated by 
using the secant method and the mode shapes were presented in graphs. Ghannadiasl et al. [4] used the Green 
functions to analytically solve the case of beams with various boundary conditions resting on an elastic Winkler 
foundation and subjected to an axial load; the Green function method was utilized to evaluate the free vibration of 
the Timoshenko beam. Osadebe et al. [5] proposed a model for the free vibration analysis of a Timoshenko beam 
in which the finite element method was applied in conjunction with the energy method; the Timoshenko beam 
was divided into two virtual beams, namely, an EulerBernoulli beam and a shear layer beam. Kruszewski [6] 
presented a theoretical analysis of the effect of transverse shear and rotary inertia on the natural frequencies of a 
uniform cantilevered Timoshenko beam. In the present paper, an analytical solution to the free vibration analysis 
of a uniform Timoshenko beam is presented, together with a material law describing the relationship between the 
curvature, the bending moment, the bending stiffness, the shear force, the shear stiffness, and the natural 
frequency. Based on this material law, closed-form expressions of efforts and deformations are derived. The 
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                                                                                                                                                                (6c) 

                                                                                                                                                                (6d)                        

Here,  is the circular frequency of the beam. Substituting Equations (6a) and (6c) into Equation (5) yields 

                                                                                                                                                                  (7)                   

The application of Equations (6a), (6c), and (6d) to Equations (3) and (4) with rearrangement yields 

                                                                                          ,                                                                       (8) 
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Substituting Equations (6b), (6c), and (6d) into Equation (2) yields 
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The combination of Equations (8) and (10) yields 
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Differentiating both sides of Equation (8) with respect to x yields 
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Substituting Equations (9) and (11) into Equation (13) and rearranging yields the following material law which 

combines bending, shear, curvature, and natural frequency: 
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The coefficient of free vibration is denoted by , the coefficient of rotary inertia by kRI, and the bending shear 

factor by . 

                                                                                                                                                                       (15a) 

                                                                                                                                                                       (15b) 

                                                                                                                                                                       (15c)                

 

( ) ( )
( )

( )
( )

dw x V x
x

dx GA
d x

M x EI
dx






 

 

2( )
( ) ( )

dM x
V x I x

dx
    

 

2
2

2

( ) ( )
1 ( )

( ) ( )
( )

I dM x dw x
V x I

GA dx dx

dM x dw x
I GA x GA

dx dx

   


    

 
    

 

   

2

2

( ) ( ) 1 ( )d w x d x dV x

dx dx GA dx




  

2 2 2

2 2

( ) ( ) 1 ( )
(1 ) 0

d w x I M x d M x

dx GA EI GA dx

 
 

     

2 4

2

2

/( )

/( )

/( )

RI

EI l

k I Al

EI GAl

  

 







*

*

( , ) ( ) sin( )

( , ) ( ) sin( )

M x t M x t

V x t V x t

 

 

  

  

2 2
2

2

( )
( ) ( ) 0

d M x
M x w x

dx E

   

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   doi:10.20944/preprints202101.0501.v1

https://doi.org/10.20944/preprints202101.0501.v1


TIMOSHENKO BEAM THEORY FREE VIBRATION ANALYSIS 

4 
 

Applying Equations (15a) to (15c) to Equations (7) and (14) yields                                                                                    

                                                                                                                 ,                                                       (16) 

                                                                                                                               .                                         (17) 

 Differentiating Equation (16) twice with respect to x and combining it with Equation (17) yields                                    

                                                                                                                                                         .             (18) 

The application of Equations (15a) to (15c) to Equations (7), (11) and (12) yields 
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The solution of Equation (18) for low-frequency modes (1 kRI  0) is as follows: 
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with integration constants A1, B1, C1, and D1. 
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The solution of Equation (18) for high-frequency modes (1 kRI  0) is as follows: 
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The application of Equations (27a), (27b), and (27c) to Equations (19), (20), and (21) yields the deflection, the 

rotation of the cross section, and the shear force.  

 

2.2   First-order vibration analysis of a beam with a mass, spring, or springmass 
system at its end 

 
The stiffness of the spring is Kp, and the concentrated mass is Mp. We set 
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The dynamic element stiffness matrix in local coordinates of the Timoshenko beam is denoted by KTb,dyn. 

The relationship between the aforementioned vectors is as follows:  

                                                                                                                                                (35c)              

Considering the sign conventions adopted for bending moments and shear forces in general (see Figure 1) and for 

bending moments and shear forces in the element stiffness matrix (see Figure 5), we can set the following static 

compatibility boundary conditions:  
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                                                                                                                                                         (36c)              
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Considering the sign conventions adopted for the displacements and rotations in general (see Figure 1) and for 

displacements and rotations in the member stiffness matrix (see Figure 5), we can set the following geometric 

compatibility boundary conditions:                                                                                                                                       

                                                                                                                                                                       (37a)                

                                                                                                                                                               (37b)                
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                                                                                                                                (37d)                

The application of Equations (22) and (27) to Equations (36a) to (36d) yields Equation (38) below. 
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The application of Equations (25) and (26) to Equations (37a) to (37d) yields Equation (39) below.  
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The combination of Equations (35c), (40a), and (40b) yields 

                                                                                                                                                                    (42)                    

 

2.5 First-order vibration analysis of a beam resting on a Winkler foundation  

The stiffness of the Winkler foundation is Kw. We set 

                                                             .                                                                                                    (43) 

Equation (1) then becomes 

                                                                                                                                                                   (44) 

The analysis continues similarly to that in Section 2.1. Thus, Equation (18) becomes 

 

                                                                                                                                                                           (45) 

The solution of Equation (45) yields the formulation of M(x) with four integration constants. The deflection w(x), 

the rotation of the cross section (x), and the shear force are determined as follows.  
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                                                                                                                                                                           (48) 
 

2.6 Second-order vibration analysis of a beam resting on a Winkler foundation  

The axial force N is assumed to be constant. 

When the shear force is replaced by the transverse force T*(x), Equations (1) and (2) become  

                                                                                                 ,                                                                    (49) 

                                                                                                                              .                                       (50) 

The transverse force  shear force relationship is as follows: 

                                                                            .                                                                                         (51) 

Differentiating Equation (50) with respect to x and combining it with Equations (49) and (3) yields 

                                                                                                                                                     .             (52) 

The separation of variables (Equations (6a) to (6d)) applied to Equations (52) and (50) yields 

                                                                                                                                            ,                      (53)                     

                                                                                                    .                                                              (54)                     

 Substituting Equation (51) into Equation (54) yields 

                                                                             .                                                                                     (55) 

Equations (55) and (10) are identical. The combination of Equations (8) and (55) yields Equations (11), (12), (13), 

and (14). The combination of Equations (11) and (51) yields, 

 

                                                                                                                                     .                            (56) 

 The combination of Equations (8) and (55) yields 

                                                                                                                .                                                  (57) 

The combination of Equations (14) and (53) yields 
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                                                                                                                                                          .          (58)    

Differentiating both sides of Equation (58) twice with respect to x and combining the result with Equation (14) 

yields 

     
                                                                                                                                                                  (59) 

                                                                                                               

                                                                                                                                                                      

 

The axial force N can be expressed as follows: 
 
                                                                                                 .                                                                    (60) 

 
Substituting Equations (15a), (15b), (15c), (43), and (60) into Equation (59) yields   
 

                                                                                                                                                                       (61) 
                                                                                                                                                                                              

  

The solution of Equation (61) yields the formulation of M(x) with four integration constants. Equations (58), (57), 

and (56) are used to determine the deflection w(x), the rotation of the cross section (x), and the transverse force 

as follows.  
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                                                                                                                                                                        (65a) 

                                                                                                                                                                        (65b) 

                                                                                                                                                                        (65c) 

                                                                                                                                                                        (65d) 

                                                                                                                                                                        (65e) 

 
The following cases are analyzed herein. 
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For each case the deflection w(x), the rotation of the cross section (x), and the transverse force T(x) are 
determined using Equations (54), (55), and (56), respectively.  The eigenvalue problem is solved and the 
condition for the case is checked. 

 

3. Results and Discussion 

3.1   First-order vibration analysis of Timoshenko beams 
We determine herein the vibration frequencies of beams with various support conditions. The frequencies are 
calculated for different values of bending shear factor and coefficients of rotary inertia.  

The results presented here apply for 1 kRI  0 (low-frequency modes). 

 
The details of the analysis and results are listed in Appendix A and in the supplementary files “Vibration analysis 

of a pinnedpinned beam”, “Vibration analysis of a fixedpinned beam”, “Vibration analysis of a fixedfree 

beam”, and “Vibration analysis of a fixedfixed beam”. 

The vibration frequency is , where                                                      .   

                                                                                                    .                                                                 (67) 

 
The coefficients  are listed in Table 1 below.  
 
Table 1.  Natural frequencies (first mode) of Timoshenko single-span beams with various boundary conditions.  

Pinnedpinned beam 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 9.4254 9.2284 8.8672 7.9873 

kRI= 0.010 9.2284 9.0505 8.7206 7.8995 

kRI= 0.015 9.0427 8.8814 8.5795 7.8130 

Fixedpinned beam 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 14.1395 13.4088 12.2220 9.9416 

kRI= 0.010 13.8341 13.1651 12.0560 9.8659 

kRI= 0.015 13.5449 12.9307 11.8930 9.7895 

Fixedfixed beam 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 19.6360 18.0282 15.6938 11.9004 

kRI= 0.010 19.2636 17.7840 15.5720 11.8705 

kRI= 0.015 18.9052 17.5433 15.4493 11.8400 

 
For the case of a fixedfree beam, the results obtained in the present study are compared to those obtained by  
Kruszewski [6] in Table 2 below.   

4 4

EI EI

l l
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Table 2.  Natural frequencies (first mode) of a Timoshenko fixedfree beam.   

Fixedfree beam: Present study 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 3.4378 3.4009 3.3301 3.1394 
kRI= 0.010 3.4009 3.3659 3.2985 3.1159 
kRI= 0.015 3.3650 3.3318 3.2677 3.0927 

Fixedfree beam: Kruszewski [6] 
  = EI/GAl² 
  0.005 0.010 0.020 0.050 

kRI= 0.005 3.4378 3.4009 3.3300 3.1393 

kRI= 0.010 3.4009 3.3659 3.2985 3.1159 

kRI= 0.015 3.3650 3.3318 3.2677 3.0927 

 
The results are identical.  

 
3.2   First-order vibration analysis of a Timoshenko beam with a mass, spring, or 

springmass system at its end 
 

The results presented here apply for 1  kRI  0 (low-frequency modes). 

Timoshenko beams with the following values of  and kRI were analyzed:   = 0.020, kRI = 0.01. 

 

The case of a cantilevered beam carrying a tip mass at the beam’s end as represented in Figure 2 was 

considered. 

Details of the analysis and results are listed in Appendix B and in the supplementary file “Vibration analysis of a 
cantilevered beam carrying a tip mass”. 

The coefficients  (Equation (59)) for the natural frequencies (the first modes) are listed in Table 3 below.  
 

Table 3.  Natural frequencies (first mode) of a Timoshenko beam carrying a tip mass at the beam’s end. 

 mp

 

  0.25 0.50 0.75 1.00 2.00 3.00 5.00 

 2.3662 1.9375 1.6797 1.5031 1.1211 0.9330 0.7345 
 

 
Let us now analyze the case of a cantilevered beam with a tip mass and spring support as shown in Figure 3. 

Details of the analysis and results are listed in Appendix B and in the supplementary file “Vibration analysis of a 

cantilevered beam with a tip mass and spring support”. The coefficients  are listed in Table 4 below.  
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Table 4.  Natural frequencies (first mode) of Timoshenko beams with a tip mass and spring support. 

mp

 

  0.50 1.00 2.00 5.00 

kp
*= 0.10 1.9713 1.5294 1.1407 0.7470 

kp
*= 0.50 2.1009 1.6303 1.2160 0.7963 

kp
*= 1.00 2.2523 1.7481 1.3041 0.8541 

kp
*= 3.00 2.7747 2.1556 1.6087 1.0536 

kp
*= 10.00 4.0934 3.1917 2.3850 1.5629 

kp
*= 100.0 10.1012 8.6664 6.6854 4.4179 

kp
*= 500.0 11.8355 11.7926 11.6374 12.3926 

 
It is noted that with small values of spring stiffness, the values of the natural frequencies converge towards those 

for the case with a tip mass (Table 3), and with high values of spring stiffness, the values of the natural 

frequencies converge towards those for the fixedpinned beam (12.0560, see Table 1).    

   

Let us now analyze the case of a cantilevered beam carrying a springmass system at the beam’s end as 

shown in Figure 4. Details of the analysis and results are listed in Appendix B and in the supplementary file 

“Vibration analysis of a cantilevered beam carrying a springmass system”. 

The coefficients  are listed in Table 5 below.  

 

Table 5.  Natural frequencies (first mode) of Timoshenko beams with a springmass system at the beam’s end. 

mp*  
  0.50 1.00 2.00 5.00 

kp
*= 0.10 3.3551 3.3546 3.3544 3.3542 

kp
*= 0.50 0.9164 0.6505 0.4636 0.3019 

kp
*= 1.00 1.1933 0.8519 0.6061 0.3849 

kp
*= 3.00 1.5911 1.1662 0.8391 0.5362 

kp
*= 4.00 1.6665 1.2322 0.8908 0.5707 

kp
*= 10.00 1.8215 1.3794 1.0115 0.6542 

kp
*= 100.00 1.9255 1.4897 1.1087 0.7249 

 

It is noted that with small values of spring stiffness, the values of the natural frequencies converge towards those 

for the fixedfree beam (3.2985, see Table 2), and with high values of spring stiffness, the values of the natural 

frequencies converge towards those for the case with the tip mass (Table 3).    
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3.3   Second-order vibration analysis of Timoshenko beams 

We now determine the dynamic response of beams subjected to an axial load. An elastic Winkler foundation was 

not considered. A pinnedpinned beam and a fixedpinned beam were considered.   

We set the following values of  and kRI :   = 0.020, kRI = 0.01. 

The natural frequencies (first mode) were determined for various values of the axial load. Table 6 below lists the 
results. Details of the analysis and results are listed in Appendix C and in the supplementary files “Vibration 

analysis of a pinnedpinned beam with an axial load” and “Vibration analysis of a fixedpinned beam with an 
axial load”. 
 

Table 6.   Natural frequencies (first mode) of Timoshenko beams under axial load.  
 

Pinnedpinned beam 
  k 
  -5.00 -3.00 -1.00 1.00 3.00 5.00 

  5.4710 6.9559 8.1749 9.2340 10.1831 11.0507 

Fixedpinned beam 
 k 

  -5.00 -3.00 -1.00 1.00 3.00 -5.00 

 9.7373 10.7311 11.6328 12.4635 13.2375 13.9648 

 

Ghannadiasl [4] analytically solved the case of beams with various boundary conditions resting on an elastic 
Winkler foundation and subjected to an axial load. The case of a beam without an elastic Winkler foundation is 

analyzed here. The beams have the following characteristics: Poisson’s ratio  = 0.25, Timoshenko shear 

coefficient  =2/3, and coefficient of rotary inertia kRI = 0.01. 
 
                                                                                                  = 0.0375 

                                                               k = -5.922 
 
Detailed results are listed in the aforementioned supplementary files. 
 
Table 7 lists the results of Ghannadiasl [4] and those obtained in the present study. 

 
Table 7.   Free vibration of Timoshenko beams under axial load.  

 

 Pinnedpinned beam Fixedpinned beam 

Ghannadiasl [4] 3.46646 7.32425 

Present study 3.46648 7.32425 
 

The results are identical. 
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4.  Conclusions 

The material law developed in this study enables closed-form solutions of first-order and second-order vibration 

analysis of Timoshenko beams. Vibration analysis of a beam with a spring, a mass or a springmass system was 

conducted. Systems with an intermediate spring, mass, or springmass system were also analyzed. For single-
span beams, closed-form formulations of matrices expressing the boundary conditions were presented (for the 

case where 1 kRI  0); the natural frequencies were determined by solving the eigenvalue problem (the 
determinants of the matrices were set to zero). Closed-form expressions of first-order dynamic stiffness matrices 

with local coordinates were also determined (for the case where 1 kRI  0). 
Regarding the numerical results, the following can be stated: 
 The natural frequencies decreased with increasing bending shear factor. 
 The natural frequencies decreased with increasing coefficient of rotary inertia. 
 The natural frequencies decreased with increasing concentrated mass. 

 The natural frequencies increased with increasing spring stiffness. However, in the springmass system, 
with small values of spring stiffness, the frequencies first decreased. 

 The natural frequencies increased with increasing tensile force. 
 The natural frequencies decreased with increasing compressive force. 

The following aspects not treated in this study could be analyzed: 
 Positions of discontinuity (supports, springs, hinges), stepped beams, and multi-span beams, since the 

closed-form expressions of bending moments, shear forces or transversal forces, rotations of the cross 
sections, and deflections are known. 

The following aspects were not treated in this study: 
 Tapered beams.  
 Beams subjected to damping.  

 The significance of the frequency for  kRI = 1. 
 

5.  Data Availability Statement 
The data and code that support the findings of this study are available upon reasonable request. 

6.  Patents 
 
Supplementary Materials: The following files were uploaded during submission: 

 Vibration analysis of a pinnedpinned beam; 
 Vibration analysis of a fixedpinned beam; 
 Vibration analysis of a fixedfree beam; 
 Vibration analysis of a fixedfixed beam; 
 Vibration analysis of a cantilevered beam carrying a tip mass;  
 Vibration analysis of a cantilevered beam with a tip mass and spring support; 
 Vibration analysis of a cantilevered beam carrying a springmass system; 
 Vibration analysis of a pinnedpinned beam with an axial load; 
 Vibration analysis of a fixedpinned beam with an axial load. 
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Appendix A 

Pinnedpinned beam: Detailed results are listed in the supplementary file “Vibration analysis of a pinned 
pinned beam”. The boundary conditions (Equations (22) and (25)) are as follows. 

                                                                                                                                                                    (A1) 

                                                                                                                                                                    (A2) 

                                                                                                                                                                    (A3) 

                                                                                                                                                                    (A4) 

 

Matrix notation of the boundary conditions is as follows. 

                                                                                                                                                                    (A5) 

                                                                                                                                                                    (A6) 

To determine the frequency of free vibration, the determinant of the matrix [M] was set to zero. The matrix was 
then as follows. 

1,00  0,00  1,00  0,00 

‐12‐ kRI  0,00  22‐ kRI  0,00 

cosh1  sinh1  cos2  sin2 
‐(12+ kRI) cosh1  ‐(12+ kRI) sinh1  22‐ kRI) cos2  22‐ kRI) sin2 

 

Fixedpinned beam: Detailed results are listed in the supplementary file “Vibration analysis of a fixedpinned 
beam” with the following matrix. 

‐12‐ kRI  0,00  22‐ kRI  0,00 

0,00  1(12+ kRI + )  0,00  2(‐22+ kRI + )
cosh1  sinh1  cos2  sin2 

‐(12+ kRI) cosh1  ‐(12+ kRI) sinh1  22‐ kRI) cos2  22‐ kRI) sin2 
 

Fixedfixed beam: Detailed results are listed in the supplementary file “Vibration analysis of a fixedfixed 
beam” with the following matrix. 

‐12‐ kRI  0,00  22‐ kRI  0,00 

0,00  1(12+ kRI + )  0,00  2(‐22+ kRI + ) 
1(12+ kRI + ) 

sinh1 
1(12+ kRI + ) 

cosh1 
2(22‐ kRI ‐ ) sin2 

2(‐22+ kRI + ) 
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‐(12+ kRI) cosh1  ‐(12+ kRI) sinh1  22‐ kRI) cos2  22‐ kRI) sin2 
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The boundary conditions can be expressed as in Equation (A5): 

                                                                                                                                                                         (B7) 

The determinant of the matrix [M] was set to zero. The matrix was then as follows. 

 

 

 

 

 

 

 

 

The case of a tip mass and spring support as represented in Figure 3 was considered. Detailed results are listed 
in the supplementary file “Vibration analysis of a cantilevered beam with a tip mass and spring support”. 
The boundary conditions (Equations (B1), (B2), (B3), (B4), and (B5)) were applied. Equation (B6) was replaced 
by Equation (30). 

The boundary conditions can be expressed as in Equations (A5) and (B7). 

The determinant of the matrix [M] was set to zero. The matrix was then as follows. 

 

 

 

 

 

 

 

 

The case of a cantilevered beam carrying a springmass system at the beam’s end as represented in Figure 4 
was considered. Detailed results are listed in the supplementary file “Vibration analysis of a cantilevered beam 

carrying a springmass system”. 
The boundary conditions (Equations (B1), (B2), (B3), (B4), and (B5)) were applied. Equation (B6) was replaced 
by Equations (31a) and (31b). 

The boundary conditions can be expressed as in Equation (A5): 

                                                                                              .                                                                       (B8) 
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The determinant of the matrix [M] was set to zero. The matrix was then as follows. 

 

 

 

 

 

 

 

 

 

Appendix C    

Without a Winkler foundation, the solution to Equation (61) is as follows (Equations (66c) and (66d)).  

                                                                                                                               (C1) 

                                                                                                                               (C2) 

 

The parameters A, B, and  are defined in Equations (65a), (65b), and (65d), respectively. 

 

Substituting Equations (C1) and (65a) to (65e) into Equations (62) and (63) yields the following. 
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For the pinnedpinned beam, the determinant of the matrix expressing the boundary conditions (M(x = 0) = 0; 

w(x = 0) = 0; M(x = l) = 0; w(x = l) = 0) was set to zero. The matrix was then as follows. 

1,00  0,00  1,00  0,00 

-A12 - E  0,00  A22 - E  0,00 

cosh1  sinh1  cos2  sin2 
(-A12 - E) cosh1  (-A12 - E) sinh1  (A22 - E) cos2  (A22 - E) sin2 

 

For the fixedpinned beam, the determinant of the matrix expressing the boundary conditions (w(x = 0) = 0;    

(x = 0) = 0; M(x = l) = 0; w(x = l) = 0) was set to zero. The matrix was then as follows.  

-A12 - E  0,00  A22 - E  0,00 

0,00  B1 + A13  0,00  B2 - A23 

cosh1  sinh1  cos2  sin2 
(-A12 - E) cosh1  (-A12 - E) sinh1  (A22 - E) cos2  (A22 - E) sin2 
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