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Abstract
We have recently proposed a pre-quantum, pre-space-time theory as a matrix-valued La-
grangian dynamics on an octonionic space-time. This pre-theory offers the prospect of
unifying the internal symmetries of the standard model with gravity. It can also predict
the values of free parameters of the standard model, because these parameters arising in
the Lagrangian are related to the algebra of the octonions which define the underlying non-
commutative space-time on which the dynamical degrees of freedom evolve. These free
parameters are related to the algebra J3(Q) [exceptional Jordan algebra| which in turn is
related to the three fermion generations. The exceptional Jordan algebra [also known as the
Albert algebra] is the finite dimensional algebra of 3x3 Hermitean matrices with octonionic
entries. Its automorphism group is the exceptional Lie group Fy. These matrices admit a
cubic characteristic equation whose eigenvalues are real and depend on the invariant trace,
determinant, and an inner product made from the Jordan matrix. Also, there is some evi-
dence in the literature that the group F} could play a role in the unification of the standard
model symmetries, including the Lorentz symmetry. The octonion algebra is known to cor-
rectly yield the electric charge values (0, 1/3, 2/3, 1) for standard model fermions, via the
eigenvalues of a U(1) number operator, identified with U(1).,,. In the present article, we
use the same octonionic representation of the fermions to compute the eigenvalues of the
characteristic equation of the Albert algebra, and compare the resulting eigenvalues with
the known mass ratios for quarks and leptons. We find that the ratios of the eigenvalues cor-
rectly reproduce the [square root of the] known mass ratios for quarks and charged leptons.
We also propose a diagrammatic representation of the standard model bosons, Higgs and

three fermion generations, in terms of the octonions, exhibiting an Fj and Fg symmetry. In
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conjunction with the trace dynamics Lagrangian, the Jordan eigenvalues also provide a first
principles theoretical derivation of the low energy value of the fine structure constant, yield-
ing the value 1/137.04006. The Karolyhazy correction to this value gives an exact match
with the measured value of the constant, after assuming a specific value for the electro-weak

symmetry breaking energy scale.
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I. INTRODUCTION

We have recently proposed a pre-quantum, pre-space-time theory, which is a matrix-
valued Lagrangian dynamics, written on an octonionic space-time. This theory generalises
Adler’s theory of trace dynamics [1-3], which is a pre-quantum theory on a four-dimensional
Minkowski space-time [4, 5]. It is a Lagrangian dynamics for Yang-Mills fields, fermions, and
gravity. The algebra automorphisms of the octonions, which form the smallest exceptional
Lie group Gs, play the role of unifying general coordinate transformations (i.e. space-time
diffeomorphisms) with internal gauge transformations. We wrote down the Lagrangian for
one generation of standard model fermions and gauge bosons, in this pre-theory. A Clifford
algebra C1(6,C') constructed from the octonion algebra is used to make spinors [‘minimum
left ideals’ of C(6, C')] which represent the eight fermions of one generation, and their anti-
particles, and their electro-color symmetry. Another C1(6,C) made from the octonions
describes the action of the Lorentz-weak symmetry on these octonions. These aspects of
one-generation of fermions are confirmed by the Lagrangian dynamics constructed in the
pre-theory. Our results are in agreement with the earlier work of Furey [6-8] and Stoica
[9] for the Clifford algebra C1(6,C') based description of one generation of standard model
fermions. In our work, quantum field theory of the standard model emerges from the pre-
theory, at energies much lower than the Planck scale. The Appendix in Section V below
summarises the theoretical background of the present article, as developed in our earlier
papers [4, 10-12]. The present paper should ideally be read as a continuation of [4]. We
explain how the octonionic space-time, on which the fermions reside, fixes the dimensionless
free parameters of the standard model [which appear in the octonionic Lagrangian| as a

consequence of the properties of the algebra of the octonions, this being the exceptional


https://doi.org/10.20944/preprints202101.0474.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2021 d0i:10.20944/preprints202101.0474.v4

Jordan algebra J3(8).

The possible connection between division algebras, exceptional Lie groups, and the stan-
dard model has been a subject of interest for many researchers in the last few decades
[6-9, 13-32]. Our own interest in this connection stems from the following observation [4].
In the pre-geometric, pre-quantum theory of generalised trace dynamics, the definition of
spin requires 4D space-time to be generalised to an 8D non-commutative space. In this
case, an octonionic space is a possible, natural, choice for further investigation. We found
that the additional four directions can serve as ‘internal’” directions and open a path towards
a possible unification of the Lorentz symmetry with the standard model, with gravitation
arising only as an emergent phenomenon. Instead of the Lorentz transformations and in-
ternal gauge transformations, the symmetries of the octonionic space are now described by
the automorphisms of the octonion algebra. Remarkably enough, the symmetry groups of
this algebra, namely the exceptional Lie groups, naturally have in them the desired sym-
metries [and only those symmetries, or higher ones built from them] of the standard model,
including Lorentz symmetry, without the need for any fine tuning or adjustments. Thus
the group of automorphisms of the octonions is G9, the smallest of the five exceptional
Lie groups Gs, Fy, Fg, E7, Eg. The group Gs has two intersecting maximal sub-groups [33],
SU(3) x U(1) and SU(2) x SU(2), which between them account for the fourteen genera-
tors of GGy, and can possibly serve as the symmetry group for one generation of standard
model fermions. The complexified Clifford algebra CI(6,C') plays a very important role in
establishing this connection. In particular, motivated by a map between the complexified
octonion algebra and C1(6,C'), electric charge is defined as one-third the eigenvalue of a
U(1) number operator, which is identified with U(1).,, [6, 8].

Describing the symmetries SU(3) x U(1) and SU(2) x SU(2) of the standard model [with
Lorentz symmetry now included] requires two copies of the Clifford algebra C1(6, C') whereas
the octonion algebra yields only one such independent copy. It turns out that if boundary
terms are not dropped from the Lagrangian of our theory, the Lagrangian describes three
fermion generations [[4] and Section III below in the present paper|, with the symmetry group
now raised to Fy. This admits three intersecting copies of Go, with the SU(2) x SU(2) in the
intersection, and a Clifford algebra construction based on the three copies of the octonion
algebra is now possible [34]. Attention thus shifts to investigating the connection between

Fy and the three generations of the standard model.
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F} is also the group of automorphisms of the exceptional Jordan algebra [20, 35, 36]. The
elements of the algebra are 3x3 Hermitean matrices with octonionic entries. This algebra
admits an important cubic characteristic equation with real eigenvalues. Now we know that
the three fermion generations differ from each other only in the mass of the corresponding
fermion, whereas the electric charge remains unchanged across the generations. This moti-
vates us to ask: if the eigenvalues of the U(1) number operator constructed from the octonion
algebra represent electric charge, what is represented by the eigenvalues of the exceptional
Jordan algebra? Could these eigenvalues bear a relation with mass ratios of quarks and
leptons? This is the question investigated in the present paper and answered in the affir-
mative. Using the very same octonion algebra which was used to construct a state basis for
standard model fermions, we calculate these eigenvalues. Remarkably, the eigenvalues are
very simple to express, and bear a simple relation with electric charge. We describe how they
relate to mass ratios. In particular we find that the ratios of the eigenvalues match with the
square root of the mass ratios of charged fermions. [These eigenvalues are invariant under
algebra automorphisms, the automorphism group being Fj, and the automorphisms of one
chosen coordinate representation of the fermions, as below, give other equivalent coordinate
representations for the same set of fermions. Octonions serve as coordinate systems on the
eight dimensional octonionic space-time manifold on which the elementary fermions live.

The Appendix at the end of this paper reviews this 8D space-time picture].

Thus we are asking that when the octonions representing the three fermion generations are
used as the off-diagonal entries in the 3x3 Jordan matrices, and the diagonal entries are the
electric charges, what is the physical interpretation of the eigenvalues of the characteristic
equation of J3(@)? These eigenvalues are made from the invariants of the algebra, and
hence are themselves invariants. So they are likely to carry significant information about
the standard model. This is what we explore in the present paper, and we argue that these
eigenvalues inform us about mass-ratios of elementary particles, and about the coupling

constants of the standard model.

Subsequently in the paper we propose a diagrammatic representation, based on octonions
and F}, of the fourteen gauge bosons, and the (8x2)x3 = 48 fermions of three generations
of standard model, along with the four Higgs. We attempt to explain why there are not
three generations of bosons, and re-express our Lagrangian in a form which explicitly reflects

this fact. We also argue as to how this Lagrangian might directly lead to the characteristic
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equation of the exceptional Jordan algebra, and reveal why the eigenvalues might be related
to mass. Furthermore, we identify the standard model coupling constants in our Lagrangian,
and by relating them to the eigenvalues of J3(Q) we provide a theoretical derivation of the

asymptotic fine structure constant value 1/137.xxx

It is known that since Fj does not have complex representations, it cannot give a repre-
sentation of the fermion states. It has hence been suggested that the correct representation
could come from the next exceptional Lie group, Eg, which is the automorphism group of
the complexified exceptional Jordan algebra. This aspect is currently being investigated by
several researchers, including the present author. However, the standard model free param-
eters certainly cannot come from the characteristic equation related to Eg, because the roots
of this equation are not real numbers in general. It is clear that the parameters must then
come from the roots of the characteristic equation of F);, which in a sense is the self-adjoint
counterpart of the equation for Ejg. It is in this spirit that the present investigation is carried
out, and the results we find suggest that the present approach is indeed the correct one,
as regards determining the model parameters. One must investigate Ejg for representations,

but Fj for the parameter values.

The plan of the paper is as follows. In the next section we recall the exceptional Jordan
algebra, construct the octonionic representation of the three fermion generations, calculate
the roots of the characteristic equation, and make some comments on mass-ratios and the
roots. In Section III we construct the trace dynamics Lagrangian for three generations,
along with the bosons, and we give a theoretical derivation of the asymptotic fine structure
constant from first principles. In Section IV we calculate an additional set of eigenvalues
for the fermions, generation wise; these provide evidence for violation of lepton universality.
We then explain how the first set of Jordan eigenvalues in fact act as a definition of mass,
quantised in units of Planck mass. We then show that mass ratios of charged fermions are
obtained from these eigenvalues. In the Appendix in Section V we recall the motivation
in earlier work, for developing this pre-theory, and we also include a few new insights. In
particular we report on a 4D quaternionic version of the pre-theory, which describes the
Lorentz-weak interaction of the leptons, based on an extension of the Lorentz algebra by
SU(2). In order to include quarks and the strong interaction, this 4D quaternionic pre-theory

is extended to eight octonionic dimensions.
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II. THREE FERMION GENERATIONS, AND PHYSICAL EIGENVALUES FROM
THE CHARACTERISTIC EQUATION OF THE EXCEPTIONAL JORDAN ALGE-
BRA

The exceptional Jordan algebra [EJA] J3(Q) is the algebra of 3x3 Hermitean matrices
with octonionic entries [21, 29, 30, 35]

& 3 %

X(§x) = |a5 & n (1)

Ty 1] &3

It satisfies the characteristic equation [21, 29, 30]
XY= Tr(X)X? 4 S(X)X — Det(X) =0 Tr(X) =&+ & + & @)

which is also satisfied by the eigenvalues A\ of this matrix

N —Tr(X)N + S(X)\ — Det(X) =0 (3)
Here the determinant is
3
Det(X) = 515253 + 2R6($1[L‘21’3) — Z fZZL'Z{L‘;k (4)
1
and S(X) is given by
S(X) = &6 — xgah + E&s — ma] + &85 — w520 (5)

The diagonal entries are real numbers and the off-diagonal entries are (real-valued) octonions.
A star denotes an octonionic conjugate. The automorphism group of this algebra is the
exceptional Lie group Fjy. Because the Jordan matrix is Hermitean, it has real eigenvalues

which can be obtained by solving the above-given eigenvalue equation.

In the present article we suggest that these eigenvalues carry information about mass

ratios of quarks and leptons of the standard model, provided we suitably employ the octo-
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nionic entries and the diagonal real elements to describe quarks and leptons of the standard
model. Building on earlier work [6, 7, 9] we recently showed that the complexified Clifford
algebra C1(6,C) made from the octonions acting on themselves can be used to obtain an
explicit octonionic representation for a single generation of eight quarks and leptons, and
their anti-particles. In a specific basis, using the neutrino as the idempotent V', this repre-
sentation is as follows [4, 6]. The « are fermionic ladder operators of CI(6,C') (please see

Eqn. (34) of [4]).

V= %(37 [V,, Neutrino]

alV = %(65 +ieq) X V = 3(65 + iey) [Vaa1 Anti — down quark]

oV = %(63 +ie) X V = 2(63 + ieq) [Vaaz Anti — down quark]
alV = %(66 +iey) x V = 3(66 + ie) [Vaaz Anti — down quark] .
alalV = 3(64 + ies) Va1 Up quark] o

alalV == %(61 + ie3) Va2 Up quark]

1
abalV = 1(62 + ieg) [Vus Up quark]

1
adadalV = —Z(z + e7) [Vey Positron]

The anti-particles are obtained from the above representation by complex conjugation [6].

Note: Eqn. (33) of [4] for the idempotent has an incorrectly written expression on the
right hand side. Instead of ie;/2 as written there, the correct expression is (1 + ie7)/2 [37].
Hence the idempotent V' in that paper should be (1 4 ie7)/2, not ie;/2. It has now been
found however, that identification of the neutrino with the idempotent V = (1 +ie;)/2 does
not give the desired values for mass-ratios and coupling constants reported in the present
paper [37]. We hence propose the Majorana particle interpretation for the neutrino, and
identify the neutrino with (V' — V..)/2 where V.. is the complex conjugate of V. Hence
the neutrino is [(1 + ie7) — (1 — ie7)]/4 = ie7/2, so that the octonionic representation of
the neutrino remains the same as shown in [4] and is the one used in the present paper.
Our results here seem to suggest that the neutrino is a Majorana particle, and not a Dirac

particle.

Note: In Eqn. (34) of [4] the denominator in the expression for the positron should be 4,

8
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not 8. The correct expression for the positron is shown above in Eqn. (6).
In the context of the projective geometry of the octonionic projective plane QP? it has

been shown by Baez [23]| that upto automorphisms, projections in EJA take one of the

following four forms, having the respective invariant trace 0, 1, 2, 3.

Po=1000 (7)

p1=1000 (8)

ps= 1010 (10)
001

Since it has earlier been shown by Furey [6] that electric charge is defined in the division
algebra framework as one-third of the eigenvalue of a U(1) number operator made from the
generators of the SU(3) in Ga, we propose to identify the trace of the Jordan matrix with
the sum of the charges of the three identically charged fermions across the three genera-
tions. Thus the trace zero Jordan matrix will have diagonal entries zero, and will represent
the (neutrino, muon neutrino, tau-neutrino). The trace one Jordan matrix will have di-
agonal entries (1/3,1/3,1/3) and will represent the (anti-down quark, anti-strange quark,
anti-bottom quark). [Color is not relevant for determination of mass eigenvalues, and hence
effectively we have four fermions per generation: two leptons and two quarks, after suppress-
ing color|. The trace two Jordan matrix will have entries (2/3,2/3,2/3) and will represent
the (up quark, charm, top). Lastly, the trace three Jordan matrix will have entries (1, 1, 1)

and will represent (positron, anti-muon, anti-tau-lepton).

9
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We have thus identified the diagonal real entries of the four Jordan matrices whose eigen-
values we seek. We must next specify the octonionic entries in each of the four Jordan
matrices. Note however that the above representation of the fermions of one generation is
using complex octonions, whereas the entries in the Jordan matrices are real octonions. So
we devise the following scheme for a one-to-one map from the complex octonion to a real
octonion. Since we are ignoring color, we pick one out of the three up quarks, say (e4+ies),
and one of three anti-down quarks, say (es + ies). Since the representation for the electron
and the neutrino use e; and a complex number, it follows that the four octonions we have
picked form the quaternionic triplet (ey,es,e7) [we use the Fano plane convention shown
in the figure below]. Hence the four said octonions are in fact complex quaternions, thus

belonging to the general form

(ap +iay) + (ag + iag)es + (ag + ias)es + (ag + taz)er (11)

where the eight a-s are real numbers. By definition, we map this complex quaternion to the

following real octonion:

ap + aje; + asez + azes + age4 + a4€5 + A7€g + Agey (12)

Note that the four real coefficients in the original complex quaternion have been kept in
place, and their four imaginary counterparts have been moved to the octonion directions
(e1, €2, e3,€6) now as real numbers. Clearly, the map is reversible, given the real octonion
we can construct the equivalent complex quaternion representing the fermion. We can now
use this map and construct the following four real octonions for the neutrino, anti-down
quark, up quark and the positron, respectively, after comparing with their complex octonion

representation above.

V, = 567 — 566 (13)

Vaa = %165 + 264 — 265 + %163 (14)

V, = ;164 + 265 — %164 + ieg (15)

Vo+ = —i — ;167 — —iel — 267 (16)

10
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FIG. 1. The Fano plane.

These four real octonions will go, one each, in the four different Jordan matrices whose
eigenvalues we wish to calculate. Next, we need the real octonionic representations for the
four fermions [color suppressed] in the second generation and the four in the third generation.
We propose to build these as follows, from the real octonion representations made just above
for the first generation. Since Fj has the inclusion SU(3) x SU(3), one SU3) being for color
and the other for generation, we propose to obtain the second generation by a 27 /3 rotation
on the first generation, and the third generation by a 27 /3 rotation on the second generation.
By this we mean the following construction, for the four respective Jordan matrices, as below.
It is justified as follows: One of the two SU(3) is color SU(3). and has already been used
up to write down the three different color states of each quark, with one pair of imaginary

octonion directions fixed for a given color. The other SU(3) is for generations. It is then

11
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evident from symmetry considerations that the corresponding higher generation quark of a
given color can be obtained by 27/3 rotation on the first generation quark, while keeping
the selected pair of octonionic directions fixed.

Up quark / Charm / Top: The up quark is (e4/4 + e3/4) We think of this as a ‘plane’
and rotate this octonion by 27/3 by left multiplying it by e?7¢4/3 = —1/2 4 v/3e4/2. This
will be the charm quark V.. Then we left multiply the charm quark by e?™4/3 to get the top

quark V;. Hence we have,

47 8t 87 8 8
(17)

We have used the conventional multiplication rules for the octonions, which are reproduced

V, = (=1/2+V3e4/2) x V,, = (—1/2+/3e4/2) x (164 + 162) = —164—162—£—£61

el el e2 ed ed eb eb er
el 1 el e2 ed ed e5 eb er
el el -1 ed -e2 e7 eb -e5 -e3
e2 e2 -e4 -1 el eb -e3 er -e6
ed ed e2 -e1 -1 -eb e7 ed -eb
e3 e3 -e7 -e5 eb -1 e2 -ed el
e5 ed -e6 e3 -e7 -e2 -1 el ed
eb e6 e5 -e7 -3 ed -e1 -1 e2
e7 e’ e3 eb eb -e1 -e4 -e2 -1

FIG. 2. The multiplication table for two octonions. Elements in the first column on the left, left
multiply elements in the top row.

below in Fig. 2, for ready reference. Similarly, we can construct the top quark by a 27/3

12
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rotation on the charm:

1 1 V3 V3
8 8 8 8 (18)

Vi = (=1/2+V3e4/2) x V, = (—1/2 + V/3e4/2) x (——64 — ey — ~—— — X

Next, we construct the anti-strange V,, and anti-bottom V,,, by left-multiplication of the

anti-down quark V,, by e*7¢s/3.

1 V3 1 V3 1 1
Vas = (—§+763> X Vaa = <—§+763> X (Z€5+Ze3)

(19)
T8 8gtTtg Tty
1 V3 1 1 V3 V3
fo={mg ) (g% g%t g2 %
(20)
1 V3 1 V3
= ——€5 — —€y — —€3 + —

Next, we construct the octonions for the anti-muon V,, and anti-tau-lepton V,, by left

multiplying the positron V,+ by e?7¢1/3

Vap = <—— + ?61) X <_411 — l67) o
V3 3
8

:_€1+ —er + +?

8 8 3

sé1+ ger+— + —-¢€3

1 V3 11 V3 V3
2 T ) g TRT TR TR

(22)

Lastly, we construct the octonions V,,, for the muon neutrino and V, for the tau neutrino,

by left multiplying on the electron neutrino V,, with e?7¢s/3

—— 4+ —e€ | X eg=——€5 — — (23)

1 V3 \ 1 1 3
2 2 27 4% 4

13
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Vi, = (—% + ?%) X (—366 — ?) = —ieﬁ + \/Tg (24)

We now have all the information needed to write down the four Jordan matrices whose
eigenvalues we will calculate. Diagonal entries are electric charge, and off-diagonal entries
are octonions representing the particles. Using the above results we write down these four

matrices explicitly. The neutrinos of three generations

0 V. V),
Xo= 1V 0 Vi, (25)

v

‘/VM VV*T 0

The anti-down set of quarks of three generations [anti-down, anti-strange, anti-bottom]:

% Vaa Vs
Xu= |V 1V (26)
Vas Vi 3

The up set of quarks for three generations [up, charm, top]

Xo=|Vy § Vi (27)
Ve Vg

The positively charged leptons of three generations [positron, anti-muon, anti-tau-lepton]

L Ver Vg
Xy = VA 1 Vi, (28)
Vo Vi 1

Next, the eigenvalue equation corresponding to each of these Jordan matrices can be writ-
ten down, after using the expressions given above for calculating the determinant and the
function S(X). Tedious but straightforward calculations with the octonion algebra give the

following four cubic equations:
Neutrinos: We get Tr(X) = 0,5(X) = —3/4, Det(X) = 0, and hence the cubic equation

14
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and roots

s 3 ' 3 3
N—2A=0  ROOTS: (—ﬁ \/; 0, V2 \£> (29)

Anti-down-quark + its higher generations [anti-down, anti-strange, anti-bottom]|: We get

Tr(X)=1,8(X)=—1/24, Det(X) = —19/216, and the following cubic equation and roots

oors. 1111 [ .

Up quark + its higher generations [up, charm, top]: We get Tr(X) = 2, S(X) = 23/24, Det(X) =

5/108 and the following cubic equation and roots:

23 )
3_2 2 Uy Y
A AT 24)\ 108

roors: 2 \[1 22 f .

Positron + its higher generations [positron, anti-muon, anti-tau-lepton]: We get Tr(X) =

3,5(X)=3-3/8,Det(X) =1-3/8 and the following cubic equation and roots:

3 3
N3N+ (3-S|A=(1-2)=
3 3
ROOTS : 1—4/=, 1,1 =
\/;’ ! +\/;

As expected from the known elementary properties of cubic equations, the sum of the roots

(32)

is Tr(X), their product is Det(X), and the sum of their pairwise products is S(X). In-
terestingly, this also shows that the sum of the roots is equal to the total electric charge
of the three fermions under consideration in each of the respective cases. Whereas S(X)
and Det(X) are respectively related to an invariant inner product and an invariant trilinear
form constructed from the Jordan matrix, their physical interpretation in terms of fermion

properties remains to be understood.

The roots exhibit a remarkable pattern. In each of the four cases, one of the three roots is
equal to the corresponding electric charge, and the other two roots are placed symmetrically

on both sides of the middle root, which is the one equal to the electric charge. All three
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roots are positive in the up quark set and in the positron set, whereas the neutrino set
and anti-down quark set have one negative root each, and the neutrino also has a zero
root. It is easily verified that the calculation of eigenvalues for the anti-particles yields
the same set of eigenvalues, upto a sign. In other words, the Jordan eigenvalue for the
anti-particle is opposite in sign to that for the particle. The roots are summarised in the
table below, and we see that they are composed of the electric charge, and the octonionic
magnitude associated with the respective particle. [The octonionic magnitude L%/L? is the
sum Y z;x’ over the three identically charged fermions of three generations, which appears

in Equation (5) above.] One expects these roots to relate to masses of quarks and leptons

The Jordan Eigenvalues

Neu.trinos: o ﬁ 0 @
agntitude 2 2

1/3 Quarks: ]' 3 1 1 \/g
Mag. 3/8 - - Py — + =
3 8 3 3 8
2/3 Quarks g . \/§ g g _|_ \/g
Mag. 3/8 3 8 3 3 8
Charged Leptons 3 3
Mag. 3/8 1 L \/ = 1 —l— \/ =
8] | 3

These are all numbers in Base four n

FIG. 3. The eigenvalues of the exceptional Jordan algebra for the various fermions. The eigenvalues
are made from electric charge and the octonionic magnitude, and represent charge-mass of the
corresponding fermion, in the pre-theory. The corresponding eigenmatrices [29] represent charge-
mass eigenstates. The SU(3). and U(1) constructed from the C(6) and the octonion algebra for
one generation defines electric charge. However to define charge-mass and mass one must deal with
F, and all three generations, not just one.
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for various reasons, and principally because the automorphism group of the complexified
octonions contains the 4D Lorentz group as well, and the latter we know relates to gravity.
Since mass is the source of gravity, we expect the Lorentz group to be involved in an essential
way in any theory which predicts masses of elementary particles. And the group Fj, besides
being related to G5, and a possible candidate for the unification of the four interactions, is
also the automorphism group of the EJA. We have motivated how the four projections of
the EJA relate naturally to the four generation sets of the fermions. Thus there is a strong
possibility that the eigenvalues of the characteristic equation of the EJA yield information
about fermion mass ratios, especially it being a cubic equation with real roots. We make
the following preliminary observations about the known mass ratios, and then provide a

concrete analysis in Section IV.

The Jordan eigenvalues allow us to express the electric charge eigenstates of a fermion’s
three generations, as superpositions of mass eigenstates. That is why these eigenvalues

determine mass ratios.

For the set (positron, anti-muon, anti-tau-lepton), the three respective masses are known

to satisfy the following empirical relation, known as the Koide formula:

me + my + m; 2
= 0.666661(7) ~ - 33
N vt (M~ (33)
For the three roots of the corresponding cubic equation (32) we get that
A2+ A2+ N2 Tr(X)]? —29(X 2 1
1NN X)) ( >:—(1+—)z0.8333 (34)
()\1 + )\2 + )\3)2 [T’I“(X)]Q 3 4

The factor 1/4 comes from the sum of the absolute values of the three octonions which go
into the related Jordan matrix. This observation suggests that the eigenvalues bear some
relation with the square roots of the masses of the three charged leptons, though simply
comparing square roots of their mass-ratios does not seem to yield any obvious relation
with the eigenvalues. Further investigation is presented in Section IV. Here, we observe the

following logarithmic ratios for masses of the charged leptons [taken as 0.5 MeV, 105 MeV,
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1777 Mev]| and for the roots

105\ /2 1
In (ﬁ> ~ 2.67: =~ 2.58 (35)
L=4/3
1777\ /2 1+4/%
In <W) ~ 4.09; S 416 (36)

R

8
1777\ '/ 1+ \/g
In (ﬁ) ~ 1.41; : 161 (37)

For the up quark set though, we see a correlation in terms of square roots of masses.

In the case of the up quark set, the following approximate match is observed between the
ratios of the eigenvalues, and the mass square root ratios of the masses of up, charm and
top quark. For the sake of this estimate we take these three quark masses to be [2.3, 1275,
173210] in Mev [38]. The following ratios are observed:

[\

1275 + \/g
22 9355, Y C ~ 2356 (38)

2.3 B \/3
8
173210 2
\/ = ~ 11.66; 3 ~129
1275 06; 3 8 (39)

wl

W

2_ /3
3 8
2 3
173210 5t \ﬁ 2
~ 274.42; PVEL 5 ~ 289.23 (40)
2.3 3 3
8

wWIN
|

z2_ /3
3 8

Within the error bars on the masses of the up set of quarks, the two sets of ratios are seen

to agree with each other upto second decimal place.

Considering that one of the roots is negative in the anti-down-quark set, we cannot di-
rectly relate the eigenvalues to mass ratios. The same is true for the neutrino set, where one
root is negative and one root is zero. In section IV we propose that the correct quantity to
examine is the square-root of mass (in dimensionless units), which can take both positive
sign and negative sign: ++/m. The Jordan eigenvalues relate to the square-root of either

sign, with the eigenvalue for anti-particle being opposite in sign to that for the particle.
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The case of the neutrino is especially instructive, and shows how non-zero mass could arise
fundamentally, even when the electric charge is zero. In this case, the non-zero contribu-
tion comes from the inner product related quantity S(X), and therein from the absolute
magnitude of the octonions in the Jordan matrix, which necessarily has to be non-zero. We
thus see that masses are derivative concepts, obtained from the three more fundamental
entities, namely the electric charge, and the geometric invariants S(X) and Det(X), with
the last two necessarily being defined commonly for the three generations. And since mass is
the source of gravity, this picture is consistent with gravity and space-time geometry being
emergent from the underlying geometry of the octonionic space which algebraically deter-
mines the properties of the elementary particles. We note that there are no free parameters
in the above analysis, no dimensional quantities, and no assumption has been put by hand.
Except that we identify the octonions with elementary fermions. The numbers which come

out from the above analysis are number-theoretic properties of the octonion algebra.

These observations suggest a possible fundamental relation between eigenvalues of the
EJA and particle masses. In the next section, we provide further evidence for such a con-
nection, based on our proposal for unification based on division algebras and a matrix-valued

Lagrangian dynamics.

ITII. AN OCTONIONIC LAGRANGIAN FOR THE STANDARD MODEL

A. A Lagrangian on an 8D octonionic space-time

The action and Lagrangian for the three generations of standard model fermions, fourteen

gauge bosons, and four potential Higgs bosons, are given by [4]

S 1 L2 ot =
c = /dT L ; L= iTr{L_ng QQ} (41)
Here,
1 1 L127 1 S S LIQ? S
Q,=Qp+ ﬁ@l@pﬂ Qy=Qp+ ﬁﬂQQF (42)
and
~ 1. ) ~ 1 . )
Qp = Z(WC]B + Lig); Qr = E@O@F + Lgp) = (43)
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By defining
} L Le Ly
a = qh+ quF P @2=apt S5 Par (44)

we can express the Lagrangian as

e hl(a20) (o)

L2 "
=573 Ir [C]Ifh L2q1qz 4!

I qqu + I CI1(J2}

We now expand each of these four terms inside of the trace Lagrangian, using the definitions

of g1 and ¢y given above:

g a4 L% L4 .. Ly .
Gide = dis + 75 bPair + 2’ Brdrds + 1 BrdrBair

12 I A
algs = qhas + L—’SQE&QF + L—iﬁlq}qB + L—fﬂlq}ﬁqu
(46)

L2 L2 L%
e = qhin + L—I;qgﬁﬁF + L—gﬁlq;% + L—Z@QL@C]F

2 2 4
ilge = dhap + %(ﬂgﬁ?(lF + %ﬁﬂi}% + %51@}52%
In our recent work, we suggested this Lagrangian, having the symmetry group F}, as a can-
didate for unification. There are fourteen gauge bosons (equal to the number of generators
of Gs). These are the eight gluons, the three weak isospin vector bosons, the photon, and the
two Lorentz bosons. These bosons, along with one Higgs, can be accounted for by the four
bosonic terms which form the first column in the above four sub-equations. The remaining
twelve terms were proposed to describe three fermion generations and three Higgs, with the
three generations being motivated by the triality of SO(8). However, one important ques-
tion which has not been addressed there is: why does triality not give rise to three copies of
the bosons?! In the framework of the present approach we tentatively explore the following
answer. We know that the even-grade Grassmann numbers which form the entries of the
bosonic matrices are made from even-number products of odd-grade (fermionic) Grassmann
numbers, and the latter are in a sense more basic. Could it then be that bosonic degrees of
freedom are made from fermionic degrees of freedom? If this were to be so, it could prevent
the tripling of bosons, if we think of them as arising at the ‘intersections’ of the octonionic

directions which represent fermions.
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B. An octonionic diagrammatic representation for three fermion generations, and

fourteen gauge bosons, and the Higgs

The seven imaginary unit octonions are used to make the Fano plane, which has seven
points and seven lines [adding to fourteen elements; points and lines have equal status|. If we
include the real direction [we have assumed ¢po to be self-adjoint] also, we get an equivalent of
a 3-D cube where the eight vertices now stand for the eight octonions, with one of them [the
‘origin’] standing for the real line. As explained by Baez: “The Fano plane is the projective
plane over the 2-element field Z5. In other words, it consists of lines through the origin in the
vector space Z3. Since every such line contains a single nonzero element, we can also think of
the Fano plane as consisting of the seven nonzero elements of Z3. If we think of the origin in
73 as corresponding to 1 in @, we get the following picture of the octonions”. This picture
is Fig. 3 below, borrowed from Baez [23]. Considering points, lines and faces together,
this structure has 26 elements [8+12+6 = 26]. Motivated by this representation of the
octonion, and the triality of SO(8), we propose the following diagrammatic representation
of the standard model fermions, gauge bosons, and Higgs as shown in Fig. 4. It motivates
us to think of bosons as arising as ‘intersections’ of the elements representing fermions. We
have taken four copies of the Baez cube, with the central one at the intersection of the other
three, and used them to represent the elementary particles. We now attempt to describe Fig.
4 in some detail. There is a central black-colored cube (henceforth a cube is an octonion)
in the front, which represents the fourteen gauge bosons and the four Higgs bosons; we will
return to this cube shortly. Then there are three more (colored) cubes: one to the left,
one at the back, and one at the bottom. These are marked as Gen I, Gen II and Gen III,
and represent the three fermion generations. Let us focus first on the octonion on the left,
which is Gen I, and where the eight vertices have been marked (eg, e, €9, €3, €4, €5, €4, €7)
just as in the Baez cube. If ey were to be excluded, this cube becomes the Fano plane [Fig.
1 above| and the arrows marked in the Gen. I cube follow the same directions as in the
Fano plane. In this Gen I cube, leaving out all those elements which are at the intersection
with the central bosonic cube, and leaving out the face on the far left, we are left with
sixteen elements: four points, eight lines, and four faces. The four points are shown in blue
and are (es, es, €5, e7). The eight lines are: (eges, ereq, eser, ereq, eseq, €€y, €560, €ge1). The

four planes are: (ejezeres), (epeseger), (ereaeies), (esesepes). Between them, these sixteen
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N

N

FIG. 4. The octonions [From Baez [23]].

elements represent the eight fermions and their anti-particles in one generation, one particle

/ anti-particle per octonionic element.

The up quark, the down quark, and their anti-particles of one particular color are (marked
by) the four lines (e4es, e7es, eges, eger). The points (es, e, e, e7) mark u, d of a second color,
and the lines (eger, ereq, eses, e5e6) mark the u, d of the third color. The four planes mark
the electron, the neutrino, and their anti-particles. Between them, these sixteen elements
have an SU(3) symmetry: they can be correlated to the (84-8)D particle basis constructed
by Furey, from the SU(3) in G5. Next, the Gen II and Gen III along with Gen I has another
SU(3) symmetry, which is responsible for the three generations. These three fermionic
cubes represent three intersecting copies of Gy each cube having an SU(3) symmetry. The

three-way intersection is SU(2) X SU(2), this being the black central cube, and the bosons
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FIG. 5. The elementary particles of the standard model with three generations, represented through
octonions in an Fy diagram.. Please see text for a detailed explanation.

lie on this cube. At the same time the fermionic cubes make contact with the bosonic cube,

enabling the bosons to act on the fermions.

We now try to understand the central bosonic cube. First we count the number of its
elements: it gets a total of 3x10=30 elements from the three side cubes, which when added
to its own 26 elements gives a total of 56. But there are a lot of common elements, so
that the actual number of independent elements is much smaller, and we enumerate them
now. Three points are shared two-way and three points shared three-way and the point e
is shared four-way; that reduces the count to 44. Nine lines are shared: three of them three
way, and six of them two way, reducing the count to 32. The shared three planes reduce the

count to 29. We now account for the assignment of bosons to these 29 locations.

The eight gluons are on the front right, marked by the pink points, and lines labelled g,
to gs, and the photon is assigned to the plane (ezereges) on the front right enclosed by the
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gluons. The two Lorentz bosons are the yellow points e, and ey also marked Lo and L;. The
three vector bosons are marked by the lines ege;, eges and the point es, also marked Z°. The
Higgs H is at the four way real point eg. Three more Higgs are shown as follows: two planes
per Higgs, e.g. the plane egesese; and the mirror fermionic plane egesege; on the far left
in Gen I. Analogously, another Higgs is given by the bosonic plane egejeges and its mirror
fermionic plane at the front bottom in Gen III. The third Higgs is given by the bosonic plane
epesezes and its mirror fermionic plane at the back in Gen II. This way 21 elements are used
up. The remaining 8 un-used elements (six lines and two planes) are assigned to eight terms
in the Lagrangian representing the action of the spacetime symmetry on the gluons: these

are the terms ¢zql; and ¢hgp in (46).

The bosonic cube lies in the intersection of the three Gy and hence does not triplicate
during the SU(3) rotation which generates the three fermion generations. The symmetry
group of the theory is the 52 dimensional group Fj, with 8x3=24 generators coming from
the three fermionic cubes, and the rest 28 from the bosonic sector [14 + 2x3 + 8 = 28|.
This diagram does suggest that one could investigate bosonic degrees of freedom as made
from pairs of fermion degrees of freedom. With this tentative motivation, we return to our
Lagrangian, and seek to write it explicitly as for a single generation of bosons, and three
generations of fermions. Upon examination of the sub-equations in Eqn. (46) we find that
the last column has terms bilinear in the fermions, and we would like to make it appear just
as the second and third column do, so that we can explicitly have three fermion generations.
With this intent, we propose the following assumed definitions of the bosonic degrees of

freedom, by recasting the four terms in the last column of Eqn. (46):

Ly . L3 ) a?
L_{:ﬁlcﬁ;ﬁﬂ]F = L—§QB52C]F + ﬁA

Lp o Ly
FﬁquﬂQQF = ﬁQBﬂQQF + A

Lp o Ly i 5 o
ﬁﬁquﬂQQF = ﬁqBﬂqu + B

(47)

Lp 4 .4 Ly 4 5
FﬁquﬁﬂlF = ﬁq'Bﬁqu - B

where A and B are bosonic matrices which drop out on summing the various terms to get

the full Lagrangian, With this redefinition, the sub-equations Eqn. (46) can be now written
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in the following form after rewriting the last column:

4. g L% L3 .. Ly . .
il = dhin + 2 L% Badr + Sﬁlq;ﬂB + L—iqBﬁwF
2

i t L% L% t L%
N2 = 4p1B T 73 L4k Baar + T2 01aras + Ty asPar
(48)

i i Lp L?, i Lh 4 ot
192 = qpiB + _qBﬁﬂF + _261quB + ﬁqB/BIQF

. . L% Ly, . L3
a2 = dhan + 5 dbbaar + 75 Brdbas + T3tk

L L

The terms now look harmonious and we can see a structure emerging - the first column are
bosonic terms and these are not triples. The remaining terms are four sets of three each [to
which their adjoints will eventually get added] which can clearly describe three generations
of the four sets, which is what we had in the Jordan matrices in the previous section. Putting
it all together, we can now rewrite the Lagrangian so that it explicitly looks like the one for

gauge bosons and four sets of three generations of fermions, as in the Jordan matrix:

L=— BYE) Tr {( +ZQ1> (Q2+ LQz)]

L% g
=5 I {qlqz L2q1q2 + fqlqz + qm} (49)
LQ
= 2[1; TT [Ebosons + Esetl + EsetQ + Eset3 + Lset4]
where
o?
Ebosons = qTBqB 12 QBQB + I, QBQB + I, QBQB (50>
Ly .. . L3y .. L%, .

Lsenn = L—JQDQE@QF + L—I;ﬁlq;% + L—IQDCIBﬁz% (51)

L% L? L2
Lierz = Iz ( QB52QF + 1;51(1?%3 + L—I;QBﬁzCIF) (52)

i [ L2 ) L2 ) L2 .

Lsers = T (L—§QL52QF + L—I;&q;(ﬂa + L—’;qéﬁlqﬁ) (53)

ia (L3 L% . L3
Lotn = (L_]ZDQLB%]F + L—Sﬂlq}qB + L—I;quﬁlq}) (54)

We see that each of these four fermionic sets could possibly be related to a Jordan matrix,

after including the adjoint part. We also see that different coupling constants appear in
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different sets with identical coupling in third and fourth set and no coupling in the first set.
The first set could possibly describe neutrinos, charged leptons and quarks (gravitational
and weak interaction), the second set charged leptons and quarks, and the third and fourth
set the quarks. To establish this explicitly, equations of motion remain to be worked out
and then related to the eigenvalue problem. As noted earlier, L relates to mass, and this
approach could reveal how the eigenvalues of the EJA characteristic equation relate to mass.
This investigation is currently in progress, and proceeds along the following lines. We take
the self-adjoint part of the above Lagrangian, because that part is the one which leads to
quantum field theory in the emergent approximation after coarse-graining the underlying
theory. [The anti-self-adjoint part is negligible in the approximation in which quantum
field theory emerges, and when it becomes significant, spontaneous localisation occurs, and
classical space-time and the macroscopic universe emerges|. We vary the self-adjoint part of
the Lagrangian with respect to the bosonic degree of freedom, and with respect to the three
8D-fermionic degrees of freedom, representing the three fermion generations. This yields four
equations of motion, three of which are coupled matrix-valued Dirac equations for the three
generations. These three coupled equations are solved by a state vector which is a three-
vector made of three 8-spinors. The eigenvalue problem for three coupled matrix equations
is likely solved by the exceptional Jordan algebra, the algebra of 3x3 Hermitean matrices
with octonionic entries, where the diagonal entries are identified with electric charge. That
the diagonal entries are electric charge is justified by the form of the Lagrangian above,
especially as written in Eqn. (45), because we see /L as the coefficient of the potential, and
its square appearing in the electrodynamics term (52) in this latest form of the Lagrangian
above. This coefficient in front of the terms in Eqn. (52) then gets identified with the fine

structure constant, as below.

The symmetry group associated with the self-adjoint part of the Lagrangian is Fj. The
symmetry group associated with the full Lagrangian, including the anti-self-adjoint part,

could possibly be Ejg - this is under investigation.
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C. The Jordan eigenvalues and the low energy limiting value of the fine structure

constant

If we examine the Lagrangian term for the charged leptons in Eqn. (52), the dimensionless
coupiing constant C' in front of it is (upto a sign):

C= azi—% (55)
[The operator terms of the form ¢ggr etc. in (52) have been correspondingly made dimen-
sionless by dividing by L%]. We assume that In is linearly proportional to the electric
charge, and that the proportionality constant is the Jordan eigenvalue corresponding to the
anti-down quark. The electric charge 1/3 of the anti-down quark seems to be the right choice
for determining «, it being the smallest non-zero value [and hence possibly the fundamental
value] of the electric charge, and also because the constant « appears as the coupling in
front of the supposed quark terms in the Lagrangian, as in Eqns. (53) and (54). We hence
define a by

1 3] 1
N = Mg Gog = lg - gl x5 — o2 ~=0.83025195149 (56)

where \,q is the Jordan eigenvalue corresponding to the anti-down quark, as given by Eqn.
(30) and gqq is the electric charge of the anti-down quark (=1/3). In order to arrive at this
relation for «, we asked in what way « could vary with ¢, if it was allowed to vary? We
then made the assumption that da/dg o« «. In the resulting linear dependence of In v on g,
we froze the value of « at that given by the smallest non-zero charge value 1/3, taking the
proportionality constant to be the corresponding Jordan eigenvalue. This dependence also
justifies that had we fixed o from the zero charge of the neutrino, o would have been one,
as it in fact is, in our Lagrangian. We are investigating if this way of constructing o can be

further justified from the Lagrangian dynamics.

As for the value of Lp/L, we identify it with one-half of that part of the Jordan eigenvalue
which modifies the contribution coming from the electric charge. [For an explanation of
the origin of the factor of one-half, see the next paragraph]. Thus from the eigenvalues

found above, we deduce that for neutrinos, quarks and charged leptons, the quantity L% /L?
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takes the respective values (3/16,3/32,3/32). These values are equal to one-fourth of the
respective octonionic magnitudes. Thus the coupling constant C' defined above can now
be calculated, with a? as given above, and L%/L* = 3/32. Furthermore, since the electric
charge ¢, the way it is conventionally defined, has dimensions such that ¢? has dimensions
(Energy x Length), we measure ¢* in Planck units Ep; x Lp = fic. We hence define the
fine structure constant by C' = oL} /L* = €2 /hc, where e is the electric charge of electron
/ muon / tau-lepton in conventional units. We hence get the value of the fine structure

constant to be

1 B3] 2] 9 1
C=a’Lp/L* = e*/hec = = —4/=| x 3| x —— ~0.00729713 = ———— (57
aLp/LT=e/he =exp g =051 X 3| X Tom 13701006 7

The CODATA 2018 value of the fine structure constant is
0.0072973525693(11) = 1/137.035999084(21) (58)

Our calculated value differs from the measured value in the seventh decimal place. In the
next section, we show how incorporating the Karolyhazy length correction gives an exact
match with the CODATA 2018 value, if we assume a specific value for the electro-weak

symmetry breaking energy scale.

Why did we identify Lp/L with one-half of the octonionic magnitude \/% rather than
with the magnitude \/3/_8 itself? The answer lies in the physical interpretation originally
assigned to the length scale L. [Please see the discussion below Eqn. (69) of [10]]. The
length L for an object of mass m is interpreted as the Schwarzschild radius 2Gm/c* of an
object of mass m, so that Lp/L = Lp ¢*/2Gm, which is one-half the Compton wave-length
(in Planck units) and not the Compton wavelength itself. Assuming that the octonionic
magnitude has to be identified with Compton wavelength (in units of Planck length), it
hence has to be divided by one-half, before equating it to Lp/L. This justifies taking
L3/L*=1/4x3/8 =3/32.

Once a theoretical derivation of the asymptotic fine structure constant is known, one can

write the electric charge e as

e = (3/32) exp[1/9 — 1/v/24] (hLp/tp)'/? (59)
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where Lp and tp are Planck length and Planck time respectively - obviously their ratio is
the speed of light. In our theory, there are only three fundamental dimensionful quantities:
Planck length, Planck time, and a constant with dimensions of action, which in the emergent
quantum theory is identified with Planck’s constant 7. We now see that electric charge is
not independent of these three fundamental dimensionful constants. It follows from them.
Planck mass is also constructed from these three, and electron mass will be expressed in
terms of Planck mass, if only we could understand why the electron is some 10%? times
lighter than Planck mass. Such a small number cannot come from the octonion algebra.
In all likelihood, the cosmological expansion up until the electroweak symmetry breaking is
playing a role here.

Thus electric charge and mass can both be expressed in terms of Planck’s constant,
Planck length and Planck time. This encourages us to think of electromagnetism, as well
the other internal symmetries, entirely in geometric terms. This geometry is dictated by the

Fy symmetry of the exceptional Jordan algebra.

IV. DISCUSSION, AND FURTHER DEVELOPMENTS: JORDAN EIGENVAL-
UES AND MASS-RATIOS

We have not addressed the question as to how these discrete order one eigenvalues might
relate to actual low values of fermion masses, which are much lower than Planck mass.
We speculatively suggest the following scenario, which needs to be explored further. The
universe is eight-dimensional, not four. The other four internal dimensions are not com-
pactified; rather the universe is very ‘thin’ in those dimensions but they are expanding as
well. There are reasons having to do with the so-called Karolyhazy uncertainty relation [39],
because of which the universe expands in the internal dimensions at one-third the rate, on
the logarithmic scale, compared to our 3D space. That is, if the 4D scale factor is a(7),
the internal scale factor is ain/f (1), in Planck length units. Taking the size of the observed
universe to be about 10! Planck units, the internal dimensions have a width approximately
10?2 Planck units, which is about 10~** c¢m, thus being in the quantum domain. Classical
systems have an internal dimension width much smaller than Planck length, and hence they

effectively stay in [and appear to live in] four dimensional space-time. Quantum systems

probe all eight dimensions, and hence live in an octonionic universe.
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The universe began in a unified phase, via an inflationary 8D expansion possibly resulting
as the aftermath of a huge spontaneous localisation event in a ‘sea of atoms of space-time-
matter’ [10]. The mass values are set, presumably in Planck scale, at order one values
dictated by the eigenvalues reported in the present paper. Cosmic inflation scales down
these mass values at the rate a'/3(7), where a(7) is the 4D expansion rate. Inflation ends
after about sixty e-folds, because seeding of classical structures breaks the color-elctro-weak-
Lorentz symmetry, and classical spacetime emerges as a broken Lorentz symmetry. The
electro-weak symmetry breaking is actually a electro-weakLorentz symmetry breaking, which
is responsible for the emergence of gravity, weak interaction being its short distance limit.
There is no reheating after inflation; rather inflation resets the Planck scale in the vicinity
of the electro-weak scale, and the observed low fermion mass values result. The electro-
weak symmetry breaking is mediated by the Lorentz symmetry, in a manner consistent
with the conventional Higgs mechanism. It is not clear why inflation should end specifically
at the electro-weak scale: this is likely dictated by when spontaneous localisation becomes
significant enough for classical spacetime to emerge. It is a competition between the strength
of the electro-colour interaction which attempts to bind the fermions, and the inflationary
expansion which opposes this binding. Eventually, the expanding universe cools enough
for spontaneous localisation to win, so that the Lorentz symmetry is broken. It remains
to prove from first principles that this happens at around the electro-weak scale and also
to investigate the possibly important role that Planck mass primordial black holes might
play in the emergence of classical spacetime. I would like to thank Roberto Onofrio for

correspondence which has influenced these ideas. See also [40].

A. The Karolyhazy correction to the asymptotic value of fine structure constant

In accordance with the Karolyhazy uncertainty relation (Eqn. (9) of [39]) a measured

length [ has a ‘quantum gravitational’ correction Al given by
(AD)? = L3 1 (60)

For the purpose of the present discussion we shall assume an equality sign here, i.e. that the

numerical constant of proportionality between the two sides of the equation is unity. And,
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for the sake of the present application to the fine structure constant, we rewrite this relation

I I 1/3
=17 = (TP) (61)

We set | = I; where [y is the length scale (&~ 107! ¢m) associated with electro-weak sym-

as

metry breaking, where classical space-time emerges from the prespacetime, prequantum
theory. The assumption being that when the universe evolves from the Planck scale to the
electro-weak scale [while remaining in the unbroken symmetry phase], the inverse of the
octonionic length associated with the charged leptons (this being \/W) is reset, because

of the Karolyhazy correction, to

[3 /3 3 (Lp\'?

We can also infer this corrected length as the four-dimensional space-time measure of the
length, which differs from the eight dimensional octonionic value \/m by the amount d;.
If we take [; to be 107% cm, the correction d; is of the order 2 x 107%. The correction to
the asymptotic value (57) of the fine structure constant is then
3 L\
C=ao’L4)L* = & Jhe = o [ ~ + (—P) ] (63)
32 Ly
For [; = 107'% cm = 198 GeV ™!, we get the corrected value of the fine structure constant to
be 0.00729737649, which overshoots the measured CODATA 2018 value at the eighth decimal
place. The electroweak scale is generally assumed to lie in the range 100 - 1000 GeV. The
value I; = 1.3699526 x 1070 cm = 144.530543605 GeV ! reproduces the CODATA 2018
value 0.0072973525693 of the asymptotic fine structure constant. The choice l;l = 246 GeV
gives the value 0.00729739452, whereas the choice lj?l = 159.5 £ 1.5 GeV gives the range
(0.00729736049, 0.00729735908). 100 GeV gives the value 0.00729732757 which is smaller
than the measured value. 1000 GeV gives 0.00729754842. Thus in the entire 100 - 1000
GeV range, the derived constant agrees with the measured value at least to the sixth decimal
place, which is reassuring. The purpose of the present exercise is to show that the Karolyhazy

correction leads to a correction to the asymptotic value of the fine structure constant which

is in the desired range - a striking fact by itself. In principle, our theory should predict the
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precise value of the electroweak symmetry breaking scale. Since that analysis has not yet
been carried out, we predict that the ColorElectro-WeakLorentz symmetry breaking scale is
144.something GeV, because only then the theoretically calculated value of the asymptotic

fine structure constant matches the experimentally measured value.

The above discussion of the asymptotic low energy value of the fine structure constant
should not be confused with the running of the constant with energy. Once we recover classi-
cal spacetime and quantum field theory from our theory, after the ColorElectro-WeakLorentz
symmetry breaking, conventional RG arguments apply, and the running of couplings with
energy is to be worked out as is done conventionally. Such an analysis of running couplings
will however be valid only up until the broken symmnetry is restored - it is not applicable
in the prespacetime prequantum phase. In this sense, our theory is different from GUTs.
Once there is unification, Lorentz symmetry is unified with internal symmetries - the exact
energy scale at which that happens remains to be worked out.

How then does the Planck scale prespacetime, prequantum theory know about the low
energy asymptotic value of the fine structure constant? The answer to this question lies in
the Lagrangian given in (49) and in particular the Lagrangian term (52) for the charged
leptons. In determining the asymptotic fine structure constant from here, we have neglected
the modification to the coupling that will come from the presence of qg and qp. This is
analogous to examining the asymptotic, flat spacetime limit of a spacetime geometry due to
a source - gravity is evident close to the source, but hardly so, far from it. Similarly, there
is a Minkowski-flat analog of the octonionic space, wherein the effect of gp and g (which
in effect ‘curve’ the octonionic space) is ignorable, and the asymptotic fine structure can be
computed. The significance of the non-commutative, non-associative octonion algebra and
the Jordan eigenvalues lies in that they already determine the coupling constants, including
their asymptotic values. This is a property of the algebra, even though the interpretation
of a particular constant as the fine structure constant comes from the dynamics, i.e. the

Lagrangian, as it should, on physical grounds.

On a related note about this approach to unification, we recall that the symmetry group
in our theory is U(1) x SU(3) x SU(2) x SU(2). This bears resemblance to the study of a
left-right symmetric extension of the standard model by Boyle [41] in the context of the com-

plexified exceptional Jordan algebra. This L — R model has exceptional phenomenological
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promise, and it appears that the unbroken phase [prior to the ColorElectro-WeakLorentz
symmetry breaking] of the L-R model is well-described by our Lagrangian (49) for three
generations. This gives further justification for exploring the phenomenology of this La-

grangian.

B. More Jordan eigenvalues for quarks and charged leptons

Assuming that the mechanism for mass generation of neutrinos is different from that for
the electrically charged fermions, we can set aside the neutrinos for the time being, and
calculate additional new eigenvalues of the exceptional Jordan algebra in yet another way.
We club the three charged fermions of the first generation to make a 3 x 3 Jordan matrix,
with the octonionic entries assigned as: x; is the anti-down quark, zs is the up quark, and
x3 is the positron. Analogously, the octonionic entries for the second generation are such
that z; is the anti-strange quark, x5 is the charm quark, and z3 is the anti-muon. For the
third generation Jordan matrix, x; is the anti-bottom quark, x5 is the top quark, and z3
is the anti-tau-lepton. For each of the three Jordan matrices, the diagonal entries are the
electric charges i.e. (1/3,2/3,1), so that the trace is 2 for each of the three Jordan matrices.
S(X) is also the same for each generation, and is equal 61/72. The determinant is different

in each of the three cases and is given by

25 9 25 V3 25 V3
D = ——; D 1) = ——+4+—; D I = ————
etlGenl) = — 575576 et(Genll) = =6+ 575 et(GenlID) = 526 =575
(64)
The three Jordan matrices for which we are now calculating the eigenvalues are hence given

as follows, one for each generation of two quarks and one charged lepton:

1 ‘/e—&- Vu*p
Genl Ve 2/3 Vg (65)
VUP afi 1/3

1 Vo V2

GenlI : Vi 2/3 Vi (66)
Ve Vi 1/3
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1 Ve, Vy
GenlII : VE 2/3 Vi (67)
Vi Vi 1/3

The notation and octonionic representation is the same as earlier in the paper. For each of
the three generations the eigenvalues are given by the following set of three real roots, each

of which is positive (hence a total of nine unequal roots):

2
Al = 3 + 24/ —Q) cos (g)

2 0+2

Ao = 3 + 24/ —Q cos ( —; W) (68)
2 0+4

)\3:§—|—2 —Qcos< i W)

Here, the angle 0 is defined by

0 = cos! <\/f—Q3> (69)

and the function @) is the same for each of the three generations:

35(X) — Tr3(X) 35
Q= 5 = 316 (70)

whereas the function R differs slightly amongst the three generations because the determi-

nant is different for each of them:

1 1,5 1 1 61 8 1
The angle 6 in the case of the three generations can thus be calculated, and is given in

radians by

0 =1.81270 : ;= 1.69730 ; O, = 1.74837 (72)
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The roots can now be computed and have the following set of three values each, for each of

the three generations, respectively:

A7 =2/3—0.70985 = —0.04318; Aoy = 2/3 + 0.02599 = 0.69266; A3y = 2/3 + 0.68385 = 1.35052
A = 2/3 —0.71565 = —0.04898; A\oj; = 2/3 +0.03844 = 0.70511; A3;; = 2/3 + .6731 = 1.34387

A = 2/3 —0.72738 = —0.06071; Aoy = 2/3 +0.06484 = 0.73151; A3 = 2/3 + 0.66252 = 1.32919
(73)

As is evident, for every generation, the roots are shifted around the middle electric charge
value of 2/3, as if undergoing a rotation determined by €, with one root coming out larger
than 2/3, and the other two roots smaller than 2/3.

In combination with the nine eigenvalues found earlier in the paper for the six quarks
and three charged leptons, we now have a total of 18 unequal roots, only one of which is
negative. The nine roots found earlier could be labeled as ‘horizontal’ roots, calculated
across three generations in three sets, one set each for the three fermions with identical non-
zero electric charge. The nine roots found now could labeled as ‘vertical” roots, calculated
per generation, using the three fermions with non-zero charge. The only negative root is
the horizontal root for the anti-down quark. The full set of 18 roots are shown in the table
below [Figure 5], two per charged fermion. In each of the nine cells of the table, the upper
entry is a horizontal root, and the lower entry is a vertical root. Using the up quark as a
benchmark, eight ratios can be defined from the nine vertical roots, and another eight ratios
from the nine horizontal roots. The fact that the angles 0;,0;; and 0;;; are different for the
three generations suggests a possible violation of lepton universality. As far as mass ratios
are concerned, it turns out that the horizontal eigenvalues are the only ones to be used, and

the vertical ones are not used at all in calculating mass ratios.

C. Update: Evidence of correlation between the Jordan eigenvalues and the mass

ratios of quarks and charged leptons

In the first generation, we note the positron mass to be 0.511 Mev, the up quark mass
to be 2.3 £0.7 + 0.5 MeV, and the down quark mass to be 4.8 + 0.5 + 0.3 MeV. The

uncertainties in the two quark masses permit us to make the following proposal: the square-
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1/3

2/3

Gen |

Gen ll

doi:10.20944/,

Gen llI

Anti-down 4.8 1.44 3/8

1/3 — /3/8 = —0.2790
Nos = 2/3 + 0.02599 = 0.69266

Anti-strange 95 6.43 3/8

1/3
orr = 2/3 + 0.03844 = 0.70511

Anti-bot 4180 42.63 3/8

1/3+ /3/8 = 0.9457
ar1r = 2/3 4 0.06484 = 0.73151

Up 23 1 3/8

2/3 — +/3/8 = 0.05429
37 = 2/3 + 0.68385 = 1.35052

Charm 1275 23.55 3/8

2/3
311 = 2/3 4+ 0.6731 = 1.34387

Top 173210 274.32 3/8

2/3+ /3/8 = 1.2790
srrr = 2/3 + 0.66252 = 1.3291¢

Positron 0.5 0.47 3/8

1—/3/8 = 0.387¢

N\ = 2/3 — 0.70985 = —0.04318§

Anti-muon 105 6.76 3/8

1

Anti-tau 1277 27.80 3/8

14+ +/3/8 =1.6124
N7 =2/3 —0.72738 = —0.06071

reprints202101.0474.v4

The Jordan Eigenvalues

FIG. 6. The eighteen Jordan eigenvalues for the six quarks and three charged leptons. In each
cell, at the top is shown the name of the particle, its mass in MeV, square-root of mass ratio with
respect to up quark, and the octonionic magnitude. The three eigenvalues in any given row are
calculated by making a triplet of like charges. These eigenvalues, dubbed as the horizontal roots,
are shown as the first entry in each of the nine cells. The three eigenvalues in any given column are
calculated by making a triplet of like generation charged fermions. These are the vertical roots,
shown as the lower entry in each cell. There are two roots for every charged fermion. Only one
out of the 18 roots is negative - this is the upper entry for the anti-down quark.

roots of the masses of the positron, up quark, and down quark possess the ratio 1: 2 : 3 and
hence they can be assigned the ‘square-root-mass numbers’ (1/3,2/3, 1) respectively, these
being in the inverse order as the ratios of their electric charge. The e/y/m ratios for the
three particles then have the respective values (3,1,1/3), whereas ey/m has the respective
values (1/3,4/9,1/3). The choice of square-root of mass as being more fundamental than
mass is justified by recalling that in our approach, gravitation is derived from ‘squaring’ an
underlying spin one Lorentz interaction [4]. It is reasonable then to assume that the spin one

Lorentz interaction is sourced by y/m, and to try to understand the origin of the square-root
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of the mass ratios, rather than origin of the mass ratios themselves.

At this stage, the above proposed quantised root-mass-ratios for the first generation are
only an assumption; we do not have a proof for this assumption. [We return to thus aspect in
detail in a forthcoming publication [42], where we consider an SU(3) gravi-color symmetry
for gravitation, analogous to SU(3)c0r for QCD, and actually demonstrate a square-root
mass ratio 1:2:3 for electron, up quark and down quark.] A justification might come from the
following. The automorphism group Gs of the octonions has the two maximal subgroups
SU(3) and SO(4). These two groups have an intersection U(2) ~ SU(2) x U(1). The
SU(3) is identified with SU(3)., the SU(2) with the weak symmetry, and the U(1) with
U(1)em. Thus the U(1).,, is a subset also of the maximal sub-group SO(4) which led us
to propose the Lorentz-Weak-Electro symmetry, and hence this U(1) might also determine
the said quantised root-mass-ratios (1/3,2/3, 1) for the positron, up quark, and down quark
respectively. For now, we take these quantised root-mass-ratios as a working hypothesis.
This implies, assuming a mass 0.511 MeV for the electron, a consequent predicted mass of

2.044 MeV for the up quark, and a predicted mass 4.599 MeV for the down quark.

If we assume that the e/\/m ratios for the first generation of the charged fermions are
absolute values [valid prior to the enormous scaling down of mass] then we can assign a
root-mass number e/3 to the positron [and hence a mass number €?/9], where the electric

charge e is as given in Eqn. (74). Hence the mass-number for the positron/electron is
VG mey = (1/1024) exp[2/9 — 1/V6] (hLp/tp)*/? (74)

where G is Newton’s gravitational constant. Thus the mass number of the electron is
1/(137 x 9) of Planck mass and has to be scaled down by the factor f = 2 x 10 before it
acquires the observed mass of 0.5 MeV. This then is also the universal factor by which the
assigned mass number of every quark and charged lepton must be scaled down to get it to its
current value. This is not far from the twenty orders of mass-scale-down by the Karolyhazy
effect in cosmology, proposed earlier in this section. The initial ratio of the electrostatic to

gravitational attraction between an electron and a positron is e?/(e?/81) ~ 137 x 81 ~ 10%.

Now, to deduce the observed mass-ratios for the second and third generations, we recall
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Gen | Gen Il Gen lll
Anti — down quark |Anti — strange quark|Anti — bottom quark
4.599 1 95+5 4.55 4180 +30  30.15
18 | 5q/6 97 /6 /6
(0; +4m)/3 (Orr +4m)/3 (Orrr +4m)/3
Up quark Charm quark Top Quark
2.044 2/3 12754+£25  16.65 173210 £510 £ 710  194.07
2/3 57 /6 97/6 /6
01/3 011/3 p111/3
Positron Anti — muon Anti — tau Lepton
1 0511 1/3 105.7  4.79 1777 19.66
57m/6 97/6 /6
(07 +2m)/3 (Orr + 2m)/3 (Orrr +2m)/3
The Jordan Angles

FIG. 7. The Jordan angles for the six quarks and the three charged leptons. In each cell the first
row shows the mass of the particle in MeV and the square-root of the mass ratio taken with respect
to the anti-down quark. The second row in each cell shows the Jordan angle from which the first
set of eigenvalues are made [by clubbing like charges]. This eigenvalue is obtained by taking the
cosine of the shown angle, multiplying it by 21/—@Q, and adding the result to the electric charge
value. The last row in each cell shows the angle using which the second set of eigenvalues [made
by clubbing fermions of a given generation] are made. Here also the cosine of the angle is taken,
multiplied by 2v/—@Q and the result added to 2/3. In terms of these two angles the nine fermions
are placed symmetrically on a 2-torus; yet the angles manage to give rise to the measured mass
ratios which appear to be quite random otherwise.

from above that the three generations are respectively characterised by these three angles

0 = 1.81270 ~ 97° ; Orr = 1.69730 ~ 100° ; Orrr = 1.74837 ~ 104°. (75)

These three angles can be taken to be the defining characteristic of the three generations.
All the three angles lie in the second quadrant and hence have a negative cosine; therefore

the largest root A; in (68) for each of the three generations is identified with the quark
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having 2/3 charge [i.e. up, charm, top]. In Eqn. (73) these are roots (Asr, Asrr, Asrrr) for
the up, charm and top respectively. In Gen I, the next root is derived by taking the angle
(0r + 2m)/3 = 2.45 ~ 140° which lies in the second quadrant, and gives the smallest root
A7 which is assigned to the positron. The third root Ay comes from taking the angle
(0 + 4m)/3 = 4.54 ~ 260° which lies in the third quadrant. So one moves from the up
quark to the positron to the anti-down quark while going from the first to the second to
the third quadrant. In Gen II, the second root Ai;; comes from the angle (6;; + 27)/3 =
2.47 ~ 141° and is assigned to the anti-muon, whereas the third root A\s;; coming from
the angle (0;; + 4m)/3 = 4.56 ~ 261° is assigned to the anti-strange quark. In GenlII the
second root Ajry; coming from the angle (67,7 + 2m)/3 = 2.57 ~ 147° is assigned to the
tau-lepton, whereas the third root coming from the angle (6777 4+ 47)/3 = 4.66 ~ 267° is for
the anti-bottom quark.

We can place the six quarks and three charged leptons on a two-torus, and identify each
one of them with a pair of angles on the torus (one angle along each of the two independent
directions). We have already identified these angles corresponding to the second set of eigen-
values, in the previous paragraph. Similarly, we can evaluate the angles corresponding to the
first set of eigenvalues, found in Section II, and listed in the table in Fig. 5, by comparing
those roots with their equivalent angular form given in Eqn. (68). For the three neutrinos,
we conclude from the roots given in (29), that the three angles are (7/6,57/6,97/6). The
same angles also arise for the charged fermions, with the first angle for the GenlII particle,
next one for Genl and largest angle for Genll. Also, in each case, R = 0, while —Q = 1/8.
The table in Figure 6 below shows these Jordan angles, along with the measured mass val-
ues, as well the square-root of the mass ratio taken with respect to mass of the anti-down
quark. We now see that the nine fermions are placed symmetrically on the torus, as far as
the angles are concerned. And yet these angles manage to give rise to strange-looking mass
ratios.

Since the square-root-mass ratio of the anti-down quark has been set to unity, and pre-
dicted above to be 4.599 MeV (=9 x 0.511 MeV), we will calculate the square-root-mass
ratios of the other particles with respect to the anti-down-quark, and demonstrate a corre-
lation of these ratios with the Jordan eigenvalues. Also, since a negative Jordan eigenvalue
is to be associated with minus of square-root mass, for finding the mass-ratio, we take the

absolute value of the anti-down-quark eigenvalue, which is negative.
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e Anti-muon : Take the ratio of the first set of Jordan eigenvalues for the electron and
the muon [see the table in Fig. 6]. Multiply by a factor representing the down quark (the
first factor in the expression below). Then compare the resulting value with the square-root

mass ratio of the muon mass with respect to the electron mass:

L+3/8  1/3+V3/8 0 gaceescas
- \/3/_8 X /3 \/%l = 14.10 ; 206.7682830 = 14.38 (76)

e Anti-tau lepton : Using the first set of eigenvalues for the charged leptons, we get the ratio

for tau-lepton to electron:

1+3R  1/34+/3/8  1+4./3/8 1776.86
RRVATA V& e Vi /A BV e Vo T BN T _ 5897  (77)
1= \BR  11/3—\BR|  1-1/38 511

e Charm quark with respect to up quark: This ratio is same as the ratio of charm / up

in Eqn. (38).

23438 .. [1215

SPTNVI o357 ()22 — 9355 (78)
2/3—\/3/8 2.3

e Top quark with respect to up quark: Again this ratio is analogous to the one for top /

up in Eqn. (40).

2/3 + 1/3/8 2 17321
B+ v3/8 /3 = 289.26 ; 73210

2/3—/3/8  2/3—/3/8 2.3

= 274.42 (79)

e Anti-strange quark with respect to down quark:

1+/3/8 /95
LE V38 a0 /= =4.50 (80)
1—+/3/8 47

e Anti-bottom quark with respect to down quark:

1+4++/3/8 1++/3/8 1+4++/3/8 41
VI8 LRI VR 28.44 ; 80 _ 9980 (81)
1—+4/3/8 1 1—+/3/8 4.7

These ratios made from the Jordan eigenvalues suggest a possible correlation with the square-

root mass ratios, and hence provide a plausible definition of a mass quantum number for

standard model fermions. This definition is completely independent of trace dynamics and
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its Lagrangian, and is a property exclusively of the octonionic algebra. This is completely
analogous to the fact that in the octonionic approach to the standard model, quantisation of
electric charge is deduced from eigenvalues of the U(1).m operator made from the Clifford
algebra C1(6). Hence, square-root of mass is treated on the same footing as electric charge:
their quantisation is a property of the algebra, not of the dynamics. The difference between
charge quantisation and mass quantisation is that for finding the mass eigenstates, all three

generations must be considered together, not one at a time.

The square-root mass numbers for the charged fermions are shown in Fig. 8. These have

the same fundamental status as quantised electric charge values 1/3, 2/3 and 1.

Square-root mass numbers for charged fermions

Anti-strange quark Anti-bottom quark

1/3 Anti-down Quark 1 _l_ \ 3/8 v 1 1—1—\/%)2 ) 1+\/m
1 1—./3/8 NV 1

Charm quark Top quark
o Up Quark g o 2/3 + \V 3/8, Y ERVCIC AN T

B 2/3-/3/8  2/3-/3/§
2/3 3 2/3 o /3/8 /3—/3/8 /3—/3/3

Anti-muon Anti-tau lepton
1 Positron 1 14 4/3/8 1/34/3/8} 1+ ,/3/8 & 1/3+/3/8

— X X —_ hs

1/3 ¥ 1_V3/8 ‘1/3_\;’3/8|3 1—\/-'% |lf3_\/%|

Electric charge for a given row shown on its left

FIG. 8. The square-root mass numbers for charged fermions. These have the same fundamental
status as quantised electric charge values 1/3, 2/3 and 1.
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D. Quantum non-locality

Additional internal spatial dimensions which are not compact, yet very thin, offer a
promising resolution to the quantum non-locality puzzle, thereby lifting the tension with
4D special relativity. Let us consider once again Baez’s cube of Fig. 3. Any of the three
quaternionic spaces containing the unit element 1 can play the role of the emergent 4D
classical space-time in which classical systems evolve. Let us say this classical universe is
the plane (legejes). Now, the true universe is the full 8D octonionic universe, with the four
internal dimensions being probed [only by| quantum systems. Now we must recall that these
four internal dimensions are extremely thin, of the order of Fermi dimensions, and along
these directions no point is too far from each other, even if their separation in the classical 4D
quaternion plane is billions of light years! Consider then, that Alice at 1 and Bob at e; are
doing space-like separated measurements on a quantum correlated pair. Whereas the event
at e; is outside the light cone of 1, the correlated pair is always within each other’s quantum
wavelength along the internal directions, say the path (legeserer). The pair influences each
other along this path acausally, because this route is outside the domain of 4D Lorentzian
spacetime and its causal light-cone structure. The internal route is classically forbidden but
allowed in quantum mechanics. This way neither special relativity nor quantum mechanics
needs to be modified. It is also interesting to ask if evolution in Connes time in this 8D

octonionic universe obeying generalised trace dynamics can violate the Tsirelson bound.

The exceptional Jordan algebra is of significance also in superstring theory, where it
has been suggested that there is a relation between the EJA and the vertex operators of
superstrings, and that the vertex operators represent couplings of strings [43, 44]. This
intriguing connection between the EJA, string theory and aikyon theory deserves to be

explored further.

Lastly we mention that the Lagrangian (45) that we have been studying closely resembles

the Bateman oscillator [45] model, for which the Lagrangian is

L =miy+ y(xy — 1y) — kay (82)

I thank Partha Nandi for bringing this fact to my attention. Considering that the Bateman

oscillator represents a double oscillator with relative opposite signs of energy for the two
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oscillators undergoing damping, it is important to understand the implications for our theory.
In particular, could this imply a cancellation of zero point energies between bosonic and
fermionic modes, thus annulling the cosmological constant? And also whether this damping

is playing any possible role in generating matter-anti-matter asymmetry?
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V. APPENDIX: PHYSICAL MOTIVATION FOR THE PRESENT THEORY:
QUANTUM (FIELD) THEORY WITHOUT CLASSICAL TIME, AS A ROUTE
TO QUANTUM GRAVITY AND UNIFICATION

In this appendix, we recall from earlier work [4] the motivation for developing a formulation
of quantum theory without classical time, and how doing so leads to a pre-quantum, pre-
spacetime theory which is a candidate for unification of general relativity with the standard

model.

A. Why there must exist a formulation of quantum theory which does not refer
to classical time? And why such a formulation must exist at all energy scales, not just

at the Planck energy scale.

(Classical time, on which quantum systems depend for a description of their evolution, is
part of a classical space-time. Such a space-time - the manifold as well as the metric that
overlies it - is produced by macroscopic bodies. These macroscopic bodies are a limiting
case of quantum systems. In principle one can imagine a universe in which there are no
macroscopic bodies, but only microscopic quantum systems. And this need not be just at
the Planck energy scale.

As a thought experiment, consider an electron in a double slit interference experiment,

having crossed the slits, and not yet reached the screen. It is in a superposed state, as
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if it has passed through both the slits. We want to know, non-perturbatively, what is
the spacetime geometry produced by the electron? Furthermore, we imagine that every
macroscopic object in the universe is suddenly separated into its quantum, microscopic,
elementary particle units. We have hence lost classical space-time! Perturbative quantum
gravity is no longer possible. And yet we must be able to describe what gravitational effect
the electron in the superposed state is producing. This is the sought for quantum theory
without classical time! And the quantum system is at low non-Planckian energies, and
is even non-relativistic. This is the sought for formulation we have developed, assuming
only three fundamental constants a priori: Planck length Lp, Planck time tp, and Planck’s
constant h. Every other dimensionful constant, e.g. electric charge, and particle masses, are
expressed in terms of these three. This new theory is a pre-quantum, pre-spacetime theory,
needed even at low energies.

A system will be said to be a Planck scale system if any dimensionful quantity describing
the system and made from these three constants, is order unity. Thus if time scales of
interest to the system are order tp = 107 s, the system is Planckian. If length scales of
interest are order Lp = 10733 cm, the system is Planckian. If speeds of interest are of the
order Lp/tp = ¢ =3 x 10® cm/s then the system is Planckian. If the energy of the system
is of the order %i/tp = 10! GeV, the system is Planckian. If the action of the system is of
the order h, the system is Planckian. If the charge-squared is of the order hc, the system
is Planckian. Thus in our concepts, the value 1/137 for the fine structure constant, being
order unity in the units hc, is Planckian. This explains why this pre-quantum, pre-spacetime
theory knows the low energy fine structure constant.

A quantum system on a classical space-time background is hugely non-Planckian. Because
the classical space-time is being produced by macroscopic bodies each of which has an action
much larger than /. The quantum system treated in isolation is Planckian, but that is strictly
speaking a very approximate description. The spacetime background cannot be ignored -
only when the background is removed from the description, the system is exactly Planckian.
This is the pre-quantum, pre-spacetime theory.

It is generally assumed that the development of quantum mechanics, started by Planck
in 1900, was completed in the 1920s, followed by generalisation to relativistic quantum field
theory. This assumption, that the development of quantum mechanics is complete, is not

necessarily correct - quantisation is not complete until the last of the classical elements -

44


https://doi.org/10.20944/preprints202101.0474.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2021 d0i:10.20944/preprints202101.0474.v4

this being classical space-time - has been removed from its formulation.

The pre-quantum, pre-spacetime theory achieves that, giving also an anticipated theory
of quantum gravity. What was not anticipated was that removing classical space-time from
quantum theory will also lead to unification of gravity with the standard model. And yield
an understanding of where the standard model parameters come from. It is clear that the
sought for theory is not just a high energy Beyond Standard Model theory. It is needed even
at currently accessible energies, so at to give a truly quantum formulation of quantum field
theory. Namely, remove classical time from quantum theory, irrespective of the energy scale.
Surprisingly, in doing so, we gain answers to unsolved low energy aspects of the standard
model and of gravitation.

The process of quantisation works very successfully for non-gravitational interactions,
because they are not concerned with space-time geometry. However, it is not necessarily
correct to apply this quantisation process to spacetime geometry. Because the rules of
quantum theory have been written by assuming a priori that classical time exists. How
then can we apply these quantisation rules to classical time itself? Doing so leads to the
notorious problem of time in quantum gravity - time is lost, understandably. We do not
quantise gravity. We remove classical space-time / gravity from quantum [field] theory.
Space-time and gravity emerge as approximations from the pre-theory, concurrent with the
emergence of classical macroscopic bodies. In this emergent universe, those systems which
have not become macroscopic, are described by the beloved quantum theory we know -
namely quantum theory on a classical spacetime background. This is an approximation to
the pre-theory: in this approximation, the contribution of the said quantum system to the

background spacetime is [justifiably] neglected.

B. Why a quantum theory of gravity is needed at all energy scales, and not just
at the Planck energy scale? And how that leads us to partially redefine what is meant

by Planck scale: Replace Energy by Action.

We have argued above that there must exist a formulation of quantum theory which does
not refer to classical time. Such a formulation must in principle exist at all energy scales,
not just at the Planck energy scale. For instance, in today’s universe, if all classical objects

were to be separated out into elementary particles, there would be no classical space-time
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and we would need such a formulation. Even though the universe today is a low energy
universe, not a Planck energy universe.

Such a formulation is inevitably also a quantum theory of gravity. Arrived at, not by
quantising gravity, but by removing classical gravity from quantum theory. We can also call
such a formulation pure quantum theory, in which there are no classical elements: classical
space-time has been removed from quantum theory. We also call it a pre-quantum, pre-
spacetime theory.

What is meant by Planck scale, in this pre-theory?

Conventionally, a phenomenon is called Planck scale if: the time scale T' of interest is of
the order Planck time ¢p; and/or length scale L of interest is of the order of Planck length
Lp; and/or energy scale E of interest is of the order Planck energy Ep. According to this
definition of Planck scale, a Planck scale phenomenon is quantum gravitational in nature.
Since the pre-theory is quantum gravitational, but not necessarily at the Planck energy
scale, we must partially revise the above criterion, when going to the pre-theory: replace
the criterion on energy E by a criterion on something else. This something else being the
action of the system!

In the pre-theory, a phenomenon is called Planck scale if: the time scale T" of interest is of
the order Planck time Tp; and/or length scale L of interest is of the order of Planck length
Lp; and/or the action S of interest is of the order Planck constant h. According to this
definition of Planck scale, a Planck scale phenomenon is quantum gravitational in nature.

Why does this latter criterion make sense? If every degree of freedom has an associated
action of order A, together the many degrees of freedom cannot give rise to a classical
spacetime. Hence, even if the time scale T of interest and length scale L of interest are
NOT Planck scale, the system is quantum gravitational in nature. The associated energy
scale h/T for each degree of freedom is much smaller than Planck scale energy Ep. Hence
in the pre-theory the criterion for a system to be quantum gravitational is DIFFERENT
from conventional approaches to quantum gravity. And this makes all the difference to the
formulation and interpretation of the theory. e.g. the low energy fine structure constant
1/137 is a Planck scale phenomenon [according to the new definition| because the square of
the electric charge is order unity in the units hc = hLp/tp

In our pre-theory, there are three, and only three, fundamental constants: Planck length

Lp, Planck time tp and Planck action A. Every other parameter, such as electric charge,
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Newton’s gravitational constant, standard model coupling constants, and masses of elemen-

tary particles, are defined and derived in terms of these three constants: h, Lp and tp.

In the pre-theory the universe is an 8D octonionic universe, as shown in the Fig. 3, the
octonion, reproduced below. The origin ¢y = 1 stands in for the real part of the octonion
[coordinate time] and the other seven vertices stand in for the seven imaginary directions. A
degree of freedom [i.e. ‘particle’ or an atom of space-time-matter (STM)] is described by a
matrix ¢ which resides on the octonionic space: ¢ has eight coordinate components ¢; where
each ¢; is a matrix. We have replaced a four-vector in Minkowski space-time by an eight-
matrix in octonionic space: and this describes the particle / STM atom. The STM atom
evolves in Connes time, this time being over and above the eight octonionic coordinates. Its
action is that of a free particle in this space: time integral of kinetic energy, the latter being
the square of velocity ¢, where dot is derivative with respect to Connes time. Eight octonionic
coordinates are equivalent to ten Minkowski coordinates, because of SL(2,0) ~ Spin(9,1).
The symmetries of this space are the symmetries of the (complexified) octonionic algebra:
they contain within them the symmetries of the standard model, including the 4D-Lorentz

symimetry.

The classical 4D Minkowski universe is one of the three planes (quaternions) intersecting
at the origin ey = 1. Incidentally the three lines originating from ey represent complex
numbers. The four imaginary directions not connected to the origin represent directions
along which the standard model forces lie (internal symmetries). Classical systems live on
the 4D quaternionic plane. Quantum systems (irrespective of whether they are at Planck
energy scale) live on the entire 8D octonion. Their dynamics is the sought for quantum
theory without classical time. This dynamics is oblivious to what is happening on the
4D classical plane. QFT as we know it is this pre-theory projected to the 4D Minkowski
space-time. The present universe has arisen as a result of a symmetry breaking in the 8D
octonionic universe: the electroweak symmetry breaking. Which in this theory is actually
the color-electro — weak-Lorentz symmetry breaking. Classical systems condense on to the
4D Minkowski plane as a result of spontaneous localisation, which precipitates the electro-
weak symmetry breaking in the first place. The fact that weak is part of weak-lorentz should
help understand why the weak interaction violates parity, whereas electro-color does not.

Hopefully the theory will shed some light also on the strong-CP problem.
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FIG. 9. The octonions [From Baez [23]].

C. What is Trace Dynamics? : Trace dynamics is quantisation, without imposing

the Heisenberg algebra

In the conventional development of canonical quantisation, the two essential steps are:

1. Quantisation Step 1 is to raise classical degrees of freedom, the real numbers ¢ and p,

to the status of operators / matrices. This is a very reasonable thing to do.

2. Quantisation Step 2 is very restrictive! Impose the Heisenberg algebra [q, p| = if. Its
only justification is that the theory it gives rise to is extremely successful and consistent
with every experiment done to date. In classical dynamics, the initial values of ¢ and p are
independently prescribed. There is NO relation between the initial ¢ and p. Once prescribed

initially, their evolution is determined by the dynamics. Whereas, in quantum mechanics, a
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theory supposedly more general than classical mechanics, the initial values of the operators
g and p must also obey the constraint [q, p] = k. This is highly restrictive!

3. It would be more reasonable if there were to be a dynamics based only on Quantisation
Step 1. And then Step 2 emerges from this underlying dynamics in some approximation.
This is precisely what Trace Dynamics is. Only step 1 is applied to classical mechanics.
q and p are matrices, and the Lagrangian is the trace of a matrix polynomial made from
g and its velocity. The matrix valued equations of motion follow from variation of the
trace Lagrangian. They describe dynamics. This is the theory of trace dynamics developed
by Adler [1-3] - a pre-quantum theory, which we have generalised to a pre-quantum, pre-
spacetime theory [10].

4. This matrix valued dynamics, i.e. trace dynamics, is more general than quantum field
theory, and assumed to hold at the Planck scale, and also whenever background classical
spacetime is absent, no matter what the energy scale. The Heisenberg algebra is shown
to emerge at lower energies, or when space-time emerges, after coarse-graining the trace
dynamics over length scales much larger than Planck length scale. Thus, quantum theory is
midway between trace dynamics and classical dynamics.

5. The moral of the story is that we assume that quantum field theory does not hold at
the Planck scale. Trace dynamics does. QFT is emergent.

6. The other assumption one makes at the Planck scale is to replace the 4-D classical
spacetime manifold by an 8D octonionic spacetime manifold, so as to obtain a canonical
definition of spin. This in turn allows for a Kaluza-Klein type unification of gravity and
the standard model. Also, an 8D octonionic spacetime is equivalent to a 10-D Minkowski
space-time. It is very rewarding to work with 8D octonionic, rather than 10D Minkowski -
the symmetries manifest much more easily.

7. Trace dynamics plus octonionic spacetime together give rise to a highly promising
avenue for constructing a theory of quantum gravity, and of unification. 4D classical space-
time obeying GR emerges as an approximation at lower energies, alongside the emergent
quantum theory.

8. How is this different from string theory? In many ways it IS like string theory, but
without the Heisenberg algebra! The gains coming from dropping [q, p] = ih at the Planck
scale are enormous. One now has a non-perturbative description of pre-space-time at the

Planck scale. The symmetry principle behind the unification is very beautiful: physical
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laws are invariant under algebra automorphisms of the octonions. This unifies the internal
gauge transformations of the standard model with the 4D spacetime diffeomorphisms of
general relativity. The automorphism group of the octonions, the Lie group G, which
is the smallest of the five exceptional Lie groups, contains within itself the symmetries
SU(3) x SU(2) x U(1) of the standard model, along with the Lorentz symmetry. The
free parameters of the standard model are determined by the characteristic equation of the
exceptional Jordan algebra J3(0O), whose automorphism group Fj is the exceptional Lie

group after G.

D. Normed division algebras, trace dynamics, and relativity in higher dimensions.

And how these relate to quantum field theory and the standard model

Let us consider the four normed division algebras R, C,H, O [Reals, Complex Numbers,
Quaternions, Octonions] in the context of the space-times associated with them, and how
these algebras relate to trace dynamics. This can be understood graphically with the help of
Fig. 7 above, which contains within itself a representation of all the four division algebras.

Let us start with the reals R, represented in the above diagram by the origin ey = 1.
This direction represents the time coordinate, in all the four different space-times associated
with these four division algebras. The three lines emanating from the origin and connecting
respectively to es, e5, eg represent complex numbers C. The three planes intersecting at the

origin represent quaternions H and the full cube represents the octonions Q.

Galilean relativity and Newtonian mechanics: This is related to the quaternions, and we
assume each of the three planes intersecting at the origin represent absolute Newtonian space
[say in the plane (1,eq, es5, e5) we set e; = &, e5 = 1, e = 2]. Galilean invariance is assumed,
and the spatial symmetry group is SO(3), the group of rotations in three dimensional space;
this is also the automorphism group Aut(H) of the quaternions. The origin represents
absolute Newtonian time, and we have Newtonian dynamics in which the action principle
for the free particle represented by the configuration variable q, which is a three-vector, is
simply

S = / dt ¢ (83)

The generalisation to many-particle systems interacting via potentials is obvious and well-
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known. Newtonian gravity can be consistently described in this framework. The dynamical
variables, being real-number valued three-vectors, all commute with each other. The impor-
tant approximation made in the physical space is that by hand we set e? = €3 = €3 = 1,
instead of —1. This of course is what gives us the Newtonian absolute space (Euclidean
geometry) and absolute time, and the manifold R? for physical space. The associated alge-
bra is R x H, in an approximate sense, which becomes precise only in special relativity, as
discussed below.

[The algebra C represents a 2D physical space, and R x C represents a space-time for
Newtonian mechanics in absolute two-space represented by C, and absolute time R. The
homomorphism SL(2,R) ~ SO(2,1) suggests that we can relate 2x2 real-valued matrices
to a 241 relativistic space-time. This observation becomes very relevant when we relate
normed division algebras to relativity.]

To go from here to trace dynamics, we will raise all dynamical variables from three-vectors
to three-matrices. Thus q is a matrix-valued three-vector whose three spatial components

d1, 42, 3 are matrices whose entries are real numbers. The Lagrangian for a free particle

22
will now be the trace of the matrix polynomial q , and hence the action is

S = / dt Trl§’] (84)

The underlying three-space continues to have the symmetry group SO(3) and the dynamics
obeys Galilean invariance; this is implemented on the trace dynamics action via the unitary

transformations generated by the generators of SO(3).

Special relativity, Complex quaternions, and the algebra R x C x H:

Consider the quaternionic four vector x = xgeq + 11 + x2€9 + 144 and the correspond-
ing position four-vector for a particle in special relativity: q; = qoeo + q1e1 + qz€2 + qué4.
One can define the four-metric on this Minkowski space-time whose symmetry group is the
Lorentz group SO(3,1) having the universal cover Spin(3,1) isomorphic to SL(2,C). The
complex quaternions generate the boosts and rotations of the Lorentz group SO(3,1). They
can be used to obtain a faithful representation of the Clifford algebra C1(2) and fermionic
ladder operators constructed from this algebra can be used to generate the Lorentz alge-
bra SL(2,C). Also, Cl(2) can be used to construct left and right handed Weyl spinors as

minimal left ideals of this Clifford algebra, and as is well known the Dirac spinor and the
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Majorana spinor can be defined from the Weyl spinors. CI(2) also gives the vector and scalar
representations of the Lorentz algebra. These results are lucidly described in Furey’s Ph. D.
thesis [6-8] as well as also in her video lecture series on standard model and division algebras

https://www.youtube.com/watch?v=GJCKCss43WI&ab channel=CohlFureyCohlFurey

The above relation between the Clifford algebra C(2) and the Lorentz algebra SL(2,C)
strongly suggests, keeping in view the earlier conclusions for C(6) and the standard model
and the octonions [6-8], that the Cl(2) algebra describes the left handed neutrino and the
right-handed anti-neutrino, and a pair of spin one Lorentz bosons. This is confirmed by

writing the following trace dynamics Lagrangian and action on the quaternionic space-time

of special relativity, thereby generalising the relativistic particle S = —mc [ ds:

S0 [Tt gl a8 (b +i5ak) [ x| as+iTan+aoss (dr+i5ar) | (35)
= r i— a i— i— a i—

Co 5 — dp LqB 0P1 \ 9 LqF 4B LQB 0P2 \ gF LQF

where ag = L% /L?. This Lagrangian is identical in form to the one studied earlier in the
present paper, but with a crucial difference that it is now written on 4D quaternionic space-
time, not on 8D octonionic space-time. Thus ¢g and ¢ have four components between
them, not eight: g = qBe2 €2 + qBea €4; (B = (Beo €0 + (Be1 €1. Similarly, the fermionic
matrices have four components between them, not eight. Thus qr = qres €2 + qres €45 Gr =

GFreo €0 + (Fe1 €1

This has far-reaching consequences. Consider first the case where we set a = 0. The

Lagrangian then is

S a dr . ) . .
=2 —1r C]jg + 00/3161} X B + aoB2qr (86)
Co 2 TPl

By opening up the terms into their coordinate components, the various degrees of freedom
can be identified with the Higgs, the Lorentz bosons, the neutral weak isospin boson, and
two neutrinos. The associated space-time symmetry is the Lorentz group SO(3,1) and the
associated Clifford algebra is C1(2), reminding us again of the homomorphism SL(2,C) ~
SO(3,1).

When « is retained, the Lagrangian describes Lorentz-weak symmetry of the leptons:
electron, positron, two neutrinos of the first generation, the Higgs, two Lorentz bosons, and

the three weak isospin bosons. To our understanding, the associated Clifford algebra is still
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Cl1(2) but now all the quaternionic degrees of freedom have been used in the Lagrangian
and in the construction of the particle states.. What we likely have here is the extension
of the Lorentz algebra by an SU(2), as shown in Figure 8 below, borrowed from our earlier
work [4]. It remains to be understood if now the homomorphism SL(2,H) ~ SO(5,1) comes
into play. And also, whether a quaternionic triality [46] could explain the existence of three

generations of leptons. These aspects are currently under investigation.

Lorentz-Weak
' Symmetry

Cl(6)
One generatiog
Quarks & L

SU(3)xU(1) SU(2)XSU(2)/Z>

The two maximal Aut(H)

sub-groups of Gz

SU(3)XU(1): Element-wise stabiliser ; SU(2)XSU(2)/Z2: Group Stabiliser for Aut(H)
(Electro-Color) (Gravito-weak)

U(2): Intersection of Electro-color and Gravito-Weak, SO(3): Aut(H) : To-be-Lorentz symmetry

FIG. 10. The maximal sub-groups of G5 and their intersection [From Singh [4]].

It is now only natural that this trace dynamics be extended to the last of the division
algebras, the octonions, so as to construct an octonionic special relativity. This amounts to

extending the Lorentz algebra by U(3), as can be inferred from Fig. 8.

Octonionic special relativity, complex octonions, and the algebra R x C x H x O
The background space-time is now an octonionic space-time with coordinate vector x =

Toeo + T1e1 + Toeg + wyeq + 1363 + X565 + Te€6 + T7E7, and the corresponding eight-vector for

23


https://doi.org/10.20944/preprints202101.0474.v4

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2021 d0i:10.20944/preprints202101.0474.v4

a particle in this octonionic special relativity is q; = qoeg + qre1 + @2€2 + queq + qzes + gses +
geé€s + qrer. In ordinary relativity, the ¢; are real numbers, but now in trace dynamics they
are bosonic or fermionic matrices. The space-time symmetry group is the automorphism
group G of the octonions, shown in Fig. 8, along with its maximal sub-groups, which reveal
the standard model along with its 4D Lorentz symmetry. The Lagrangian is the same as in
(86) above, but now written on the 8D octonionic space-time. As a result, ¢p and gr have
component indices (3, 5, 6, 7) whereas their time derivatives have indices (0, 1, 2, 4). This is
the Lagrangian analysed in the main part of the present paper and it now includes quarks as
well as leptons, along with all twelve standard model gauge bosons plus two Lorentz bosons.

We note the peculiarity that the weak part of the Lorentz-weak symmetry of the leptons,
obtained by extending the Lorentz symmetry, intersects with the electr-color sector provided
by U(3) ~ SU(3) x U(1). This strongly suggests that the lepton part of the weak sector
can be deduced from the electro-color symmetry. This is confirmed by the earlier work of
Stoica [9], Furey [8] and our own earlier work [4].

We see that this Lagrangian is a natural generalisation of Newtonian mechanics and 4D
special relativity to the last of the division algebras, the octonions, which represent a 10D

Minkowski space-time because of the homomorphism SL(2,0) = SO(9,1).

Emergent quantum field theory

In the entire discussion above, relating generalised trace dynamics to the standard model,
we have made no reference to quantum field theory. The pre-quantum, pre-space-time
matrix-valued Lagrangian dynamics which we have constructed above, reveals the stan-
dard model and its symmetries (including the Lorentz symmetry) without any fine tuning.
Quantum field theory, and classical space-time, are emergent from this pre-theory, after
coarse-graining the underlying theory over time-scales much larger than Planck time, in the
spirit of Adler’s trace dynamics.

String theory is pre-space-time, but not pre-quantum. Trace dynamics is pre-quantum,
but not pre-space-time. The octonionic theory [O-theory| is pre-space-time and pre-
quantum. It generalises trace dynamics to a pre-quantum, pre-space-time theory. The
O-theory is not intended as an alternative to quantum field theory. Rather, it is applica-
ble in those circumstances when a background classical time is not available for writing

down the rules of QFT. Then, the O-theory also reveals itself to be pre-quantum. When a
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background classical time becomes available, O-theory coincides with QFT and is no longer
pre-quantum. O-theory reveals the symmetries of the standard model without any fine-
tuning, and also shows a route for determining the free parameters of the standard model.
This comes about because the background non-commutative spacetime fixes the properties
of the allowed elementary particles. In this way, O-theory has a promising potential to tell
us, in a mathematically precise way, where the standard model, and classical space-time,
come from. The O-theory is not a Grand Unified Theory [GUTs]. GUTs determine inter-
nal symmetries by making specific choices for the internal symmetry group, while classical
space-time and QFT are kept intact. In contrast to this, the O-theory retains neither QFT
nor a classical space-time. The symmetries of O-theory are a unification of internal and

spacetime symmetries, in the spirit of a Kaluza-Klein theory.

The diagram below lists the three main steps in which the octonionic theory is developed.

Current investigation is focused at the third step.

The emergence of standard quantum field theory on a classical space-time background is
a result of coarse-graining and spontaneous localisation and has been described in our earlier
papers [10, 12]. Spontaneous localisation gives rise to macroscopic classical bodies and 4D
classical space-time. From the vantage point of this space-time those STM atoms which have
not undergone spontaneous localisation appear, upon coarse-graining of their dynamics, as
they are conventionally described by quantum field theory on a 4D classical space-time.
Operationally, the transition from the action of the pre-spacetime pre-quantum theory is
straightforward to describe. Suppose the relevant term in the action of the pre-theory is
denoted as [ dr [T r|Ty] + Tr(Ty] + Tr(T: 3]] . Say for instance the three terms respectively
describe the electromagnetic field, the action of a W boson on an electron, and the action
of a gluon on an up quark. Then, the corresponding action for conventional QFT will be

recovered as:

/dr {Tr[Tl] + Tr(Ts) + T?"[Tg]:| — /dr /d43: [[TlQFT] + [Togrr] + [Tagrr]| (87)

The trace has been replaced by the space-time volume integral, and each of the three terms
have correspondingly been replaced by the conventional field theory actions for the three
cases: conventional action for the electromagnetic field, for the W boson acting on the

electron, and for the gluon acting on the up quark. In this way, QFT is recovered from the
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Quantum theory without classical time,
as a route to quantum gravity and unification

TRACE DYNAMICS A pre-quantum theory

[A matrix-valued Lagrangian dynamics for fermions and Yang-Mills fields]

N\

QFT is emergent

GENERALISED TRACE DYNAMICS A pre-quantum, pre-spacetime theory

[A matrix-valued Lagrangian dynamics for fermions and Yang-Mills fields and gravitation]

QFT is emergent

GENERALISED TRACE DYNAMICS on an OCTONIONIC SPACE-TIME

[Evidence that the theory could possibly describe the standard model, \
and determine free parameters of the standard model.]

QFT is emergent

FIG. 11. The pre-space-time, pre-quantum octonionic theory in three key steps. The degrees of
freedom are ‘atoms of space-time-matter’ [STM]. An STM atom is an elementary fermion along
with all the fields that it produces. The action for an STM atom resembles a 2-brane in a 1041
dimensional Minkowski spacetime. The fundamental universe is made of enormously many STM
atoms. From here, quantum field theory is emergent upon coarse-graining the underlying funda-
mental theory.

pre-theory.

However, by starting from the pre-theory, we can answer questions which the standard
model cannot answer. We know now why the standard model has the symmetries it does,
and why the dimensionless free parameters of the standard model take the values they do.
These are fixed by the algebra of the octonions which defines the 8D octonionic space-
time in the pre-theory. While this is work in progress, it provides a promising avenue for

understanding the origin of the standard model and its unification with gravitation.
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