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Abstract: The great importance of estimating dissolved oxygen (DO) dictates utilizing 

proper evaluative models. In this work, a multi-layer perceptron (MLP) network is trained 

by three capable metaheuristic algorithms, namely multi-verse optimizer (MVO), black hole 

algorithm (BHA), and shuffled complex evolution (SCE) for predicting the DO using the 

data of the Klamath River Station, Oregon, US. The records (DO, water temperature, pH, 

and specific conductance) belonging to the water years 2015 - 2018 (USGS) are used for 

pattern analysis. The results of this process showed that all three hybrid models could 

properly infer the DO behavior. However, the BHA and SCE accomplished this task by 

simpler configurations. Next, the generalization ability of the developed patterns is tested 

using the data of the 2019 water year. Referring to the calculated mean absolute errors of 

1.0161, 1.1997, and 1.0122, as well as Pearson correlation coefficients of 0.8741, 0.8453, and 

0.8775, the MLPs trained by the MVO and SCE perform better than the BHA. Therefore, 

these two hybrids (i.e., the MLP-MVO and MLP-SCE) can be satisfactorily used for future 

applications. 

 

Keywords: Water quality; dissolved oxygen; Neural network; Metaheuristic schemes. 

 

 

1 Introduction 

As is known, acquiring an appropriate forecast from water quality parameters like dissolved 

oxygen (DO) is an important task due to their effects on aquatic health maintenance and 

reservoir management [1]. The constraints like the influence of various environmental 

factors on the DO concentration [2] have driven many scholars to replace the conventional 

models with sophisticated artificial intelligent techniques [3-6]. As discussed by many 

scholars, intelligence techniques have a high capability to undertake non-linear and 

complicated calculations [7-14]. A large number artificial intelligence-based practices are 

studied, for example, in the subjects of environmental concerns [15-21], sustainability [22], 

quantifying climatic contributions [23], pan evaporation and soil precipitation prediction 

[22, 24, 25], air quality [26], optimizing energy systems [27-34], water and groundwater 

supply chains [17, 35-43], natural gas consumption [44], face or particular pattern 
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recognition [23, 45-49], image classification and processing [50, 51], target tracking and 

computer vision [41, 52-57], structural health monitoring [58, 59], building and structural 

design analysis [58, 60-62], structural material (e.g., steel and concrete) behaviors [8, 21, 61, 

63-67], soil-pile analysis and landslide assessment [12, 67-70], seismic analysis [70-72], 

measurement techniques [41, 59, 60, 73], or very complex problems such as signal processing 

[50, 52, 74, 75] as well as feature selection and extraction problems [23, 50, 74, 76-78]. Similar 

to deep learning-based applications [53, 73, 79-83], many decision-making applications 

work related to engineering complicated problems as well [60, 84-89].  

A neural network is known as a series of complex algorithms that recognize underlying 

connections in a set of data input and outputs through a process that mimics the way the 

human brain operates [45, 46, 90-93]. In another sense, the technique of artificial neural 

network (ANN) is a sophisticated nonlinear processor that has attracted massive attention 

for sensitive engineering modeling [94]. Different notions represent this model. Most 

importantly, a multi-layer perceptron (MLP) [81, 95] is composed of a minimum of three 

layers, each of which contains some neurons for handling the computations - noting that a 

more complicated ANN-based solution is known as deep learning [96, 97] where it refers as 

part of a wider family of conventional training machine technique based on ANN with 

representation learning [79, 80, 82, 83, 98]. For instance, Chen, et al. [99], Hu, et al. [100], 

Wang, et al. [47], and Xia, et al. [101] employed the use of extreme machine learning 

techniques in the field of medical sciences. As some new advanced prediction techniques, 

hybrid searching algorithms are widely developed to have more accurate prediction 

outputs; namely, harris hawks optimization [67], enhanced grey wolf optimization [102], 

multiobjective large-scale optimization [40, 90, 103, 104], fruit fly optimization [105], multi-

swarm whale optimizer [13], ant colony optimization [106], as well as conventional and 

extrme machine learning-based solutions [107-111].  

Through applying a support vector regression (SVR), Li, et al. [112] showed the efficiency 

of the maximal information coefficient technique used for feature selection in the estimation 

of the DO concentration. The results of the optimized dataset were much more reliable 

(28.65% in terms of root mean square error, RMSE) than the original input configuration. 

Csábrági, et al. [113] showed the appropriate efficiency of three conventional notions of 

artificial neural networks (ANNs) by the names multilayer perceptron (MLP), radial basis 

function (RBF), and general regression neural network (GRNN) for this purpose. Similar 

efforts can be found in [114, 115]. Heddam [116] introduced a new ANN-based model, 

namely evolving fuzzy neural network as a capable approach for the DO simulation in the 

river ecosystem. The suitability of fuzzy-based models has been investigated in many 

studies [117]. Adaptive neuro-fuzzy inference system (ANFIS) is another potent data 

mining technique that has been discussed in many studies [118-120]. More attempts 

regarding the employment of machine learning tools can be found in [121-124]. 

Ouma, et al. [125] compared the performance of a feed-forward ANN with multiple linear 

regression (MLR) in simulating the DO in Nyando River, Kenya. It was shown that the 

correlation of the ANN is considerably greater than the MLR (i.e., 0.8546 vs. 0.6199). Zhang 

and Wang [58] combined a recurrent neural network (RNN) with kernel principal 

component analysis (kPCA) to predict the hourly DO concentration. Their suggested model 

was found to be more accurate than traditional data mining techniques, including feed-

forward ANN, SVR, and GRNN by around 8, 17, and 12%. The most considerable accuracy 
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(the coefficient of determination (R2) = 0.908) was obtained for the DO in the upcoming one 

hour. Lu and Ma [126] combined a so-called denoising method “complete ensemble 

empirical mode decomposition with adaptive noise” with two popular machine learning 

models, namely random forest (RF) and extreme gradient boosting (XGBoost) to analyze 

various water quality parameters. It was shown that the RF-based ensemble is a more 

accurate approach for the simulation of DO, temperature, and specific conductance. They 

also proved the viability of the proposed approaches by comparing them with some 

benchmark tools. Likewise, Ahmed [127] showed the superiority of the RF over the MLR 

for DO modeling. He also revealed that water temperature as well as pH olay the most 

significant role in this process. Ay and Kişi [128] conducted a comparison among MLP, RBF, 

ANFIS (sub-clustering), and ANFIS (grid partitioning). Respective R2 values of 0.98, 0.96, 

0.95, and 0.86 for one station (Number: 02156500) revealed that the outcomes of the MLP are 

better-correlated with the observed DOs. 

Synthesizing conventional approaches with auxiliary techniques has led to novel hybrid 

tools for various hydrological parameters [129-131]. Ravansalar, et al. [132] showed that 

linking the ANN with a discrete wavelet transform results in improving the accuracy (i.e., 

Nash–Sutcliffe coefficient) from 0.740 to 0.998. A similar improvement was achieved for the 

SVR applied to estimate biochemical oxygen demand in Karun River, Western Iran. 

Antanasijević, et al. [133] presented a combination of Ward neural networks and local 

similarity index for predicting the DO in the Danube River. They stated the better 

performance of the proposed model compared to multisite DO evaluative approaches 

presented in the literature. Metaheuristic search methods, like teaching-learning based 

optimization [134], have provided suitable approaches for intricate problems. Ahmed and 

Shah [118] suggested three optimized versions of ANFIS using differential evolution, 

genetic algorithm (GA), and ant colony optimization for predicting water quality 

parameters, including electrical conductivity, sodium absorption ratio, and total hardness. 

In similar research, Mahmoudi, et al. [135] coupled the SVR with shuffled frog leaping 

algorithm (SFLA) for the same objective. Zhu, et al. [136] compared the efficiency of the fruit 

fly optimization algorithm (FOA) with the GA and particle swarm optimization (PSO) for 

optimizing a least-squares SVR for forecasting the trend of DO. Referring to the obtained 

mean absolute percentage errors of 0.35, 1.3, 2.03, and 1.33%, the proposed model (i.e., FOA-

LSSVR) surpassed the benchmark techniques. In this work, three stochastic search 

techniques of multi-verse optimizer (MVO), black hole algorithm (BHA), and shuffled 

complex evolution (SCE) are used to optimize an MLP neural network for predicting the 

DO using recent data collected from the Klamath River Station. To the best of the authors’ 

knowledge, up to now, a few metaheuristic algorithms have been used for training the ANN 

in the field of DO modeling (e.g., firefly algorithm [137] and PSO [138]). Therefore, the 

models suggested in this study are deemed as innovative hybrids for this purpose.  

 

2 Data 

As a matter of fact, intelligent models should first learn the pattern of the intended 

parameter to predict it. This learning process is carried out by analyzing the dependence of 

the target parameter on some independent factors. In this work, the DO is the target 

parameter for water temperature (WT), pH, and specific conductance (SC). This study uses 

the data belonging to a US Geological Survey (USGS) station, namely the Klamath River 
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(station number: 11509370). As Figure 1 illustrates, this station is located in Klamath County, 

Oregon State. 

 

 
Figure 1: Location of the studied USGS station. 

 

Pattern recognition is fulfilled by means of the data between October 01, 2014, and 

September 30, 2018. After training the models, they predict the DO for the subsequent year 

(i.e., from October 01, 2018, to September 30, 2019). Since the models do not know this data, 

the accuracy of this process will reflect their capability for predicting the DO in unseen 

conditions. Hereafter, these two groups are categorized as training data and testing data, 

respectively. Figure 2 depicts the DO versus WT, PH, and SC for the (a, c, and e) training 

and (b, d, and f) testing data. Based on the available data for the mentioned periods, the 

training and testing groups contain 1430 and 352 records, respectively. Moreover, the 

statistical description of these datasets is presented in Table 1. 
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(c) (d) 

 

  

(e) (f) 

 

Figure 2: Scatterplots showing the DO vs. independent factors. 
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Table 1: Statistical indicators of the DO and independent factors. 

Indicator 

Train data  Test data 

WT  

(°C) 
pH 

SC 

(μS/cm) 

DO 

(mg/L) 
 

WT  

(°C) 
pH 

SC 

(μS/cm) 

DO 

(mg/L

) 

Average 12.20 8.05 160.46 7.74  11.54 7.97 174.20 7.59 

Standard 

Deviation 
7.38 0.64 39.81 2.78  7.43 0.65 45.80 2.69 

Sample Variance 54.43 0.41 1584.75 7.72  55.23 0.42 2097.97 7.24 

Skewness 0.07 0.48 1.54 -0.54  0.11 0.96 1.49 -0.57 

Minimum 0.40 6.90 105.00 0.30  1.40 7.20 116.00 0.60 

Maximum 25.70 9.60 332.00 14.00  23.10 9.60 387.00 13.20 

 

3 Methodology 

The steps of this research are shown in Figure 3. After providing the appropriate dataset, 

the MLP is submitted to the MVO, BHA, and SCE algorithms for adjusting its parameters 

through metaheuristic schemes. During an iterative process, the MLP is optimized to 

present the best possible prediction of the DO. The quality of the results is lastly evaluated 

using Pearson correlation coefficient (RP) along with mean absolute error (MAE) and RMSE. 

They analyze the agreement and the difference between the observed and predicted values 

of a target parameter. In the present work, given 𝐷𝑂𝑖𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  and 𝐷𝑂𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  as the predicted 

and observed DOs, the RP, MAE, and RMSE are expressed by the following equations: 
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where K signifies the number of the compared pairs. 
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Figure 3: The steps of this research taken for predicting the DO. 

 

3.1 The MVO 

As is implied by its name, the MVO is obtained from multi-verse theory in physics [139]. 

According to this theory, there is more than one big bang event, each of which has initiated 

a separate universe. The algorithm was introduced by Mirjalili, et al. [140]. The main 

components of the MVO are worm holes, black holes, and white holes. The concepts of black 

and white holes run the exploration phase, while the wormhole concept is dedicated to the 

exploitation procedure. 

In the MVO, a so-called parameter “rate of inflation (ROI)” is defined for each universe. The 

objects are transferred from the universes with larger ROIs to those with lower values for 

improving the whole cosmos' average ROI. During an iteration, the organization of the 

universes is carried out with respect to their ROIs, and after a roulette wheel selection 

(RWS), one of them is deemed as the white hole. In this relation, a set of universes can be 

defined as: 

U = 

[
 
 
 
 
𝑥1
1 𝑥1

2 … 𝑥1
𝑔

𝑥2
1 𝑥2

2 … 𝑥2
𝑔

⋮ ⋮ ⋮ ⋮
𝑥𝑘
1 𝑥𝑘

2 … 𝑥𝑘
𝑔
]
 
 
 
 

 (4) 

where g symbolizes the number of objects and k stands for the number of universes. The jth 

objective in the ith solution is generated according to the below equation: 
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𝑥𝑖
𝑗
 = 𝑙𝑏𝑗 + 𝑟𝑎𝑛𝑑()%((𝑢𝑏𝑗 − 𝑙𝑏𝑗) + 1)     ∀i ∈ (1, 2, ..., k) ˄ ∀j ∈ (1, 2, ..., g) (5) 

where 𝑢𝑏𝑗 and 𝑙𝑏𝑗 denote upper and lower bounds, and the function 𝑟𝑎𝑛𝑑() produces a 

discrete randomly distributed number. 

 

In each repetition, there are two options for the 𝑥𝑖
𝑗
: (i) it is selected from earlier solutions 

using RWS (e.g., 𝑥𝑖
𝑗
 ∈ (𝑥𝑖

1, 𝑥𝑖
2, ..., 𝑥𝑖

𝑗−1
) and (ii) it does not change. It can be wrriten: 

𝑥𝑖
𝑗
 = {

𝑥𝑚
𝑗
               𝑟𝑎𝑛𝑑1 < 𝑁𝑜𝑟𝑚(𝑈𝑖)

𝑥𝑖
𝑗
                𝑟𝑎𝑛𝑑1 ≥ 𝑁𝑜𝑟𝑚(𝑈𝑖)

 (6) 

In the above equation, 𝑈𝑖 stands for the ith universe, 𝑁𝑜𝑟𝑚(𝑈𝑖) gives the corresponding 

normalized ROI, and 𝑟𝑎𝑛𝑑1 is a random value in [0, 1]. 

Equation 7 expresses the measures considered to deliver the variations of the whole 

universe. In this sense, the wormholes are supposed to enhance the ROI. 

𝑥𝑖
𝑗
 = 

{
 
 

 
 
{
𝑥𝑗 + 𝑇𝐷𝑅 × ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑟4 + 𝑙𝑏𝑗)      𝑖𝑓  𝑟3 < 0.5

𝑥𝑗 − 𝑇𝐷𝑅 × ((𝑢𝑏𝑗 − 𝑙𝑏𝑗) × 𝑟4 + 𝑙𝑏𝑗)      𝑖𝑓  𝑟3 ≥ 0.5

𝑥𝑖
𝑗
 

      𝑖𝑓  𝑟2 < 𝑊𝐸𝑃 (7) 

     𝑖𝑓  𝑟2 ≥ 𝑊𝐸𝑃 

where 𝑥𝑗 signifies the jth best-fitted universe obtained so far and 𝑟2, 𝑟3, and 𝑟4 are random 

values in [0, 1]. Moreover, two parameters of WEP and TDR stand for the wormhole 

existence probability and traveling distance rate, respectively. Given Iter as the running 

iteration, and 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 as the maximum number of Iters, these parameters can be calculated 

as follows: 

𝑊𝐸𝑃 = 𝑎 + 𝐼𝑡𝑒𝑟 ×  (
𝑏−𝑎

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
) (8) 

𝑇𝐷𝑅 = 1 − 
𝐼𝑡𝑒𝑟1/𝑞

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
1/𝑞 (9) 

where q is the accuracy of exploitation, a and b are constant pre-defined values [141, 142]. 

 

3.2 The BHA 

Inspired by the black holes incidents in space, Hatamlou [143] proposed the BHA in 2013. 

Emerged after the collapse of massive stars, a black hole is distinguished by a huge 

gravitational power. The stars move toward this mass, and it explains the pivotal strategy 

of the BHA for achieving an optimum response. A randomly generated constellation of stars 

represents the initial population. Based on the fitness of these stars, the most powerful one is 

deemed as the black hole to absorb the surrounding ones. In this procedure, the positions 

change according to the below relationship: 

𝑥𝑖
𝐼𝑡𝑒𝑟+1 = 𝑥𝑖

𝐼𝑡𝑒𝑟 + rand × (𝑥𝐵𝐻 - 𝑥𝑖
𝐼𝑡𝑒𝑟)    i = 1, 2, …, Z (10) 

where rand is a random number in [0, 1], 𝑥𝐵𝐻 is the black hole's position, Z is the total 

number of stars, and Iter symbolizes the iteration number. 

Once the fitness of a star surpasses that of the black hole, they exchange their positions. In 

this regard, Equation 11 calculates the radius of the event horizon for the black hole. 
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𝑅𝑆 = 𝐹𝐵𝐻 / ∑ 𝐹𝑖
𝑍
𝑖=1  (11) 

where 𝐹𝑖 is the fitness of the ith star and 𝐹𝐵𝐻 gives this value for the black hole [144]. 

 

3.3 The SCE 

Originally proposed by Duan, et al. [145], the SCE has been efficiently used for dealing with 

optimization problems with high dimensions. The SCE can be defined as a hybrid of 

complex shuffling and competitive evolution concepts along with the strengths of the 

controlled random search strategy. This algorithm (i.e., the SCE) benefits from a 

deterministic strategy to guide the search. Also, utilizing random elements has resulted in 

a flexible and robust algorithm. 

In the SCE is implemented in seven steps. Assuming NC as the number of complexes and 

NP as the number of points existing in one complex, the sample size of the algorithm is 

generated as S = NC × NP. In this sense, NC ≥ 1 and NP ≥ 1 + the number of design variables. 

Next, the samples x1, x2, …, xs is created in the viable space (i.e., within the bounds). The 

fitness values are also calculated using sampling distribution. In the third step, these 

samples are arranged with reference to their fitness. An array-like D = {xi, fi, where i = 1, 2, …, 

s} can be considered for storing them. This array is then divided into NC complexes (𝐶1, 𝐶2, 

..., 𝐶𝑁𝐶) each of which containing NP samples (Equation 12) 

𝐶𝑞 = {𝑥𝑗
𝑞, 𝑓𝑗

𝑞 |𝑥𝑗
𝑞 = 𝑥q + 𝑁𝐶(j − 1), 𝑓𝑗

𝑞 = 𝑓q + 𝑁𝐶(j − 1), j = 1, 2, …, 𝑁𝑝}. (12) 

In the fifth step, each complex is evolved by the competitive complex evolution algorithm. 

Later, in a process named shuffling of the complexes, all complexes are replaced in the array 

D. This array is then sorted based on the fitness values. Lastly, the algorithm checks for 

stopping criteria to terminate the process [146]. 

 

4 Results and discussion 

4.1 Optimization and weight adjustment 

As explained, the proposed hybrid models are designed in the way that MVO, BHA, and 

SCE algorithms are responsible for adjusting the weights and biases of the MLP. Each 

algorithm first suggests a stochastic response to re-build the MLP. In the next iterations, the 

algorithms improve this response to build a more accurate MLP. In this relation, the overall 

formulation of the MLP that is applied to the training data can be expressed as follows: 

RN = f(IN × W + b) (13) 

where f(x) is the activation function used by the neurons in a layer, also, RN and IN denote 

the response and the input of the neuron N, respectively. 

The created hybrids are implemented with different population sizes (NPops) for achieving 

the best results. Figure 4 shows the values of the objective function obtained for the NPops of 

10, 25, 50, 75, 100, 200, 300, 400, and 500. In the case of this study, the objective function is 

reported by the RMSE criterion. Figure 4 says that unlike the SCE, which gives more quality 

training with small NPops, the MVO performs better with the three largest NPops. The BHA, 
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however, did not show any specific behavior. Overall, the MVO, BHA, and SCE with the 

NPops of 300, 50, and 10, respectively, could adjust the MLP parameters with the lowest error. 

 

 
Figure 4: The quality of training for different configurations of the MVO, BHA, and SCE. 

   

As stated, metaheuristic algorithms minimize the error in an iterative process. Figure 5 

shows the convergence curve plotted for the selected configurations of the MLP-MVO, 

BHA-MVO, and SCE-MVO. To this end, the training RMSE is calculated for a total of 1000 

iterations. According to Figure 5, the optimum values of the objective function are 

1.314816444, 1.442582978, and 1.33041779 for the MLP-MVO, BHA-MVO, and SCE-MVO, 

respectively. These configurations are applied in the next section to predict the DO. Their 

results are then evaluated for accuracy assessment.  
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Figure 5: Error reduction carried out by the selected configurations of the MVO, BHA, and 

SCE. 

 

4.2 Assessment of the results 

Figure 6 shows a comparison between the observed DOs and those predicted by the MLP-

MVO, MLP-BHA, and MLP-SCE for the whole five years. At a glance, all three models could 

properly capture the DO behavior. It indicates that the algorithms have designated 

appropriate weights for each input parameter (WT, PH, and SC). The results of the training 

and testing datasets are presented in detail in the following. 

 

 
Figure 6: The predicted and observed DOs from October 01, 2014 to September 30, 2019. 
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Focusing on the training results, an acceptable level of accuracy is reflected by the RMSEs 

of 1.3148, 1.4426, and 1.3304 for the MLP-MVO, MLP-BHA, and MLP-SCE. In this sense, the 

values of the MAE (0.9687, 1.0931, and 0.9929) confirmed this statement and showed all 

three models had understood the DO pattern with good accuracy. By comparison, it can be 

deduced that both error values of the MLP-MVO are lower than the two other models. Based 

on the same reason, the MLP-SCE outperformed the MLP-BHA.  

Figure 7 depicts the errors obtained for the training data. This value is calculated as the 

difference between the predicted and observed DOs. The errors of the MLP-MVO, MLP-

BHA, and MLP-SCE range in [-4.6396, 4.7003], [-4.4964, 4.9537], and [-4.5585, 4.5653].  

 

 
 (a)  

 
(b) 

 
 (c) 

 

Figure 7: Training errors for the (a) MLP-MVO, (b) MLP-BHA, and (c) MLP-SCE. 

 

As stated previously, the quality of the testing results shows how successful a trained model 

can be in confronting new conditions. The data of the fifth year were considered as these 

conditions in this study. Figure 8 depicts the histogram of the testing errors. In these charts, 

µ stands for the mean error, and 𝜎 represents the standard error. In this phase, the RMSEs 

of 1.3187, 1.4647, and 1.3085, along with the MEAs of 1.0161, 1.1997, and 1.0122, implied the 

power of the used models for dealing with stranger data. It means that the weights (and 

biases) determined in the previous section have successfully mapped the relationship 

between the DO and WT, PH, and SC for the second phase. From the comparison point of 

view, unlike the training phase, the SCE-based hybrid outperformed the MLP-MVO. The 

MLP-BHA, however, presented the poorest prediction of the DO again. 
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(a)  

 
(b) 

 
(c) 

 

Figure 8: The histogram of the testing errors for the (a) MLP-MVO, (b) MLP-BHA, and (c) 

MLP-SCE. 

 

The third accuracy indicator (i.e., the RP) shows the agreement between the predicted and 

observed DOs. This index can range in [-1, +1] where -1 (+1) indicates a totally negative 

(positive) correlation, and 0 means no correlation. Figure 9 shows a scatterplot for each 

model containing both training and testing results. As is seen, all outputs are positively 

aggregated around the best-fit line (i.e., the black line). For the training results, the RPs of 

0.8808, 0.8545, and 0.8778 indicate the higher consistency of the MLP-MVO results, while 

the values of 0.8741, 0.8453, and 0.8775 demonstrate the superiority of the MLP-SCE in the 

testing phase. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   doi:10.20944/preprints202101.0464.v1

https://doi.org/10.20944/preprints202101.0464.v1


 14 of 22 

 

 
(a)  

 
(b) 

 
(c) 

 

Figure 9: The error line and scatterplot plotted for the testing data of (a) MLP-MVO, (b) 

MLP-BHA, and (c) MLP-SCE. 

 

5 Conclusions 

This research pointed out the suitability of metaheuristic strategies for analyzing the 

relationship between the DO and three influential factors (WT, PH, and SC) through the 

principals of a multi-layer perceptron network. The used algorithms were multi-verse 

optimizer, black hole algorithm, and shuffled complex evolution, which has shown high 

applicability for optimization objectives. A finding of this study was that while the MVO 

needs NPop = 300 to give a proper training of the MLP, two other algorithms can do this with 

smaller populations (NPops of 50 and 10). According to the findings of the training phase, the 

MVO can achieve a more profound understanding of the mentioned relationship. The RMSE 

of this mode was 1.3148, which was found to be smaller than MLP-BHA (1.4426) and MLP-

SCE (1.3304). But different results were observed in the testing phase. The SCE-based model 

came up with the largest accuracy (the RPs were 0.8741, 0.8453, and 0.8775). All in all, the 

authors believe that the tested models can serve as promising ways for predicting the DO. 
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However, assessing other metaheuristic techniques and other hybridization strategies is 

recommended for future studies.  
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