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Abstract: Ischemic stroke is one of the most disabling diseases and a leading cause of death glob-

ally.  Despite advances in medical care, the global burden of stroke continues to grow, as no ef-

fective treatments to limit or reverse ischemic injury to the brain are available. However, recent 

preclinical findings have revealed the potential role of transient receptor potential cation 6 (TRPC6) 

channels as endogenous protectors of neuronal tissue.  Activating TRPC6 in various cerebral is-

chemia models has been found to prevent neuronal death, whereas blocking TRPC6 enhances sen-

sitivity to ischemia. Evidence has shown that Ca2+ influx through TRPC6 activates cAMP response 

element-binding protein (CREB), an important transcription factor linked to neuronal survival. 

Additionally, TRPC6 activation may counter excitotoxic damage resulting from glutamate release 

by attenuating the activity of NMDA receptors of neurons by posttranslational means. Unresolved 

though, are the roles of TRPC6 channels in non-neuronal cells such as astrocytes and endothelial 

cells. Moreover, TRPC6 channels may have detrimental effects on the blood-brain barrier, although 

their exact role in neurovascular coupling requires further investigation. This review discusses 

evidence-based cell-specific aspects of TRPC6 in the brain to assess the potential targets for is-

chemic stroke management.   
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1. Introduction 

In the USA, someone experiences a stroke every 40 seconds 

(https://www.cdc.gov/stroke/facts.htm; accessed January 2, 2021) or dies of a stroke every 

4 minutes [1]. More than 795,000 people have a stroke every year, with 77% of these being 

first-time strokes [1]. In 2018, 1 of 6 deaths in America from cardiovascular disease re-

sulted from a stroke, making it the fifth leading cause of death in the USA. Some 87% of 

all strokes are ischemic strokes, in which blood flow to the brain is blocked, with the re-

mainder classified as hemorrhagic due to rupture of a weakened blood vessel [1]. 

Moreover, stroke-related costs involving medicines, health care, and lost employment are 

staggering, totaling almost $50 billion between 2014 and 2015 [1].  

Stroke is a leading cause of severe long-term disability, reducing mobility in more 

than half of the survivors 65 years old and over. Stroke is also the second leading cause of 

death globally [2]. Although the risk of stroke increases with age, it can occur at any age 
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and in 2009, 34% of those hospitalized for stroke were less than age 65 [3]. Despite ad-

vances in medical care, the global burden of stroke continues to grow [4]. Current 

thrombolytic therapy works for treating ischemic stroke, but only in a limited timeframe. 

No drugs are approved that enhance recovery, and thus there is a great need to identify 

viable pharmacological targets. Furthermore, the current Covid-19 pandemic is directly 

increasing the incidence of ischemic injury and is worsening the incidence and preva-

lence of stroke in high-risk populations, as a result in part of an increase in sedentary 

lifestyle associated with social distancing [5, 6].  

Stroke has two major types: hemorrhagic and ischemic, with the latter caused by 

cerebral embolism or thrombosis [7, 8]. Despite varied etiologies for ischemia and hem-

orrhage,  oxygen deprivation to neuronal tissue is a common mechanism; with hemor-

rhagic stroke, which is generally more severe [9], additional damage results from irrita-

tion and swelling from pressure build-up in surrounding tissues due to bleeding and 

blood breakdown products. In ischemic stroke, there is sudden occlusion of cerebral 

blood vessels, which leads to the interruption or reduction of the blood supply to brain 

tissue, resulting in an extensive neuronal death [10]. This process involves a complex 

cascade of events at both the macro- and microscopic levels, involving impaired vascular 

autoregulation, disruption of the blood-brain barrier (BBB), calcium overload-associated 

apoptosis, and neuronal death [11-13]. A key step is energy depletion from reduced 

blood flow, leading to Na+/K+ ATPase (sodium pump) failure, which causes cell mem-

brane depolarization and glutamate release. Na+/K+ ATPase failure results in activation of 

proteases, kinases, and lipases, which contribute to tissue damage and necrosis. There is 

also a surge in phospholipase A2 activity that results in arachidonic acid (AA) release 

and enhanced free radical formation and lipid peroxidation [14, 15]. Combined with 

non-neuronal (i.e., glial) cell activation, the neurovascular unit, consisting of astrocytes, 

endothelial cells and their BBB forming tight junctions, and pericytes, is impaired [16]. 

BBB disruption is further enhanced by neuronal glutamine release that activates endo-

thelial N-methyl-D-aspartate (NMDA) receptor-mediated intracellular Ca2+ influx [17, 

18]. Glutamine is also major contributor to Ca2+ influx in neurons after ischemic stroke 

and thus the associated neurotoxicity.  

Ischemic events may additionally activate Ca2+ influx via a non-glutamate pathway, 

including via transient receptor potential cation/canonical (TRPC) channels [19, 20]. In-

creased cytosolic Ca2+ with ischemia can induce apoptosis and neuronal death by several 

means, including activation of calpains [11, 19]. TRPC channels have been linked to vas-

ospasms in hemorrhagic stroke [21]. Paradoxically one family member, TRPC6, has been 

linked to neuroprotection with ischemic stroke. It is reported that activating TRPC6 in a 

rat model of cerebral ischemia was shown to prevent neuronal death, whereas blocking 

TRPC6 enhanced sensitivity to ischemia [22]. One mechanism is that in patients treated 

for acute ischemic stroke, elevated expression levels in the peripheral blood of miR-488 

and miR-135b, which were shown to target the TRPC6 gene, were identified as risk fac-

tors or associated with disease severity [23, 24]. Here we assess the evidence for and 

against the beneficial consequence of TRPC6 activation in ischemic stroke, its cell-specific 

roles in the brain, what is known about the involvement of TRPC6 in neurovascular 

coupling, and the potential therapeutic options for targeting TRPC6.    

2. TRPC6 

TRPC is a subfamily of TRP channels that are expressed in many cell types, includ-

ing neurons [25, 26]. These nonselective, cell membrane cation channels consist of seven 

members, TRPC 1-7, which depolarize cells via Na+ influx and also allow an influx of ex-

tracellular Ca2+, so as to regulate downstream cellular responses, including metabolism, 

membrane depolarization, gene expression, cell proliferation, and apoptosis [27]. Alt-

hough all members are expressed in the brain and can promote nonselective Ca2+ entry, 

the spatial and temporal expression patterns of each are unclear. Based on struc-
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ture-function relationships, the TRPC family is grouped into four subsets: TRPC1, 

TRPC2, TRPC3/6/7 and TRPC4/5. Besides functioning as homotetramers, combinations of 

different TRPC subunits can form heterotetrameric complexes, which may regulate re-

sponses to neuropeptides and neurotransmitters with different properties than homo-

tetrameric TRPC channels [28]. For instance, TRPC6 has high sequence homology with 

TRPC3 and TRPC7 subunits, and may form a heterotetramer with TRPC3 [29].  

TRPC6 possesses three conserved domains, namely, a pore-loop motif, four NH2 

terminal ankyrin repeat domains (ARD), and a COOH-terminal TRP box motif (Figure 1) 

[30]. The ARD domains are thought to participate in channel heterodimerization and 

trafficking, whereas the TRP domain may be important for regulating binding with the 

cytoskeleton and translocation to the cell surface [30]. The pore-loop region is associated 

with an extracellular selectivity filter and an intracellular gate. Different TRPCs exhibit 

different Ca2+ and Na+ permeability (P) ratios. The PCa/PNa ratio of TRPC6 is 5 compared to 

1.6 for TRPC3 [31, 32].  

TRPC6 activation mediates changes in cytosolic Ca2+, which govern diverse critical 

cellular functions (Figure 1), such as contraction, apoptosis, neuroprotection, angiogene-

sis, and cytokine production. TRPC6 and other TRPCs can be activated by phospholipase 

C (PLC) by numerous stimulations, like inflammation and ischemia-reperfusion (IR) in-

jury [33]. Through activation of G-protein coupled receptors (GPCRs) and receptor tyro-

sine kinases (RTKs), PLC can modulate TRPC channel activity by hydrolysis of phos-

phatidylinositol bisphosphate (PIP2) to diacylglycerol (DAG) and inositol trisphosphate 

(IP3) [34]. DAG activates TRPC3/6/7. IP3 causes Ca2+ release from internal stores, a process 

that triggers store-operated channel activation and may involve TRPC channels, alt-

hough exactly how TRPC and store-operated channels interact is unsettled [35, 36]. Act-

ing in a negative feedback manner, Ca2+ may reduce TRPC channel activity in synergy 

with protein kinase C (PKC), or via activation of calmodulin [37, 38]. TRPC3 and TRPC6 

may be activated as well in a β-arrestin-1-dependent manner. These features make TRPC 

channels potential cellular sensors to respond to environmental changes by regulating 

intracellular Ca2+.  

Studies on mouse embryonic fibroblasts and ventricular myocytes have suggested 

that TRPC6 may mediate the influx of Ca2+ in response to mechanical stress on the cell 

membrane [39, 40]; however, another study suggested that TRPC6, expressed by various 

mammalian cell lines or in lipid bilayers, does not function as a mechanoreceptor [41]. 

Structurally, TRPC6 is tethered directly to the cytoskeleton or extracellular matrix [42]. 

Although TRPC6 may not be activated directly by mechanical stretch, it may have 

evolved to discriminate different mechanical stimuli based on its interactions with these 

components. Therefore, TRPC6 may act as a secondary mechanoreceptor that contributes 

to the regulation of intracellular Ca2+ or depolarization of the membrane potential 

through inward Na+ and/or Ca2+ currents. 
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(A) (B) 

Figure 1. Functional aspects of TRPC6 involved in Ca2+ cellular influx.  (A) Structural features of the TRPC6 channel. TRPC6 pos-

sesses 6 membrane-spanning domains and 3 conserved domains, namely, a pore-loop motif, four NH2 terminal ankyrin repeat 

domains (ARD), and a COOH-terminal TRP box motif. The ARD domains participate in channel heterodimerization and trafficking, 

whereas the TRP domain regulates binding with the cytoskeleton and translocation to the cell surface. The pore-loop region (be-

tween the S5 and S6) is associated with an extracellular selectivity filter and an intracellular gate and allows for the passage of cat-

ions. ARD: ankyrin repeat domain; S1–S6 are the first to sixth transmembrane domains; TRP, transient receptor potential.  (B) 

Regulators of TRPC6 channel activity. Receptor tyrosine kinases (RTKs) or G protein-coupled receptors (shown) increase TRPC6 

activity by stimulating PLC to generate DAG. Several key experimental activators and inhibitors of TRPC6 are listed.  DAG, di-

acylglycerol; PLC, phospholipase C. 

 

3. Cell-specific roles of TRPC6  

TRPC6 channels are expressed in neurons and other cells of the neurovascular unit 

(Figure 2). Their cell-specific role and importance to neurovascular coupling, however, 

requires further investigation.   

3.1. Astrocytes 

TRPC6 is expressed by cultured astrocytes of rats [43, 44]. Expression in primary 

cultures is regulated by glutamate. Activation of NR2B-containing NMDA receptors in-

creased TRPC6 degradation, whereas activating NR2A-containing receptors increased 

expression [44]. TRPC6 is also expressed in mouse astrocytes, and the expression in-

creased by treatment with IL-1β [45]. Additionally, it was established that TRPC6 is ex-

pressed in mouse neural stem cells.  These undifferentiated precursor cells can differen-

tiate into astrocytes, neurons, oligodendrocytes, and constitutionally express blue/red 

light-sensitive photoreceptors [46]. This study reported increased proliferation and as-

trocyte differentiation for mouse neural stem cells, under low power blue light, with 

TRPC6 being activated by Gq-coupled melanopsin (Opn4). Also, TRPC6 expression was 

detected in astrocytes of the optic nerve head in C57BL/6 mice [47]. 

Sphingosine-1-phosphate (S1P) plays a vital role in cell growth, survival, and mi-

gration [43, 48]. Hisashi et al. demonstrated that S1P increases intracellular Ca2+ concen-

tration in astrocytes via activation of mitogen-activated protein kinase (MAPK) and 

TRPC6 resulting in the increased expression and release of chemokine CXCL1 [43]. Olga 

et al. demonstrated that TRPC6 is involved in IL-1β-induced Ca2+ signaling in mouse as-

trocytes. In this study, the expression of TRPC6 was increased in cortical astrocytes of 

mice treated with IL-1β, while receptor-operated Ca2+ entry was reduced with the 

knockout (KO) of the Trpc6 gene [45]. The authors suggested that disruption of Ca2+ 
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homeostasis in astrocytes by chronic IL-1β treatment, due to increased TRPC6 activity, 

might ultimately lead to neurodegenerative diseases. 

 

Figure 2. TRPC6 and the neurovascular unit regulating homeostatic cerebral blood flow. Depicted are the cellular constituents at the 

capillary and precapillary levels. The cell-specific roles of TRPC6 in the context of ischemic stroke, both established and conceptu-

alized, are provided. 

 

3.2. Neurons 

 TRPC6 is expressed in many different brain regions, such as the cortex, 

hippocampus, cerebellum, basal ganglia, thalamus, hypothalamus, and dorsal root 

ganglia [49]. Numerous studies have documented the expression of TRPC6 in primary 

cultured neurons or neuronal cell lines that is protective under various stress conditions 

[44, 50-54]. 

Ca2+ is a ubiquitous second messenger affecting neuron proliferation and survival in 

brain development. Ca2+ signals also influence differentiation, dendrite morphology, and 

axon guidance through actions on cytoskeletal dynamics and cell adhesion [55]. Each 

neuron expresses a unique set of Ca2+-permeable channels, which allow for the 

generation of intracellular Ca2+ signals of a particular time course, amplitude, and 

location [56]. TRPC-meditated Ca2+ influx is involved in nerve-growth-cone guidance, 

synapse formation, synaptic transmission, neuronal survival, and sensory transduction, 

downstream of receptor tyrosine kinases (RTKs) or G protein-coupled receptors (GPCRs) 

that are expressed by the neuron [57]. Brain-derived neurotrophic factor (BDNF) is a 

pro-survival neuronal peptide important during brain development. BDNF binds the 

receptor, tropomyosin receptor kinase B (TrkB), to activate the AKT and cAMP response 

element-binding protein (CREB) pathways to promote survival [58]. Downregulation of 

TRPC6 prevents the protective effect of BDNF on granule cells, leading to apoptosis [59]. 

Ca2+ influx through TRPC6 activates Ca2+/calmodulin-dependent protein kinase (CaMK) 

and MAPK to phosphorylate CREB, an important transcription factor, leading to 

neuronal survival [55]. 

3.3. Endothelial cells 

 TRPC6 is differentially expressed in endothelial cells from different vascular beds 

and participates in a diverse range of endothelium-related functions, such as control of 

vascular tone, regulation of vascular permeability, angiogenesis and remodeling, and 

apoptosis. In the brain vasculature, TRPC6 is found in mouse microvascular endothelial 

cells and human cerebral artery endothelial cells [60-62].   
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One of the most crucial functions of the endothelium is maintaining BBB integrity. 

Several studies have implicated TRPC6 as essential in the regulation of endothelial 

permeability. Singh et al. reported that Gαq activation of TRPC6 induced Ca2+ entry and 

activation of RhoA, which resulted in myosin light chain-dependent endothelial cell 

shape-changes and increased gap formation between endothelial cells [63]. The net effect 

was the increased permeability of endothelial monolayers. Samapati et al. demonstrated 

that recruitment of TRPC6 to caveolae of endothelial cells in rats and mice permitted Ca2+ 

influx and subsequent increases in endothelial permeability [64]. Cheng et al. reported 

that heteromeric TRPC6 is involved in vascular endothelial growth factor 

(VEGF)-induced Ca2+ influx in human microvascular endothelial cells [65]. This group 

subsequently demonstrated that VEGF-induced extracellular Ca2+ entry, proliferation, 

and tube formation are attenuated in human microvascular endothelial cells that 

overexpress a dominant-negative TRPC6 mutant [66]. Further research is needed to 

establish what role, if any, TRPC6 plays in endothelial function and BBB integrity in 

ischemic stroke.  Conceivably, activation of TRPC6 in endothelial cells could lead to 

vasodilation by various means, including the stimulation of nitric oxide synthase 3 

(NOS3) [36], but whether this occurs in the cerebral vasculature is not reported.  

Excessive cytosolic Ca2+ increases would lead to endothelial cell injury or cell death 

leading to loss of the gap junctions and increased permeability, thus contributing to 

cerebral edema and swelling of the brain in ischemic stroke. The increase in cerebrospinal 

fluid pressure would further restrict blood flow to the penumbra, expanding the infarct 

in the area at risk.  

 

3.4. Vascular smooth muscle cells (VSMCs) 

 Activation of TRPC6 in VSMCs of the cerebral vasculature might contribute to the 

no-reflow phenomena and attenuation of metabolic vasodilation in ischemia. Two recent 

studies document that TRPC6 in VSMCs contributes to pressure-induced constriction of 

cerebral arteries [67, 68]. This is an intrinsic characteristic of small arteries and arterioles 

to constrict in response to increases in intraluminal pressure. Details on exactly how 

TRPC6 in VSMCs couples to constriction by increasing intracellular Ca2+ are unclear, with 

some suggestion that it may function not in the plasma membrane but rather as a 

“downstream signal amplifier” [67].   

 

4. Neurovascular coupling in ischemic stroke 

In ischemic stroke, the dysfunction of the cells in the neurovascular unit and the 

communication between them characterizes the impaired neurovascular coupling [69, 

70], which normally would act to compensate for the tissue hypoxia and release of 

metabolic vasodilators [71, 72]. Astrocytes and propagation of hyperpolarization via 

endothelial cells are a major component of neurovascular coupling, and astrogliosis or 

reactive astrocytosis is found around cerebral vessels following ischemic stroke [73]. 

Whether this affects the function of astrocytes to modulate cerebral blood flow via 

neurovascular coupling is unclear. Ischemic stroke induces Cortical Spreading 

Depressions (CSDs), which are slowly propagating waves of sustained depolarization of 

neurons and glial cells. CSDs characterized by injured astrocytes can lead to impaired 

neurovascular coupling in ischemic stroke [74]. Additionally, in ischemic stroke, 

astrocytes release 20-HETE to induce vasoconstriction, limiting cerebral blood flow and 

contributing to the no-reflow phenomena [74, 75].   

Notably, the vascular response to direct smooth muscle vasodilators is unaffected 

by ischemic stroke, suggesting that dysfunction in other cell types in cerebral vessels 

account for the impaired neurovascular coupling [76].  However, TRPC6 has been 

implicated in VSMC phenotype switching under ischemic conditions [77, 78]. Pericytes 

regulate capillary diameter to control cerebral blood flow, constrict in response to 
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hypoxia in ischemic stroke and die in rigor. This results in a long-lasting increase in 

capillary resistance that worsens cerebral ischemic injury after stroke [79]. Loss of 

pericytes may also exert adverse effects on neurotropic-dependent neuronal survival 

[74], which could contribute to neurovascular coupling dysfunction. Conversely, cerebral 

ischemia can induce metalloproteinase-9 (MMP-9) activation and release in pericytes, 

which promotes long-term capillary damage and tight-junction breakdown [80]. Taken 

together, preventing pericyte dysfunction may be a promising therapeutic target for the 

treatment of ischemic stroke.  

Caveolae-mediated transcytosis in endothelial cells, which is suppressed under 

normal conditions to maintain BBB integrity [81], is activated following ischemic stroke 

and may contribute to neuroinflammation [74]. On the other hand, caveolae of arteriolar 

endothelial cells (aECs) may play an active role in neurovascular coupling and 

vasodilation by relaying signals from neurons to cerebral smooth muscle cells [82]. Thus, 

misdirected trafficking of caveolae-dependent endothelial cell communication may 

underlie the pathology of ischemic stroke. Notably, an intact capillary–arteriole 

continuum via endothelial cell junctions is a necessary feature of the process whereby 

capillary endothelial cells sense increased extracellular K+ from neuronal cell release (due 

to hypoxia/ischemia) and initiate retrograde hyperpolarization to increase local cerebral 

blood flow [83]. This process might be impaired by increased Ca2+ entry into endothelial 

cells via TRPC6 activation.  

 

5. Role of neuronal TRPC 6 in ischemic stroke 

TRPC6 is highly expressed in the central nervous system and is important in neu-

ronal development and survival [84]. With an ischemic stroke, the overactivation of 

NMDA receptors due to excessive glutamate release stimulates calpain, which promotes 

proteolysis of TPRC6 [85]. Degradation of TRPC6 contributes to neuronal death due to 

downregulation of the transcription factor CREB, leading to neuron apoptosis [22, 86]. 

Inhibition of TRPC6 degradation promotes neuron survival, reduces infarct size, and 

improves behavioral performance [22]. Moreover, a TRPC6 activator was found to ame-

liorate neuronal death in ischemic stroke and this was associated with improved phos-

phorylated CREB (p-CREB) activity [85]. Similarly, the combination treatment of oxi-

racetam and bone marrow stromal cells increases TPRC6 and p-CREB levels and protects 

from neuronal death in ischemic stroke [87].   

Increased degradation of TRPC6 after ischemic stroke may result in neuronal 

damage. In an ischemic rat model, activating TRPC6 blocked neuronal death, while in-

hibiting TRPC6 degradation with a fusion peptide based on the calpain cleavage site 

(TAT-C6 peptide) reduced infarct size and improved behavioral performance through 

the CREB signaling pathway [22]. TRPC6 expression was shown to suppress NMDA re-

ceptor-mediated Ca2+ neurotoxicity, and several molecular probes modulated brain 

function and promoted neuroprotection and recovery in ischemic stroke by enhancing 

TRPC6 channel function [20]. Notably, infarct volume in TRPC6 transgenic mice was less 

than in their wild type littermates, with the transgenic mice exhibiting better behavior 

performance and lower mortality [20]. It was proposed that TRPC6 might regulate the 

phosphorylation of NMDA receptors, thereby attenuating their activity.  

 A study in mice suggests that the deleterious effects of the pro-inflammatory cy-

tokine interleukin (IL)-17A in cerebral IR injury involve in part the degradation of TRPC6 

[88].  IL-17A KO or anti-IL-17A monoclonal antibody attenuated activation of calpain at 

3 days after reperfusion, while recombinant IL-17A increased its activation and IR injury. 

Brain injury and neurological deficits were primarily abolished by genetic KO of IL-17A, 

an IL-17A antibody, or a calpain inhibitor. Moreover, the calpain-specific inhibitor in-

creased TRPC6 expression. 
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In contrast to these studies, others report that TPRC6 expression levels may increase 

following ischemic stroke, leading to Ca2+ overload that contributes to neuronal death 

[53]. Indeed, TRPC6 elevation was reported to promote Na+ influx, which induces mem-

brane depolarization and activation of NMDA receptors and Ca2+ influx. In this study, 

deletion of TPRC6 attenuated Ca2+ overload-induced neurotoxicity in ischemic stroke 

[53]. Another group also reported that loss of TRPC6, together with TRPC3 and TRPC7, is 

neuroprotective [89]. KO of TRPC3/6/7 in a mouse cerebral IR model had an an-

ti-apoptotic effect on astrocytes, resulting in reduced infarct volume and neurological 

deficits [90].  The conflicting results of these studies with a neuroprotective role for 

TRPC6 may be related to the animal model used, duration of a stroke, and confounding 

contribution of other TRPC isoforms, as well as potentially to the choice of anesthesia 

[91].  Initially, TRPC6 may increase Ca2+ in endothelial cells and cause NO generation to 

compensate for the occlusion and reduce the area at risk.  With prolonged ischemia, the 

endothelial cells will die and this compensation would be lost.  In neurons, TRPC6 may 

stimulate protection at first, but the long term may contribute to Ca2+ overload and injury.  

Alternatively, an imbalance in TRPC6 expression (too much or too little) may be 

associated with neuronal death in ischemic stroke. Alterations in TRPC6 activity follow-

ing ischemic stroke are likely to cause changes in intracellular Ca2+ that modulate NMDA 

receptor activity or affect the release of vasoactive mediators, such as nitric oxide (NO) 

and AA derivatives. Unknown yet is whether TPRC6 has a role in abnormalities of neu-

rovascular coupling in ischemic stroke. The activity of neurovascular coupling could be 

affected under these conditions due to the change of TRPC6 activities. As discussed, ac-

tivation of TRPC6 in endothelial cells may compromise the integrity of the BBB.  

Astrocytes in the ischemic areas are activated after ischemic stroke. These active as-

trocytes exert both beneficial and harmful effects on neurons in the ischemic area [92]. It 

is reported that TRPC6 leads to impaired Ca2+ homeostasis and exacerbates mitochon-

drial dysfunction and endoplasmic reticulum stress so as to promote cellular apoptosis 

[93], but whether this occurs in activated astrocytes is unclear. There is evidence that as-

trocytes protect brain tissue after ischemic stroke and reduce the occurrence of disability 

[22]. They also play an essential role in neural network reconstruction. Studies in mouse 

models of cerebral ischemia have also shown that astrocytes can transfer into immature 

neurons after ischemia. Blocking Notch signaling in astrocytes could initiate this process 

[94]. An earlier study reported that TRPC6 has an essential role in regulating neural stem 

cell proliferation and differentiation [46]. Unfortunately, whether it is evolved in regu-

lating the transformation of astrocytes into neurons is still unknown. 

 

6. Therapeutic opportunities 

  A number of compounds either activate or inhibit TRPC6 activity and are used in 

biomedical research [95]. A few are discussed here (Figure 1). St John's wort contains a 

component, hyperforin, that activates TRPC6 [96] and attenuates brain damage from 

transient middle cerebral artery occlusion (MCAO) in rats by inhibiting TRPC6 channel 

degradation [85]. When applied for 7 days before MCAO onset, the nutritive polyphenol, 

resveratrol has neuroprotective effects by activating the TRPC6/CREB pathway and de-

creasing calpain activity [97]. Similarly, neuroprotection in a rat stroke model was seen 

via TRPC6/CREB using 'Neuroprotectin D1' when applied after reperfusion [98]. The 

predominant constituent of green tea, (-)-epigallocatechin-3‑gallate (EGCG), introduced 

immediately after ischemia, demonstrates neuroprotection by decreasing calpain activity 

and activating TRPC6/CREB via mitogen-activated protein kinase (MEK)/extracellular 

pathway [99]. Furthermore, 'Calycosin,' a major isoflavonoid in Radix Astragali Mon-

golici, protected against ischemia-induced damage by inhibiting calpain activation and 

increasing TRPC6 and p-CREB levels [51]. In these studies, the TRPC6-CaMK-CREB 

pathway is common in mediating the actions of TRPC6 manipulations. Thus, 
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TRPC6/CREB may be crucial in neuronal survival and a potential novel therapeutic tar-

get [100, 101].  

 Newer research highlights the benefit of stem cells in stroke recovery [102]. The role 

of TRPC6 in bone marrow stromal cell (BMSC) transplant was investigated. Application 

of BMSCs overexpressing TRPC6 reduced brain injury in a rat IR model [103]. This was 

associated with synergistic activation and increased levels of TRPC6 in brain tissue, os-

tensibly due to enhanced production of BDNF, a well-known protective neurotrophic 

factor. Evidence indicated that decreased neuronal death was due to the TRPC6/CREB 

pathway and inhibition of calpain activity.  A related study with this model demon-

strated that BMSCs activate TRPC6 protective p-CREB signaling and combined therapy 

with oxiracetam, which inhibited abnormal degradation of TRPC6 by decreasing the ac-

tivity of calpain, resulted in significantly improved functional restoration and reduced 

infarct size [87]. 

The latest research shows potential for new TRPC6 agonists and antagonists in pre-

clinical experiments, specifically related to neuroscience, which may have a useful role in 

ischemic stroke in the future. Tetrahydrohyperforin (IDN5706), a derivative of hyper-

forin and TRPC3/6/7 activator, was neuroprotective in a mouse model of Alzheimer's 

disease by negating inhibitory effects of Aβ oligomers in hippocampal tissue [104]. 

Ladecola et al. showed that IDN5706 might have potential in vascular dementia, where 

targeting Aβ oligomers may delay cognitive impairment [105].  

TRPC6-PAM-C20 is a selective TRPC6 modulator. When tested with another TRPC6 

activator OAG (1-oleoyl-1-acetyl-sn-glycerol), there was a synergistic, robust increase in 

Ca2+ in human platelets [106]. Thus, this agent may have the potential to modulate 

platelet function before or after ischemic stroke. Evidence indicates that TRPC6 plays a 

critical role in platelet function [107], which could be another target for antithrombotic 

therapy. Another TRPC6 activator, flufenamic acid modulated GABAa receptors, 

quashing epileptiform activity in the hippocampus [108]. Other TRPC3/6 activators like 

GSK1702934A transiently increased perfusion pressure of isolated rat hearts retrogradely 

perfused via aortic cannulation, an effect blocked by pretreatment with the TRPC3/6 

blocker GSK2293017A [109]. OptoBI-1, a derivative of GSK1702934A, is a light-sensitive 

TRPC3/6/7 agonist that was found to suppress hippocampal action potential firing [110]. 

Small compound derivatives of piperazine, PPZ1 and PPZ2, are TRPC3/6/7 agonists that 

can induce BDNF-like neurite growth and neuroprotection in cultured neurons by trig-

gering Ca2+ dependent CREB signaling [111]. Thus, PPZ1 and PPZ2 are potential agents 

for post-stroke recovery. Inhibitors of TRPC6 like larixyl acetate [112] and GsMTx4 [113] 

have been shown to have protective actions against traumatic brain injury and myocar-

dial infarction. 

So far, preclinical safety tests have not been completed on any of these agents and 

none has been approved for clinical trials in humans. Thus, their potential clinical effi-

cacy cannot be asserted definitively. However, their potential benefit against damage 

from cerebral ischemia warrants further investigation.  

7. Conclusion and clinical perspectives 

  Stroke care is limited due to the lack of effective primary or good secondary pre-

ventative agents that can control the excitotoxic damage resulting from ischemic infarc-

tion. In addition, there is a definite need for medications that can help in stroke recovery. 

Various pathways discussed in this review that involve TRPC6 can provide neuropro-

tection and assist post-stroke recovery. Various small molecules targeting TRPC6 have 

shown potential benefit in animal experiments. Many of these molecules have the poten-

tial to be translated into human clinical trials. However, there is further need for studies 

that could help determine the mechanisms underlying these benefits. Additional 

knowledge on the cell-specific role of TRPC6 utilizing cell specific KOs of TRPC6 is crit-

ically needed, as well as the implications for its involvement in neurovascular coupling. 

Whether targeting TRPC6 alone or a combination of TRPC receptors will mitigate the 
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harm of stroke and enhance recovery, only time and science will tell. 
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