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Abstract

We have recently proposed a pre-quantum, pre-space-time theory as a matrix-valued La-

grangian dynamics on an octonionic space-time. This pre-theory offers the prospect of

unifying the internal symmetries of the standard model with gravity. It can also predict

the values of free parameters of the standard model, because these parameters arising in

the Lagrangian are related to the algebra of the octonions which define the underlying non-

commutative space-time on which the dynamical degrees of freedom evolve. These free

parameters are related to the algebra J3(O) [exceptional Jordan algebra] which in turn is

related to the three fermion generations. The exceptional Jordan algebra [also known as the

Albert algebra] is the finite dimensional algebra of 3x3 Hermitean matrices with octonionic

entries. Its automorphism group is the exceptional Lie group F4. These matrices admit a

cubic characteristic equation whose eigenvalues are real and depend on the invariant trace,

determinant, and an inner product made from the Jordan matrix. Also, there is some evi-

dence in the literature that the group F4 could play a role in the unification of the standard

model symmetries, including the Lorentz symmetry. The octonion algebra is known to cor-

rectly yield the electric charge values (0, 1/3, 2/3, 1) for standard model fermions, via the

eigenvalues of a U(1) number operator, identified with U(1)em. In the present article, we

use the same octonionic representation of the fermions to compute the eigenvalues of the

characteristic equation of the Albert algebra, and compare the resulting eigenvalues with

the known mass ratios for quarks and leptons. We find that the ratios of the eigenvalues cor-

rectly reproduce the [square root of the] known mass ratios for quarks and charged leptons.

We also propose a diagrammatic representation of the standard model bosons, Higgs and

three fermion generations, in terms of the octonions, exhibiting an F4 and E6 symmetry. In
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conjunction with the trace dynamics Lagrangian, the Jordan eigenvalues also provide a first

principles theoretical derivation of the low energy value of the fine structure constant, yield-

ing the value 1/137.04006. The Karolyhazy correction to this value gives an exact match

with the measured value of the constant, after assuming a specific value for the electro-weak

symmetry breaking energy scale.
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I. INTRODUCTION

We have recently proposed a pre-quantum, pre-space-time theory, which is a matrix-

valued Lagrangian dynamics, written on an octonionic space-time. This theory generalises

Adler’s theory of trace dynamics [1–3], which is a pre-quantum theory on a four-dimensional

Minkowski space-time [4, 5]. It is a Lagrangian dynamics for Yang-Mills fields, fermions, and

gravity. The algebra automorphisms of the octonions, which form the smallest exceptional

Lie group G2, play the role of unifying general coordinate transformations (i.e. space-time

diffeomorphisms) with internal gauge transformations. We wrote down the Lagrangian for

one generation of standard model fermions and gauge bosons, in this pre-theory. A Clifford

algebra Cl(6, C) constructed from the octonion algebra is used to make spinors [‘minimum

left ideals’ of Cl(6, C)] which represent the eight fermions of one generation, and their anti-

particles, and their electro-color symmetry. Another Cl(6, C) made from the octonions

describes the action of the Lorentz-weak symmetry on these octonions. These aspects of

one-generation of fermions are confirmed by the Lagrangian dynamics constructed in the

pre-theory. Our results are in agreement with the earlier work of Furey [6–8] and Stoica

[9] for the Clifford algebra Cl(6, C) based description of one generation of standard model

fermions. In our work, quantum field theory of the standard model emerges from the pre-

theory, at energies much lower than the Planck scale. The Appendix in Section V below

summarises the theoretical background of the present article, as developed in our earlier

papers [4, 10–12]. The present paper should ideally be read as a continuation of [4]. We

explain how the octonionic space-time, on which the fermions reside, fixes the dimensionless

free parameters of the standard model [which appear in the octonionic Lagrangian] as a

consequence of the properties of the algebra of the octonions, this being the exceptional
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Jordan algebra J3(8).

The possible connection between division algebras, exceptional Lie groups, and the stan-

dard model has been a subject of interest for many researchers in the last few decades

[6–9, 13–32]. Our own interest in this connection stems from the following observation [4].

In the pre-geometric, pre-quantum theory of generalised trace dynamics, the definition of

spin requires 4D space-time to be generalised to an 8D non-commutative space. In this

case, an octonionic space is a possible, natural, choice for further investigation. We found

that the additional four directions can serve as ‘internal’ directions and open a path towards

a possible unification of the Lorentz symmetry with the standard model, with gravitation

arising only as an emergent phenomenon. Instead of the Lorentz transformations and in-

ternal gauge transformations, the symmetries of the octonionic space are now described by

the automorphisms of the octonion algebra. Remarkably enough, the symmetry groups of

this algebra, namely the exceptional Lie groups, naturally have in them the desired sym-

metries [and only those symmetries, or higher ones built from them] of the standard model,

including Lorentz symmetry, without the need for any fine tuning or adjustments. Thus

the group of automorphisms of the octonions is G2, the smallest of the five exceptional

Lie groups G2, F4, E6, E7, E8. The group G2 has two intersecting maximal sub-groups [33],

SU(3) × U(1) and SU(2) × SU(2), which between them account for the fourteen genera-

tors of G2, and can possibly serve as the symmetry group for one generation of standard

model fermions. The complexified Clifford algebra Cl(6, C) plays a very important role in

establishing this connection. In particular, motivated by a map between the complexified

octonion algebra and Cl(6, C), electric charge is defined as one-third the eigenvalue of a

U(1) number operator, which is identified with U(1)em [6, 8].

Describing the symmetries SU(3)×U(1) and SU(2)×SU(2) of the standard model [with

Lorentz symmetry now included] requires two copies of the Clifford algebra Cl(6, C) whereas

the octonion algebra yields only one such independent copy. It turns out that if boundary

terms are not dropped from the Lagrangian of our theory, the Lagrangian describes three

fermion generations [[4] and Section III below in the present paper], with the symmetry group

now raised to F4. This admits three intersecting copies of G2, with the SU(2)×SU(2) in the

intersection, and a Clifford algebra construction based on the three copies of the octonion

algebra is now possible [34]. Attention thus shifts to investigating the connection between

F4 and the three generations of the standard model.
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F4 is also the group of automorphisms of the exceptional Jordan algebra [20, 35, 36]. The

elements of the algebra are 3x3 Hermitean matrices with octonionic entries. This algebra

admits an important cubic characteristic equation with real eigenvalues. Now we know that

the three fermion generations differ from each other only in the mass of the corresponding

fermion, whereas the electric charge remains unchanged across the generations. This moti-

vates us to ask: if the eigenvalues of the U(1) number operator constructed from the octonion

algebra represent electric charge, what is represented by the eigenvalues of the exceptional

Jordan algebra? Could these eigenvalues bear a relation with mass ratios of quarks and

leptons? This is the question investigated in the present paper and answered in the affir-

mative. Using the very same octonion algebra which was used to construct a state basis for

standard model fermions, we calculate these eigenvalues. Remarkably, the eigenvalues are

very simple to express, and bear a simple relation with electric charge. We describe how they

relate to mass ratios. In particular we find that the ratios of the eigenvalues match with the

square root of the mass ratios of charged fermions. [These eigenvalues are invariant under

algebra automorphisms, the automorphism group being F4, and the automorphisms of one

chosen coordinate representation of the fermions, as below, give other equivalent coordinate

representations for the same set of fermions. Octonions serve as coordinate systems on the

eight dimensional octonionic space-time manifold on which the elementary fermions live.

The Appendix at the end of this paper reviews this 8D space-time picture].

Thus we are asking that when the octonions representing the three fermion generations are

used as the off-diagonal entries in the 3x3 Jordan matrices, and the diagonal entries are the

electric charges, what is the physical interpretation of the eigenvalues of the characteristic

equation of J3(O)? These eigenvalues are made from the invariants of the algebra, and

hence are themselves invariants. So they are likely to carry significant information about

the standard model. This is what we explore in the present paper, and we argue that these

eigenvalues inform us about mass-ratios of elementary particles, and about the coupling

constants of the standard model.

Subsequently in the paper we propose a diagrammatic representation, based on octonions

and F4, of the fourteen gauge bosons, and the (8x2)x3 = 48 fermions of three generations

of standard model, along with the four Higgs. We attempt to explain why there are not

three generations of bosons, and re-express our Lagrangian in a form which explicitly reflects

this fact. We also argue as to how this Lagrangian might directly lead to the characteristic
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equation of the exceptional Jordan algebra, and reveal why the eigenvalues might be related

to mass. Furthermore, we identify the standard model coupling constants in our Lagrangian,

and by relating them to the eigenvalues of J3(O) we provide a theoretical derivation of the

asymptotic fine structure constant value 1/137.xxx

It is known that since F4 does not have complex representations, it cannot give a repre-

sentation of the fermion states. It has hence been suggested that the correct representation

could come from the next exceptional Lie group, E6, which is the automorphism group of

the complexified exceptional Jordan algebra. This aspect is currently being investigated by

several researchers, including the present author. However, the standard model free param-

eters certainly cannot come from the characteristic equation related to E6, because the roots

of this equation are not real numbers in general. It is clear that the parameters must then

come from the roots of the characteristic equation of F4, which in a sense is the self-adjoint

counterpart of the equation for E6. It is in this spirit that the present investigation is carried

out, and the results we find suggest that the present approach is indeed the correct one,

as regards determining the model parameters. One must investigate E6 for representations,

but F4 for the parameter values.

The plan of the paper is as follows. In the next section we recall the exceptional Jordan

algebra, construct the octonionic representation of the three fermion generations, calculate

the roots of the characteristic equation, and make some comments on mass-ratios and the

roots. In Section III we construct the trace dynamics Lagrangian for three generations,

along with the bosons, and we give a theoretical derivation of the asymptotic fine structure

constant from first principles. In Section IV we calculate an additional set of eigenvalues

for the fermions, generation wise; these provide evidence for violation of lepton universality.

We then explain how the first set of Jordan eigenvalues in fact act as a definition of mass,

quantised in units of Planck mass. We then show that mass ratios of charged fermions are

obtained from these eigenvalues. In the Appendix in Section V we recall the motivation

in earlier work, for developing this pre-theory, and we also include a few new insights. In

particular we report on a 4D quaternionic version of the pre-theory, which describes the

Lorentz-weak interaction of the leptons, based on an extension of the Lorentz algebra by

SU(2). In order to include quarks and the strong interaction, this 4D quaternionic pre-theory

is extended to eight octonionic dimensions.
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II. THREE FERMION GENERATIONS, AND PHYSICAL EIGENVALUES FROM

THE CHARACTERISTIC EQUATION OF THE EXCEPTIONAL JORDAN ALGE-

BRA

The exceptional Jordan algebra [EJA] J3(O) is the algebra of 3x3 Hermitean matrices

with octonionic entries [21, 29, 30, 35]

X(ξ, x) =


ξ1 x3 x∗2

x∗3 ξ2 x1

x2 x∗1 ξ3

 (1)

It satisfies the characteristic equation [21, 29, 30]

X3 − Tr(X)X2 + S(X)X −Det(X) = 0; Tr(X) = ξ1 + ξ2 + ξ3 (2)

which is also satisfied by the eigenvalues λ of this matrix

λ3 − Tr(X)λ2 + S(X)λ−Det(X) = 0 (3)

Here the determinant is

Det(X) = ξ1ξ2ξ3 + 2Re(x1x2x3)−
3∑
1

ξixix
∗
i (4)

and S(X) is given by

S(X) = ξ1ξ2 − x3x∗3 + ξ2ξ3 − x1x∗1 + ξ1ξ3 − x∗2x2 (5)

The diagonal entries are real numbers and the off-diagonal entries are (real-valued) octonions.

A star denotes an octonionic conjugate. The automorphism group of this algebra is the

exceptional Lie group F4. Because the Jordan matrix is Hermitean, it has real eigenvalues

which can be obtained by solving the above-given eigenvalue equation.

In the present article we suggest that these eigenvalues carry information about mass

ratios of quarks and leptons of the standard model, provided we suitably employ the octo-
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nionic entries and the diagonal real elements to describe quarks and leptons of the standard

model. Building on earlier work [6, 7, 9] we recently showed that the complexified Clifford

algebra Cl(6, C) made from the octonions acting on themselves can be used to obtain an

explicit octonionic representation for a single generation of eight quarks and leptons, and

their anti-particles. In a specific basis, using the neutrino as the idempotent V , this repre-

sentation is as follows [4, 6]. The α are fermionic ladder operators of Cl(6, C) (please see

Eqn. (34) of [4]).

V =
i

2
e7 [Vν Neutrino]

α†1V =
1

2
(e5 + ie4)× V =

1

4
(e5 + ie4) [Vad1 Anti− down quark]

α†2V =
1

2
(e3 + ie1)× V =

1

4
(e3 + ie1) [Vad2 Anti− down quark]

α†3V =
1

2
(e6 + ie2)× V =

1

4
(e6 + ie2) [Vad3 Anti− down quark]

α†3α
†
2V =

1

4
(e4 + ie5) [Vu1 Up quark]

α†1α
†
3V ==

1

4
(e1 + ie3) [Vu2 Up quark]

α†2α
†
1V =

1

4
(e2 + ie6) [Vu3 Up quark]

α†3α
†
2α
†
1V = −1

4
(i+ e7) [Ve+ Positron]

(6)

The anti-particles are obtained from the above representation by complex conjugation [6].

Note: Eqn. (33) of [4] for the idempotent has an incorrectly written expression on the

right hand side. Instead of ie7/2 as written there, the correct expression is (1 + ie7)/2 [37].

Hence the idempotent V in that paper should be (1 + ie7)/2, not ie7/2. It has now been

found however, that identification of the neutrino with the idempotent V = (1 + ie7)/2 does

not give the desired values for mass-ratios and coupling constants reported in the present

paper [37]. We hence propose the Majorana particle interpretation for the neutrino, and

identify the neutrino with (V − Vcc)/2 where Vcc is the complex conjugate of V . Hence

the neutrino is [(1 + ie7) − (1 − ie7)]/4 = ie7/2, so that the octonionic representation of

the neutrino remains the same as shown in [4] and is the one used in the present paper.

Our results here seem to suggest that the neutrino is a Majorana particle, and not a Dirac

particle.

Note: In Eqn. (34) of [4] the denominator in the expression for the positron should be 4,
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not 8. The correct expression for the positron is shown above in Eqn. (6).

In the context of the projective geometry of the octonionic projective plane OP 2 it has

been shown by Baez [23] that upto automorphisms, projections in EJA take one of the

following four forms, having the respective invariant trace 0, 1, 2, 3.

p0 =


0 0 0

0 0 0

0 0 0

 (7)

p1 =


1 0 0

0 0 0

0 0 0

 (8)

p2 =


1 0 0

0 1 0

0 0 0

 (9)

p3 =


1 0 0

0 1 0

0 0 1

 (10)

Since it has earlier been shown by Furey [6] that electric charge is defined in the division

algebra framework as one-third of the eigenvalue of a U(1) number operator made from the

generators of the SU(3) in G2, we propose to identify the trace of the Jordan matrix with

the sum of the charges of the three identically charged fermions across the three genera-

tions. Thus the trace zero Jordan matrix will have diagonal entries zero, and will represent

the (neutrino, muon neutrino, tau-neutrino). The trace one Jordan matrix will have di-

agonal entries (1/3, 1/3, 1/3) and will represent the (anti-down quark, anti-strange quark,

anti-bottom quark). [Color is not relevant for determination of mass eigenvalues, and hence

effectively we have four fermions per generation: two leptons and two quarks, after suppress-

ing color]. The trace two Jordan matrix will have entries (2/3, 2/3, 2/3) and will represent

the (up quark, charm, top). Lastly, the trace three Jordan matrix will have entries (1, 1, 1)

and will represent (positron, anti-muon, anti-tau-lepton).
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We have thus identified the diagonal real entries of the four Jordan matrices whose eigen-

values we seek. We must next specify the octonionic entries in each of the four Jordan

matrices. Note however that the above representation of the fermions of one generation is

using complex octonions, whereas the entries in the Jordan matrices are real octonions. So

we devise the following scheme for a one-to-one map from the complex octonion to a real

octonion. Since we are ignoring color, we pick one out of the three up quarks, say (e4 + ie5),

and one of three anti-down quarks, say (e5 + ie4). Since the representation for the electron

and the neutrino use e7 and a complex number, it follows that the four octonions we have

picked form the quaternionic triplet (e4, e5, e7) [we use the Fano plane convention shown

in the figure below]. Hence the four said octonions are in fact complex quaternions, thus

belonging to the general form

(a0 + ia1) + (a2 + ia3)e4 + (a4 + ia5)e5 + (a6 + ia7)e7 (11)

where the eight a-s are real numbers. By definition, we map this complex quaternion to the

following real octonion:

a0 + a1e1 + a5e2 + a3e3 + a2e4 + a4e5 + a7e6 + a6e7 (12)

Note that the four real coefficients in the original complex quaternion have been kept in

place, and their four imaginary counterparts have been moved to the octonion directions

(e1, e2, e3, e6) now as real numbers. Clearly, the map is reversible, given the real octonion

we can construct the equivalent complex quaternion representing the fermion. We can now

use this map and construct the following four real octonions for the neutrino, anti-down

quark, up quark and the positron, respectively, after comparing with their complex octonion

representation above.

Vν =
i

2
e7 −→

1

2
e6 (13)

Vad =
1

4
e5 +

i

4
e4 −→

1

4
e5 +

1

4
e3 (14)

Vu =
1

4
e4 +

i

4
e5 −→

1

4
e4 +

1

4
e2 (15)

Ve+ = − i
4
− 1

4
e7 −→ −

1

4
e1 −

1

4
e7 (16)
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FIG. 1. The Fano plane.

These four real octonions will go, one each, in the four different Jordan matrices whose

eigenvalues we wish to calculate. Next, we need the real octonionic representations for the

four fermions [color suppressed] in the second generation and the four in the third generation.

We propose to build these as follows, from the real octonion representations made just above

for the first generation. Since F4 has the inclusion SU(3)×SU(3), one SU3) being for color

and the other for generation, we propose to obtain the second generation by a 2π/3 rotation

on the first generation, and the third generation by a 2π/3 rotation on the second generation.

By this we mean the following construction, for the four respective Jordan matrices, as below.

It is justified as follows: One of the two SU(3) is color SU(3)c and has already been used

up to write down the three different color states of each quark, with one pair of imaginary

octonion directions fixed for a given color. The other SU(3) is for generations. It is then

11
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evident from symmetry considerations that the corresponding higher generation quark of a

given color can be obtained by 2π/3 rotation on the first generation quark, while keeping

the selected pair of octonionic directions fixed.

Up quark / Charm / Top: The up quark is (e4/4 + e2/4) We think of this as a ‘plane’

and rotate this octonion by 2π/3 by left multiplying it by e2πe4/3 = −1/2 +
√

3e4/2. This

will be the charm quark Vc. Then we left multiply the charm quark by e2πe4/3 to get the top

quark Vt. Hence we have,

Vc = (−1/2+
√

3e4/2)×Vu = (−1/2+
√

3e4/2)×
(

1

4
e4 +

1

4
e2

)
= −1

8
e4−

1

8
e2−
√

3

8
−
√

3

8
e1

(17)

We have used the conventional multiplication rules for the octonions, which are reproduced

FIG. 2. The multiplication table for two octonions. Elements in the first column on the left, left

multiply elements in the top row.

below in Fig. 2, for ready reference. Similarly, we can construct the top quark by a 2π/3
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rotation on the charm:

Vt = (−1/2 +
√

3e4/2)× Vc = (−1/2 +
√

3e4/2)×

(
−1

8
e4 −

1

8
e2 −

√
3

8
−
√

3

8
e1

)

= −1

8
e4 −

1

8
e2 +

√
3

8
+

√
3

8
e1

(18)

Next, we construct the anti-strange Vas and anti-bottom Vab, by left-multiplication of the

anti-down quark Vad by e2πe3/3.

Vas =

(
−1

2
+

√
3

2
e3

)
× Vad =

(
−1

2
+

√
3

2
e3

)
×
(

1

4
e5 +

1

4
e3

)
= −1

8
e5 −

1

8
e3 +

√
3

8
e2 −

√
3

8

(19)

Vab =

(
−1

2
+

√
3

2
e3

)(
−1

8
e5 −

1

8
e3 +

√
3

8
e2 −

√
3

8

)

= −1

8
e5 −

√
3

8
e2 −

1

8
e3 +

√
3

8

(20)

Next, we construct the octonions for the anti-muon Vaµ and anti-tau-lepton Vaτ by left

multiplying the positron Ve+ by e2πe1/3

Vaµ =

(
−1

2
+

√
3

2
e1

)
×
(
−1

4
e1 −

1

4
e7

)
=

1

8
e1 +

1

8
e7 +

√
3

8
+

√
3

8
e3

(21)

Vaτ =

(
−1

2
+

√
3

2
e1

)
×

(
1

8
e1 +

1

8
e7 +

√
3

8
+

√
3

8
e3

)

=
1

8
e7 −

√
3

8
+

1

8
e1 −

√
3

8
e3

(22)

Lastly, we construct the octonions Vνµ for the muon neutrino and Vντ for the tau neutrino,

by left multiplying on the electron neutrino Vν with e2πe6/3(
−1

2
+

√
3

2
e6

)
× 1

2
e6 = −1

4
e6 −

√
3

4
(23)
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Vντ =

(
−1

2
+

√
3

2
e6

)
×

(
−1

4
e6 −

√
3

4

)
= −1

4
e6 +

√
3

4
(24)

We now have all the information needed to write down the four Jordan matrices whose

eigenvalues we will calculate. Diagonal entries are electric charge, and off-diagonal entries

are octonions representing the particles. Using the above results we write down these four

matrices explicitly. The neutrinos of three generations

Xν =


0 Vν V ∗νµ

V ∗ν 0 Vντ

Vνµ V ∗ντ 0

 (25)

The anti-down set of quarks of three generations [anti-down, anti-strange, anti-bottom]:

Xad =


1
3

Vad V
∗
as

V ∗ad
1
3

Vab

Vas V ∗ab
1
3

 (26)

The up set of quarks for three generations [up, charm, top]

Xu =


2
3

Vu V ∗c

V ∗u
2
3

Vt

Vc V ∗t
2
3

 (27)

The positively charged leptons of three generations [positron, anti-muon, anti-tau-lepton]

Xe+ =


1 Ve+ V ∗aµ

V ∗e+ 1 Vaτ

Vaµ V ∗aτ 1

 (28)

Next, the eigenvalue equation corresponding to each of these Jordan matrices can be writ-

ten down, after using the expressions given above for calculating the determinant and the

function S(X). Tedious but straightforward calculations with the octonion algebra give the

following four cubic equations:

Neutrinos: We get Tr(X) = 0, S(X) = −3/4, Det(X) = 0, and hence the cubic equation

14
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and roots

λ3 − 3

4
λ = 0 ROOTS :

(
−
√

2

√
3

8
, 0,

√
2

√
3

8

)
(29)

Anti-down-quark + its higher generations [anti-down, anti-strange, anti-bottom]: We get

Tr(X) = 1, S(X) = −1/24, Det(X) = −19/216, and the following cubic equation and roots

λ3 − λ2 − 1

24
λ+

19

216
= 0

ROOTS :
1

3
−
√

3

8
,

1

3
,

1

3
+

√
3

8

(30)

Up quark + its higher generations [up, charm, top]: We get Tr(X) = 2, S(X) = 23/24, Det(X) =

5/108 and the following cubic equation and roots:

λ3 − 2λ2 +
23

24
λ− 5

108
= 0

ROOTS :
2

3
−
√

3

8
,

2

3
,

2

3
+

√
3

8

(31)

Positron + its higher generations [positron, anti-muon, anti-tau-lepton]: We get Tr(X) =

3, S(X) = 3− 3/8, Det(X) = 1− 3/8 and the following cubic equation and roots:

λ3 − 3λ2 +

(
3− 3

8

)
λ−

(
1− 3

8

)
= 0

ROOTS : 1−
√

3

8
, 1, 1 +

√
3

8

(32)

As expected from the known elementary properties of cubic equations, the sum of the roots

is Tr(X), their product is Det(X), and the sum of their pairwise products is S(X). In-

terestingly, this also shows that the sum of the roots is equal to the total electric charge

of the three fermions under consideration in each of the respective cases. Whereas S(X)

and Det(X) are respectively related to an invariant inner product and an invariant trilinear

form constructed from the Jordan matrix, their physical interpretation in terms of fermion

properties remains to be understood.

The roots exhibit a remarkable pattern. In each of the four cases, one of the three roots is

equal to the corresponding electric charge, and the other two roots are placed symmetrically

on both sides of the middle root, which is the one equal to the electric charge. All three
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roots are positive in the up quark set and in the positron set, whereas the neutrino set

and anti-down quark set have one negative root each, and the neutrino also has a zero

root. It is easily verified that the calculation of eigenvalues for the anti-particles yields

the same set of eigenvalues, upto a sign. In other words, the Jordan eigenvalue for the

anti-particle is opposite in sign to that for the particle. The roots are summarised in the

table below, and we see that they are composed of the electric charge, and the octonionic

magnitude associated with the respective particle. [The octonionic magnitude L2
P/L

2 is the

sum
∑
xix

i over the three identically charged fermions of three generations, which appears

in Equation (5) above.] One expects these roots to relate to masses of quarks and leptons

FIG. 3. The eigenvalues of the exceptional Jordan algebra for the various fermions. The eigenvalues

are made from electric charge and the octonionic magnitude, and represent charge-mass of the

corresponding fermion, in the pre-theory. The corresponding eigenmatrices [29] represent charge-

mass eigenstates. The SU(3)c and U(1) constructed from the Cl(6) and the octonion algebra for

one generation defines electric charge. However to define charge-mass and mass one must deal with

F4 and all three generations, not just one.
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for various reasons, and principally because the automorphism group of the complexified

octonions contains the 4D Lorentz group as well, and the latter we know relates to gravity.

Since mass is the source of gravity, we expect the Lorentz group to be involved in an essential

way in any theory which predicts masses of elementary particles. And the group F4, besides

being related to G2, and a possible candidate for the unification of the four interactions, is

also the automorphism group of the EJA. We have motivated how the four projections of

the EJA relate naturally to the four generation sets of the fermions. Thus there is a strong

possibility that the eigenvalues of the characteristic equation of the EJA yield information

about fermion mass ratios, especially it being a cubic equation with real roots. We make

the following preliminary observations about the known mass ratios, and then provide a

concrete analysis in Section IV.

The Jordan eigenvalues allow us to express the electric charge eigenstates of a fermion’s

three generations, as superpositions of mass eigenstates. That is why these eigenvalues

determine mass ratios.

For the set (positron, anti-muon, anti-tau-lepton), the three respective masses are known

to satisfy the following empirical relation, known as the Koide formula:

me +mµ +mτ

(
√
me +

√
mµ +

√
mτ )2

= 0.666661(7) ≈ 2

3
(33)

For the three roots of the corresponding cubic equation (32) we get that

2
λ21 + λ22 + λ23

(λ1 + λ2 + λ3)2
= 2

[Tr(X)]2 − 2S(X)

[Tr(X)]2
=

2

3

(
1 +

1

4

)
≈ 0.8333 (34)

The factor 1/4 comes from the sum of the absolute values of the three octonions which go

into the related Jordan matrix. This observation suggests that the eigenvalues bear some

relation with the square roots of the masses of the three charged leptons, though simply

comparing square roots of their mass-ratios does not seem to yield any obvious relation

with the eigenvalues. Further investigation is presented in Section IV. Here, we observe the

following logarithmic ratios for masses of the charged leptons [taken as 0.5 MeV, 105 MeV,

17

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 July 2021                   doi:10.20944/preprints202101.0474.v4

https://doi.org/10.20944/preprints202101.0474.v4


1777 Mev] and for the roots

ln

(
105

0.5

)1/2

∼ 2.67;
1

1−
√

3
8

∼ 2.58 (35)

ln

(
1777

0.5

)1/2

∼ 4.09;
1 +

√
3
8

1−
√

3
8

∼ 4.16 (36)

ln

(
1777

105

)1/2

∼ 1.41;
1 +

√
3
8

1
∼ 1.61 (37)

For the up quark set though, we see a correlation in terms of square roots of masses.

In the case of the up quark set, the following approximate match is observed between the

ratios of the eigenvalues, and the mass square root ratios of the masses of up, charm and

top quark. For the sake of this estimate we take these three quark masses to be [2.3, 1275,

173210] in Mev [38]. The following ratios are observed:

√
1275

2.3
∼ 23.55;

2
3

+
√

3
8

2
3
−
√

3
8

≈ 23.56 (38)

√
173210

1275
∼ 11.66;

2
3

2
3
−
√

3
8

≈ 12.28 (39)

√
173210

2.3
∼ 274.42;

 2
3

+
√

3
8

2
3
−
√

3
8

×
 2

3

2
3
−
√

3
8

 ≈ 289.23 (40)

Within the error bars on the masses of the up set of quarks, the two sets of ratios are seen

to agree with each other upto second decimal place.

Considering that one of the roots is negative in the anti-down-quark set, we cannot di-

rectly relate the eigenvalues to mass ratios. The same is true for the neutrino set, where one

root is negative and one root is zero. In section IV we propose that the correct quantity to

examine is the square-root of mass (in dimensionless units), which can take both positive

sign and negative sign: ±
√
m. The Jordan eigenvalues relate to the square-root of either

sign, with the eigenvalue for anti-particle being opposite in sign to that for the particle.
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The case of the neutrino is especially instructive, and shows how non-zero mass could arise

fundamentally, even when the electric charge is zero. In this case, the non-zero contribu-

tion comes from the inner product related quantity S(X), and therein from the absolute

magnitude of the octonions in the Jordan matrix, which necessarily has to be non-zero. We

thus see that masses are derivative concepts, obtained from the three more fundamental

entities, namely the electric charge, and the geometric invariants S(X) and Det(X), with

the last two necessarily being defined commonly for the three generations. And since mass is

the source of gravity, this picture is consistent with gravity and space-time geometry being

emergent from the underlying geometry of the octonionic space which algebraically deter-

mines the properties of the elementary particles. We note that there are no free parameters

in the above analysis, no dimensional quantities, and no assumption has been put by hand.

Except that we identify the octonions with elementary fermions. The numbers which come

out from the above analysis are number-theoretic properties of the octonion algebra.

These observations suggest a possible fundamental relation between eigenvalues of the

EJA and particle masses. In the next section, we provide further evidence for such a con-

nection, based on our proposal for unification based on division algebras and a matrix-valued

Lagrangian dynamics.

III. AN OCTONIONIC LAGRANGIAN FOR THE STANDARD MODEL

A. A Lagrangian on an 8D octonionic space-time

The action and Lagrangian for the three generations of standard model fermions, fourteen

gauge bosons, and four potential Higgs bosons, are given by [4]

S

C0

=

∫
dτ L ; L =

1

2
Tr

[
L2
p

L2

˙̃
Q
†

1
˙̃
Q2

]
(41)

Here,

˙̃
Q
†

1 =
˙̃
Q
†

B +
L2
p

L2
β1

˙̃
Q
†

F ;
˙̃
Q2 =

˙̃
QB +

L2
p

L2
β2

˙̃
QF (42)

and
˙̃
QB =

1

L
(iαqB + Lq̇B);

˙̃
QF =

1

L
(iαqF + Lq̇F ) = (43)
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By defining

q†1 = q†B +
L2
P

L2
β1q

†
F ; q2 = qB +

L2
P

L2
β2qF (44)

we can express the Lagrangian as

L =
L2
P

2L2
Tr

[(
q̇†1 +

iα

L
q†1

)
×
(
q̇2 +

iα

L
q2

)]
=

L2
P

2L2
Tr

[
q̇†1q̇2 −

α2

L2
q†1q2 +

iα

L
q†1q̇2 +

iα

L
q̇†1q2

] (45)

We now expand each of these four terms inside of the trace Lagrangian, using the definitions

of q1 and q2 given above:

q̇†1q̇2 = q̇†B q̇B +
L2
P

L2
q̇†Bβ2q̇F +

L2
P

L2
β1q̇

†
F q̇B +

L4
P

L4
β1q̇

†
Fβ2q̇F

q†1q2 = q†BqB +
L2
P

L2
q†Bβ2qF +

L2
P

L2
β1q

†
F qB +

L4
P

L4
β1q

†
Fβ2qF

q†1q̇2 = q†B q̇B +
L2
P

L2
q†Bβ2q̇F +

L2
P

L2
β1q

†
F q̇B +

L4
P

L4
β1q

†
Fβ2q̇F

q̇†1q2 = q̇†BqB +
L2
P

L2
q̇†Bβ2qF +

L2
P

L2
β1q̇

†
F qB +

L4
P

L4
β1q̇

†
Fβ2qF

(46)

In our recent work, we suggested this Lagrangian, having the symmetry group F4, as a can-

didate for unification. There are fourteen gauge bosons (equal to the number of generators

of G2). These are the eight gluons, the three weak isospin vector bosons, the photon, and the

two Lorentz bosons. These bosons, along with one Higgs, can be accounted for by the four

bosonic terms which form the first column in the above four sub-equations. The remaining

twelve terms were proposed to describe three fermion generations and three Higgs, with the

three generations being motivated by the triality of SO(8). However, one important ques-

tion which has not been addressed there is: why does triality not give rise to three copies of

the bosons?! In the framework of the present approach we tentatively explore the following

answer. We know that the even-grade Grassmann numbers which form the entries of the

bosonic matrices are made from even-number products of odd-grade (fermionic) Grassmann

numbers, and the latter are in a sense more basic. Could it then be that bosonic degrees of

freedom are made from fermionic degrees of freedom? If this were to be so, it could prevent

the tripling of bosons, if we think of them as arising at the ‘intersections’ of the octonionic

directions which represent fermions.
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B. An octonionic diagrammatic representation for three fermion generations, and

fourteen gauge bosons, and the Higgs

The seven imaginary unit octonions are used to make the Fano plane, which has seven

points and seven lines [adding to fourteen elements; points and lines have equal status]. If we

include the real direction [we have assumed q̇B0 to be self-adjoint] also, we get an equivalent of

a 3-D cube where the eight vertices now stand for the eight octonions, with one of them [the

‘origin’] standing for the real line. As explained by Baez: “The Fano plane is the projective

plane over the 2-element field Z2. In other words, it consists of lines through the origin in the

vector space Z3
2 . Since every such line contains a single nonzero element, we can also think of

the Fano plane as consisting of the seven nonzero elements of Z3
2 . If we think of the origin in

Z3
2 as corresponding to 1 in O, we get the following picture of the octonions”. This picture

is Fig. 3 below, borrowed from Baez [23]. Considering points, lines and faces together,

this structure has 26 elements [8+12+6 = 26]. Motivated by this representation of the

octonion, and the triality of SO(8), we propose the following diagrammatic representation

of the standard model fermions, gauge bosons, and Higgs as shown in Fig. 4. It motivates

us to think of bosons as arising as ‘intersections’ of the elements representing fermions. We

have taken four copies of the Baez cube, with the central one at the intersection of the other

three, and used them to represent the elementary particles. We now attempt to describe Fig.

4 in some detail. There is a central black-colored cube (henceforth a cube is an octonion)

in the front, which represents the fourteen gauge bosons and the four Higgs bosons; we will

return to this cube shortly. Then there are three more (colored) cubes: one to the left,

one at the back, and one at the bottom. These are marked as Gen I, Gen II and Gen III,

and represent the three fermion generations. Let us focus first on the octonion on the left,

which is Gen I, and where the eight vertices have been marked (e0, e1, e2, e3, e4, e5, e6, e7)

just as in the Baez cube. If e0 were to be excluded, this cube becomes the Fano plane [Fig.

1 above] and the arrows marked in the Gen. I cube follow the same directions as in the

Fano plane. In this Gen I cube, leaving out all those elements which are at the intersection

with the central bosonic cube, and leaving out the face on the far left, we are left with

sixteen elements: four points, eight lines, and four faces. The four points are shown in blue

and are (e3, e5, e6, e7). The eight lines are: (e4e3, e7e2, e3e7, e7e6, e5e6, e6e4, e5e0, e6e1). The

four planes are: (e4e3e7e2), (e0e5e6e1), (e7e2e1e6), (e3e4e0e5). Between them, these sixteen
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FIG. 4. The octonions [From Baez [23]].

elements represent the eight fermions and their anti-particles in one generation, one particle

/ anti-particle per octonionic element.

The up quark, the down quark, and their anti-particles of one particular color are (marked

by) the four lines (e4e3, e7e2, e0e5, e6e1). The points (e3, e5, e6, e7) mark u, d of a second color,

and the lines (e3e7, e7e6, e3e5, e5e6) mark the u, d of the third color. The four planes mark

the electron, the neutrino, and their anti-particles. Between them, these sixteen elements

have an SU(3) symmetry: they can be correlated to the (8+8)D particle basis constructed

by Furey, from the SU(3) in G2. Next, the Gen II and Gen III along with Gen I has another

SU(3) symmetry, which is responsible for the three generations. These three fermionic

cubes represent three intersecting copies of G2 each cube having an SU(3) symmetry. The

three-way intersection is SU(2)XSU(2), this being the black central cube, and the bosons
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FIG. 5. The elementary particles of the standard model with three generations, represented through

octonions in an F4 diagram.. Please see text for a detailed explanation.

lie on this cube. At the same time the fermionic cubes make contact with the bosonic cube,

enabling the bosons to act on the fermions.

We now try to understand the central bosonic cube. First we count the number of its

elements: it gets a total of 3x10=30 elements from the three side cubes, which when added

to its own 26 elements gives a total of 56. But there are a lot of common elements, so

that the actual number of independent elements is much smaller, and we enumerate them

now. Three points are shared two-way and three points shared three-way and the point e0

is shared four-way; that reduces the count to 44. Nine lines are shared: three of them three

way, and six of them two way, reducing the count to 32. The shared three planes reduce the

count to 29. We now account for the assignment of bosons to these 29 locations.

The eight gluons are on the front right, marked by the pink points, and lines labelled g1

to g8, and the photon is assigned to the plane (e3e7e6e5) on the front right enclosed by the
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gluons. The two Lorentz bosons are the yellow points e4 and e1 also marked L2 and L1. The

three vector bosons are marked by the lines e0e1, e0e4 and the point e2, also marked Z0. The

Higgs H is at the four way real point e0. Three more Higgs are shown as follows: two planes

per Higgs, e.g. the plane e0e4e2e1 and the mirror fermionic plane e3e5e6e7 on the far left

in Gen I. Analogously, another Higgs is given by the bosonic plane e0e1e6e5 and its mirror

fermionic plane at the front bottom in Gen III. The third Higgs is given by the bosonic plane

e0e4e3e5 and its mirror fermionic plane at the back in Gen II. This way 21 elements are used

up. The remaining 8 un-used elements (six lines and two planes) are assigned to eight terms

in the Lagrangian representing the action of the spacetime symmetry on the gluons: these

are the terms q̇Bq
†
B and q̇†BqB in (46).

The bosonic cube lies in the intersection of the three G2 and hence does not triplicate

during the SU(3) rotation which generates the three fermion generations. The symmetry

group of the theory is the 52 dimensional group F4, with 8x3=24 generators coming from

the three fermionic cubes, and the rest 28 from the bosonic sector [14 + 2x3 + 8 = 28].

This diagram does suggest that one could investigate bosonic degrees of freedom as made

from pairs of fermion degrees of freedom. With this tentative motivation, we return to our

Lagrangian, and seek to write it explicitly as for a single generation of bosons, and three

generations of fermions. Upon examination of the sub-equations in Eqn. (46) we find that

the last column has terms bilinear in the fermions, and we would like to make it appear just

as the second and third column do, so that we can explicitly have three fermion generations.

With this intent, we propose the following assumed definitions of the bosonic degrees of

freedom, by recasting the four terms in the last column of Eqn. (46):

L4
P

L4
β1q̇

†
Fβ2q̇F ≡

L2
P

L2
q̇Bβ2q̇F +

α2

L2
A

L4
P

L4
β1q

†
Fβ2qF ≡

L2
P

L2
qBβ2qF + A

L4
P

L4
β1q

†
Fβ2q̇F ≡

L2
P

L2
q†Bβ1q̇

†
F +B

L4
P

L4
β1q̇

†
Fβ2qF ≡

L2
P

L2
q̇†Bβ1q

†
F −B

(47)

where A and B are bosonic matrices which drop out on summing the various terms to get

the full Lagrangian, With this redefinition, the sub-equations Eqn. (46) can be now written
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in the following form after rewriting the last column:

q̇†1q̇2 = q̇†B q̇B +
L2
P

L2
q̇†Bβ2q̇F +

L2
P

L2
β1q̇

†
F q̇B +

L2
P

L2
q̇Bβ2q̇F

q†1q2 = q†BqB +
L2
P

L2
q†Bβ2qF +

L2
P

L2
β1q

†
F qB +

L2
P

L2
qBβ2qF

q†1q̇2 = q†B q̇B +
L2
P

L2
q†Bβ2q̇F +

L2
P

L2
β1q

†
F q̇B +

L2
P

L2
q†Bβ1q̇

†
F

q̇†1q2 = q̇†BqB +
L2
P

L2
q̇†Bβ2qF +

L2
P

L2
β1q̇

†
F qB +

L2
P

L2
q̇†Bβ1q

†
F

(48)

The terms now look harmonious and we can see a structure emerging - the first column are

bosonic terms and these are not triples. The remaining terms are four sets of three each [to

which their adjoints will eventually get added] which can clearly describe three generations

of the four sets, which is what we had in the Jordan matrices in the previous section. Putting

it all together, we can now rewrite the Lagrangian so that it explicitly looks like the one for

gauge bosons and four sets of three generations of fermions, as in the Jordan matrix:

L =
L2
P

2L2
Tr

[(
q̇†1 +

iα

L
q†1

)
×
(
q̇2 +

iα

L
q2

)]
=

L2
P

2L2
Tr

[
q̇†1q̇2 −

α2

L2
q†1q2 +

iα

L
q†1q̇2 +

iα

L
q̇†1q2

]
≡ L2

P

2L2
Tr [Lbosons + Lset1 + Lset2 + Lset3 + Lset4]

(49)

where

Lbosons = q̇†B q̇B −
α2

L2
q†BqB +

iα

L
q†B q̇B +

iα

L
q̇†BqB (50)

Lset1 =
L2
P

L2
q̇†Bβ2q̇F +

L2
P

L2
β1q̇

†
F q̇B +

L2
P

L2
q̇Bβ2q̇F (51)

Lset2 = −α
2

L2

(
L2
P

L2
q†Bβ2qF +

L2
P

L2
β1q

†
F qB +

L2
P

L2
qBβ2qF

)
(52)

Lset3 =
iα

L

(
L2
P

L2
q†Bβ2q̇F +

L2
P

L2
β1q

†
F q̇B +

L2
P

L2
q†Bβ1q̇

†
F

)
(53)

Lset4 =
iα

L

(
L2
P

L2
q̇†Bβ2qF +

L2
P

L2
β1q̇

†
F qB +

L2
P

L2
q̇†Bβ1q

†
F

)
(54)

We see that each of these four fermionic sets could possibly be related to a Jordan matrix,

after including the adjoint part. We also see that different coupling constants appear in
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different sets with identical coupling in third and fourth set and no coupling in the first set.

The first set could possibly describe neutrinos, charged leptons and quarks (gravitational

and weak interaction), the second set charged leptons and quarks, and the third and fourth

set the quarks. To establish this explicitly, equations of motion remain to be worked out

and then related to the eigenvalue problem. As noted earlier, L relates to mass, and this

approach could reveal how the eigenvalues of the EJA characteristic equation relate to mass.

This investigation is currently in progress, and proceeds along the following lines. We take

the self-adjoint part of the above Lagrangian, because that part is the one which leads to

quantum field theory in the emergent approximation after coarse-graining the underlying

theory. [The anti-self-adjoint part is negligible in the approximation in which quantum

field theory emerges, and when it becomes significant, spontaneous localisation occurs, and

classical space-time and the macroscopic universe emerges]. We vary the self-adjoint part of

the Lagrangian with respect to the bosonic degree of freedom, and with respect to the three

8D-fermionic degrees of freedom, representing the three fermion generations. This yields four

equations of motion, three of which are coupled matrix-valued Dirac equations for the three

generations. These three coupled equations are solved by a state vector which is a three-

vector made of three 8-spinors. The eigenvalue problem for three coupled matrix equations

is likely solved by the exceptional Jordan algebra, the algebra of 3x3 Hermitean matrices

with octonionic entries, where the diagonal entries are identified with electric charge. That

the diagonal entries are electric charge is justified by the form of the Lagrangian above,

especially as written in Eqn. (45), because we see α/L as the coefficient of the potential, and

its square appearing in the electrodynamics term (52) in this latest form of the Lagrangian

above. This coefficient in front of the terms in Eqn. (52) then gets identified with the fine

structure constant, as below.

The symmetry group associated with the self-adjoint part of the Lagrangian is F4. The

symmetry group associated with the full Lagrangian, including the anti-self-adjoint part,

could possibly be E6 - this is under investigation.
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C. The Jordan eigenvalues and the low energy limiting value of the fine structure

constant

If we examine the Lagrangian term for the charged leptons in Eqn. (52), the dimensionless

coupiing constant C in front of it is (upto a sign):

C ≡ α2L
4
P

L4
(55)

[The operator terms of the form qBqF etc. in (52) have been correspondingly made dimen-

sionless by dividing by L2
P ]. We assume that lnα is linearly proportional to the electric

charge, and that the proportionality constant is the Jordan eigenvalue corresponding to the

anti-down quark. The electric charge 1/3 of the anti-down quark seems to be the right choice

for determining α, it being the smallest non-zero value [and hence possibly the fundamental

value] of the electric charge, and also because the constant α appears as the coupling in

front of the supposed quark terms in the Lagrangian, as in Eqns. (53) and (54). We hence

define α by

lnα ≡ λad qad =

[
1

3
−
√

3

8

]
× 1

3
=⇒ α2 ≈= 0.83025195149 (56)

where λad is the Jordan eigenvalue corresponding to the anti-down quark, as given by Eqn.

(30) and qad is the electric charge of the anti-down quark (=1/3). In order to arrive at this

relation for α, we asked in what way α could vary with q, if it was allowed to vary? We

then made the assumption that dα/dq ∝ α. In the resulting linear dependence of lnα on q,

we froze the value of α at that given by the smallest non-zero charge value 1/3, taking the

proportionality constant to be the corresponding Jordan eigenvalue. This dependence also

justifies that had we fixed α from the zero charge of the neutrino, α would have been one,

as it in fact is, in our Lagrangian. We are investigating if this way of constructing α can be

further justified from the Lagrangian dynamics.

As for the value of LP/L, we identify it with one-half of that part of the Jordan eigenvalue

which modifies the contribution coming from the electric charge. [For an explanation of

the origin of the factor of one-half, see the next paragraph]. Thus from the eigenvalues

found above, we deduce that for neutrinos, quarks and charged leptons, the quantity L2
P/L

2
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takes the respective values (3/16, 3/32, 3/32). These values are equal to one-fourth of the

respective octonionic magnitudes. Thus the coupling constant C defined above can now

be calculated, with α2 as given above, and L2
P/L

2 = 3/32. Furthermore, since the electric

charge q, the way it is conventionally defined, has dimensions such that q2 has dimensions

(Energy × Length), we measure q2 in Planck units EPl × LP = h̄c. We hence define the

fine structure constant by C = α2L4
P/L

4 ≡ e2/h̄c, where e is the electric charge of electron

/ muon / tau-lepton in conventional units. We hence get the value of the fine structure

constant to be

C = α2L4
P/L

4 ≡ e2/h̄c = exp

[[
1

3
−
√

3

8

]
× 2

3

]
× 9

1024
≈ 0.00729713 =

1

137.04006
(57)

The CODATA 2018 value of the fine structure constant is

0.0072973525693(11) = 1/137.035999084(21) (58)

Our calculated value differs from the measured value in the seventh decimal place. In the

next section, we show how incorporating the Karolyhazy length correction gives an exact

match with the CODATA 2018 value, if we assume a specific value for the electro-weak

symmetry breaking energy scale.

Why did we identify LP/L with one-half of the octonionic magnitude
√

3/8 rather than

with the magnitude
√

3/8 itself? The answer lies in the physical interpretation originally

assigned to the length scale L. [Please see the discussion below Eqn. (69) of [10]]. The

length L for an object of mass m is interpreted as the Schwarzschild radius 2Gm/c2 of an

object of mass m, so that LP/L = LP c
2/2Gm, which is one-half the Compton wave-length

(in Planck units) and not the Compton wavelength itself. Assuming that the octonionic

magnitude has to be identified with Compton wavelength (in units of Planck length), it

hence has to be divided by one-half, before equating it to LP/L. This justifies taking

L2
P/L

2 = 1/4× 3/8 = 3/32.

Once a theoretical derivation of the asymptotic fine structure constant is known, one can

write the electric charge e as

e = (3/32) exp[1/9− 1/
√

24] (h̄LP/tP )1/2 (59)
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where LP and tP are Planck length and Planck time respectively - obviously their ratio is

the speed of light. In our theory, there are only three fundamental dimensionful quantities:

Planck length, Planck time, and a constant with dimensions of action, which in the emergent

quantum theory is identified with Planck’s constant h̄. We now see that electric charge is

not independent of these three fundamental dimensionful constants. It follows from them.

Planck mass is also constructed from these three, and electron mass will be expressed in

terms of Planck mass, if only we could understand why the electron is some 1022 times

lighter than Planck mass. Such a small number cannot come from the octonion algebra.

In all likelihood, the cosmological expansion up until the electroweak symmetry breaking is

playing a role here.

Thus electric charge and mass can both be expressed in terms of Planck’s constant,

Planck length and Planck time. This encourages us to think of electromagnetism, as well

the other internal symmetries, entirely in geometric terms. This geometry is dictated by the

F4 symmetry of the exceptional Jordan algebra.

IV. DISCUSSION, AND FURTHER DEVELOPMENTS: JORDAN EIGENVAL-

UES AND MASS-RATIOS

We have not addressed the question as to how these discrete order one eigenvalues might

relate to actual low values of fermion masses, which are much lower than Planck mass.

We speculatively suggest the following scenario, which needs to be explored further. The

universe is eight-dimensional, not four. The other four internal dimensions are not com-

pactified; rather the universe is very ‘thin’ in those dimensions but they are expanding as

well. There are reasons having to do with the so-called Karolyhazy uncertainty relation [39],

because of which the universe expands in the internal dimensions at one-third the rate, on

the logarithmic scale, compared to our 3D space. That is, if the 4D scale factor is a(τ),

the internal scale factor is a
1/3
int (τ), in Planck length units. Taking the size of the observed

universe to be about 1061 Planck units, the internal dimensions have a width approximately

1020 Planck units, which is about 10−13 cm, thus being in the quantum domain. Classical

systems have an internal dimension width much smaller than Planck length, and hence they

effectively stay in [and appear to live in] four dimensional space-time. Quantum systems

probe all eight dimensions, and hence live in an octonionic universe.
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The universe began in a unified phase, via an inflationary 8D expansion possibly resulting

as the aftermath of a huge spontaneous localisation event in a ‘sea of atoms of space-time-

matter’ [10]. The mass values are set, presumably in Planck scale, at order one values

dictated by the eigenvalues reported in the present paper. Cosmic inflation scales down

these mass values at the rate a1/3(τ), where a(τ) is the 4D expansion rate. Inflation ends

after about sixty e-folds, because seeding of classical structures breaks the color-elctro-weak-

Lorentz symmetry, and classical spacetime emerges as a broken Lorentz symmetry. The

electro-weak symmetry breaking is actually a electro-weakLorentz symmetry breaking, which

is responsible for the emergence of gravity, weak interaction being its short distance limit.

There is no reheating after inflation; rather inflation resets the Planck scale in the vicinity

of the electro-weak scale, and the observed low fermion mass values result. The electro-

weak symmetry breaking is mediated by the Lorentz symmetry, in a manner consistent

with the conventional Higgs mechanism. It is not clear why inflation should end specifically

at the electro-weak scale: this is likely dictated by when spontaneous localisation becomes

significant enough for classical spacetime to emerge. It is a competition between the strength

of the electro-colour interaction which attempts to bind the fermions, and the inflationary

expansion which opposes this binding. Eventually, the expanding universe cools enough

for spontaneous localisation to win, so that the Lorentz symmetry is broken. It remains

to prove from first principles that this happens at around the electro-weak scale and also

to investigate the possibly important role that Planck mass primordial black holes might

play in the emergence of classical spacetime. I would like to thank Roberto Onofrio for

correspondence which has influenced these ideas. See also [40].

A. The Karolyhazy correction to the asymptotic value of fine structure constant

In accordance with the Karolyhazy uncertainty relation (Eqn. (9) of [39]) a measured

length l has a ‘quantum gravitational’ correction ∆l given by

(∆l)3 = L2
P l (60)

For the purpose of the present discussion we shall assume an equality sign here, i.e. that the

numerical constant of proportionality between the two sides of the equation is unity. And,
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for the sake of the present application to the fine structure constant, we rewrite this relation

as

δ ≡ LP
∆l

=

(
LP
l

)1/3

(61)

We set l ≡ lf where lf is the length scale (≈ 10−16 cm) associated with electro-weak sym-

metry breaking, where classical space-time emerges from the prespacetime, prequantum

theory. The assumption being that when the universe evolves from the Planck scale to the

electro-weak scale [while remaining in the unbroken symmetry phase], the inverse of the

octonionic length associated with the charged leptons (this being
√

3/32) is reset, because

of the Karolyhazy correction, to

√
3

32
−→

√
3

32
+ δf ≡

√
3

32
+

(
LP
lf

)1/3

(62)

We can also infer this corrected length as the four-dimensional space-time measure of the

length, which differs from the eight dimensional octonionic value
√

3/32 by the amount δf .

If we take lf to be 10−16 cm, the correction δf is of the order 2 × 10−6. The correction to

the asymptotic value (57) of the fine structure constant is then

C = α2L4
P/L

4 ≡ e2/h̄c = α2

[√
3

32
+

(
LP
lf

)1/3
]4

(63)

For lf = 10−16 cm = 198 GeV−1, we get the corrected value of the fine structure constant to

be 0.00729737649, which overshoots the measured CODATA 2018 value at the eighth decimal

place. The electroweak scale is generally assumed to lie in the range 100 - 1000 GeV. The

value lf = 1.3699526 × 10−16 cm = 144.530543605 GeV−1 reproduces the CODATA 2018

value 0.0072973525693 of the asymptotic fine structure constant. The choice l−1f = 246 GeV

gives the value 0.00729739452, whereas the choice l−1f = 159.5 ± 1.5 GeV gives the range

(0.00729736049, 0.00729735908). 100 GeV gives the value 0.00729732757 which is smaller

than the measured value. 1000 GeV gives 0.00729754842. Thus in the entire 100 - 1000

GeV range, the derived constant agrees with the measured value at least to the sixth decimal

place, which is reassuring. The purpose of the present exercise is to show that the Karolyhazy

correction leads to a correction to the asymptotic value of the fine structure constant which

is in the desired range - a striking fact by itself. In principle, our theory should predict the
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precise value of the electroweak symmetry breaking scale. Since that analysis has not yet

been carried out, we predict that the ColorElectro-WeakLorentz symmetry breaking scale is

144.something GeV, because only then the theoretically calculated value of the asymptotic

fine structure constant matches the experimentally measured value.

The above discussion of the asymptotic low energy value of the fine structure constant

should not be confused with the running of the constant with energy. Once we recover classi-

cal spacetime and quantum field theory from our theory, after the ColorElectro-WeakLorentz

symmetry breaking, conventional RG arguments apply, and the running of couplings with

energy is to be worked out as is done conventionally. Such an analysis of running couplings

will however be valid only up until the broken symmnetry is restored - it is not applicable

in the prespacetime prequantum phase. In this sense, our theory is different from GUTs.

Once there is unification, Lorentz symmetry is unified with internal symmetries - the exact

energy scale at which that happens remains to be worked out.

How then does the Planck scale prespacetime, prequantum theory know about the low

energy asymptotic value of the fine structure constant? The answer to this question lies in

the Lagrangian given in (49) and in particular the Lagrangian term (52) for the charged

leptons. In determining the asymptotic fine structure constant from here, we have neglected

the modification to the coupling that will come from the presence of qB and qF . This is

analogous to examining the asymptotic, flat spacetime limit of a spacetime geometry due to

a source - gravity is evident close to the source, but hardly so, far from it. Similarly, there

is a Minkowski-flat analog of the octonionic space, wherein the effect of qB and qF (which

in effect ‘curve’ the octonionic space) is ignorable, and the asymptotic fine structure can be

computed. The significance of the non-commutative, non-associative octonion algebra and

the Jordan eigenvalues lies in that they already determine the coupling constants, including

their asymptotic values. This is a property of the algebra, even though the interpretation

of a particular constant as the fine structure constant comes from the dynamics, i.e. the

Lagrangian, as it should, on physical grounds.

On a related note about this approach to unification, we recall that the symmetry group

in our theory is U(1)× SU(3)× SU(2)× SU(2). This bears resemblance to the study of a

left-right symmetric extension of the standard model by Boyle [41] in the context of the com-

plexified exceptional Jordan algebra. This L − R model has exceptional phenomenological
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promise, and it appears that the unbroken phase [prior to the ColorElectro-WeakLorentz

symmetry breaking] of the L-R model is well-described by our Lagrangian (49) for three

generations. This gives further justification for exploring the phenomenology of this La-

grangian.

B. More Jordan eigenvalues for quarks and charged leptons

Assuming that the mechanism for mass generation of neutrinos is different from that for

the electrically charged fermions, we can set aside the neutrinos for the time being, and

calculate additional new eigenvalues of the exceptional Jordan algebra in yet another way.

We club the three charged fermions of the first generation to make a 3 × 3 Jordan matrix,

with the octonionic entries assigned as: x1 is the anti-down quark, x2 is the up quark, and

x3 is the positron. Analogously, the octonionic entries for the second generation are such

that x1 is the anti-strange quark, x2 is the charm quark, and x3 is the anti-muon. For the

third generation Jordan matrix, x1 is the anti-bottom quark, x2 is the top quark, and x3

is the anti-tau-lepton. For each of the three Jordan matrices, the diagonal entries are the

electric charges i.e. (1/3, 2/3, 1), so that the trace is 2 for each of the three Jordan matrices.

S(X) is also the same for each generation, and is equal 61/72. The determinant is different

in each of the three cases and is given by

Det(GenI) = − 25

576
− 9

576
; Det(GenII) = − 25

576
+

√
3

576
; Det(GenIII) = − 25

576
−
√

3

576
(64)

The three Jordan matrices for which we are now calculating the eigenvalues are hence given

as follows, one for each generation of two quarks and one charged lepton:

GenI :


1 Ve+ V ∗up

V ∗e+ 2/3 Vad

Vup V ∗ad 1/3

 (65)

GenII :


1 Vaµ V ∗c

V ∗aµ 2/3 Vas

Vc V ∗as 1/3

 (66)
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GenIII :


1 Vaτ V ∗t

V ∗aτ 2/3 Vab

Vt V ∗ab 1/3

 (67)

The notation and octonionic representation is the same as earlier in the paper. For each of

the three generations the eigenvalues are given by the following set of three real roots, each

of which is positive (hence a total of nine unequal roots):

λ1 =
2

3
+ 2
√
−Q cos

(
θ

3

)
λ2 =

2

3
+ 2
√
−Q cos

(
θ + 2π

3

)
λ3 =

2

3
+ 2
√
−Q cos

(
θ + 4π

3

) (68)

Here, the angle θ is defined by

θ ≡ cos−1

(
R√
−Q3

)
(69)

and the function Q is the same for each of the three generations:

Q =
3S(X)− Tr2(X)

9
= − 35

216
(70)

whereas the function R differs slightly amongst the three generations because the determi-

nant is different for each of them:

R = −1

6
Tr(X)S(X) +

1

27
Tr3(X) +

1

2
Det(X) = −1

3
× 61

72
+

8

27
+

1

2
Det(X) (71)

The angle θ in the case of the three generations can thus be calculated, and is given in

radians by

θI = 1.81270 ; θII = 1.69730 ; θIII = 1.74837 (72)

34

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 July 2021                   doi:10.20944/preprints202101.0474.v4

https://doi.org/10.20944/preprints202101.0474.v4


The roots can now be computed and have the following set of three values each, for each of

the three generations, respectively:

λ1I = 2/3− 0.70985 = −0.04318; λ2I = 2/3 + 0.02599 = 0.69266; λ3I = 2/3 + 0.68385 = 1.35052

λ1II = 2/3− 0.71565 = −0.04898; λ2II = 2/3 + 0.03844 = 0.70511; λ3II = 2/3 + .6731 = 1.34387

λ1III = 2/3− 0.72738 = −0.06071; λ2III = 2/3 + 0.06484 = 0.73151; λ3III = 2/3 + 0.66252 = 1.32919

(73)

As is evident, for every generation, the roots are shifted around the middle electric charge

value of 2/3, as if undergoing a rotation determined by θ, with one root coming out larger

than 2/3, and the other two roots smaller than 2/3.

In combination with the nine eigenvalues found earlier in the paper for the six quarks

and three charged leptons, we now have a total of 18 unequal roots, only one of which is

negative. The nine roots found earlier could be labeled as ‘horizontal’ roots, calculated

across three generations in three sets, one set each for the three fermions with identical non-

zero electric charge. The nine roots found now could labeled as ‘vertical’ roots, calculated

per generation, using the three fermions with non-zero charge. The only negative root is

the horizontal root for the anti-down quark. The full set of 18 roots are shown in the table

below [Figure 5], two per charged fermion. In each of the nine cells of the table, the upper

entry is a horizontal root, and the lower entry is a vertical root. Using the up quark as a

benchmark, eight ratios can be defined from the nine vertical roots, and another eight ratios

from the nine horizontal roots. The fact that the angles θI , θII and θIII are different for the

three generations suggests a possible violation of lepton universality. As far as mass ratios

are concerned, it turns out that the horizontal eigenvalues are the only ones to be used, and

the vertical ones are not used at all in calculating mass ratios.

C. Update: Evidence of correlation between the Jordan eigenvalues and the mass

ratios of quarks and charged leptons

In the first generation, we note the positron mass to be 0.511 Mev, the up quark mass

to be 2.3 ± 0.7 ± 0.5 MeV, and the down quark mass to be 4.8 ± 0.5 ± 0.3 MeV. The

uncertainties in the two quark masses permit us to make the following proposal: the square-
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FIG. 6. The eighteen Jordan eigenvalues for the six quarks and three charged leptons. In each

cell, at the top is shown the name of the particle, its mass in MeV, square-root of mass ratio with

respect to up quark, and the octonionic magnitude. The three eigenvalues in any given row are

calculated by making a triplet of like charges. These eigenvalues, dubbed as the horizontal roots,

are shown as the first entry in each of the nine cells. The three eigenvalues in any given column are

calculated by making a triplet of like generation charged fermions. These are the vertical roots,

shown as the lower entry in each cell. There are two roots for every charged fermion. Only one

out of the 18 roots is negative - this is the upper entry for the anti-down quark.

roots of the masses of the positron, up quark, and down quark possess the ratio 1 : 2 : 3 and

hence they can be assigned the ‘square-root-mass numbers’ (1/3, 2/3, 1) respectively, these

being in the inverse order as the ratios of their electric charge. The e/
√
m ratios for the

three particles then have the respective values (3, 1, 1/3), whereas e
√
m has the respective

values (1/3, 4/9, 1/3). The choice of square-root of mass as being more fundamental than

mass is justified by recalling that in our approach, gravitation is derived from ‘squaring’ an

underlying spin one Lorentz interaction [4]. It is reasonable then to assume that the spin one

Lorentz interaction is sourced by
√
m, and to try to understand the origin of the square-root
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of the mass ratios, rather than origin of the mass ratios themselves.

At this stage, the above proposed quantised root-mass-ratios for the first generation are

only an assumption; we do not have a proof for this assumption. [We return to thus aspect in

detail in a forthcoming publication [42], where we consider an SU(3) gravi-color symmetry

for gravitation, analogous to SU(3)color for QCD, and actually demonstrate a square-root

mass ratio 1:2:3 for electron, up quark and down quark.] A justification might come from the

following. The automorphism group G2 of the octonions has the two maximal subgroups

SU(3) and SO(4). These two groups have an intersection U(2) ∼ SU(2) × U(1). The

SU(3) is identified with SU(3)c, the SU(2) with the weak symmetry, and the U(1) with

U(1)em. Thus the U(1)em is a subset also of the maximal sub-group SO(4) which led us

to propose the Lorentz-Weak-Electro symmetry, and hence this U(1) might also determine

the said quantised root-mass-ratios (1/3, 2/3, 1) for the positron, up quark, and down quark

respectively. For now, we take these quantised root-mass-ratios as a working hypothesis.

This implies, assuming a mass 0.511 MeV for the electron, a consequent predicted mass of

2.044 MeV for the up quark, and a predicted mass 4.599 MeV for the down quark.

If we assume that the e/
√
m ratios for the first generation of the charged fermions are

absolute values [valid prior to the enormous scaling down of mass] then we can assign a

root-mass number e/3 to the positron [and hence a mass number e2/9], where the electric

charge e is as given in Eqn. (74). Hence the mass-number for the positron/electron is

√
GN me+ = (1/1024) exp[2/9− 1/

√
6] (h̄LP/tP )1/2 (74)

where GN is Newton’s gravitational constant. Thus the mass number of the electron is

1/(137× 9) of Planck mass and has to be scaled down by the factor f = 2× 1019 before it

acquires the observed mass of 0.5 MeV. This then is also the universal factor by which the

assigned mass number of every quark and charged lepton must be scaled down to get it to its

current value. This is not far from the twenty orders of mass-scale-down by the Karolyhazy

effect in cosmology, proposed earlier in this section. The initial ratio of the electrostatic to

gravitational attraction between an electron and a positron is e2/(e4/81) ∼ 137× 81 ∼ 104.

Now, to deduce the observed mass-ratios for the second and third generations, we recall
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FIG. 7. The Jordan angles for the six quarks and the three charged leptons. In each cell the first

row shows the mass of the particle in MeV and the square-root of the mass ratio taken with respect

to the anti-down quark. The second row in each cell shows the Jordan angle from which the first

set of eigenvalues are made [by clubbing like charges]. This eigenvalue is obtained by taking the

cosine of the shown angle, multiplying it by 2
√
−Q, and adding the result to the electric charge

value. The last row in each cell shows the angle using which the second set of eigenvalues [made

by clubbing fermions of a given generation] are made. Here also the cosine of the angle is taken,

multiplied by 2
√
−Q and the result added to 2/3. In terms of these two angles the nine fermions

are placed symmetrically on a 2-torus; yet the angles manage to give rise to the measured mass

ratios which appear to be quite random otherwise.

from above that the three generations are respectively characterised by these three angles

θI = 1.81270 ∼ 97o ; θII = 1.69730 ∼ 100o ; θIII = 1.74837 ∼ 104o. (75)

These three angles can be taken to be the defining characteristic of the three generations.

All the three angles lie in the second quadrant and hence have a negative cosine; therefore

the largest root λ1 in (68) for each of the three generations is identified with the quark
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having 2/3 charge [i.e. up, charm, top]. In Eqn. (73) these are roots (λ3I , λ3II , λ3III) for

the up, charm and top respectively. In Gen I, the next root is derived by taking the angle

(θI + 2π)/3 = 2.45 ∼ 140o which lies in the second quadrant, and gives the smallest root

λ1I which is assigned to the positron. The third root λ2I comes from taking the angle

(θ + 4π)/3 = 4.54 ∼ 260o which lies in the third quadrant. So one moves from the up

quark to the positron to the anti-down quark while going from the first to the second to

the third quadrant. In Gen II, the second root λ1II comes from the angle (θII + 2π)/3 =

2.47 ∼ 1410 and is assigned to the anti-muon, whereas the third root λ2II coming from

the angle (θII + 4π)/3 = 4.56 ∼ 261o is assigned to the anti-strange quark. In GenIII the

second root λ1III coming from the angle (θIII + 2π)/3 = 2.57 ∼ 147o is assigned to the

tau-lepton, whereas the third root coming from the angle (θIII + 4π)/3 = 4.66 ∼ 267o is for

the anti-bottom quark.

We can place the six quarks and three charged leptons on a two-torus, and identify each

one of them with a pair of angles on the torus (one angle along each of the two independent

directions). We have already identified these angles corresponding to the second set of eigen-

values, in the previous paragraph. Similarly, we can evaluate the angles corresponding to the

first set of eigenvalues, found in Section II, and listed in the table in Fig. 5, by comparing

those roots with their equivalent angular form given in Eqn. (68). For the three neutrinos,

we conclude from the roots given in (29), that the three angles are (π/6, 5π/6, 9π/6). The

same angles also arise for the charged fermions, with the first angle for the GenIII particle,

next one for GenI and largest angle for GenII. Also, in each case, R = 0, while −Q = 1/8.

The table in Figure 6 below shows these Jordan angles, along with the measured mass val-

ues, as well the square-root of the mass ratio taken with respect to mass of the anti-down

quark. We now see that the nine fermions are placed symmetrically on the torus, as far as

the angles are concerned. And yet these angles manage to give rise to strange-looking mass

ratios.

Since the square-root-mass ratio of the anti-down quark has been set to unity, and pre-

dicted above to be 4.599 MeV (= 9 × 0.511 MeV), we will calculate the square-root-mass

ratios of the other particles with respect to the anti-down-quark, and demonstrate a corre-

lation of these ratios with the Jordan eigenvalues. Also, since a negative Jordan eigenvalue

is to be associated with minus of square-root mass, for finding the mass-ratio, we take the

absolute value of the anti-down-quark eigenvalue, which is negative.
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• Anti-muon : Take the ratio of the first set of Jordan eigenvalues for the electron and

the muon [see the table in Fig. 6]. Multiply by a factor representing the down quark (the

first factor in the expression below). Then compare the resulting value with the square-root

mass ratio of the muon mass with respect to the electron mass:

1 +
√

3/8

1−
√

3/8
×

1/3 +
√

3/8

|1/3−
√

3/8|
= 14.10 ;

√
206.7682830 = 14.38 (76)

• Anti-tau lepton : Using the first set of eigenvalues for the charged leptons, we get the ratio

for tau-lepton to electron:

1 +
√

3/8

1−
√

3/8
×

1/3 +
√

3/8

|1/3−
√

3/8|
×

1 +
√

3/8

1−
√

3/8
= 58.64 ;

√
1776.86

.511
= 58.97 (77)

• Charm quark with respect to up quark: This ratio is same as the ratio of charm / up

in Eqn. (38).

2/3 +
√

3/8

2/3−
√

3/8
= 23.57 ;

√
1275

2.3
= 23.55 (78)

• Top quark with respect to up quark: Again this ratio is analogous to the one for top /

up in Eqn. (40).

2/3 +
√

3/8

2/3−
√

3/8
× 2/3

2/3−
√

3/8
= 289.26 ;

√
173210

2.3
= 274.42 (79)

• Anti-strange quark with respect to down quark:

1 +
√

3/8

1−
√

3/8
× 1 = 4.20 ;

√
95

4.7
= 4.50 (80)

• Anti-bottom quark with respect to down quark:

1 +
√

3/8

1−
√

3/8
×

1 +
√

3/8

1
×

1 +
√

3/8

1−
√

3/8
= 28.44 ;

√
4180

4.7
= 29.82 (81)

These ratios made from the Jordan eigenvalues suggest a possible correlation with the square-

root mass ratios, and hence provide a plausible definition of a mass quantum number for

standard model fermions. This definition is completely independent of trace dynamics and
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its Lagrangian, and is a property exclusively of the octonionic algebra. This is completely

analogous to the fact that in the octonionic approach to the standard model, quantisation of

electric charge is deduced from eigenvalues of the U(1)em operator made from the Clifford

algebra Cl(6). Hence, square-root of mass is treated on the same footing as electric charge:

their quantisation is a property of the algebra, not of the dynamics. The difference between

charge quantisation and mass quantisation is that for finding the mass eigenstates, all three

generations must be considered together, not one at a time.

The square-root mass numbers for the charged fermions are shown in Fig. 8. These have

the same fundamental status as quantised electric charge values 1/3, 2/3 and 1.

FIG. 8. The square-root mass numbers for charged fermions. These have the same fundamental

status as quantised electric charge values 1/3, 2/3 and 1.

41

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 July 2021                   doi:10.20944/preprints202101.0474.v4

https://doi.org/10.20944/preprints202101.0474.v4


D. Quantum non-locality

Additional internal spatial dimensions which are not compact, yet very thin, offer a

promising resolution to the quantum non-locality puzzle, thereby lifting the tension with

4D special relativity. Let us consider once again Baez’s cube of Fig. 3. Any of the three

quaternionic spaces containing the unit element 1 can play the role of the emergent 4D

classical space-time in which classical systems evolve. Let us say this classical universe is

the plane (1e6e1e5). Now, the true universe is the full 8D octonionic universe, with the four

internal dimensions being probed [only by] quantum systems. Now we must recall that these

four internal dimensions are extremely thin, of the order of Fermi dimensions, and along

these directions no point is too far from each other, even if their separation in the classical 4D

quaternion plane is billions of light years! Consider then, that Alice at 1 and Bob at e1 are

doing space-like separated measurements on a quantum correlated pair. Whereas the event

at e1 is outside the light cone of 1, the correlated pair is always within each other’s quantum

wavelength along the internal directions, say the path (1e3e2e7e1). The pair influences each

other along this path acausally, because this route is outside the domain of 4D Lorentzian

spacetime and its causal light-cone structure. The internal route is classically forbidden but

allowed in quantum mechanics. This way neither special relativity nor quantum mechanics

needs to be modified. It is also interesting to ask if evolution in Connes time in this 8D

octonionic universe obeying generalised trace dynamics can violate the Tsirelson bound.

The exceptional Jordan algebra is of significance also in superstring theory, where it

has been suggested that there is a relation between the EJA and the vertex operators of

superstrings, and that the vertex operators represent couplings of strings [43, 44]. This

intriguing connection between the EJA, string theory and aikyon theory deserves to be

explored further.

Lastly we mention that the Lagrangian (45) that we have been studying closely resembles

the Bateman oscillator [45] model, for which the Lagrangian is

L = mẋẏ + γ(xẏ − ẋy)− kxy (82)

I thank Partha Nandi for bringing this fact to my attention. Considering that the Bateman

oscillator represents a double oscillator with relative opposite signs of energy for the two
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oscillators undergoing damping, it is important to understand the implications for our theory.

In particular, could this imply a cancellation of zero point energies between bosonic and

fermionic modes, thus annulling the cosmological constant? And also whether this damping

is playing any possible role in generating matter-anti-matter asymmetry?
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V. APPENDIX: PHYSICAL MOTIVATION FOR THE PRESENT THEORY:

QUANTUM (FIELD) THEORY WITHOUT CLASSICAL TIME, AS A ROUTE

TO QUANTUM GRAVITY AND UNIFICATION

In this appendix, we recall from earlier work [4] the motivation for developing a formulation

of quantum theory without classical time, and how doing so leads to a pre-quantum, pre-

spacetime theory which is a candidate for unification of general relativity with the standard

model.

A. Why there must exist a formulation of quantum theory which does not refer

to classical time? And why such a formulation must exist at all energy scales, not just

at the Planck energy scale.

Classical time, on which quantum systems depend for a description of their evolution, is

part of a classical space-time. Such a space-time - the manifold as well as the metric that

overlies it - is produced by macroscopic bodies. These macroscopic bodies are a limiting

case of quantum systems. In principle one can imagine a universe in which there are no

macroscopic bodies, but only microscopic quantum systems. And this need not be just at

the Planck energy scale.

As a thought experiment, consider an electron in a double slit interference experiment,

having crossed the slits, and not yet reached the screen. It is in a superposed state, as
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if it has passed through both the slits. We want to know, non-perturbatively, what is

the spacetime geometry produced by the electron? Furthermore, we imagine that every

macroscopic object in the universe is suddenly separated into its quantum, microscopic,

elementary particle units. We have hence lost classical space-time! Perturbative quantum

gravity is no longer possible. And yet we must be able to describe what gravitational effect

the electron in the superposed state is producing. This is the sought for quantum theory

without classical time! And the quantum system is at low non-Planckian energies, and

is even non-relativistic. This is the sought for formulation we have developed, assuming

only three fundamental constants a priori: Planck length LP , Planck time tP , and Planck’s

constant h̄. Every other dimensionful constant, e.g. electric charge, and particle masses, are

expressed in terms of these three. This new theory is a pre-quantum, pre-spacetime theory,

needed even at low energies.

A system will be said to be a Planck scale system if any dimensionful quantity describing

the system and made from these three constants, is order unity. Thus if time scales of

interest to the system are order tP = 10−43 s, the system is Planckian. If length scales of

interest are order LP = 10−33 cm, the system is Planckian. If speeds of interest are of the

order LP/tP = c = 3× 108 cm/s then the system is Planckian. If the energy of the system

is of the order h̄/tP = 1019 GeV, the system is Planckian. If the action of the system is of

the order h̄, the system is Planckian. If the charge-squared is of the order h̄c, the system

is Planckian. Thus in our concepts, the value 1/137 for the fine structure constant, being

order unity in the units h̄c, is Planckian. This explains why this pre-quantum, pre-spacetime

theory knows the low energy fine structure constant.

A quantum system on a classical space-time background is hugely non-Planckian. Because

the classical space-time is being produced by macroscopic bodies each of which has an action

much larger than h̄. The quantum system treated in isolation is Planckian, but that is strictly

speaking a very approximate description. The spacetime background cannot be ignored -

only when the background is removed from the description, the system is exactly Planckian.

This is the pre-quantum, pre-spacetime theory.

It is generally assumed that the development of quantum mechanics, started by Planck

in 1900, was completed in the 1920s, followed by generalisation to relativistic quantum field

theory. This assumption, that the development of quantum mechanics is complete, is not

necessarily correct - quantisation is not complete until the last of the classical elements -

44

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 July 2021                   doi:10.20944/preprints202101.0474.v4

https://doi.org/10.20944/preprints202101.0474.v4


this being classical space-time - has been removed from its formulation.

The pre-quantum, pre-spacetime theory achieves that, giving also an anticipated theory

of quantum gravity. What was not anticipated was that removing classical space-time from

quantum theory will also lead to unification of gravity with the standard model. And yield

an understanding of where the standard model parameters come from. It is clear that the

sought for theory is not just a high energy Beyond Standard Model theory. It is needed even

at currently accessible energies, so at to give a truly quantum formulation of quantum field

theory. Namely, remove classical time from quantum theory, irrespective of the energy scale.

Surprisingly, in doing so, we gain answers to unsolved low energy aspects of the standard

model and of gravitation.

The process of quantisation works very successfully for non-gravitational interactions,

because they are not concerned with space-time geometry. However, it is not necessarily

correct to apply this quantisation process to spacetime geometry. Because the rules of

quantum theory have been written by assuming a priori that classical time exists. How

then can we apply these quantisation rules to classical time itself? Doing so leads to the

notorious problem of time in quantum gravity - time is lost, understandably. We do not

quantise gravity. We remove classical space-time / gravity from quantum [field] theory.

Space-time and gravity emerge as approximations from the pre-theory, concurrent with the

emergence of classical macroscopic bodies. In this emergent universe, those systems which

have not become macroscopic, are described by the beloved quantum theory we know -

namely quantum theory on a classical spacetime background. This is an approximation to

the pre-theory: in this approximation, the contribution of the said quantum system to the

background spacetime is [justifiably] neglected.

B. Why a quantum theory of gravity is needed at all energy scales, and not just

at the Planck energy scale? And how that leads us to partially redefine what is meant

by Planck scale: Replace Energy by Action.

We have argued above that there must exist a formulation of quantum theory which does

not refer to classical time. Such a formulation must in principle exist at all energy scales,

not just at the Planck energy scale. For instance, in today’s universe, if all classical objects

were to be separated out into elementary particles, there would be no classical space-time
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and we would need such a formulation. Even though the universe today is a low energy

universe, not a Planck energy universe.

Such a formulation is inevitably also a quantum theory of gravity. Arrived at, not by

quantising gravity, but by removing classical gravity from quantum theory. We can also call

such a formulation pure quantum theory, in which there are no classical elements: classical

space-time has been removed from quantum theory. We also call it a pre-quantum, pre-

spacetime theory.

What is meant by Planck scale, in this pre-theory?

Conventionally, a phenomenon is called Planck scale if: the time scale T of interest is of

the order Planck time tP ; and/or length scale L of interest is of the order of Planck length

LP ; and/or energy scale E of interest is of the order Planck energy EP . According to this

definition of Planck scale, a Planck scale phenomenon is quantum gravitational in nature.

Since the pre-theory is quantum gravitational, but not necessarily at the Planck energy

scale, we must partially revise the above criterion, when going to the pre-theory: replace

the criterion on energy E by a criterion on something else. This something else being the

action of the system!

In the pre-theory, a phenomenon is called Planck scale if: the time scale T of interest is of

the order Planck time TP ; and/or length scale L of interest is of the order of Planck length

LP ; and/or the action S of interest is of the order Planck constant h̄. According to this

definition of Planck scale, a Planck scale phenomenon is quantum gravitational in nature.

Why does this latter criterion make sense? If every degree of freedom has an associated

action of order h̄, together the many degrees of freedom cannot give rise to a classical

spacetime. Hence, even if the time scale T of interest and length scale L of interest are

NOT Planck scale, the system is quantum gravitational in nature. The associated energy

scale h̄/T for each degree of freedom is much smaller than Planck scale energy EP . Hence

in the pre-theory the criterion for a system to be quantum gravitational is DIFFERENT

from conventional approaches to quantum gravity. And this makes all the difference to the

formulation and interpretation of the theory. e.g. the low energy fine structure constant

1/137 is a Planck scale phenomenon [according to the new definition] because the square of

the electric charge is order unity in the units h̄c = h̄LP/tP

In our pre-theory, there are three, and only three, fundamental constants: Planck length

LP , Planck time tP and Planck action h̄. Every other parameter, such as electric charge,
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Newton’s gravitational constant, standard model coupling constants, and masses of elemen-

tary particles, are defined and derived in terms of these three constants: h̄, LP and tP .

In the pre-theory the universe is an 8D octonionic universe, as shown in the Fig. 3, the

octonion, reproduced below. The origin e0 = 1 stands in for the real part of the octonion

[coordinate time] and the other seven vertices stand in for the seven imaginary directions. A

degree of freedom [i.e. ‘particle’ or an atom of space-time-matter (STM)] is described by a

matrix q which resides on the octonionic space: q has eight coordinate components qi where

each qi is a matrix. We have replaced a four-vector in Minkowski space-time by an eight-

matrix in octonionic space: and this describes the particle / STM atom. The STM atom

evolves in Connes time, this time being over and above the eight octonionic coordinates. Its

action is that of a free particle in this space: time integral of kinetic energy, the latter being

the square of velocity q̇, where dot is derivative with respect to Connes time. Eight octonionic

coordinates are equivalent to ten Minkowski coordinates, because of SL(2, O) ∼ Spin(9, 1).

The symmetries of this space are the symmetries of the (complexified) octonionic algebra:

they contain within them the symmetries of the standard model, including the 4D-Lorentz

symmetry.

The classical 4D Minkowski universe is one of the three planes (quaternions) intersecting

at the origin e0 = 1. Incidentally the three lines originating from e0 represent complex

numbers. The four imaginary directions not connected to the origin represent directions

along which the standard model forces lie (internal symmetries). Classical systems live on

the 4D quaternionic plane. Quantum systems (irrespective of whether they are at Planck

energy scale) live on the entire 8D octonion. Their dynamics is the sought for quantum

theory without classical time. This dynamics is oblivious to what is happening on the

4D classical plane. QFT as we know it is this pre-theory projected to the 4D Minkowski

space-time. The present universe has arisen as a result of a symmetry breaking in the 8D

octonionic universe: the electroweak symmetry breaking. Which in this theory is actually

the color-electro – weak-Lorentz symmetry breaking. Classical systems condense on to the

4D Minkowski plane as a result of spontaneous localisation, which precipitates the electro-

weak symmetry breaking in the first place. The fact that weak is part of weak-lorentz should

help understand why the weak interaction violates parity, whereas electro-color does not.

Hopefully the theory will shed some light also on the strong-CP problem.
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FIG. 9. The octonions [From Baez [23]].

C. What is Trace Dynamics? : Trace dynamics is quantisation, without imposing

the Heisenberg algebra

In the conventional development of canonical quantisation, the two essential steps are:

1. Quantisation Step 1 is to raise classical degrees of freedom, the real numbers q and p,

to the status of operators / matrices. This is a very reasonable thing to do.

2. Quantisation Step 2 is very restrictive! Impose the Heisenberg algebra [q, p] = ih̄. Its

only justification is that the theory it gives rise to is extremely successful and consistent

with every experiment done to date. In classical dynamics, the initial values of q and p are

independently prescribed. There is NO relation between the initial q and p. Once prescribed

initially, their evolution is determined by the dynamics. Whereas, in quantum mechanics, a
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theory supposedly more general than classical mechanics, the initial values of the operators

q and p must also obey the constraint [q, p] = ih̄. This is highly restrictive!

3. It would be more reasonable if there were to be a dynamics based only on Quantisation

Step 1. And then Step 2 emerges from this underlying dynamics in some approximation.

This is precisely what Trace Dynamics is. Only step 1 is applied to classical mechanics.

q and p are matrices, and the Lagrangian is the trace of a matrix polynomial made from

q and its velocity. The matrix valued equations of motion follow from variation of the

trace Lagrangian. They describe dynamics. This is the theory of trace dynamics developed

by Adler [1–3] - a pre-quantum theory, which we have generalised to a pre-quantum, pre-

spacetime theory [10].

4. This matrix valued dynamics, i.e. trace dynamics, is more general than quantum field

theory, and assumed to hold at the Planck scale, and also whenever background classical

spacetime is absent, no matter what the energy scale. The Heisenberg algebra is shown

to emerge at lower energies, or when space-time emerges, after coarse-graining the trace

dynamics over length scales much larger than Planck length scale. Thus, quantum theory is

midway between trace dynamics and classical dynamics.

5. The moral of the story is that we assume that quantum field theory does not hold at

the Planck scale. Trace dynamics does. QFT is emergent.

6. The other assumption one makes at the Planck scale is to replace the 4-D classical

spacetime manifold by an 8D octonionic spacetime manifold, so as to obtain a canonical

definition of spin. This in turn allows for a Kaluza-Klein type unification of gravity and

the standard model. Also, an 8D octonionic spacetime is equivalent to a 10-D Minkowski

space-time. It is very rewarding to work with 8D octonionic, rather than 10D Minkowski -

the symmetries manifest much more easily.

7. Trace dynamics plus octonionic spacetime together give rise to a highly promising

avenue for constructing a theory of quantum gravity, and of unification. 4D classical space-

time obeying GR emerges as an approximation at lower energies, alongside the emergent

quantum theory.

8. How is this different from string theory? In many ways it IS like string theory, but

without the Heisenberg algebra! The gains coming from dropping [q, p] = ih̄ at the Planck

scale are enormous. One now has a non-perturbative description of pre-space-time at the

Planck scale. The symmetry principle behind the unification is very beautiful: physical
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laws are invariant under algebra automorphisms of the octonions. This unifies the internal

gauge transformations of the standard model with the 4D spacetime diffeomorphisms of

general relativity. The automorphism group of the octonions, the Lie group G2, which

is the smallest of the five exceptional Lie groups, contains within itself the symmetries

SU(3) × SU(2) × U(1) of the standard model, along with the Lorentz symmetry. The

free parameters of the standard model are determined by the characteristic equation of the

exceptional Jordan algebra J3(O), whose automorphism group F4 is the exceptional Lie

group after G2.

D. Normed division algebras, trace dynamics, and relativity in higher dimensions.

And how these relate to quantum field theory and the standard model

Let us consider the four normed division algebras R,C,H,O [Reals, Complex Numbers,

Quaternions, Octonions] in the context of the space-times associated with them, and how

these algebras relate to trace dynamics. This can be understood graphically with the help of

Fig. 7 above, which contains within itself a representation of all the four division algebras.

Let us start with the reals R, represented in the above diagram by the origin e0 = 1.

This direction represents the time coordinate, in all the four different space-times associated

with these four division algebras. The three lines emanating from the origin and connecting

respectively to e3, e5, e6 represent complex numbers C. The three planes intersecting at the

origin represent quaternions H and the full cube represents the octonions O.

Galilean relativity and Newtonian mechanics: This is related to the quaternions, and we

assume each of the three planes intersecting at the origin represent absolute Newtonian space

[say in the plane (1, e1, e5, e6) we set e1 = x̂, e5 = ŷ, e6 = ẑ]. Galilean invariance is assumed,

and the spatial symmetry group is SO(3), the group of rotations in three dimensional space;

this is also the automorphism group Aut(H) of the quaternions. The origin represents

absolute Newtonian time, and we have Newtonian dynamics in which the action principle

for the free particle represented by the configuration variable q, which is a three-vector, is

simply

S =

∫
dt q̇2 (83)

The generalisation to many-particle systems interacting via potentials is obvious and well-
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known. Newtonian gravity can be consistently described in this framework. The dynamical

variables, being real-number valued three-vectors, all commute with each other. The impor-

tant approximation made in the physical space is that by hand we set e21 = e22 = e23 = 1,

instead of −1. This of course is what gives us the Newtonian absolute space (Euclidean

geometry) and absolute time, and the manifold R3 for physical space. The associated alge-

bra is R × H, in an approximate sense, which becomes precise only in special relativity, as

discussed below.

[The algebra C represents a 2D physical space, and R × C represents a space-time for

Newtonian mechanics in absolute two-space represented by C, and absolute time R. The

homomorphism SL(2,R) ∼ SO(2, 1) suggests that we can relate 2x2 real-valued matrices

to a 2+1 relativistic space-time. This observation becomes very relevant when we relate

normed division algebras to relativity.]

To go from here to trace dynamics, we will raise all dynamical variables from three-vectors

to three-matrices. Thus q̂ is a matrix-valued three-vector whose three spatial components

q̂1, q̂2, q̂3 are matrices whose entries are real numbers. The Lagrangian for a free particle

will now be the trace of the matrix polynomial ˙̂q
2
, and hence the action is

S =

∫
dt Tr[ ˙̂q

2
] (84)

The underlying three-space continues to have the symmetry group SO(3) and the dynamics

obeys Galilean invariance; this is implemented on the trace dynamics action via the unitary

transformations generated by the generators of SO(3).

Special relativity, Complex quaternions, and the algebra R× C×H:

Consider the quaternionic four vector x = x0e0 + x1e1 + x2e2 + x4e4 and the correspond-

ing position four-vector for a particle in special relativity: qi = q0e0 + q1e1 + q2e2 + q4e4.

One can define the four-metric on this Minkowski space-time whose symmetry group is the

Lorentz group SO(3, 1) having the universal cover Spin(3,1) isomorphic to SL(2, C). The

complex quaternions generate the boosts and rotations of the Lorentz group SO(3,1). They

can be used to obtain a faithful representation of the Clifford algebra Cl(2) and fermionic

ladder operators constructed from this algebra can be used to generate the Lorentz alge-

bra SL(2,C). Also, Cl(2) can be used to construct left and right handed Weyl spinors as

minimal left ideals of this Clifford algebra, and as is well known the Dirac spinor and the
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Majorana spinor can be defined from the Weyl spinors. Cl(2) also gives the vector and scalar

representations of the Lorentz algebra. These results are lucidly described in Furey’s Ph. D.

thesis [6–8] as well as also in her video lecture series on standard model and division algebras

https://www.youtube.com/watch?v=GJCKCss43WI&ab˙channel=CohlFureyCohlFurey

The above relation between the Clifford algebra Cl(2) and the Lorentz algebra SL(2, C)

strongly suggests, keeping in view the earlier conclusions for Cl(6) and the standard model

and the octonions [6–8], that the Cl(2) algebra describes the left handed neutrino and the

right-handed anti-neutrino, and a pair of spin one Lorentz bosons. This is confirmed by

writing the following trace dynamics Lagrangian and action on the quaternionic space-time

of special relativity, thereby generalising the relativistic particle S = −mc
∫
ds:

S

C0

=
a0
2

∫
dτ

τPl
Tr

[
q̇†B+i

α

L
q†B+a0β1

(
q̇†F + i

α

L
q†F

)]
×
[
q̇B+i

α

L
qB+a0β2

(
q̇F + i

α

L
qF

)]
(85)

where a0 ≡ L2
P/L

2. This Lagrangian is identical in form to the one studied earlier in the

present paper, but with a crucial difference that it is now written on 4D quaternionic space-

time, not on 8D octonionic space-time. Thus q̇B and qB have four components between

them, not eight: qB = qBe2 e2 + qBe4 e4; q̇B = q̇Be0 e0 + q̇Be1 e1. Similarly, the fermionic

matrices have four components between them, not eight. Thus qF = qFe2 e2 + qFe4 e4; q̇F =

q̇Fe0 e0 + q̇Fe1 e1

This has far-reaching consequences. Consider first the case where we set α = 0. The

Lagrangian then is

S

C0

=
a0
2

∫
dτ

τPl
Tr

[
q̇†B + a0β1q̇

†
F

]
×
[
q̇B + a0β2q̇F

]
(86)

By opening up the terms into their coordinate components, the various degrees of freedom

can be identified with the Higgs, the Lorentz bosons, the neutral weak isospin boson, and

two neutrinos. The associated space-time symmetry is the Lorentz group SO(3, 1) and the

associated Clifford algebra is Cl(2), reminding us again of the homomorphism SL(2,C) ∼

SO(3, 1).

When α is retained, the Lagrangian describes Lorentz-weak symmetry of the leptons:

electron, positron, two neutrinos of the first generation, the Higgs, two Lorentz bosons, and

the three weak isospin bosons. To our understanding, the associated Clifford algebra is still
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Cl(2) but now all the quaternionic degrees of freedom have been used in the Lagrangian

and in the construction of the particle states.. What we likely have here is the extension

of the Lorentz algebra by an SU(2), as shown in Figure 8 below, borrowed from our earlier

work [4]. It remains to be understood if now the homomorphism SL(2,H) ∼ SO(5, 1) comes

into play. And also, whether a quaternionic triality [46] could explain the existence of three

generations of leptons. These aspects are currently under investigation.

FIG. 10. The maximal sub-groups of G2 and their intersection [From Singh [4]].

It is now only natural that this trace dynamics be extended to the last of the division

algebras, the octonions, so as to construct an octonionic special relativity. This amounts to

extending the Lorentz algebra by U(3), as can be inferred from Fig. 8.

Octonionic special relativity, complex octonions, and the algebra R× C×H×O

The background space-time is now an octonionic space-time with coordinate vector x =

x0e0 + x1e1 + x2e2 + x4e4 + x3e3 + x5e5 + x6e6 + x7e7, and the corresponding eight-vector for
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a particle in this octonionic special relativity is qi = q0e0 + q1e1 + q2e2 + q4e4 + q3e3 + q5e5 +

q6e6 + q7e7. In ordinary relativity, the qi are real numbers, but now in trace dynamics they

are bosonic or fermionic matrices. The space-time symmetry group is the automorphism

group G2 of the octonions, shown in Fig. 8, along with its maximal sub-groups, which reveal

the standard model along with its 4D Lorentz symmetry. The Lagrangian is the same as in

(86) above, but now written on the 8D octonionic space-time. As a result, qB and qF have

component indices (3, 5, 6, 7) whereas their time derivatives have indices (0, 1, 2, 4). This is

the Lagrangian analysed in the main part of the present paper and it now includes quarks as

well as leptons, along with all twelve standard model gauge bosons plus two Lorentz bosons.

We note the peculiarity that the weak part of the Lorentz-weak symmetry of the leptons,

obtained by extending the Lorentz symmetry, intersects with the electr-color sector provided

by U(3) ∼ SU(3) × U(1). This strongly suggests that the lepton part of the weak sector

can be deduced from the electro-color symmetry. This is confirmed by the earlier work of

Stoica [9], Furey [8] and our own earlier work [4].

We see that this Lagrangian is a natural generalisation of Newtonian mechanics and 4D

special relativity to the last of the division algebras, the octonions, which represent a 10D

Minkowski space-time because of the homomorphism SL(2,O) = SO(9, 1).

Emergent quantum field theory

In the entire discussion above, relating generalised trace dynamics to the standard model,

we have made no reference to quantum field theory. The pre-quantum, pre-space-time

matrix-valued Lagrangian dynamics which we have constructed above, reveals the stan-

dard model and its symmetries (including the Lorentz symmetry) without any fine tuning.

Quantum field theory, and classical space-time, are emergent from this pre-theory, after

coarse-graining the underlying theory over time-scales much larger than Planck time, in the

spirit of Adler’s trace dynamics.

String theory is pre-space-time, but not pre-quantum. Trace dynamics is pre-quantum,

but not pre-space-time. The octonionic theory [O-theory] is pre-space-time and pre-

quantum. It generalises trace dynamics to a pre-quantum, pre-space-time theory. The

O-theory is not intended as an alternative to quantum field theory. Rather, it is applica-

ble in those circumstances when a background classical time is not available for writing

down the rules of QFT. Then, the O-theory also reveals itself to be pre-quantum. When a
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background classical time becomes available, O-theory coincides with QFT and is no longer

pre-quantum. O-theory reveals the symmetries of the standard model without any fine-

tuning, and also shows a route for determining the free parameters of the standard model.

This comes about because the background non-commutative spacetime fixes the properties

of the allowed elementary particles. In this way, O-theory has a promising potential to tell

us, in a mathematically precise way, where the standard model, and classical space-time,

come from. The O-theory is not a Grand Unified Theory [GUTs]. GUTs determine inter-

nal symmetries by making specific choices for the internal symmetry group, while classical

space-time and QFT are kept intact. In contrast to this, the O-theory retains neither QFT

nor a classical space-time. The symmetries of O-theory are a unification of internal and

spacetime symmetries, in the spirit of a Kaluza-Klein theory.

The diagram below lists the three main steps in which the octonionic theory is developed.

Current investigation is focused at the third step.

The emergence of standard quantum field theory on a classical space-time background is

a result of coarse-graining and spontaneous localisation and has been described in our earlier

papers [10, 12]. Spontaneous localisation gives rise to macroscopic classical bodies and 4D

classical space-time. From the vantage point of this space-time those STM atoms which have

not undergone spontaneous localisation appear, upon coarse-graining of their dynamics, as

they are conventionally described by quantum field theory on a 4D classical space-time.

Operationally, the transition from the action of the pre-spacetime pre-quantum theory is

straightforward to describe. Suppose the relevant term in the action of the pre-theory is

denoted as
∫
dτ

[
Tr[T1] + Tr[T2] + Tr[T3]

]
. Say for instance the three terms respectively

describe the electromagnetic field, the action of a W boson on an electron, and the action

of a gluon on an up quark. Then, the corresponding action for conventional QFT will be

recovered as:

∫
dτ

[
Tr[T1] + Tr[T2] + Tr[T3]

]
−→

∫
dτ

∫
d4x

[
[T1QFT ] + [T2QFT ] + [T3QFT ]

]
(87)

The trace has been replaced by the space-time volume integral, and each of the three terms

have correspondingly been replaced by the conventional field theory actions for the three

cases: conventional action for the electromagnetic field, for the W boson acting on the

electron, and for the gluon acting on the up quark. In this way, QFT is recovered from the
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FIG. 11. The pre-space-time, pre-quantum octonionic theory in three key steps. The degrees of

freedom are ‘atoms of space-time-matter’ [STM]. An STM atom is an elementary fermion along

with all the fields that it produces. The action for an STM atom resembles a 2-brane in a 10+1

dimensional Minkowski spacetime. The fundamental universe is made of enormously many STM

atoms. From here, quantum field theory is emergent upon coarse-graining the underlying funda-

mental theory.

pre-theory.

However, by starting from the pre-theory, we can answer questions which the standard

model cannot answer. We know now why the standard model has the symmetries it does,

and why the dimensionless free parameters of the standard model take the values they do.

These are fixed by the algebra of the octonions which defines the 8D octonionic space-

time in the pre-theory. While this is work in progress, it provides a promising avenue for

understanding the origin of the standard model and its unification with gravitation.
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