Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Effects of Heating and Cooling of Injection Mold Cavity Surface and Melt Flow Control on Properties of Carbon Fiber Reinforced Semi-Aromatic Polyamide Molded Products

Version 1 : Received: 19 January 2021 / Approved: 21 January 2021 / Online: 21 January 2021 (12:29:40 CET)

A peer-reviewed article of this Preprint also exists.

Murata, Y.; Kanno, R. Effects of Heating and Cooling of Injection Mold Cavity Surface and Melt Flow Control on Properties of Carbon Fiber Reinforced Semi-Aromatic Polyamide Molded Products. Polymers 2021, 13, 587. Murata, Y.; Kanno, R. Effects of Heating and Cooling of Injection Mold Cavity Surface and Melt Flow Control on Properties of Carbon Fiber Reinforced Semi-Aromatic Polyamide Molded Products. Polymers 2021, 13, 587.

Abstract

Fiber reinforced thermoplastics (FRTP), which is reinforced with glass or carbon fibers, are used to improve the mechanical strength of injection-molded products. However, FRTP has problems such as the formation of weld lines, the deterioration of the appearance due to the exposure of fibers on the molded product surface, and the deterioration of the strength of molded products due to the fiber orientation in the molded products. We have designed and fabricated an injection mold capable of melt flow control and induction heating and cooling that has the functions of both heating and cooling the injection mold as well as the function of controlling the melt flow direction using a movable core pin. In this study, the above-mentioned mold was used for the molding of carbon fiber reinforced semi-aromatic polyamide. As a result, we found that increasing the heating temperature of the mold and increasing melt flow control volume contribute to the prevention of the generation of a weld line and the exposure of fibers on the molded product surface, as well as to the formation of a flat surface and increased bending strength. The relationships of these results with the carbon fiber orientation in the molded products and the crystallization of semi-aromatic polyamide were also examined in this study.

Keywords

heating and cooling of injection mold; melt flow control; carbon fiber reinforced semi-aromatic polyamide; fiber orientation; bending strength; weld line; crystallization

Subject

Engineering, Industrial and Manufacturing Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.