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Abstract 

One of the main benefits of binder jetting is the ability to print quickly compared to other 

metal additive manufacturing methods. Demand for higher throughput continues to increase, but 

the effects of faster print speeds on part outcomes are not yet clearly understood. MIM powders 

are used to achieve optimal density and surface finish. Printing at slower speeds results in densities 

near 98% and average surface roughness values as low as 4 μm (Ra), in the as-sintered condition. 

In this study, spread speeds were varied in order to understand the effect of print speed on surface 

roughness. 316L D90 -22 μm powder was used to print with 3 different spread speeds, 2 different 

layer thicknesses, and 2 different printhead droplet sizes. The surface finish and density were 

quantified for the sintered parts that were oriented at 0, 22.5, and 45 degrees with respect to the Z- 

direction. 
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Introduction 

Binder jet additive manufacturing is a powder-based technique that uses an inkjet printhead 

to selectively deposit binder to form a desired 3D shape. Binder jetting closely resembles powder 

manufacturing and injection molding techniques in the sense that a green body is formed with a 

combination of binder and powder, which subsequently undergoes a debinding and sintering 

process to create a fully dense final part. Compared to laser or electron beam metal additive 

manufacturing techniques, binder jetting has the highest potential to be competitive for large 

volume production. This is due to relatively quick printing times and the ability to post-process 

many parts in large batch furnaces or continuous feeding furnaces, in much the same way as metal 

injection molding (MIM). The time required to print a part via binder jetting is the sum of four key 

processes: powder dispensing, powder spreading, binder dispensing, and binder drying. While the 

layer thickness of the print can also affect printing time, thickness is typically determined by a 

relationship of approximately 2x the largest particle size in the distribution [1]. 

Past work has documented the difficulties of printing with powders smaller than 5 µm 

while using older spreading and dispensing techniques. Most commonly, large porosity was found 

in parts due to improper spreading of powder, resulting in lower overall mechanical strength for 
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the part [2]. This is commonly caused by van der Waals cohesion forces in fine powders [3]. The 

printing time (the time it takes to dispense binder droplets) can be decreased by either increasing 

the number of printing modules in the machine itself, or by increasing the speed at which the 

printhead traverses across the bed. However, increasing the printhead traverse speed 

cannegatively affect the feature resolution and dimensional accuracy [4]. For powder spreading, 

the amount of powder that is dispensed and used for spreading directly affects the green density 

and uniformity of the printed parts. For example, higher amounts of powder in front of the roller 

can result in higher green densities [5-6]. Drying time is a function of both the amount of binder 

(saturation) that is deposited each layer as well as the binder’s composition. Not allowing enough 

time for binder dispersion and drying can lead to lower green body strengths [7]. Additionally, not 

allowing enough time for liquid component of the binder to evaporate can lead to smearing of the 

part, creating rougher surface finishes and dimensional inaccuracy. 

There are only a few literature articles on the impact of spreading speed on green density 

and powder packing consistency. Studies have found that slower spreading speeds have produced 

the highest green densities [7-8]. In both studies, a spread speed of 6 or 10 mm/sec was the highest 

speed chosen, respectively. In other studies, Mostafaei et al. used a spread speed of 15 mm/sec to 

print Inconel 625 [9], and Nandwana et al. reports that using a spread speed over 4 mm/sec when 

printing Inconel 718 would lead to non-uniform spreading and delamination [10]. Typically, the 

powder spreading speed has the largest impact on determining the time to print one layer, with a 

typical spreading speed of 5 mm/sec or slower for particle size distributions similar to -22 μm. The 

average layer time for the ExOne Innovent+ system is 75 seconds when spreading powder at 3 

mm/sec. With this set of parameters, 29% of the layer time is from spreading powder. That 

percentage is much higher when using larger build envelopes, like the X1 25Pro and MFlex. 

In a production environment, consistency is crucial to reliably making parts with close 

tolerances. Such factors as machine wear, machine cleanliness, the number of times powder is 

recycled, and humidity in the air can alter the flow rate and flow consistency out of the hopper 

during powder dispensing. Being able to precisely control the amount of powder that is being 

spread is the key to consistency in green body density. Figure 1 is a schematic of ExOne’s 

Advanced Compaction Technology (ACTTM), developed by ExOne (patent pending), for powder 

spreading, where LT is the layer thickness, RT is the roughing powder thickness, CR is the 

compaction ratio, wS is the rotational speed of the smooth roller, wR is the rotational speed of the 

roughing roller, and v is the spread speed. As mentioned before, the counter rotating roller 

mechanism of spreading powder has been shown to result in packing densities that are dependent 

on the amount of powder in front of roller. The ACT works by using a roughing roller ahead of a 

smooth roller that removes or “cuts” the loose powder layer to a known height and packing density, 

and has minimal effect on compaction. Preliminary results have shown that the roughing nature of 

the roller allows the packing density of the powder to be unaffected by the mass of powder that is 

in front of the roller. This demonstrates that the powder layer created by the roughing roller will 

be consistent, as long as enough powder is dispensed to the height of LT + RT. 
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Figure 1 – Schematic of the advanced compaction technology used during the powder 

spreading process. 

This research was performed in order to investigate how the powder spread speed using the ACT 

affects the green body density as well as the surface roughness of the sintered part. The impact of 

layer thickness and droplet size on surface roughness was also investigated. 

 

 
Experimental 

A 90% -22 μm 316L powder was used during this testing. The particle size distribution 

was determined to be a d90 of 15.6 μm, a d50 of 7.6 μm, and a d10 of 3.5 μm. The particle size 

was determined by a Shimadzu SALD-3001 laser diffraction particle size analyzer. All parts were 

printed on an ExOne Innovent+ binder jet printer using the ExOne solvent binder at 70% 

saturation, a smooth roller rotational speed and a roughing roller rotational speed were held 

constant, and a compaction ratio of 2. The layer thickness and droplet size were tested with the 

combination of either a 50 μm layer thickness with a 30 pL droplet or a 30 μm layer thickness with 

a 10 pL droplet. The roller height difference for the Advanced Compaction Technology was set at 

100 μm. 15 coupons (25.4 x 25.4 x 6.35 mm) were printed in each trial. Of those, 5 coupons each 

were printed at angles of 0, 22.5, and 45 degrees in relationship to the Z-direction (see Figure 2). 

After printing, all samples were cured for 8 hours at 200°C in air. Following the curing stage, the 

coupons were depowdered and physically measured with calipers and weighed to obtain density 

measurements. 
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Figure 2 – The build layout of each trial as shown in the Innovent+ software. 

All coupons were sintered in a graphite hot zone furnace with partial pressure hydrogen to 

a temperature of 1380°C. After sintering, the coupons were once again physically measured with 

calipers and weighed for density calculations. The surface roughness of each coupon was measured 

5 times with a Phase II portable surface roughness gauge, which has a diamond stylus that is 

accurate to 0.001 μm. A length of 1 mm was sampled in each test in accordance with Figure 3. 
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Figure 3 – a) Schematic of a coupon being tested 5 times in various positions across the 

surface of the coupon and b) schematic of the stylus traverse direction against layer 

thickness of angled coupons. 

The surface roughness of one coupon from each of the printing conditions was also tested with a 

Keyence VX-6000 light microscope in a 3D plot of the topology. The 3D topology scan was 

performed across a 12.5 x 2.5 mm plane on the top surface of the coupons. The microscope scanned 

a rate of 0.3 mm/sec at 500x magnification. 

Results and Discussion 

The green and sintered density values from all six printing trials can be seen in Table 1. 

Table 1 shows that in all trials, when the powder spread speed is increased, the standard deviation 

of the density increases. This demonstrates that the slowest spreading speed allows for the most 

consistent powder packing density. The average green density decreased with the larger layer 

thickness of 50 μm, but stays relatively consistent with increased powder spreading speed. Similar 

to MIM, a higher degree of consistency in green body density creates consistent and repeatable 

shrinkage during sintering. Although the coupons with the 50 μm layer thickness have a lower 

average green density than the 30 μm layer thickness, the coupons were able to sinter to over 98% 

dense. 

When evaluating the effect coupon angle has on green density, the average density 

decreases with increased coupon angle (see Table 2). This is consistent with literature which has 

found that porosity in the green state of binder jetted parts is mostly found between the conjoining 

layer thicknesses due to particle ejection from the impact of the droplets [11]. This porosity effect 

can also manifest in the sintered stage, showing lines of porosity in the Z-direction [12]. The 

porosity increases in the angled coupons due to the increasing the number of layers needed to print 

these parts. Figure 4 shows a plot of the green body density with respect to the coupon angle. 

a) 
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Table 1 – The average green and sintered densities of each trial. Theoretical density used is 

7.99 g/cc. 
 

Trial Droplet Layer Spread 

Speed 

Green 

Density 

GD 
St.Dev. 

Sintered 

Density 

SD 
St.Dev. 

# pL μm mm/sec % % % % 

1 30 50 3 52.67 0.52 98.22 0.41 

2 30 50 50 52.25 1.09 98.17 0.49 

3 30 50 125 49.99 0.86 98.49 0.34 

4 10 30 3 53.50 0.42 98.93 0.45 

5 10 30 50 54.04 1.38 98.80 0.93 

6 10 30 125 54.90 2.71 97.51 0.77 

 

Table 2 – The average coupon green densities from each trial. 
 

Trial Spread 

Speed 

Printhead Angle Average 

Density 

St. Dev. 

# mm/sec pL ° % % 

1 3 30 0 53.32 0.11 

1 3 30 22.5 52.52 0.28 

1 3 30 45 52.18 0.25 

2 50 30 0 53.41 1.34 

2 50 30 22.5 51.69 0.41 

2 50 30 45 51.66 0.17 

3 125 30 0 51.01 0.42 

3 125 30 22.5 49.92 0.37 

3 125 30 45 49.05 0.30 

4 3 10 0 53.73 0.22 

4 3 10 22.5 53.64 0.23 

4 3 10 45 53.13 0.54 

5 50 10 0 54.87 1.77 

5 50 10 22.5 53.43 1.18 

5 50 10 45 53.83 1.13 

6 125 10 0 57.92 0.78 

6 125 10 22.5 54.24 2.82 

6 125 10 45 52.55 0.29 
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Figure 4 – The average green density profile for each Trial in respect to coupon print 

angle. 

 

 
The surface finish data from the Phase II surface roughness gauge can be seen in Table 3 

and are plotted in Figures 5 and 6. The data shows that in the case of both the 10 pL and 30 pL 

printhead trials, the surface roughness (Ra) increases with both spread speed and coupon angle. 

The averages of all of the trials showed that the lowest surface roughness (Ra) was 4.05 µm, and 

was found on the sample printed at 0° from the horizontal with a 30 pL printhead and a 50 μm 

layer thickness. The highest Ra value was 9.78 μm, which was printed with a 30 pL printhead and 

50 μm layer thickness. The data shows that Ra value approaches a plateau between 50 and 125 

mm/sec spread speed. The data from the Keyence microscope is in agreement with the data found 

from the Phase II roughness gauge, showing the same trends for increased surface roughness with 

spread speed and angle. The plots of the surface roughness found with the Keyence microscope 

can be seen in Figures 7 and 8. The surface roughness values are also in agreement with literature 

values of sintered parts with similar particle size distributions [9,13]. A topology map of the 10 pL 

sample printed at 0 degrees and 3 mm/sec taken with the Keyence microscope at 100x 

magnification can be seen in Figure 9. The topology map shows uniform surface with typical hills 

and valleys, with no unique surface topology defects or spikes. 
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Table 3 – The average coupon surface roughness values of each trial, taken from the Phase 

II analyzer. 
 

Trial Spread 

Speed 

Printhead Angle Average 

Ra 

St. 

Dev. 

# mm/sec pL ° μm μm 

1 3 30 0 4.05 0.55 

1 3 30 22.5 7.66 0.47 

1 3 30 45 7.27 0.66 

2 50 30 0 5.43 0.61 

2 50 30 22.5 9.50 0.58 

2 50 30 45 9.42 0.96 

3 125 30 0 6.40 0.53 

3 125 30 22.5 9.78 0.68 

3 125 30 45 9.20 0.53 

4 3 10 0 5.02 0.42 

4 3 10 22.5 6.70 0.61 

4 3 10 45 7.27 0.80 

5 50 10 0 5.58 0.49 

5 50 10 22.5 7.86 0.69 

5 50 10 45 7.86 0.67 

6 125 10 0 5.02 0.67 

6 125 10 22.5 7.21 0.84 

6 125 10 45 7.87 0.79 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   doi:10.20944/preprints202101.0459.v1

https://doi.org/10.20944/preprints202101.0459.v1


 

 
 

 
 

 
 

 
 

Roughness vs Print Speed 30pl 
12.0 

 

10.0 

 

8.0 

 

6.0 

 

4.0 

 

2.0 

 

0.0 

0 20 40 60 80 100 120 

Print Speed (mm/s) 
 

0 Degrees 22.5 Degrees 45 Degrees 

 

Figure 5 – Plot of surface roughness as a function of spread speed for the 30 pL Trials 

taken with the Phase II analyzer. 
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Figure 6 – Plot of surface roughness as a function of spread speed for the 10 pL Trials 

taken with the Phase II analyzer. 
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Figure 7 – Plot of surface roughness as a function of spread speed for the 30 pL Trials 

taken with the Keyence microscope. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 – Plot of surface roughness as a function of spread speed for the 10 pL Trials 

taken with the Keyence microscope. 
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Figure 9 – Surface topology of the 10 pL sample printed at 0 degrees and 3 mm/sec taken 

with the Keyence microscope at 100x magnification. 

Conclusions 

The green body density, sintered density, and surface roughness profile were characterized 

realtive to spread speed and part angle. The relationships were characterized for the combination 

of a 50 μm layer thickness and 30 pL printhead, and a 30 μm layer thickness and 10 pL printhead. 

The results of the testing are the following: 

• The average green body density decreases and the standard deviation increases with 

increasing spread speeds. The average density did not decrease with spread speed with the 

30 μm layer thickness and 10 pL printhead, but the standard deviation increased. 

• The average green body density was slightly higher with the 30 μm layer thickness (54%), 

than the 50 μm layer thickness (50-52%). 

• The average green body density decreases slightly with increasing coupon orientation angle 

in relationship to the Z-direction. 

• Although there is a deviation in green body densities from various process settings, all 

coupons sintered to an average green body density of 97.5% theoretical or higher. 

• The surface roughness (Ra) typically increases with faster spreading speeds and increased 

coupon orientation angle. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 January 2021                   doi:10.20944/preprints202101.0459.v1

https://doi.org/10.20944/preprints202101.0459.v1


 

• The smallest average surface roughness value (Ra) was found to be 4.05 μm with the 50 

μm layer thickness and 30 pL printhead on a flat surface with a spread speed of 3 mm/sec. 

The largest average roughness (Ra) was found to be 9.78 μm with the 50 μm layer thickness 

and 30 pL printhead on a 22.5° coupon with a 125 mm/sec spread speed. 
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