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Abstract 

 
Powder Bed Fusion (PBF) is a type of Additive Manufacturing (AM) technology that builds parts in 

a layer-by-layer fashion out of a bed of metal powder via the selective melting action of a laser or electron 
beam heat source. The technology has become widespread, however the demand is growing for closed 
loop process monitoring and control in PBF systems to replace the open loop architectures that exist 
today. This paper demonstrates the simulated efficacy of applying closed-loop state estimation to the 
problem of monitoring temperature fields within parts during the PBF build process. A simplified LTI 
model of PBF thermal physics with the properties of stability, controllability and observability is 
presented. An Ensemble Kalman Filter is applied to the model. The accuracy of this filters’ predictions 
are assessed in simulation studies of the temperature evolution of various test parts when subjected to 
simulated laser heat input. The significant result of this study is that the filter supplied predictions that 
were about 2.5x more accurate than the open loop model in these simulation studies. 

Keywords: 

Additive Manufacturing, Binder Jetting. 

 

1 Introduction 

 
Powder Bed Fusion (PBF) belongs to a class of technologies known as additive manufacturing 

(AM). Commonly referred to as “3D printing,” these technologies have rapidly grown in popularity and 
market size due to their ability to produce near net-shape parts of complex geometry, with engineering 
properties meeting or exceeding those produced by conventional techniques, while removing the 
majority of the overhead costs normally associated with production [1–3]. 

The PBF process iteratively builds three-dimensional parts out of layers of metal powder, using a build 
cycle consisting of three stages: 1) sweeping a thin layer of powder over a base of metal feedstock or 
previously-applied powder, 2) selectively melting a pattern of desired geometry into the powder by 
application of a high-powered laser or electron beam, and 3) lowering the build 
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− platform in the z direction to accommodate a fresh layer of powder. Schematics of PBF are given in Fig. 
1 along with typical input and output channels that are available to the controls engineer. 

The PBF process is not without flaws. It is well-documented in the literature that components 
manufactured with PBF display high levels of residual stresses ( [6, 7]), porosity ( [8–10]) , and 
anisotropy in material properties ( [2, 10–14]), and that these defects are a direct consequence of the heat 
transfer throughout the part, which is manifested by cooling rates within the part interior. The application of 
thermal model-based process monitoring and control techniques could help detect and mitigate these 
defects. Process monitoring suites offered by commercial PBF systems, as reviewed in [15], typically 
assess the presence of defects based on exhaustive calibrations that “train” the model to accept certain 
measured values as defect-free. Predictive model-based process monitoring with a minimum of 
necessary calibration remains elusive. 

This paper advances the goal of predictive model-based process monitoring for PBF. We con- tinue 
the work shown in [16] and present a linear time-invariant (LTI) state space model of PBF conductive 
heat transfer physics with established stability, controllability, and observability. This model is based on first 
principles and thus requires a minimum of training/calibration to perform. We reduce the model and express 
it in discrete time, and then demonstrate the application of a state estimator known as an Ensemble Kalman 
Filter to the reduced-order model. We conduct simula- tion studies of this state estimator by constructing 
models for simulated test parts when subjected to simulated laser heat input. We assess the performance of 
the state estimator by comparing the estimator accuracy with that of the open loop model, with respect to a 
reference simulation repre- senting a “true” evolution of the part thermal history. We show that the state 
estimator provided predictions that were approximately 2.5x as accurate as the open loop model, which 
we believe constitutes justification for further research into this topic. 

 

2 Spatiotemporal Model Construction 

 
2.1 PBF model assumptions and LTI model construction 

 
In this work we build upon the spatiotemporal model constructed in [16]. What follows here is a 

statement of the method results, readers interested in a complete description on the model construction 
and its properties should consult [16]. We examine a simplified model of PBF thermal physics in which only 
Fourier conduction within the fused material is considered. The Fourier conduction BVP is stated in 
(1). 
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cρ ∂t 

 

∂T 
= 

 K 
∇2T ∀ v ∈ V 

T = T0 ∀ v ∈ Λ 

∇T · n̂ = 0 ∀ v ∈ Γ 

∇T · n̂ = q(v̄ , t) ∀ v ∈ Ω 

(1) 

 

Here, K represents the material thermal conductivity, c represents the material specific heat, and ρ 
represents the material density. V represents the domain spanned by the (possibly unfinished) build, Λ 
collects all faces of the build in contact with the base plate, Ω collects all surfaces of the build exposed to 
the environment, and Γ collects all remaining faces. T0 is the assumed-isothermal temperature of the base 
plate. 

The BVP (1) was transformed into the linear state-space thermal model shown in (2). We use the 
transformation described in [16], which converted the PDE into a set of coupled ODEs via the Finite 
Element Method (FEM). Each ODE governs the evolving temperature at a single node in the FEM 
mesh, and the system input was quantized to hold a constant value over each element 
surface belonging to Ω. In Thermal Model (2), x collects the temperature signals at all nodes in the 
mesh, A maps the degree of conductive heat flow between nodes (0 for nonadjacent nodes), B maps the 
degree of distribution of laser energy input onto nodes located on Ω, and C selects the nodes belonging to 
Ω as system output in keeping with our assumption that only exposed faces of the build are available for 
measurement. 

 

 

ẋ = Ax + Bu 

y = Cx 

 

(2) 

 

It was shown in [16] that Thermal Model (2) is unconditionally stable, stabilizable, and de- tectable, 
and that it is both structurally controllable and observable provided that at least one node in the FEM mesh 
exists on the exposed build surface. 

 

2.2 Model order reduction via balanced realization 

 
Thermal model (2) was developed to mitigate the problem of model scale when attempting to represent 

PBF physics on the macroscale, however the quantization of the system heat input can produce 
cumbersome node counts and therefore system sizes. Model order reduction (MOR) is necessary to 
reduce the impact of these issues. We have chosen to perform MOR via residualiza- tion [17, 18]. 

The residualization algorithm requires stability, controllability and observability of the system, which 
we have shown in [16]. The algorithm begins by performing the linear state transformation 
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✓ 

∈ 
∈ 

z2 

z = Tx, which puts the system in its’ balanced realization. The user then selects the first r (largest) Hankel 
Singular Values (HSVs) of the system, which are demonstrated in (3) [19, 20]. Each HSV is λi (WcWo); 
λi denotes the ith eigenvalue of a matrix, and Wc and Wo are the controllability and observability 
grammians, respectively. 

 
Σ = diag(σ1 ≥ σ2 ≥ ... ≥ σn > 0) (3) 

Partitioning the HSVs in this manner also partitions z into two groups: z1 Rr, which consti- tute the 
“dominant” modes in the system input/output dynamics, and z2 Rn−r, which constitute the negligible 
modes. The partitioned system takes the form shown in (4) 

 
 

 
ż1

  

= 

 
A11 A12

  
z1

 

+ 

 
B11

  

u

 

ż2 A21 A22 z2 B2

2 

 (4) 

y =
 

C11 C22

 
z1

 

 
 

The residualization algorithm assumes that the “weak” modes stored in z2 operate at quasi- steady 
state. In other words, it assumes that on the time scales of interest, ż2 = 0. This assumption allows for the 
algebraic solution of z2, which reduces (4) to the form shown in (5). 

 

 

ż1 = Arz1 + Bru y 
= Crz1 + Dru 

z2 = −A22
−1 (A21z1 + B22u) 

Ar = A11 − A12A22
−1A21 

Br = B11 − A12A22
−1B22 

Cr = C11 − C22A22
−1A21 Dr 

= −C22A22
−1B22 

 

 

 
(5) 

 

With residualization, one only needs to solve r coupled differential equations instead of n, and the 
original state x may be reconstituted during postprocessing by algebraically calculating z2 and 
performing the inverse transformation x = T−1 [z1, z2]t. By [18, 21], the (structural) controllabil- ity/observability 
of (2) implies that (5) is also (structurally) controllable and observable. 
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∼ ∼ 

d = e r 
≈ 

r + 
2
 t r r − 

2
 

t r 

3 State Estimator Design 

 
3.1 Discretization of continuous-time model 

 
This study utilized a Kalman filter to estimate the state of Thermal Model (2), which required it to be 

implemented in discrete time. The continuous-to-discrete time conversion of model (2) for a discrete time 
step Δt is shown in (6): 

z [k]= Adz [k − 1]+ Bdu [k] 

y [k]= Cdz [k] 

A A Δt 

(

I 1 
Δ A

 (

I 
1 

Δ A

 −1 

Bd = Ar
−1 (Ad − Ir) Br Cd 

= Cr 
Dd = Dr 

 

The discretization scheme provided in (6) is based on the complete discretization method given in [22] 

for a system with constant parameters. The approximation of the matrix exponential eArΔt in (6) is based 
on the Bilinear Transform as given in [23]. 

 

3.2 Ensemble Kalman filter (EnKF) implementation 

 
Effective implementation of a Kalman filter requires knowledge of the covariances of the pro- cess and 

measurement noise of the system under consideration. The process noise covariance is denoted as Q, and 
the measurement noise covariance is denoted as R. We intend to for model 
(6) to be implementable for arbitrary build layer geometry V and under arbitrary external loading q(v̄ , t).  
These constraints make the prediction of Q intractable, while also limiting the utility of experimentally 
determining Q due to the near-infinite variety of allowable geometric and loading conditions. 

To overcome this limitation, we seek a means of approximating Q and R in-situ from the 
measured data y and reconstructed state estimate x̂.  The Ensemble Kalman filter detailed in [24] 
provides the optimal means of accomplishing this goal. Appendix A gives a brief overview of the EnKF 
algorithm, readers interested in a complete description of EnKF theory should consult [24]. 

 

Our process model as described in (6) differs from the structure typically assumed for the oper- ation of 
conventional Kalman filters (13) due to the presence of direct feedthrough. Accounting for independent 
process noise wk N (0, Q) and measurement noise vk N (0, R), our stochastic process takes the form 
shown in in (7). The subscript 1 attached to z1,k indicates that the filter is estimating z1 of the reduced 
order system as defined in (5), (6). 

(6) 
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k 

− 

1,k 

k k k k 

k 1,k k 

1 1,k k 

1,k 

d k d k k DdQDd 

k k 

 

z1,k = Adz1,k−1 + Bduk + wk yk 
= Cdz1,k + Dduk + vk 

 

(7) 

 

We follow the modified Kalman filter architecture supplied in [25], which acts to provide si- 

multaneous unbiased minimum-variance estimates for the system input uk and state z1,k in the presence 

of systems with direct feedthrough. To this end, we define an ensemble of inputs corre- 

sponding to Z1,k, Uk =
 
u1, u2,..., uN

 
. [25] assumes that the values of all ui are unknown. We 

simulate this condition by making the process input uk stochastic via direct injection of the system process 
noise into the input for each ensemble member: 

 
 

 
i 
1,k 

 
i 
1,k−1 + Bd 

(
uk + wi 

 
 

yi = Cdzi
 + Dd 

(
u + wi

 

)
+ vi

 
(8) 

 
 

In (8), each ensemble member of Uk is defined as ui = uk + wi , each ensemble member of Yk 
is defined as yi

 C zi
 D ui

 k k vi , and ẑi
 ith ensemble 

k = d 1,k + d k + k 1,k−1 represents the filter estimates for the 

member at time step k 1. Each member represents a sample from the randomly-distributed system inputs 
and measurements, respectively. This stochastic treatment of the process input reflects the uncertain nature 
of PBF processing conditions discussed in [16]. (8) can be expressed in more conventional form by 
rearrangement: 

 
 

zi 
,k = Adẑi

 

 

 

−1 + Bduk + 
(
Bdwi 

 
 

 

yi  = Cdẑi
 + Dduk + 

(
Ddwi + vi 

 
 

 

As shown in [26], the multivariate normal distribution is closed under linear transformations 
and linear combinations, meaning that independent wi ∼ N (0, Q) and vi ∼ N (0, R) produce 

B wi ∼ N (0, B QBT) and (D wi + vi ) ∼ N (0, 
k k 

T + R) 
noise in this manner retains the assumption of Gaussian-distributed noise that underlies Kalman filter 
operation. 

The filter architecture specified by [25] has three steps. When combined with the EnKF archi- tecture 
specified by [24], these steps take the following form: 

 

1. Predict. Each ensemble member updates its ensemble values zi
 according to (8), using 

ui as inputs, while collecting measurements yi . The ensemble is used to calculate sample 
k k ¯ f ¯ ¯ f 

estimates Pk and Rk according to (15) and (16), respectively. Here, Pk represents the sample 
estimate for the covariance associated with the estimated state error. 

k 

z = Adẑ 

k k 

d d , and as such defining the process 
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k 

k 

1,k 

k 

2. Estimate input. Minimum-variance estimates for the ensemble member inputs are calculated by the 
following procedure: 

 
 

R1 = CdP̄ f Cd
  + R̄ k 

Mk = 
(
Dd

T R1Dd

 † 
Dd

T R̄ † 

 

(9) 

Û k = Mk 
(
Yk − CdZ1,k

 
 

3. Estimate state.  Minimum-variance estimates for ensemble member state estimates ẑi 

calculated according to an expression similar to (19). The procedure is outlined below: 

 
Kk = P̄ f Cd

 R† 

 

 
are 

k 1 (10) 

Ẑ 
1,k = Z1,k + Kk 

(
Yk − CdZ1,k − DdÛ 

k

 
 

In (9) and (10), Mk and Kk are calculated with pseudoinverses because R̄ k  becomes singular if the 
number of measurements p is greater than the number of ensemble members N, as noted in [24]. 

 

3.3 Filter algorithm summary 

 
Construct a reduced order linearized model from the governing FEM-discretized heat trans- fer 
equation as done in [16]. 

• Express the model in discrete time as done in (6). 

• Define initial temperature distribution throughout the part, express in terms of z1,k=0. 

• Define an ensemble of N parallel instances of model (8), each having ensemble members 
zi , yi , and ui . 

1,k k k 

 

for k=1:end of runtime 

 
• Determine ui for all ensemble members according to ui = uk +wi , and run (6) for all ensem- 

k 
i 

k k 
i
 

ble members to generate all z1,k. Ensemble member measurements yk are constructed by cor- 
rupting the system measurement yk with independent instances of white noise: yi = yk + vi . 

k k 

Collect into ensembles Z1,k, Yk, and Uk, respectively. 

• Compute P̄ f  and R̄ k  from (17) and (18). 

• Estimate Û k  according to (9). 

• 
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•
 

× × 

• Estimate Ẑ 1,k  according to (10). 

• Construct estimated ẑ1,k by taking the sample average of Ẑ k. 

Reconstruct x̂k according to the relationship between ẑ1,k, ẑ2,k and x̂k = T−1   ẑ1,k, ẑ2,k  
  out- lined in 

(5). 

 
end 

 

4 Case Studies Description 

 
Two case studies were conducted to assess the performance of the state estimator constructed in 

Sections 2 and 3. These tests constitute a continuation of the work performed by the authors in [27], in 
which data from assumed-accurate simulations were used in place of physical test parts. We adopt the 
same basic “virtual test” procedure here. 

 

4.1 Test procedures 

 
The simulated tests utilized the following procedure: 

 
1. Construct a linearized state space model corresponding to test parts according to the proce- dures 

outlined in Section 2 and Fig. 2. The temperature along isothermal boundary Λ was set to 0. All 
test parts used material properties corresponding to Aluminum ore, tabulated in Tb. 1. Initial 
temperature was uniformly 0. 

2. Construct a heat conduction simulation in ANSYS utilizing the same test part geometry, mesh, 
and isothermal boundary, but with the full nonlinear treatment of the heat source. Initial 
temperature was uniformly 0. These simulations were used as surrogate “true” data, to test the 
amount of error incurred by the linearization process, tk. 

(a) Tb. 1 shows that the material properties used to construct the LTI model and those used to 
construct the reference ANSYS simulation differed substantially. This was done to assess the 

effectiveness of the filter in purging modeling errors from the predicted ̂t in 
a worst-case scenario. The material properties used to construct the reference ANSYS data 
were those corresponding to Aluminum at its’ melting point, while those used to construct the 
linearized LTI model were those corresponding to Aluminum at room temperature, and 
therefore represent the maximum possible modeling error. 

(b) Process noise, visible in Fig. 3, was added to the ANSYS laser data, to reflect the 
inevitability of uncertainty in the time-varying process inputs during PBF. This contin- uous 

time noise had power equal to 1 105 mW for Part (a) and 2 105 mW for Part (b). 
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× × 

− 

3. Construct uk for all test parts as Gaussian laser beams of a given power P and variance σ 2 moving 
over the top surface Ω of the parts in a raster scanning path with average speed v, incorporated 
into the LTI model according to [16]. 

4. Run the Ensemble Kalman Filter algorithm with the procedure described in Section 3.3, using 
the constructed uk as an input and using ANSYS data along surface Ω of the test parts from Step 2 as 
system measurements yk. Recover temperature estimations x̂k. 

(a) Ensembles with N = 100 members were used for both parts. 

(b) The continuous-time process noise power injected into the input ensemble members uk was 2 

109 mW for Part (a) and 2 1012 mW for Part (b). These noise powers were high because 
testing showed that EnKF performance improved as the injected noise 
power tended to infinity, since doing so increased the difference zi − z̄ k for all ensemble 

k 
¯ f 

members in (17), therefore increasing the accuracy of computing Pk for large N. The 
continuous-time measurement noise power injected into yk for both parts was 1 K. 

5. Define the EnKF state estimation error (the “closed loop” estimation error) as Error(t)=  

xk − x̂k. Plot and animate this error. 

6. Run the LTI models corresponding to each test part in the open loop, according to (2) and (6). Denote 
the open loop model predictions as xk,OL, and define the open loop model error as ErrorOL(t)= xk 
xk,OL. Comparisons between Error(t) and ErrorOL(t) quantify the accuracy improvement produced 
by the filter. 

 

4.2 Test parts 

 
The two test parts utilized in this study are depicted in Fig. 2. Information pertaining to the mesh and 

system size for these test parts is shown in Tb. 2. The slight discrepancy between node count and n is due 
to temperature-constrained nodes along Λ being removed from the system by ANSYS. 

 
Table 1: Comparison of material properties used to construct LTI model data and reference ANSYS data for all test 
parts [28] 

 

 

 
2.7 × 10−9 2.5 × 10−9

 

Table 2: Meshing information, system size n, and measurement count p for test parts depicted in Fig. 2 
 

Part Element size (mm) Elements Nodes n p 

(a) 0.0333 540 1263 1200 63 

(b) 0.05 4861 8700 6831 1869 

Property LTI model ANSYS data Unit 
Thermal conductivity 250 200 mW/mm-K 

Specific heat 
Density 

9 × 108
 1.248 × 109

 
mJ/tonne-K 
tonne/mm3
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4.3 Test loading conditions 

 
Fig. 2 illustrates the basic path of the laser beam across surface Ω for both test parts, as well as its 

nominal power P. The laser power for both parts was distributed across Ω according to theprocedure 
outlined in [16]. The time-varying laser centerpoints were calculated according to the expressions below. 

The laser centerpoint x(t) for Part (a) was calculated according to the expression: 
 

x(t)= 
xmax −xmin 

sin

(
  vπ 

t − 
π
 

+ 
xmax + xmin 

  

 
(11) 

2 xmax −xmin 2 2 

Where v = 954 mm/s, and xmax and xmin were taken from the part geometry as shown in Fig. 

2. The end time of the simulation was set to be tfinal = 4 ms. The variance of the beam was set to be σ 2 = 
0.01. 

The laser centerpoint {x(t), y(t)} for Part (b) was calculated according to the expression: 

 

x(t)= 
xmax −xmin 

sin

(
  vπ 

t − 
π 

 

+ 
xmax + xmin 

  

y 
2 xmax −xmin 2 2 (12) 

y(t)=  max −ymin 
t + ymin

 

tfinal 
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Where v = 954 mm/s, and xmax, xmin ymax, and ymin were taken from the part geometry as shown in Fig. 2. 

The end time of the simulation was set to be tfinal = 20 ms. The variance of the beam was set to be σ 2 = 
0.0225. Fig. 3 displays these loads for sample time steps in the simulation. 

 

5 Simulation Results 

 
Fig. 4 plots the OL model error (ErrorOL(t)) and CL estimation error (Error(t)) for both test parts. It 

reveals two important aspects of the filters’ performance. The addition of the EnKF reduced the model error 
in both test parts by approximately a factor of 2.5. Additionally, as Fig. 4 shows, ErrorOL(t) for Part (a) was 
unbounded. This phenomena is due to the geometry of Part (a). The Neumann boundary condition that models 
surrounding powder insulating the build [29] trapped heat inside the “arm” of Part (a), therefore causing a 
monotonic temperature increase in that region. The rate of increase was a function of the thermal diffusivity 
of the material being modeled, which was constructed to contain the maximum possible error. This disparity in 
rates of temperature increase produced an unbounded ErrorOL(t). As Fig. 4 shows, the filter stabilized this error 
such that it was bounded. 

Fig. 4 shows that both ErrorOL(t) and Error(t) appeared to be strongly periodic for Part (b). This 
phenomena is explained by Fig. 5, which illustrates the EnKF state estimation error for both test parts for sample 
time steps in the simulation. One clearly observes from the figure that the region of maximum error closely 
“followed” the laser centerpoint. This result was expected, given 

 

that the region nearest to the heat source produced the most extreme thermal response and thus deviated 
the furthest from the operating point of the linearization. What appears to be periodic behavior in Fig. 4 
is actually the superimposition of select few state components in Part (b) – ie nodal temperatures 
corresponding to physical locations in the geometry – experiencing a “pulse” of substantial error as the 
laser beam passed over them at staggered moments in time, before the heat diffused away and the regions 
decayed back to approximate ambient temperature with little error. 

Fig. 5 also demonstrates that Error(t) oscillated about the laser point center. Error(t) in the “neck” 
of Part (a) oscillated between positive and negative as the laser beam transitioned from close to far away 
from the x = 0 plane. Fig. 5 shows that this tendency was also present in Error(t) in Part (b), with regions of 
positive and negative estimation error alternating radially outward from the laser centerpoint. It is currently 
unknown what produces this wave-like pattern in Error(t). 

 

6 Conclusions 

 
This paper showed the feasibility of applying state estimation to the problem of acquiring internal 

temperature field predictions for parts being manufactured via PBF. It demonstrated the application of an 
Ensemble Kalman Filter to enforce discrete-time reduced LTI model accuracy in the presence of uncertain 
system parameters and uncertain model error/noise statistics. It demon- strated that the implementation of 
the Ensemble Kalman Filter in simulation studies improved the accuracy of these model predictions by a 
factor of 2.5, even in the presence of worst-case model- ing error. These results show that pursuing a 
controls-based approach to improving the accuracy of simplified predictive models of PBF thermal physics 
holds great promise and warrants further research. 

We intend to pursue several avenues of research in light of the results of this test. First, the 
performance of the filter will be tested experimentally against the temperature evolution of test coupons 
that are subjected to varying load conditions in open source PBF machines. We intend to explore the 
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theoretical performance limitations of our reduced model, Ensemble Kalman Fil- ter approach. We also 
intend to research model reduction techniques available for more complex, time-varying models of the 
system. We anticipate that this research will present a marked contri- bution toward the goal of realizing 
closed-loop, model-based monitoring of the PBF process. 
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Appendix A: Ensemble Kalman Filter algorithm 

 
Consider a discrete-time LTI model used to model some process: 

 

 

zk = Adzk−1 + Bduk 
yk = Cdzk 

 

(13) 

 

The actual process modeled by (13) is depicted in (14), which contains (assumed independent) process 
noise wk ∼ N (0, Q) and measurement noise vk ∼ N (0, R): 

 
 

zk = Adzk−1 + Bduk + wk yk 
= Cdzk + vk 

 

(14) 
 

Accordingly, the EnKF treats the evolution of zk as a random variable with some corresponding 
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i=1 

i=1 

k 
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k k k 

k k 

k k 
i
k 

i 
k k k 

k k k k 
k 

k 

k k k d k 

unknown true value zt . zt would equal the value of zk obtained from (13) if no noise were present. 
k k The random variable P f : 
zk is distributed with the state error covariance 

 
P f = E

 
(zk − zt )(zk − zt )

 
(15) 

 

Similarly, the measurement yk is treated as a random variable with some corresponding un- known, 

noise-free true value yt . It is clear that yk is distributed with measurement error covariance 

equal to R: 

R = E
 
(yk − yt )(yk − yt )

 
(16) 

 

As shown in [24], the EnKF defines an ensemble of N parallel instances of (14), denoted as Zk 
= z1, z2,..., zN , with corresponding measurement ensemble Yk = y1, y2,..., yN . Each 
ensemble member zk, yk is generated by running (14) with independent instances of wk and vk. 
Therefore, Zk, Yk collect N samples of the random variables zk, yk. By defining sample averages 
z̄ k = 1 ∑ zi  and ȳ k = 1 ∑ yi , one may construct the sample estimations of P f  and R as defined in 

N k N k k 

(15) and (16), respectively: 
 

 

P̄ f     1 N 
i ¯ i ¯

 

k = 
N − 1 

∑(zk − zk)(zk − zk) (17) 

R̄ 
    1   N 

i ¯ i ¯ 

k = 
N − 1 

∑(yk − yk)(yk − yk) (18) 

 
 

[24] note that ensembles of size N = 100 or greater estimate the true values of P f and Rk to 

consistently acceptable accuracy. Model order reduction is absolutely essential to avoid unreason- able 
computational burden when running several dozen concurrent models. 

Having defined P̄ f   and R̄ k, [24] runs the standard Kalman filter update for every ensemble 

member:  
 

ẑi  = zi  + P̄ f C   
(
C

 

 

P̄ f 

C 

 

  + R̄ 
 † 

yi − C 

 
zi 

  

 

This process may be represented compactly by operating on the ensembles Zk and Yk: 
 

Ẑ   = Z + P̄ f C 
  
(
C

 

P̄ f 

C 

  + R̄ 
 † 

(Y − C Z ) (19) 

d 
d d 

k 
d 

k d d d k k 
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k 

The state estimate ẑk may be taken as the sample average of Ẑ 
k.  The updated ensemble esti- mates Ẑ 

k  
are then fed into the “predict” step for the next time step in the algorithms’ runtime, by 
substituting all ẑi  into the RHS of their respective models as defined by (14). 

 
References 

 

[1] V. Bhavar, P. Kattire, V. Patil, S. Khot, K. Gujar, and R. Snigh, “A review of powder bed fusion 
technology of metal additive manufacturing,” in 4th International conference and exhibition on 
additive manufacturing technologies, 2018, pp. 1–2. 

[2] T. Wang, Y. Zhu, S. Zhang, and H. Wand, “Grain morphology evolution behavior of titanium alloy 
components during laser melting deposition additive manufacturing,” Journal of Alloys and 
Compounds, vol. 632, pp. 505–513, 2018. 

[3]  I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D 

Printing, Rapid Prototyping, and Direct Digital manufacturing, 2nd., Springer, New 

York, (2015), pp. 1–498. 

[4] S. Ridwan, J. Mireles, S. Gaytan, D. Espalin, and R. Wicker, “Automatic layerwise acqui- sition 
of thermal and geometric data of the electron beam melting process using infrared 
thermography,” in Proceedings of the Annual International Solid Freeform Fabrication Sym- 
posium, Austin, TX, 2014, pp. 343–352. 

[5] N. Wood, H. Mendoza, P. Boulware, and D. Hoelzle, “Interrogation of mid-build internal tem- perature 
distributions within parts being manufactured via the powder bed fusion process,” in Solid Freeform 
Fabrication Symposium (SFF) 2019, in press. 

[6] H. Peng, M. Ghasri-Khouzani, S. Gong, R. Attardo, P. Ostiguy, B. Gatrell, B. J., C. Tomonto, 
J. Neidig, M. Shankar, R. Billo, D. Go, and D. Hoelzle, “Fast prediction of thermal distortion in 
metal powder bed fusion additive manufacturing: Part 1, a thermal circuit network model,” Additive 
Manufacturing, vol. 22, pp. 852–868, 2018. 

[7] T. Krol, C. Seidel, J. Schilp, M. Hofmann, W. Gan, and M. Zaeh, “Verification of structural 
simulation results of metal-based additive manufacturing by means of neutron diffraction,” Physics 
Procedia, vol. 41, pp. 849 – 857, 2018, lasers in Manufacturing (LiM 2013). 

[8] P. K. Gokuldoss, S. Kolla, and J. Eckert, “Additive manufacturing processes: Selective laser 
melting, electrong beam melitng and binder jetting – selection guidelines,” Materials (Basel), vol. 
10, no. 6, June 2017. 

[9] T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson- 
Heid, A. De, and W. Zhang, “Additive manufacturing of metallic components – process, 
structure and properties,” Progress in Materials Science, vol. 62, pp. 112–224, 2017. 

[10] T. Mower and M. Long, “Mechanical behavior of additive manufactured, powder-bed laser- fused 
materials,” Materials Science and Engineering: A, vol. 651, pp. 198–213, 2016. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   doi:10.20944/preprints202101.0476.v1

https://doi.org/10.20944/preprints202101.0476.v1


 

[11] J. Keist and T. Palmer, “Role of geometry on properties of additively manufactured ti-6al-4v 
structures fabricated using laser based directed energy deposition,” Materials and Design, vol. 
106, pp. 482–494, 2016. 

[12] H. Wei, J. Elmer, and T. DebRoy, “Origin of grain orientation during solidification of an 
aluminum alloy,” Acta Materialia, vol. 115, pp. 123–131, 2016. 

[13] A. Yadollahi, N. Shamsaei, S. Thompson, and D. Seely, “Effects of process time interval and heat 
treatment on the mechanical and microstructural properties of direct laser deposited 316l stainless 
steel,” Materials Science and Engineering: A, vol. 644, pp. 171–183, 2015. 

[14] L. Parimi, A. R. G., D. Clark, and M. Attallah, “Microstructural and texture development in direct 
laser fabricated in718,” Materials Characterization, vol. 89, pp. 102–111, 2014. 

[15] M. Grasso and B. Colosimo, “Process defects and in situ monitoring methods in metal powder bed 
fusion: a review,” Measurement Science and Technology, vol. 28, p. 044005, 2017. 

[16] R. Samar, I. Postlethwaite, and G. Daw-Wei, “Model reduction with balanced realizations,” 

International Journal of Control, vol. 62, no. 1, pp. 33–64, 1995. 

[17] D. Skataric and N. R. Kovacevic, “The system order reduction via balancing in view of the method 
of singular perturbation,” FME Transactions, vol. 38, no. 4, 2010. 

[18] C.-T. Chen, Linear system theory and design, 3rd ed. New York, NY: Oxford University 
Press, 1999. 

[19] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory. Springer, 2000. 

[20] Y. Liu and D. Anderson, “Singular perturbation approximation of balanced systems,” Inter- 
national Journal of Control, vol. 50, 1989. 

[21] R. Toth, F. Felici, P. Heuberger, and P. Van den Hof, “Crucial aspects of zero-order hold lpv state-
space system discretization,” in Proceedings of the 17th World Congress, International 
Federation of Automatic Control, Seoul, South Korea, July 6-11 2008, pp. 4952–4957. 

[22] G. Franklin, J. Powell, and M. Workman, Digital Control of Dynamic Systems. Addison 
Wesley, 1998. 

[23] G. Evensen, “The ensemble kalman filter: theoretical formulation and practical implementa- tion,” 
Ocean Dynamics, vol. 53, pp. 343–367, 2017. 

[24] S. Gillijins and B. De Moor, “Unbiased minimum-variance input and state estimation for lin- ear 
discrete-time systems with direct feedthrough,” Automatica, vol. 43, pp. 934–937, 2017. 

[25] Y. Tong, The Multivariate Normal Distribution. New York, NY: Springer-Verlag, 1990. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   doi:10.20944/preprints202101.0476.v1

https://doi.org/10.20944/preprints202101.0476.v1


 

[26] N. Wood and D. Hoelzle, “On the feasibility of a temperature state observer for powder bed fusion 
additive manufacturing,” in 2018 Annual American Control Conference (ACC), 2018, pp. 321–
328. 

[27] D. Marla, U. Bhandarkar, and S. Joshi, “Models for predicting temperature dependence of material 
properties of aluminum,” Journal of Physics D: Applied Physics, vol. 47, no. 10, 2014. 

[28] M. Rombouts, L. Froyen, A. V. Gusarov, E. H. Bentefour, and C. Glorieux, “Photopyroelec- tric 
measurement of thermal conductivity of metallic powders,” Journal of Applied Physics, vol. 97, 
no. 2, p. 024905, 2005. [Online]. Available: https://doi.org/10.1063/1.1832740 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   doi:10.20944/preprints202101.0476.v1

https://doi.org/10.20944/preprints202101.0476.v1

