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Abstract: Single particle tracking (SPT) is a powerful class of methods for studying the dynamics of
biomolecules inside living cells. The techniques reveal the trajectories of individual particles, with a
resolution well below the diffraction limit of light, and from them the parameters defining the motion
model, such as diffusion coefficients and confinement lengths. Most existing algorithms assume these
parameters are constant throughout an experiment. However, it has been demonstrated that they
often vary with time as the tracked particles move through different regions in the cell or as conditions
inside the cell change in response to stimuli. In this work, we propose an estimation algorithm to
determine time-varying parameters of systems that discretely switch between different linear models
of motion with Gaussian noise statistics, covering dynamics such as diffusion, directed motion, and
Ornstein-Uhlenbeck dynamics. Our algorithm consists of three stages. In the first stage, we use a
sliding window approach, combined with Expectation Maximization (EM) to determine maximum
likelihood estimates of the parameters as a function of time. These results are only used to roughly
estimate the number of model switches that occur in the data to guide the selection of algorithm
parameters in the second stage. In the second stage, we use change detection (CD) techniques to
identify where the models switch, taking advantage of the off-line nature of the analysis of SPT data
to create non-causal algorithms with better precision than a purely causal approach. Finally, we
apply EM to each set of data between the change points to determine final parameter estimates. We
demonstrate our approach using experimental data generated in the lab under controlled conditions.

Keywords: single particle tracking; single molecule biophysics; fluorescence

1. Introduction

Single Particle Tracking (SPT) is a class of experimental techniques and mathematical algorithms
for following sub diffraction-limit sized particles moving inside living cells, including viruses, proteins,
and strands of RNA [1-3]. Particles of this size cannot be resolved with standard optical microscopy,
irrespective of the magnification. However, by labeling the particle (or particles) of interest with
a fluorescent reporter such as a fluorescent protein or quantum dot, the motion of the tag and, by
extension, the motion of the particle can be observed. While there are many different schemes, the
general paradigm in SPT involves capturing a series of wide-field fluorescence images, localizing the
fluorescent particle in each frame to form a trajectory, and then analyzing the trajectory to estimate
motion model parameters.

There are a variety of motion models relevant to the biophysical application domain, including
free diffusion, confined diffusion, directed motion, and combinations of these, such as joint diffusion
and directed motion [4,5]. Given noisy observations of such a model (such as from a trajectory
estimated by localizing a fluorescent particle in each frame of an image sequence), the most common
technique to estimate the model parameters is to fit the chosen model to the Mean Square Displacement
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(MSD) curve. This very simple and popular approach has been enormously successful in probing
biomolecular dynamics [6,7]. However, the resulting estimates depend on user choices such as the
number of points to include when fitting the MSD data to the model, and the scheme does not account
for many factors, including observation noise, motion blur arising from camera integration times,
and other experimental realities [8]. While approaches based on optimal estimation, and in particular
Maximum Likelihood (ML) techniques, are more complicated and often less intuitive than the MSD,
they have a sound theoretical footing that guarantees efficiency and consistency of the estimates, and
they consistently have been shown to outperform the MSD. ML algorithms have been developed
for free diffusion [8-11], Ornstein-Uhlenbeck flow [12], and extended by one of the authors to more
general motion models [13,14].

Most approaches, both those that use the MSD and those based on optimal estimation, typically
assume that the model parameters, while unknown, are fixed. There have been some efforts on
extending the analysis to determine the most likely model among a given set but these also assumed
fixed parameters in each model with only one model active on the entire data set [5,15]. Other works
have considered models that discretely switch between different motion models, each of which has
a fixed (and unknown) set of parameters. One of the authors considered time-varying parameters
using a jump Markov model [16] but such models impose a probabilistic structure on the changing
parameter values that may be non-physical. In addition, they require a priori knowledge of the number
of states. Other works have taken a data-driven technique to infer the number of states from the data
directly [17,18]. However, these approaches have several parameters that need tuning and, while
they are somewhat insensitive to that tuning, they also rely on a good choice of prior distributions
on the parameter estimates. In [15] the problems of determining when a model switch occurred was
separated from classifying what motion model is active but was not combined with optimal parameter
estimation. Sliding (or rolling) windows have also been applied to SPT data, though with the single
goal of segmenting the data based on features in the MSD [19-22]. More recently, machine learning
techniques have been brought to bear on the problem of trajectories with time-varying parameters
[23,24]. While results have been promising, there is a need to train the underlying neural networks and
as a result there are concerns about transfer learning when applying the methods to different model
classes than those used for training.

As with these prior works, the present paper focuses on systems that discretely jump between
different parameter values and builds on our prior efforts using sliding windows and optimal
estimation to produce an ML estimate of the parameters [25,26]. Here we describe a novel three
stage algorithm that combines change detection to determine when model switches occur with ML
estimation to find parameter estimates for each model. We assume each mode of motion is described
by a general linear stochastic model with Gaussian noise statistics that encompasses a wide variety
of dynamics. The first stage of our approach applies a sliding window to estimate the parameters
of a general linear dynamic model at each point in time. These results are intended to help the user
visualize the data and to inform the selection of tuning parameters for the second stage. In that second
stage, we apply a Change Detection (CD) scheme to segment the data into regions with constant
parameters. In the final step, we again determine ML estimates of the model parameters.

In both the first and third stages, the goal is to find an estimate of the (fixed) parameters defining
a model over some given period of time, either a sliding window (stage one) or between time points
where model changes were detected (stage three). Estimation of fixed model parameters from a set
of measurements can be done using a variety of estimation methods, including fitting the desired
model to the MSD, spectral factorization based on an auto-regressive, moving-average reformulation
of Eq. (1) [27,28], direct likelihood maximization using quasi-Newton numerical schemes [29-31], or
Expectation Maximization (EM) [32]. Of these, MSD, despite its popularity, typically has the worst
performance [10,13,14]. The others are all optimization based schemes and similar performance can be
expected. EM, however, has at least two large benefits. First, in addition to producing (approximate)
ML estimates of the parameters, it also yields the smoothed distributions on the particle locations from
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the data. Second, the approach is easily extended to nonlinear observation and motion models [13,14].
We therefore focus on this method as the core algorithm.

The second stage of our approach relies on CD for segmentation of the data. CD is a mature
area and has been applied to a wide range of applications, including speech processing [33,34], image
processing [35], analysis of electroencephalogram (EEG) and electrocardiogram (ECG) signals [36-38],
and geophysics [35]. They have also been used in the context of SPT to segment trajectories based
on model type, most commonly to distinguish between free and confined modes of motion [39—41].
CD methods use a threshold on a detection (residual) signal to indicate when a change has occurred
and their performance depends heavily on the choice of that level. The main goal of the windowed
estimation of stage 1 is to guide the user in the choice of the threshold. In this work we take advantage
of the off-line nature of the analysis to use non-causal CD, averaging the results from forward and
backward passes through the data to minimize the expected delay between the true and estimated
change points.

Throughout the paper we use simulations to demonstrate and explore the elements of our
three-stage method. We then validate the scheme using experimental data generated under controlled
conditions that provide both real data and ground truth values through the use of a synthetic motion
approach we have developed [42].

2. Methods

Data in SPT typically comes in the form of a sequence of camera images following both
two-dimensional and three-dimensional motion. There are many algorithms for doing localization and
linking [43,44] and we assume these steps have been performed prior to applying our approach. Note
that while the focus of this paper is model parameter estimation, our algorithm does refine the given
trajectories through the filtering and smoothing elements that are integral to our approach; details
can be found in, e.g., [26]. The motion in each axis is assumed to be independent and described by a
general linear time-varying model in each direction given by

Xpt1 = ApXg + by + wy, wy ~ N(O, qk), (1a)
Yk = X +0r, v ~ N(0,7g), (1b)

where k is the discrete time index, x, yx, Wk, and vy are scalars, g, = 2Dy At is the variance of the

process noise defined by the diffusion coefficient Dy and the sampling time Af, and 7y is the variance
of the measurement noise as generated by a variety of processes, including shot noise due to the
physics of photon generation in fluorescence and read-out noise in the camera. We note that there
are important modes of motion in the biophysical domain that are not captured by Eqn. (1), and in
particular those that are non-Gaussian in nature that need nonlinear or even non-Markovian models
(see, e.g. [45-47]). However, system (1) can represent a variety of very relevant models in the SPT
application. For example, setting a; = 1, b, = 0 describes pure diffusion; choosing a; < 1, by =0,
yields an Ornstein-Uhlenbeck model that can capture tethered motion of a biomolecule or be used to
approximate confined diffusion [12,48]. We further assume that the parameters are fixed for a finite
interval of time before switching to different values for another interval. The number of switches is not
known a priori.

Our goal, then, is to determine the number of switches and to estimate the parameter values inside
each interval. As described in Sec. 1, we take a three stage approach: (1) estimation of continuously
varying parameters using sliding windows, (2) change detection for segmentation, and (3) parameter
estimation on each interval. Our approach is illustrated in Fig. 1. In what follows, we first describe the
core elements of the three stages before bringing them together in the final algorithm.
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Figure 1. Overview of the three-stage algorithm for estimating parameters of a linear motion model
that switches values at discrete times.

2.1. Background on EM

As noted in Sec. 1, the EM algorithm is at the core of our technique. Here we give a brief overview
of this well-known approach to ML estimation.

2.1.1. EM for fixed parameter estimation

Both the first and the last stage rely on using a set of N measurements, Yy = {y1,Y2,..., YN}, to
infer the parameters of the model in Eq. (1). In the first stage, estimation inside each window assumes
constant parameters, and in the last stage, estimation in each interval also assumes fixed parameters.
In this section, then, we assume a time invariant model and note this by dropping the subscript t on
the parameters.

The EM algorithm was introduced as a method for finding ML estimates when the likelihood
function either could not be expressed in an analytical form or was too complex for direct optimization
[32]. It is an iterative scheme that moves towards a local optimal of the likelihood. The essential idea is
to use a so-called hidden variable, which in our case is taken to be the underlying particle trajectory
XN = {x1,x2,...,xN}, to create an auxiliary function Q, which approximates the log-likelihood
function. This function is defined as the conditional expectation of the joint log-likelihood of the
observations and underlying trajectory,

Q(6,01) = E{log[pe(Xn, Yn)]|Yn, 6}, 2)

where () is the current estimate of the parameter. Calculating Q is referred to as the ‘E-step’ and
depends on the conditional expectation given the complete data Yy. For our model in Eq. (1), the
necessary distributions to calculate this expectation can be calculated using a Kalman filter and Kalman
smoother. The next estimate of the parameters is then found through the ‘M-step’ by maximizing the
auxiliary function

00+ = arg max Q(6,6\). ©)

For the general linear model considered here, the auxiliary function takes the form
N N N
Q (9,9(1)) = —Nlog qfl — Nlog r 14 Z E { (yx — )2t 4 (g — axg — b)zqfl‘ Yy, ) } , (4)
k=1

-1

T
where 0 = [a b gt r . For further details and a robust numerical implementation of the EM

algorithm, see [49].
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2.1.2. EM using local likelihood

The essential idea behind the local likelihood approach is to do estimation inside a sliding window.
As the window is slid along the data, an estimate of the parameter 0 is produced at each point in time.
It is important, however, to define these windows appropriately. The general local likelihood is given

by

h
1:(6:) = Y Kigel(yl6r), (5)
=1

where h is the window size, [(yk|6;) is the standard likelihood function, and

k—t
Kk,t—K<h>,

is a kernel (also known as a weighting function) satisfying K(v) > 0 and [ _K(v)dv = 1. When
selecting a kernel, it is important to use smooth windows to minimize an effect known as Gibbs ringing
which causes oscillations in the time-varying estimate [50]. This can be achieved using kernels with
rounded edges that progressively downweight data points far from the window center. A family of
kernels defined by a parameter v to achieve this is given by

=)l <
K(v) = { Ziserigeny o<1 ©
0, otherwise,
where B(a,b) = 11:((?_1;(:)) and I'(+) is the standard gamma function. For v = {0, 1,2}, we obtain what

are known as the uniform, Epanechnikov, and biweight kernels, respectively.

Applying EM to this scenario simply means using the local likelihood to generate the auxiliary
function. To distinguish it from the standard function in Eq. (2), we denote it as Q;. For the general
linear system in Eq. (1), we have

Qt(Gt, ét(l)) = — (log q;l + log 1’;1> + % (Kk,t + q;l [§11 — S~§1FtT — FtS~01 + l"tSOOFtTD
= @)
i rt_l:Zi (Kk/t [(yk — fp) + Pk|hD ,

with

& _ i Kk,t[fi|h+Pk\h] Ky tuk X (8a)

00 Ky % K2 |’
k=1 kX k|h Uk kU

Sii=)_ K (fkﬂm + Pk+1\h> , (8b)
k=1

Gy = i Kit[®es 10 %hn + Pesrjen] ‘ (80)
= Kttt Ry 1)n

Note that to arrive at the expressions above, we included the kernel function in Eqns. (7) and (8)
and explicitly calculated the expected values in the auxiliary function. The conditional mean %,
covariance Py, and cross covariance P 1), define the smoothed distribution on the underlying
state and can be calculated from the Kalman filter and smoother (see, e.g., [51]). The inclusion of the
parameter & in these expressions denotes that they in general depend upon the choice of window size.
The maximization step can be performed explicitly by taking the derivatives of Q; with respect to the
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o a1
parameters, setting them to zero, and solving. Defining the vector Z(i) = [ﬁ(l) b(’)] , the resulting
estimates are given by

=(i+1) _ §015”*01, (9a)

i+ 1 (s ar (=G+IN\T o+l s =(+D)a  [(=(+D\T

gt =2 (sn =S (BY) - VS0 — B VS0 (57) ) (9b)

(i 1Y . . \T

1’5 +1) _ - Z Kyt |:<yk — xk|h) (yk — xk‘h) + PIE[h:| , (9¢)
k=1

where n = Z}I(\]:1 Ky ;. Throughout this work we apply the Epanechnikov window (7 = 1). Note that
when working with a single, independent window (as in Phase 3 of our approach), it is reasonable to
select a rectangular (uniform) window (y = 0). However, we found that because the change detection
of stage 2 (described below) is not exact, better performance in terms of parameter estimation is
achieved by downweighting samples at the edges as they may actually belong to a different model.
Note that we have previously established that under this EM scheme, the local likelihood increases
at each step and thus this local version inherits the results from standard EM that the algorithm will
converge to at least a local maximum [26].

2.2. Algorithm stages

2.2.1. Stage 1: Sliding window estimation with local likelihood

The first stage of our approach is to apply EM with local likelihood using a sliding window
approach. As noted above, the role of this stage is only to inform the user about likely changes in
the dynamics to guide the selection of thresholds for use in automatic change detection (described in
Sec. 2.3 below), not to produce any final estimates. To demonstrate this stage, we generated realizations
of a system given by Eq. (1) that switched the diffusion coefficient from D = 0.1 yum?/s to D = 0.2
um? /s, sampled at a rate of At = 0.1 sec and with the other parameters fixed ata = 1, b = 0, and
r = 0.1. For simplicity, we assumed the fixed constants 4, b, and r were all known and only D needed
to be estimated. We then processed the data using both a rectangular window (which we refer to as
the naive approach) and an Epanechnikov window.

For this simple setting of only estimating the covariance of the process noise (that is, the diffusion
coefficient), there are multiple adaptive filtering algorithms, dating back to the 60’s (see, e.g. [52,53]).
A recent version of these methods that minimized a quadratic function of the innovations (that is,
the difference between the predicted and actual measurements) was introduced in [54]. Based on the
Kalman filter, this method was shown to outperform prior techniques. We therefore compare our
results to the algorithm in [54] as a benchmark in this simple setting of diffusion-only estimation. It is
important to note, however, that our algorithm is more general as it is able to estimate all the model
parameters.

The results are shown in Fig. 2 for two different data sets, one with D changing at time 200 and one
with the change at time 300. Each set consists of 10 realizations of the trajectories and the results shown
in Fig. 2 are averaged over those ten runs. To highlight the effect of the window size, we used h = 150
on the first data set and 1 = 250 on the second. As expected, with the shorter window all algorithms
show a faster response. Both EM methods show a smoother response and better accuracy than the
Kalman filter-based scheme. While both windows have similar behavior, the use of an Epanechnikov
window clearly helps to smooth out the estimate relative to the naive, rectangular window, though the
effect is more muted with the longer window.
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Figure 2. Estimating the diffusion coefficient (solid black) using local EM with (blue) an Epanechnikov
window, (red) a naive, rectangular window, as well as using a (green) a Kalman filter based scheme.
Estimation was done using a window size of (a) & = 150 and (b) & = 250.

2.3. Stage 2: Change detection

Given a sequence of random variables y, from a probability density function dependent on a
parameter 6, CD aims to find the unknown time ¢, such that the (vector) parameter 8 = 6, for t < ¢,
and 6 = 6, (# 0,) for t >= t.. There is a rich literature on CD and many different techniques have
been developed for a wide variety of settings (see, e.g., [55,56]). In general, the idea behind CD is to
first define a residual signal that is close to zero when the parameter has not changed and that rapidly
increases after a change, and then to define a decision rule which monitors the residual and declares
when a change has occurred. In the SPT setting, the problem is particularly challenging due to the
need to detect non-additive spectral changes in the model since the diffusion coefficient enters through
the variance of the input noise.

CD relies on a model describing how the parameter affects the measurements. While our SPT
data is described by the system in Eq. (1), CD is difficult to apply to such state-space formulations.
For this second stage, then, we choose to describe our measurements with a simple Autoregressive
with Exogenous Input (ARX) model as these have been shown to be effective for capturing spectral
changes [37,57]. There are more general models of this type that have been applied to parameter
identification in SPT, including for anomalous diffusion based on fractional dynamics in single particle
trajectories [58,59]. However, the goal of this stage is just CD, not model identification, and the ARX
model provides a simple approach with well-established theory for finding change points in the data.

ARX models of order p are given by

P
yr = Za{yk,i +e, var{e} =02, (10)
i=1

where j is an index indicating a specific model and @/ = (ajl, a, ..., a;,) are the model parameters for

that model. Given a set of data, we can automatically determine the best order p for a model using the
Bayesian Information Criterion (BIC) as follows. The BIC is defined by

BIC(p) = —21(f) + plog N, (11)

where [(6) is the log-likelihood, N is the number of data points, p the model order, and # the ML
estimate of the parameter. The model order is then selected as the one minimizing the BIC.

To demonstrate the ARX model approach, we generated 50 realizations using Eq. (1) with three
different run lengths and then estimated the parameters of the ARX model Eq. (10) using the BIC. The
resulting model orders that optimized the BIC are shown in Fig. 3. In all cases the BIC indicates that a
low order model, often with just one parameter, is sufficient.
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Figure 3. ARX model estimation based on the BIC criterion with run lengths of (left) 200, (center) 150,
and (right) 100.

For the residual signal we use a sufficient statistic for detecting spectral changes known as the
cumulative sum (CUSUM) (see [56,60]). CUSUM can be defined in a few different ways; here we use a
version based on the likelihood ratio given by the general formulation

o, (il Yi-1)

, = _ +S +, 12
pﬂu(yk|Yk71/) 8k (gk 1 k) ( )

si = log
where Y;_ is all the data up to time k — 1, (-)* = max{-,0}, and 6, and 6, are the parameter values
before and after the change, respectively. Finally, we define the decision rule by selecting a threshold A
such that a parameter change is declared to occur at the time when g, exceeds that threshold,

te=min{k: g > A}. (13)

As written in Eqns. (12) and (13), the CUSUM test assumes prior knowledge of the parameter
values before and after the change. In our setting, of course, these values are not known ahead of
time. We overcome this by simultaneously estimating two ARX models of the form in Eq. (10). The
first of these, termed Mg, is a long term model that is estimated using all of the data from the most
recently detected change up to the current time. The second, My, is estimated using data from a sliding
window of size h. Inserting the ARX models in Eqn. (12) yields the CUSUM signals for our setting,

1oog (@) ()

€0
sk = = log = + ,
2 %02 202 202

n
8k = Z Sks (14)
i=1

where e;; is the residual error of the i model given by the difference between the predicted and
true measurement at time k. The two models are compared using the CUSUM test with a threshold
A selected by the user. Once a parameter change is detected, both models are reset, the prior data
is discarded, and the process started again to search for the next change point. The threshold A is
tuned by the user to achieve satisfactory results, guided by the expected number of model changes as
indicated by Stage 1 of our approach.

In general there is a delay between the actual change and the point of detection imposed by the
time it takes the residual signal to grow. This is mitigated somewhat by the fact that the time assigned
to the detected change corresponds to the beginning of the sliding window of the second model but
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in general still leads to a bias in the estimated change time. When detecting changes online, this
bias can be reduced by increasing the sensitivity of CD by selecting a lower threshold at the cost of
possibly increasing false positives in CD. In the SPT context, however, estimation is typically done
offline in post-processing. We take advantage of this to reduce the bias in estimating the change time
by performing two passes on the data, one forward in time and one backward in time. CD points from
the two passes that are close enough (as defined by the user) are averaged to reduce the bias. If there is
no clear match then the CD from the forward pass is selected.

To illustrate the CD stage, we performed two sets of 50 independent simulations of the system in
Eqn. (1) at a measurement noise level of r = 0.001 um? (corresponding to a localization precision of
approximately 32 nm), with a sampling rate of 0.1 s and a total trajectory of 100 s. In the first setting,
all parameters except for a were held fixed at b = 0 and D = 0.05 um?/s. Initially, the remaining
parameter was set to a = 1, switched to a = 0.8 after 30 sec (k = 300) and returned to a = 1 at 70 sec
(k = 700). In these simulations, there is some improvement in the detection time of the first change
when using the averaged result. For the second change, however, results based on just the forward
pass were better than either the backward or averaged. As the measurement noise is increased, though,
detection becomes more challenging and a larger delay is expected since the threshold will likely need
to be set higher to avoid false positives. To explore this, we ran another set of 50 trials but with a
measurement noise of r = 0.01 yum? /s (corresponding to a localization precision of 100 nm). Under
this setting, both the forward and backward passes have larger bias, larger variance, and many more
outliers than in the low noise setting and the results based on the averaged value are more reliable.
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Figure 4. Detected time of change under a low noise setting based on using only the forward pass, only
the backward pass, or averaging the two. (left) Estimates of the time of the first change (at k = 300)
of the parameter a from a value of 1 to 0.8 and (right) estimates of the time of the second change (at
k = 700) back to 1.

In the second setting, all parameters except the diffusion coefficient were held fixed ata = 1
and b = 0 and the measurement noise was again set to r = 0.001 ym?. The diffusion coefficient was
initially set to 0.05 yum? /s, switched after 30 seconds (at k = 300) to 0.2 yum?/s for the next 40 seconds,
and switch back to 0.05 um?/s (at k = 700). The results are shown in Fig. 6. Note that for the first
change, the forward pass yields the most accurate estimate of the change while for the second change
the backward pass is more accurate. We also ran a second set of 50 trials at the larger noise of r = 0.01
um?; these results are shown in Fig. 7 and show a similar effect with respect to the forward, backward,
or averaged results as in the low noise setting. This reflects the fact that in general detecting an increase
in a covariance parameter is easier than detecting a decrease. Without prior knowledge of the change,
the average of the forward and backward estimates provides a robust result. Of course, the windowed
estimates of the first stage of our approach could be used to estimate the direction of change and the
thus guide the user to choose either the forward or backward CD result.
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Figure 5. Detected time of change under a high noise setting based on using only the forward pass,
only the backward pass, or averaging the two. (left) Estimates of the time of the first change (at k = 300)
of the parameter a from a value of 1 to 0.8 and (right) estimates of the time of the second change (at
k = 700) back to 1.
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Figure 6. Detected time of change under a low noise setting based on using only the forward pass,
only the backward pass, or averaging the two for the (left) first change (at k = 300) of the diffusion
coefficient from 0.05 um? /s to 0.2 um? /s and the (right) second change (at k = 700) back to 0.05 um?/s.
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Figure 7. Detected time of change under a high noise setting based on using only the forward pass,
only the backward pass, or averaging the two for the (left) first change (at k = 300) of the diffusion
coefficient from 0.05 yum? /s to 0.2 ymz /s and the (right) second change (at k = 700) back to 0.05 ],tmz /s.
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2.3.1. Stage 3: Final estimation and the complete algorithm

The final stage is simply to run the EM algorithm on each set of data between the detected change
points to produce the final estimates. The three stage algorithm, illustrated in Fig. 1, thus proceeds
as follows. Given a trajectory of single particle tracking data, the user first selects a window size h
and runs local EM to produce continuous estimates of the parameters. Shorter windows are of course
more sensitive to parameter changes but less robust to noise. While there are data-driven methods
for selecting an appropriate window size such as the Steins Unbiased Risk Estimator (SURE) [61],
the results of this stage are used only to roughly estimate the number of parameter changes and a
trial-and-error approach driven by domain knowledge and experience will likely be sufficient. In Stage
2, the user selects a threshold A for the CUSUM test. As with the window size, some trial-and-error is
likely needed to determine a good threshold but this choice is now informed by the expected number
of changes indicated by the Stage 1 result. After running CD, the original data can be segmented into
windows of maximal length, each of which has a fixed model. In Stage 3, the constant parameter EM
algorithm in Egs. (2)-(3) is then run on each segment independently to determine the final estimates.

2.4. Generation of synthetic data

While simulations can be very useful to explore algorithm efficacy, it is important to test algorithms
on realistic data, ideally with accompanying ground truth. Our experimental procedure to achieve this,
known as synthetic motion and described in detail in [42], consists of four steps: (1) generate numerical
sample paths using the motion model in Eqn. (1) for a given set of parameters, (2) control the motion
of a fluorescent particle (such as a quantum dot or fluorescent microsphere affixed to a coverslip) using
a piezoelectric stage with nanometer-scale precision, (3) acquire images of the moving particle using
a widefield microscope, and (4) process the resulting images to generate a measured trajectory. Our
specific implementation uses a high speed 3D piezostage (Nano-PDQ, Mad City Labs) mounted on an
inverted optical microscope (Zeiss Axiovert 200) and controlled using a custom-designed controller to
achieve both high speed and precision (below 10 nm) in positioning. The controller was implemented
on an field programmable gate array (FPGA) on a National Instruments compact Reconfigurable Input
Output system (NI cRIO 9076). Particle motion was observed using a 63x, 1.2 N.A. water immersion
objective and diffraction-limited images captured using an sCMOS camera (Prime 95B, Photometrics).
To avoid motion artifacts, the piezostage was moved and allowed to settle at the next position in the
trajectory while the camera was offloading the previous image and held stationary during the next
image acquisition. Acquired images were then segmented and the location of the fluorescent particle
in each frame estimated using a nonlinear least-squares fit to a Gaussian profile [62]. Four sequential
frames from a typical synthetic data set are shown in Fig. 8.

Figure 8. Four sequential segmented image frames from a synthetic motion sequence.

3. Results and Discussion

We generated 90 trajectories of synthetic data with a step size of At = 0.1 s, each consisting
of 1000 frames. The parameters a;, by, and D; were set as shown in Table 1, corresponding to pure
diffusion for 250 steps, an Orenstein-Uhlenbeck (O-U) motion for the next 250 steps, fixed motion for
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250 steps, and finally directed motion with diffusion for the final 250 steps. The observation noise 7;
was determined by the experimental conditions. The values during the first three phases were selected
based on classification results for the motion of the transmembrane protein CD44 on the surface of
macrophages as reported in [15] while the values for the final, directed motion stage correspond to a
speed of 2 ym/s, consistent with the speed of dynein on microtubules and inspired by early results of
SPT in virus tracking [63].

Time step
Parameter  1-250 251-500 501-750 751-1000
a; [unitless] 1
by [um] -0.1
Dy [pm?/s] 0.01

Table 1. Synthetic motion parameter values

Fig. 9 shows the generated trajectories and a zoom-in on those trajectories over the first 750 data
points. Note that these trajectories are those produced from the Gaussian fitting-based analysis of the
image data; see Sec. 2.4. The trajectories show a clear diffusive motion in the first 250 steps and then a
transition to the tethered motion. Visually there is only a small difference between the OU motion and
the fixed motion due to the small diffusion coefficient during the O-U phase and the measurement
noise. In what follows we first carry out the analysis for the single specific trajectory shown in blue.

4
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Figure 9. Synthetic motion trajectories generated from image data over (left) the full 1000 frames and
(right) over the first 750 frames to highlight the diffusive nature of the motion. The example trajectory
used is highlighed in blue. Vertical red dashed lines are where the model values changed according to
the values in Table 1.

The first stage of our algorithm is to run the local-likelihood based estimation algorithm. For this
we chose a window of size h = 200; the resulting time-varying estimates of the parameters are shown
in Fig. 10. Note that while we are estimating all four parameters of the model in Eqn. (1), we do not
expect the measurement noise to change and thus look only at the parameters a;, Dy, and b; in this
stage. The curves in Fig. 10 clearly indicate that there are likely model changes occurring, though they
do not clearly reveal where or how many. From the a; curve, it seems reasonable to infer 2-3 changes
with switches at approximately k = 500, k = 700, and k = 800. The value of D; seems to go through
two changes at the approximate times k = 250 and k = 800. Finally, b; seems to change values twice,
once near k = 700 and again near k = 800. Combining these, and recognizing that multiple parameter
values may change in a model switch, Stage 1 indicates there are likely three changes in this data set.

The next stage is to run the CD scheme. The BIC criterion led to an ARX model order of p = 1.
The resulting residual signal in Eqn. (14) for the forward pass is shown in Fig. 11 (the residual for the
backward pass is qualitatively similar). Guided by the results of Stage 1, we selected a threshold of
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Figure 10. Results of stage 1: time varying estimates of parameters (left) a4, (center) D, and (right) b,
using a sliding window of size h = 200.

A = 2.1, leading to a detection of three changes. The change times based on the forward pass were
found to be at time steps [321, 544, 755]; using the backward pass only they were at [247, 422, 735]. The
final detection times were thus taken to be the average of these, [284,483,745], quite close to the true
times of [250, 500, 750].

3

257 ]
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0 200 400 600 800 1000
Time (counts)

Figure 11. Residual signal for change detection. The selected threshold is indicated with a red dashed
line.

The final stage is then to run the EM-based ML estimation in each segment. The resulting
parameter values are given in Table 2. For the parameters with ground truth, the percent error is also
given in the table. In general, the results are quite good. The one exception is in the value of 4; in the
third stage where the particle is fixed. This is discussed a bit more below after analyzing the results for
all the trajectories.

We then applied our algorithm to all 90 trajectories in the synthetic motion data set we created.
Since in practice it is unlikely one would tune the algorithm for each trajectory when analyzing large
data sets, we applied the same ARX model order (p = 1) and threshold (A = 2.1) to every trajectory
(better results would be expected, of course, if each trajectory was handled independently). Using these
settings, the CD identified three changes in 64 of the trajectories and two changes in the remaining 26.

We consider first the 64 trajectories with 3 detected changes. Histograms for the estimated times
of the model change based on the average of the forward and backward passes are shown in Fig. 12
for the cases with three changes; the mean detected times were k1 = 276.2, ky = 497.1, and k3 = 717.
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746-1000

at [unitless] | 0.9691 (3.1% error) | 0.8661 (0.7% error) | 0.2482 (75.2% error) 1.0006 (0.06% error)
True a; 1.0 0.86 1.0 1.0

by [um] -0.0015 (1.5% error) | 0.0007 (0.7% error) | -0.0463 (4.63% error) | -0.098 (2.0% error)
True b 0 0 0 -0.1

D; [ptm2 /s] | 0.0408 (52% error) 0.0064 (36% error) | 0.0094 (N/A % error) | 0.0112 (12% error)
True Dy 0.1 0.01 0 0.01

T [;tmz] 0.0041 0.002 0.0054 0.0052

Number

Table 2. Estimated motion parameter values and percent error from ground truth

125

250

375

400

500

600

Time (counts)

625 750 875

Figure 12. Histograms of the detected times of model changes when three changes were detected (64
trajectories) for the (left) first, (center) second, and (right) third change. Red dotted lines indicate the
true change times of 250, 500, and 750. Mean detected times are 276.2 for the first, 497.1 for the second,

and 717 for the third.

The results of the final stage of our algorithm on the 64 trajectories yielding three change points
are shown as boxplots in Fig. 13 while the mean and standard deviation of the estimates are shown in
Table 3. Since these trajectories yielded three changes, the estimated values can be compared directly
to the ground truth values. These results show very good performance across all parameter estimates

with the one exception being the values of 4; in the third stage. In this stage, the particle is fixed. The
EM algorithm, however, assumes some amount of stochasticity in the model (that is, that D; should
not be exactly zero) and appears to compensate for this by biasing a; toward smaller values; this would
correspond to a larger restoring force that keeps the particle near zero. While we do not have ground
truth for the measurement noise 7, the estimates correspond to a localization error of 60-70 nm which

is reasonable for the imaging conditions in the synthetic motion data.

Parameter Segment 1 Segment 2 Segment 3 Segment 4
ar [unitless] | 0.976840.0237 | 0.8282+ 0.127 | 0.7085+0.3185 | 1.00240.0011
True a; 1.0 0.86 1.0 1.0
by [um] 0.001140.025 0.002940.0165 | 0.0109+0.047 -0.0836+0.015
True by 0 0 0 -0.1
D; [HmZ/S] 0.087440.023 0.0193440.025 | 0.003040.0083 | 0.0264+0.0141
True Dy 0.1 0.01 0 0.01
Tt [ymZ] 0.004540.0022 | 0.004540.0031 | 0.0046+0.0034 | 0.0049+0.0016

Table 3. Mean and standard deviation of the motion parameter values in each segment over the 64

trajectories with 3 detected changes, together with the true values.

The remaining 26 trajectories showed only two changes. Fig. 14 highlights the trajectories where
only two changes were found, with the remaining shown in light gray. Interestingly, this particular set
of trajectories does show a marked difference from the other trajectories. In particular, there appears to
be higher noise in the data which obscures the differences between the second set of model parameters
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Figure 13. Box plots showing median, center two quartiles, and outliers for the estimates of the model
parameters in each segment for the 64 trajectories considered.
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(from times 250-500) and the third (from times 500-750). The blue curves look qualitatively similar
throughout that entire time span while the trajectories in gray show a clear diminishing of motion
after time 500. Because results from these curves could not be compared against the ground truth, they
were not analyzed further.
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Figure 14. Synthetic motion trajectories generated from image data with the 26 trajectories yielding
only two changes highlighted in blue. Vertical red dashed lines are where the model values changed.
(left) Full trajectories. (right) Zoom in to highlight differences between the blue and gray trajectories.

4. Conclusion

We described and demonstrated a three-stage algorithm for analyzing single particle tracking
data for systems with time-varying parameters that switch between (unknown) discrete values. Our
approach depends on two primary parameters, a window size for the first stage and a detection
threshold for the second. In general, the choice of window size depends on user experience and
expected rate of change of model parameters. A smaller window size will be more sensitive to changes
but may also produce false positives. However, since the results of this stage are only used to guide
the selection of the threshold parameter, there is some amount of insensitivity to its choice. The second
parameter is the threshold on the CUSUM signal for change detection and should be selected based on
the number of changes expected in the data, informed by the windowed estimation of the first stage.
In practice, users may wish to cycle between the first two stages of the algorithm before setting on a
final window size. Finally, the data is segmented into regions of fixed parameters and EM applied one
last time to determine the model estimates. We demonstrated the approach using data from a synthetic
motion technique that provides both experimental measurements and ground truth values. These
results produced accurate parameter estimates and also identified trajectories where the synthetic data
did not quite match the expected model.

This work focused on a general linear model with Gaussian noise for describing the particle
motion. There are at least three natural extensions. For the first, a fourth stage where the results of the
third stage are used to guide selection of a specific model (e.g., selecting pure diffusion will seta = 1
and b = 0) to reduce the number of parameters that need to be estimated. Running EM estimation once
again but now for the more limited model should yield a refined estimate of the model parameters.
The second extension is to replace the linear dynamics and Gaussian statistics with a more general
parameterized model that encompasses nonlinear motion, nonlinear observations, and non-Gaussian
statistics. This could be used, for example, to estimate parameters of a confined diffusion model
directly (rather than approximating such motion with an O-U model), to allow for different classes
of anomalous dynamics, or to eliminate the need for applying an external localization algorithm as
the EM algorithm will produce trajectories in addition to ML estimates of the model parameters; see
[64] for initial work along these lines. The third extension is to handle missing data points in the
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particle trajectories. Our current approach assumes a constant time step in between each point on
the trajectory. It is not uncommon in SPT data that some points are missing, either due to errors in
localization, fluctuations in signal intensity, or other issues and extending our method to allow for
known but non-constant time steps along the trajectory would expand the types of data that could be
analyzed.
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