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Abstract: The thymus hosts the development of a specific type of adaptive immune cells called1

T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the2

highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process com-3

prising lineage commitment, somatic recombination of Tcr gene loci and selection for functional,4

but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the5

thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous6

attack while preserving the body through self-tolerance. The thymus has been of considerable7

interest to both immunologists and theoretical biologists due to its multiscale quantitative proper-8

ties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here,9

we review mathematical modelling strategies that were reported to help understand the flexible10

dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize11

the current challenges to estimating in vivo cellular dynamics and to reaching a next-generation12

multiscale picture of T-cell development.13

Keywords: Thymic selection; T-cell development; T-cell receptor (TCR); mathematical modelling;14

multiscale models; complex systems; ordinary differential equations (ODE); agent-based models.15

1. Introduction16

The thymus is a unique environment. It is the site of T-cell development. At17

steady state, it is dependent on continual colonization by a very low number of bone-18

marrow derived progenitor cells (for review see [1]). In the absence of an influx of19

T-lineage competent progenitors, T-cell development may be sustained for extended20

periods of time [2,3]. Thymic size and output are dynamic. The thymus gradually21

involutes with age, and can transiently shrink up to 90% under stress, pregnancy or22

infection [4]. Surface markers allowed delineation of many subpopulations of developing23

T cells (the thymocytes), corresponding to key steps of development and selection.24

Their dynamics have been extensively measured in vivo following organ reconstitution25

after irradiation, injection of labelled progenitors, thymic grafts, or in vivo labelling.26

Further, the development of thymocytes involves the decision to differentiate into27

several downstream populations either carrying an αβTCR, as CD8 T cells, Foxp3−28

CD4 T cells, Foxp3+ regulatory T cells, but also as unconventional T cells carrying29

either αβ or γδ TCRs [5]. This complexity has sparked the design of population-based30

mathematical models to understand the dynamical properties of T-cell development and31

differentiation in the thymus, and predicted the existence of feedback regulation yet to be32

verified experimentally. Interestingly, despite the large amount of available data, it is still33
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very tedious to identify the death and proliferative behavior of thymocytes, in particular34

the duration of their cell cycle. This knowledge gap limits our understanding of the35

quantitative regulation controlling T-cell development, and mathematical models are36

well suited to infer such quantitative parameters hidden inside complex experimental37

datasets.38

The thymus is also known for its substantial quality control of thymocytes. After39

they have somatically rearranged their TCR loci by V(D)J recombination, it has been40

estimated that more than 90% of thymocytes die through a process called thymic selec-41

tion (see section 4). At the molecular level, a prototypical αβTCR binds to a complex42

composed of major histocompatibility complex proteins (MHC type I or II) and a small43

peptide antigen (pMHC). MHC complexes allow cells from the body to present the44

peptidic signatures of their intracellular content to the T cells. At the cellular level,45

a thymocyte sequentially interacts with many cells, including dendritic cells, cortical46

thymic epithelial cells and medullary thymic epithelial cells that present a large sampling47

of all proteins of our body, the self-antigens, as a training initiation. Thymocytes with48

non-productive TCR gene rearrangements or expressing TCRs with low affinity to MHC49

proteins do not survive and undergo “death by neglect”. Successful formation of a TCR50

capable of recognizing pMHC results in positive selection. Developing T cells whose51

TCR has high affinity for self-peptides are eliminated in a process termed negative52

selection. It is only partially understood how TCR signaling received through sequen-53

tial interactions with MHC-self-peptides is integrated into apoptosis or differentiation.54

However, there is evidence that both kinetic and spatial differences in activation of55

signaling modules downstream of the TCR contribute to discriminating positively and56

negatively selecting pMHC ligands [6–10] and it has been proposed that these differences57

integrate the duration of pMHC-TCR interactions [11]. It remains unknown how single58

cell decisions explain the population dynamics of the thymus.59

Here, we complement previous reviews on thymic selection theories [12] and quan-60

tification of T-cell development [13] by providing an updated view of mathematical61

modelling approaches of the dynamics of T-cell development in the thymus. We de-62

liberately omit mathematical models studying the quantitative impact of positive and63

negative selection onto the produced repertoire, pathogen escape or MHC recognition,64

which are already comprehensively described in [12] and were not extensively revisited65

since then. Instead, we focus on the complexity of inferring in vivo T-cell development66

properties from sometimes indirect experimental settings. Every model relies on assump-67

tions and simplifications needed to match the complexity of the available experimental68

dataset. We discuss how experimental and model design limitations may be overcome69

in future studies.70

After describing population dynamic models, models to infer cell cycle speed in71

the thymus in vivo, and estimation of cell death through the selection steps, we highlight72

pioneering models that link thymocyte motility and signaling cell fate and dynamics.73

We discuss how next-generation models may be formulated in the context of novel74

high-throughput TCR sequencing technologies.75

2. A journey through population models of T-cell development76

The main steps of T-cell development in the thymus are depicted in Figure 1A77

and described in Box 1. The earliest T-cell progenitors in the thymus form a subset of78

the so-called DN1 (double negative, lacking the expression of CD4 and CD8) cells and79

are also referred to as Early T-lineage Progenitors (ETP) [14,15]. They arise from bone80

marrow derived cells transiting via the blood. It has been estimated that only a few81

cells can enter the murine thymus, with a model of ‘gated entry’ where one cell can82

fill one out of 160 available niches [16,17]. The mechanisms underlying gated entry83
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remain elusive. Periodic alterations in levels of chemoattractants as well as, yet to be84

molecularly defined, gated release of progenitors from the bone marrow have been85

proposed [18,19]. Once inside the thymus, an ETP undergoes multiple divisions before86

sequentially becoming DN2, DN3 and DN4 based on expression of the surface markers87

CD25 and CD44 [20,21] (Figure 1B).88
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Figure 1. Major developmental steps in the thymus as a basis for population models of T-cell development. (a) Main stages
annotated with their degree of expansion and RAG1 expression (green levels). RAG1 levels can be used as a timer and
distinguish newly generated versus recirculating or long-term populations. The main bottlenecks in transition between
thymocyte populations are β-selection, selecting for cells with functionally recombined TCRβ, and positive and negative
selection that select for cells with functional MHC reactive, but not self-reactive fully expressed TCRαβ. (b) Gating strategies
of functional sub-populations. The first lineage gating ‘lin-’ on the left discards B, NK and myeloid cells. When the DN4
population is only gated on CD4−CD8−CD28−CD44−, it also contains more differentiated populations containing TCRβ

[22]. DN1 and early DN2a cells can also differentiate into B or NK cells while only late DN2bs are fully committed to the
T-cell lineage [23]. The relative size of each compartment is detailed in [22].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 January 2021                   doi:10.20944/preprints202101.0388.v1

https://doi.org/10.20944/preprints202101.0388.v1


Version January 15, 2021 submitted to Entropy 4 of 33

Box 1 : Trajectory of murine intrathymic T-cell development.

Thymocytes can be broadly characterized based on their surface expression of the co-receptors CD4 and CD8. The
most immature thymocytes are negative for both co-receptors and are hence referred to as double-negative (DN).
They give rise to CD4 and CD8 double-positive (DP) thymocytes followed by loss of one of the co-receptors to
form CD4 or CD8 single-positive (SP) mature thymocytes, which egress from the thymus after final maturation.
Upon entry into the thymus, bone-marrow derived progenitors give rise to early T lineage progenitors (ETPs),
phenotypically characterized as CD44hiCD117hiCD25−. ETPs constitute a subpopulation of the heterogeneous
DN1 (CD44hiCD25−) population. Acquisition of CD25 marks the next developmental DN2 stage. At this stage, T
lineage commitment is completed and pre-commitment and post-commitment DN2 thymocytes are referred to as
DN2a and DN2b, respectively. DN2b cells express somewhat lower levels of CD117, which progressively decline
towards the CD44−CD25+ DN3 stage. V(D)J recombination of Tcrb, Tcrg and Tcrd loci commences at the DN2b
stage and continues in a subset of small DN3 cells, termed DN3a (CD44−CD25hiCD27−CD28−). Upon successful
V(D)J recombination, DN3a cells give rise to either γδT cells or large DN3b cells (CD44−CD25intCD27+CD28+)
in a process called β-selection. Progressive loss of CD25 marks the DN4 compartment, which in turn gives rise
to pre-selection DP thymocytes (CD4+CD8+TCRαβlow/negCD69−CD5−) via an immature CD4−CD8+TCRαβ−

(ISP) intermediate. At the pre-selection DP stage rearrangement of the Tcra locus occurs followed by the initiation
of selection. Positively selected DP thymocytes up-regulate the αβTCR and acquire expression of CD69 and
CD5. Loss of one co-receptor marks generation of CD4 and CD8 SP thymocytes, whose maturation is further
characterized by loss of CD69 and CD24 as well as acquisition of CD62L and MHC-I.

2.1. Early steps of thymus development89

The dynamics of DN1 to DN4 cells have been monitored by injection of congenic90

bone-marrow derived progenitors [24]. Injected cells remained at the DN1 stage for91

10–12 days while transition through the DN2 population was short as DN3 cells appeared92

after as early as 11 days, and DN4 cells after day 14–15. A mathematical model from93

Manesso and colleagues [25] used this dataset to compare different proliferation model94

structures for the DN1 population. The types of equations are depicted in Figure 2A and95

the model structure in Figure 2B. The best model fit predicts that cells would remain96

in DN1 for up to 11 divisions before transitioning to DN2s, spending on average 1 day97

per cycle. Interestingly, no other hypotheses, in which cells would leave the DN1 stage98

after fewer divisions, or with more distributed probabilities to leave DN1 at earlier99

divisions, could explain the data well, revealing a synchronization of the cells to leave100

after a certain number of divisions (or time). This prediction was further experimentally101

supported by showing a higher differentiation potential of late DN1s [25] as well as102

progressive transcriptional changes allowing the definition of a developmental trajectory103

within ETPs [26].104

Although identified parameters for the DN1 population and the synchronization105

statement were robust to the Porritt dataset [24], the inferred residence or cycling times106

for the DN3 and DN4 populations were not identifiable from this dataset, meaning107

the exact same curves can be reproduced with different cycling speed of these popula-108

tions due to compensation between parameters. This means additional experimental109

constraints would be required to also fix the DN3 and DN4 dynamical parameters,110

and likely comes from the fact that the dataset could only monitor the frequencies of111

labelled donor cells rather than absolute numbers, possibly due to a high variation of112

progenitor engraftment among transplanted mice. Altogether, the model was useful to113

uncover the synchronized behavior of DN1s and suggest 11 divisions in 11 days for these114

particular cells. Notably, the study by Porritt and colleagues employed a purification115

strategy of donor cells that omitted some progenitor subsets with the potential of thymus116

colonization and more rapid intrathymic differentiation kinetics [27,28].117
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Since every 9 to 12 days a new wave of progenitors is initiated [17], it raises the118

question how thymus size is maintained over time, and in particular, whether cyclic119

colonization by progenitors would induce detectable fluctuations. The ‘synchronous120

development hypothesis’ states that the periodic seeding induces such fluctuations,121

while an opposing hypothesis argues that an asynchronous release of seeders or the122

existence of size regulation within DN populations could smoothen such fluctuations to123

undetectable levels. Cai et al [29] developed a model of DN2-3, DN4 and the subsequent124

DP compartment without any size regulation and predicted fluctuations to be around125

40% amplitude for the DP and total thymocyte populations while DN4 and SP would126

be quite stable. If this were true, this would mean to expect a high biological variation127

between different unsynchronized mice. The authors propose a statistical test based on128

plotting different populations in the same x-y axis, expected to show an ellipse from129

only one experimental time-point, if such fluctuations exist. The prediction has not yet130

been verified. As a replacement for a direct longitudinal analysis of thymocyte numbers,131

that is not possible, an approximation via ultrasound-based determination of thymus132

size might be an alternative valid approach.133

Bone-marrow derived thymus seeding progenitors most likely comprise multi-134

ple cell types, including IL-7R+ CLPs (common lymphoid progenitor), Flt3+ LMPPs135

(lymphoid-primed multipotent progenitors) and possibly others, as well as phenotyp-136

ically ill-defined intermediates [1,27,28,30,31]. For instance, in vivo, CLPs displayed137

a more rapid differentiation into DP thymocytes when compared to LMPPs, suggest-138

ing that population heterogeneity of thymus seeding progenitors could contribute to139

continuous thymic output despite gated entry [13,28].140
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Figure 2. Population dynamics mathematical models of the thymus. (a) Types of equations used when simulating thymic
population dynamics: simple ODE with proliferation, death and differentiation (left), with an additional regulated logistic
growth according to a maximum carrying capacity K (middle) or generational models that simulate the cell numbers at
each division within a compartment (right). (b) Published mathematical models, following the equation design explained in
A. The red crosses denote neglected mechanisms in the models.
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In general, despite possible variations due to the periodic seeding over weeks and141

the slow thymic involution over years, most models for thymic populations could fairly142

consider every population to be at ‘steady state’ during the time of simulation (a few143

days typically). During the next steps of DN development, the Tcrb locus is genetically144

recombined and in-frame recombination results first in expression of TCRβ in complex145

with a surrogate pre-TCRα chain, defining completion of the DN3a stage [32]. Somatic146

recombination is accompanied by cessation of proliferation and death of cells that fail147

to productively recombine the Tcrb locus, called β-selection (Figure 1A,B), estimated to148

kill around 70% of the cells through this checkpoint [33]. Productive recombination of149

TCRγδ can also happen at this stage and lead to the separate differentiation of γδT cells150

(Figure 1B). The DN3b and DN4 stages are highly proliferative, and are accompanied151

by upregulation of CD8, then both CD4 and CD8 to become ‘immature SP8’ (iSP8) then152

‘Double Positive’ thymocytes (DP), respectively. The latter can be further separated153

as ‘pre-selection’ DPs and ‘post-selection DPs’ (Figure 1B). Maturation from DN3b to154

pre-selection DP is a continuous process that comprises massive proliferation followed155

by recombination of the Tcra locus. Selection is then initiated to probe for formation156

of a functional TCRαβ complex expressed on the surface. Failure results in death by157

neglect, which also eliminates cells with αβTCRs with low affinity interactions for pMHC.158

Successful positive selection is accompanied by expression of activation markers like159

CD69. DPs with surface expression of a functional αβTCR are also the first population160

to be probed for high-affinity pMHC interactions during negative selection resulting in161

massive cell death [34] (see section ). The final step of T-cell development is the choice162

between becoming a CD4−CD8+ single positive T cell (future CD8 cytotoxic T cell)163

or a CD4+CD8− single positive T cell, (future conventional CD4 T helper cell (Tconv)164

or Foxp3+ (Treg cell). With the exception of Treg-cell precursors, the SP populations165

are not particularly proliferating, although the mature 2 (M2) stages of CD4SP and166

CD8SP (Figure 2B) are able to proliferate upon stimulation [35]. Indeed, analysis of mice167

expressing an H2B-GFP reporter in the TCRδ locus substantiated the hypothesis that168

thymocytes post selection and during maturation undergo one or two rounds of division169

[36]. Further, using TCR-transgenic mice, Le Campion et al. showed that proliferation170

strength in the SP stage in vivo is related to the MHC settings and quantitatively impacts171

on the thymic output [37], showing that clonal lineages might selectively be expanded at172

this late stage.173

Apart from the studies from Manesso et al. [25], Cai et al. [29], analysis of the DN174

differentiation steps by mathematical modelling has been scarce. A recent transcriptional175

multiscale model by Olariu et al. [38] is discussed in Section 5. Most other thymic176

models considered the combined DN stages as one compartment (mainly because DN177

datasets were poor at the time). The original naming of populations into DN1 to DN4178

is biologically inconvenient because DN3a cells are more similar to DN2 than DN3b,179

which in turn are similar to DN4 forming a continuum that is likely to extend to DP180

cells prior to initiation of Tcra rearrangement. Therefore, one would need to be careful181

which compartments to simulate and how to associate death and proliferation at the182

proper stage. The DN2-3a and DN3b-DN4 could possibly be merged as functional183

compartments, and one would expect a high death rate at the DN3a - DN3b transition.184

The next level of models simulate the major populations of the full thymus, selected185

according to the biological question of interest.186

2.2. Estimation of the flow between compartments at steady state using larger models187

Inferring the duration of each developmental stage and the flow of cells between188

them at steady state has been approached both experimentally and mathematically.189
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Turnover of thymocyte populations has been estimated based on in vivo labelling of190

cells with nucleoside analogues, such as [3H]-thymidine, BrdU and EdU. These labels are191

incorporated into the cell’s DNA during replication, i.e. they label actively cycling cells.192

Label incorporation is detected through autoradiography, antibodies, and click chemistry,193

respectively. Administration of a single pulse allows determination of the frequency of194

actively cycling cells (see section 3), whereas continuous labelling allows to determine195

turnover within a population by measuring replacement of non-labeled with labeled196

cells or vice versa. Continuous labelling cannot discriminate between intra-population197

proliferation and influx of labeled progenitors. Similarly, discrimination between death198

and outflux of non-labeled progenitors is impossible. Thus, both pulsed and continuous199

labelling have to be complemented with additional assays or mathematical inference to200

discriminate between these parameters.201

Using such sets of experiments, the life-time of DP thymocytes has been determined202

to be 3.5 days [39]. Given that most DP cells have a comparatively low rate of prolifera-203

tion, whereas all DN4 precursors proliferate rapidly, the majority of label accumulation204

can be ascribed to influx. The same study indicated a fraction of only 3% of DP cells205

becoming SP based on the flow of label to the next generation. A gap in the acquisition206

of label in SP cells supported the notion that they were largely non-cycling, and their life-207

time was estimated to be 12 to 14 days, which may be an overestimate, potentially due208

to the presence of thymus-resident cells. Analysis of cellular flow through more imma-209

ture populations was complicated by proliferating populations being interspersed with210

less proliferating ones [33,40]. These limitations were partially overcome by the use of211

RAG-deficient and TCR-transgenic strains to interfere with developmental checkpoints212

[33]. Together these studies revealed population heterogeneity of the DN3 population,213

consistent with the later identification of DN3a and DN3b subsets [40]. Together, it was214

proposed that thymocytes undergo approximately 10 divisions between the DN3 to the215

DP population, and that 70% of DN3 thymocytes die at the β-selection checkpoint [33].216

A more recent continuous labelling study showed that most pre-selection DP be-217

came post-selection DP within 4 to 5 days (although they might still proliferate and218

would never reach 100%) [41], and that they display massive caspase activation after 3219

days. Using continuous labelling as well, [42] showed that post-selection DPs become220

fully labelled in 3 to 4 days; naive CD8SP and CD4SP gradually become labeled between221

day 2 and 8. This shows that the post-selection DP stage is around 3 to 4 days, while222

the replenishment of CD4 and CD8 might not be synchronous, some cells becoming223

single positive more rapidly than others, thus refining the earlier study by Egerton and224

colleagues [39]. Sinclair et al. [43,44] used a tetracycline inducible Tet murine model,225

where TCR signaling is blocked by default and developing thymocytes are stuck at the226

pre-selection DP stage. Treatment with tetracycline rescues T-cell signaling, leading227

to a synchronized wave of cells from the pre-selection DP stage through positive and228

negative selections.229

In parallel, several mathematical models have been developed in order to estimate230

how many cells transit between the populations (Figure 2B). A founding model was231

published in 1995 [45] for DN, DP, CD4SP and CD8SP populations, where the DN232

compartment is regulated by logistic growth, and DP and SP populations being regulated233

by the size of the full thymus. Although no kinetic datasets were available at the time,234

realistic boundaries for the model parameters were inferred from steady state, from235

qualitative knowledge and developmental timing known at the time.236

As a follow-up, Sawicka et al. [46] have used steady state values from WT mice to237

identify the flow of cells entering and leaving the DP and SP compartments with single238

ODEs per population but without size regulation since it is based on steady-state. They239

assumed that SP proliferate but not DP thymocytes. Including newer estimations of240

death by selection from [34], they identified that 35 million cells would enter the DP241
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compartment per day, and give realistic death rates, proliferation and export in each242

compartment to match the previously estimated residence times in the thymus. The lack243

of proliferation in the pre-selection DP compartment likely over-estimates the inflow244

of cells in the DP compartment, which is probably in the order of a few millions per245

day since the upstream DN3-DN4 compartment is typically less than 4 million cells246

(depending on the murine background and age).247

A major step for evaluating cell flow rates was the experimental measurement of248

a developmental wave through the DP and SP populations. The model of Sinclair et249

al. [43,44] has used the tetracycline-induced developmental wave of cells through post-250

selection DP and SP stages to infer the flow of cells through CD4 and CD8 differentiation251

and selection. Their model consists of linear ODEs (Figure 2B), and delineates a 2-step252

differentiation pathway for CD4 (DP1 and DP2) and a 3-steps pathway for CD8 T cells253

(DP1 to DP3), which are believed to differentiate later from DP thymocytes. T cells with254

CD8 or CD4 biased TCRs evolve as separate populations with different parameters,255

and DP1 refers to pre-selection DP. The authors did not assume proliferation at any256

stage, restricting the main factors to be death, forward differentiation and thymic output.257

The ratio between death and output at the last stage was inferred by an additional258

experimental blockade of trafficking using FTY720 treatment [47]. The authors confirmed259

the robustness of the inferred parameters by bootstrapping, and estimated 6.3 and 9.5260

days respectively between entry into DP and exit as fully mature CD4 and CD8 T cells.261

In the model, the larger steady state amount of CD4 SP cells in the thymus compared to262

CD8 SP cells was not due to a preferential differentiation into CD4 (nor an imbalance263

in TCR-bias among pre-selection cells), but rather a much larger death rate of CD8-264

biased T cells during DP stages. The authors discussed a limitation of the inducible Tet265

experimental system, where T cells show a skewed CD4 vs. CD8 differentiation ratio in266

comparison to WT mice, likely due to the manipulation of TCR signaling. Although the267

hypothesis of non-proliferation in post-selection DP stages is experimentally supported,268

exclusion of limited proliferation in SP [36] and pre-selection DP cells might slightly269

affect the identified parameters, yet including proliferation would likely create structural270

correlation between parameters and require additional experimental data to separate271

proliferation rates from death/export.272

2.3. Models for thymus involution and shrinkage273

A second line of models have used dynamic perturbations to infer dynamical274

properties of T-cell development in the thymus. Some of them have been used to275

compare mechanistic hypotheses to explain the perturbation.276

The thymus shows an intriguingly dynamic cellularity during life. First, its size277

progressively involutes with time, associated with a decrease in both proliferation and278

survival of the cells [48]. Second, it considerably shrinks following pathophysiological279

perturbations like infection, stress, chemotherapy or malnutrition [4]. For instance,280

Trypanosoma cruzi infection induces a slow decay of all populations during 15-20 days281

and is associated with DP thymocyte death and the unexpected presence of DP cells in282

the periphery [49]. Pregnancy also induces thymic atrophy on a longer period [50], which283

could be induced by injection of oestradiol in non-pregnant mice. Oestradiol-induced284

atrophy was linked with loss of DN cells and reduced proliferation after β-selection, but285

did not seem to affect DP cells although Treg-cell development was altered [51]. Thymic286

atrophy in the context of acute or viral infection like influenza has gained interest due287

to recent reports showing the presence of the virus in the thymus [52], either by direct288

infection due to proximity with the lungs, or imported by migratory APCs coming from289

the lung [53], which might present foreign antigens as self during selection.290
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A first full thymus model built on experimental kinetics has been introduced by291

Thomas-Vaslin et al. [54]. The authors induced death of proliferating cells and measured292

the dynamics of thymus shrinkage and recovery, using a conditional suicide gene and293

injection of an activating compound. The data helped to calibrate a model where DN,294

early DP (pre-selection DPs) and SP cells can proliferate, while late DPs die by (positive295

or negative) selection. Interestingly, instead of a single linear ODE per population, they296

developed a generational model for each proliferating compartment (Figure 2A,B) with297

a fixed number of divisions (with a fraction of cells exiting before the last division to298

have smooth average numbers of divisions). From an estimation of 20,000 cells per day299

entering the DN compartment, they assume that DN cells divide 4 times, during a period300

of 18 days, while early DPs proliferate 5 to 6 times with high speed (4 to 5 divisions301

per day). Explaining the experimental rebound requested a very high speed of early302

DP division in the model. They also estimate that CD4SP and CD8SP would divide303

between 1 and 2 times and provide an estimation of thymic flow of cells between each304

compartment including the spleen and lymph nodes together with estimated residence305

times in each compartment that was consistent with literature.306

Newer findings would suggest possible adaptations in the model design. The inflow307

of 20,000 cells per day entering the DN suggests the DN compartment was referring308

to DN2-DN3-DN4, as DN1 cells harbor many divisions [25]. The slow proliferation of309

DN cells with 4.5 divisions in 18 days could be compensated by including death by β-310

selection, in which case the cells would divide more and faster. Further, separation of the311

DN compartment into pre- and post-β-selection DNs could allow for higher proliferation312

of the DN3b-DN4 compartment. In turn, this could result in an increased flow of cells313

entering the early DP population, therefore requiring more realistic, slower divisions314

at the early DP stage to get the fast rebound. Finally, the absence of simultaneous315

proliferation and death, estimated as a single parameter, could be re-interpreted with316

newer experimental estimates of cell death.317

Altogether, the model of Thomas-Vaslin et al. [54] brought substantial contributions318

to the field. First, it showed that it is possible to explain the dynamics of this strong319

experimental perturbation with a simple model and without any size regulation nor320

feedback. Indeed, we have noticed that single linear ODE models typically need to321

include a logistic growth to get a faster recovery. It is likely that the generational model322

of Thomas-Vaslin allows for faster reconstitution because cells cannot progress to the323

next developmental stage until a few divisions whereas linear ODE models have a324

constant exit rate. Second, the separation of proliferating early DP and highly dying325

late DP compartments has a realistic model structure and replicated the time-resolved326

experimental perturbation dataset, suggesting it can be re-used to build more precise327

models with newer hypotheses like the one provided by Elfaki et al. [55]. Third, their328

experimental dataset is valuable to test any new model for T-cell development.329

As a different source of atrophy, Moleriu et al. induced thymic atrophy by dex-330

amethasone injection in mice, which triggers cell death, as a surrogate to mimic stress-331

induced atrophy [56], and used Mehr’s model to identify population dynamical parame-332

ters [45]. The dynamics of dexamethasone in the blood are modelled as different possible333

time-dependent functions. The effect of dexamethasone is modelled as perturbation at334

the level of proliferation, death, or transfer rates, proportional to the dexamethasone335

levels. The same dynamics of perturbation applied to all DP and SP populations was not336

successful in replicating the dynamics, but rather each population needed a perturbation337

with different strength/dynamics. They also showed that in the model, the proliferation338

rate and the carrying capacity of the populations were structurally correlated (they339

compensate each-other), meaning that one parameter needs to be fixed arbitrarily, or340

maybe that a regulation of population sizes is not necessary to explain this dataset. It is341

unclear whether the atrophy could be explained by a simpler perturbation model using342

a different differentiation model structure. For instance, in Elfaki et al. [55], atrophy343

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 January 2021                   doi:10.20944/preprints202101.0388.v1

https://doi.org/10.20944/preprints202101.0388.v1


Version January 15, 2021 submitted to Entropy 10 of 33

could already be well explained by the dynamic perturbation of only one compartment344

(increasing death of DP cells). Altogether, Moleriu et al. have provided a detailed345

explanation how far Mehr’s model can be used to infer dynamics of thymic populations.346

Recirculating SP thymocytes have meanwhile been identified based on RAG ex-347

pression, and previous models did not include the development of Treg cells. To this348

end, Elfaki et al. followed influenza-induced thymic atrophy in mice [55], reaching a349

90% shrinkage in cellularity 7 to 10 days after infection, followed by a very fast recov-350

ery of 3-4 days, without prior knowledge on the mechanisms of atrophy. The authors351

used a RAG1GFP reporter to distinguish newly-generated, RAG+ cells from resident352

or recirculating cells and asked whether influenza would skew the differentiation of353

T-cell populations, including Treg cells. By following the dynamics of the main pop-354

ulations during influenza-induced atrophy, they could show that only RAG+ newly355

generated cells were impacted. The diversity of the Treg TCR repertoire was lower at356

the peak of atrophy, and the frequencies of Treg populations appeared to be transiently357

increased. In order to disentangle the mechanisms by which influenza induces atrophy,358

they developed a mathematical model, based on the early DP - late DP compartments of359

Thomas-Vaslin [54]. They adapted the SP populations to include three different genera-360

tion pathways for Treg cells, using single ODEs with proliferation and death, and fixing361

most parameters from literature (Figure 2B). Most parameters for Treg generation are362

unknown and were fitted. Death, proliferation and output of each SP population were363

structurally correlated, so the authors could fix their sum (death + output – proliferation)364

from steady state constraints and experimental residence times. The dynamics of atrophy365

were completely insensitive to the contribution of death versus output and proliferation366

provided their sum was constant. The mechanistic impact of influenza did not seem to367

be direct, as influenza viremia peaks typically much earlier than the peak of atrophy368

at day 10, suggesting the existence of a downstream factor inducing atrophy, such as369

glucocorticoids or IFN-γ production by NK or CD8αα cells [55]. Therefore, the authors370

hypothesized a downstream factor of unknown timing, as a Gaussian perturbation to371

select population death or differentiation. Interestingly, transiently increased DP death372

alone could explain well the dynamics of all DP and SP populations, including the373

observed transient increase of Treg cells as a fraction of the CD4SP compartment. This374

peak was a dynamical artifact likely due to different life-times, where Tconvs decay375

faster than Foxp3+ populations and the frequency of the latter transiently increases as376

an overshoot. Modulation of Treg differentiation did not help to explain the data better,377

but instead, an increased export of all SP thymocytes could improve the fit. This shows378

the importance of mathematical modelling in understanding the dynamic behavior of379

populations under perturbations. Consistent with previously defined differentiation380

trajectories of Tregs [57,58], generation of Treg precursors from CD4SP cells rather than381

directly from DP precursors provided the best explanation of the data in the study of382

Elfaki et al. [55], showing that the dynamical perturbation included biological infor-383

mation on Treg ontogeny. It remains an open question, how thymic atrophy decreases384

Treg TCR diversity and whether this leaves an imprint on the generated repertoire385

through life. The model showed that the total increased export is minor, meaning that a386

difference in exported TCR diversity might not have a strong effect on the peripheral387

repertoire. An agent-based model with cells carrying diverse TCRs could help linking388

population dynamics to TCR diversity and uncover potential regulatory mechanisms.389

For instance, reduced Treg diversity could arise from a ‘wrong’ timing of crossing the390

cortico-medullary junction that is a region with increased antigen presentation. Indeed,391

modification of thymocyte migration between cortex and medulla does not change the392

amount of generated Tregs [59,60] but likely impacts the type of encountered antigens.393

Alternatively, de novo Treg formation could occur via different developmental interme-394

diates, which generate Tregs of distinct self-reactivity and functionality [61,62]. Such395

agent-based model could explain why a change in diversity is unnoticed when it comes396

to dynamics.397
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Finally, the natural thymic size involution during the very early stages of develop-398

ment has been modelled in the study by Zaharie et al. using a linear ODE model [63]399

adapted from Mehr and Moleriu’s models (Figure 2B). Pre-natal and post-birth develop-400

ment are simulated with two different sets of parameters, and thymic involution with401

age is simulated as an exponentially decreasing proliferation rate of each compartment402

with time. It remains intriguing why the two developmental phases need two sets of403

parameters and suggest the existence of a common regulatory mechanism to consider404

for future models.405

2.4. Regulations between thymic populations406

The above-presented models have supposed a certain level of independence be-407

tween the different cell fates. This is consistent with the essentially linear developmental408

trajectory of thymocytes from thymus colonization to egress of mature T cells. However,409

the size of certain thymocyte populations is likely to be subject to constraints, such as410

availability of survival factors, including cytokines, or cell-cell contacts including inter-411

action with stromal cells or other antigen-presenting cells. The existence of population412

control or interactions are difficult to validate experimentally. Nevertheless, IL-7 controls413

overall thymocyte cellularity [64,65]. Notably, in the absence of IL-7 or its receptor,414

the relative proportions of major populations are retained. Consistently, Almeida et415

al. [66] used murine background models carrying different amounts of DP cells and416

showed that the number of SP cells were always proportional to the DP compartment417

size, suggesting that the SP niche is not smaller in the presence of more DPs. Con-418

versely, in conditions of severely limited thymus colonization, such as in CCR7/CCR9419

double-deficient mice, population sizes recover to bona fide wild-type levels at the DN3420

stage and beyond [67,68]. Recently, it was suggested that, at least in a model of cellular421

competition, thymus cellularity is controlled through feedback regulation, in which422

DN2 and early DN3 cells sense DP population size and tune cell cycle duration in an423

IL-7-dependent manner accordingly [69]. There is substantial evidence for regulation of424

mature Treg numbers by IL-2 or IL-15 availability [70]. Competition between T cells for425

accessing spatially restricted antigens, types of APCs or cytokines could be an additional426

mechanism balancing the relative amount of each population, and could bring multiple427

possible fates for thymocytes carrying the exact same TCR, and has not been investigated428

by mathematical modelling yet. Interestingly, a recent study [71] showed that RAG−
429

Tregs, resident or recirculating from the periphery, can inhibit the development of newly430

generated Tregs. We refer to the overview by Klein et al. for details on the complex431

mechanisms and models for Treg differentiation [72].432

Only in some mathematical models, different populations sharing the same ‘niche’433

regulate their relative size in a TCR- and antigen-independent manner through a logistic434

growth control (Figure 2B). Further, the amount of cells becoming CD4, CD8, or Tregs435

are pre-encoded into a differentiation rate instead of a homeostatic control between these436

populations. The capacity of generational models like the one established by Thomas-437

Vaslin to reproduce fast recovery, would argue that logistic growth is not required,438

although this model inferred a supra-physiologically high proliferation rate for DPs. As439

a rare attempt to model population inhibitions, Kaneko et al. [73] analyzed the kinetics440

of thymic population dynamics after sub-lethal irradiation that leads to profound but441

transient atrophy. They compared multiple model structures on how the availability442

of TEC cells (depleted by irradiation) could regulate other populations (Figure 2B),443

using iterative fittings [74]. Expectedly, a single ODE could not explain the speed of DP444

reconstitution and needed a logistic growth mechanism. Further, among the different445

tested scenarios, the model could best explain the data when DN and cTECs were446

inhibiting each other’s dynamics. The authors attempted to explain the dynamics of447

mTECs only from the dynamics of the DP and SP populations and needed to include448

multiple mechanisms including i) self-inhibitions of the mTECs and ii) opposite effect of449
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SP (positive) and DP (negative) on mTEC reconstitution, and/or iii) impact of DN or450

cTECs onto DP, CD4 or mTECs. The modelling approach generated 5 possible models451

explaining well the dynamics of mTECs and the authors selected the most biological452

consistent with existing literature. This example highlights the complexity of identifying453

unknown negative regulations between populations from kinetic data. Indeed, the454

combinatorial number of possible interaction networks is huge, and one could expect455

that many networks can explain the data equally well. Having many consistent models456

may help narrow down possible mechanisms and prioritize which ones to measure457

experimentally. Alternatively, one could use the mathematical model to design a new set458

of minimal experiments that would be sufficient to discard as many remaining possible459

explanations (models) as possible, as in [75]. This is very tedious.460

In general, the study of regulation mechanisms might require modelling techniques461

adapted to their scale, and for instance spatial competition could eventually be best462

captured using agent-based models instead of population dynamics ODE models.463

3. Estimation of in vivo cell proliferation in the thymus464

Understanding the strikingly fast dynamics of thymus reconstitution and popula-465

tion size regulation requires to visualize how fast thymic populations actually proliferate466

in vivo and under perturbations. We have mentioned the work of Manesso et al. [25] and467

Thomas-Vaslin et al. [54] that estimated the division number from population kinetics.468

Here we focus on experiments (Figure 3A-D) and mathematical models (Figure 4A-G)469

aiming at measuring and quantifying the duration of the cell cycle and its phases in vivo470

in the thymus.471

3.1. Measuring the number of divisions by dye dilution472

A first measurement of proliferation involves a dye like CFSE or CTV that stays473

in the cell and gets diluted during division. The level of remaining dye in comparison474

with the original intensity levels thus informs on the number of divisions (Figure 3A).475

This technique has been rarely used to study thymocyte proliferation in vivo, because476

labelling is performed in vitro and thus requires isolation and subsequent transfer into477

the thymus [76]. Nevertheless, dye dilution approaches have been employed to assess478

divisions of thymocytes in vitro, for instance on a supporting layer of OP9-DL1 cells,479

or using Reconstituted Thymic Organ Cultures (RTOCs). In particular, Kreslavsky et480

al. [77] observed that 4 to 5 divisions separated the DN3a/DN3b transition to the entry481

into the DP compartment in vitro, indicating that DN3b, DN4 and iSP8 altogether would482

contain 4 to 5 divisions. The ETP/DN1 compartment has not directly been checked for483

number of divisions and Manesso et al. suggested 11 divisions [25]. Finally, Yui et al.484

[23] observed that ETP, DN2a and DN2b cultured in vitro were able to proliferate for 3485

to 5 divisions in 3 days depending on the population, but did not check when the cells486

acquired the next phenotype during these divisions, leaving the possibility of transition487

to the next population. Meanwhile DN3a and DN2b cells proliferated heterogeneously,488

whereas ETP and DN2a cells showed a fairly homogeneous proliferation. DN3a cells489

underwent 2 to 4 divisions before downregulating CD25 and becoming DN4. Hare et al.490

[35] showed that the most mature stage of SP4 and SP8 cells are able to proliferate for491

multiple divisions in RTOCs under antigen stimuli. Consistently, an in vivo study showed492

that MHC-dependent antigen recognition induced different strengths of proliferation493

[37]. It is not completely clear whether in vitro conditions accurately reproduce the494

in vivo signals controlling proliferation, death or emigration (for instance, RTOC cells495

might not exit and continue proliferating). Finally, Föhse et al [36] estimated one to two496

divisions at most from the post-selection DP stage. In general, the number of divisions497
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has been limited to a qualitative constraint for building models rather than being used498

as a quantitative training dataset.499
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Figure 3. Experimental methods to measure proliferation in the thymus. (a) Following the number of divisions of injected
labelled cells by dye dilution. (b) Following the amount of cells in the S phase by BrdU or EdU injection. (c) Tracking of
labelled cells at later time-points. (d) Dual-pulse labelling with EdU followed by BrdU to label cells that enter or leave the S
phase in between pulses and track the cycle stage of the labelled cells later.

Similar to the dilution of labels introduced in vitro, dilution of genetic markers500

may serve as measures for proliferation. Thus, RAG recombinase is stage-specifically501

expressed in thymocytes undergoing somatic recombination of TCR genes and rapidly502

shut-off thereafter. Thus, using RAG1-GFP reporter knock-in or transgenic strains, di-503

lution of GFP serves as surrogate for proliferation after termination of TCR gene rear-504

rangement [61,78,79]. To overcome the need for normalization to correct for degradation505

of GFP encoded by this model, the half-life of GFP has been prolonged to weeks or506

even months by fusing it to histone 2B [80,81]. Such fusions have been used to generate507

Tcrd-H2B-GFP mice to label γδT cells [82]. During recombination of the Tcra locus, Tcrd508

and thus H2B-GFP coding sequences are excised and protein expression ceases, making509

H2B-GFP levels virtually exclusively dependent on dilution through proliferation. This510

system has been used to analyze dynamics of various αβT-cell populations [36].511
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3.2. Nucleoside analogue incorporation during S phase512

A second approach is to use EdU or BrdU to label actively replicating cells, as513

described in (Section 2). We deliberately omit older studies using Thymidine labelling514

because the dye was later found to be re-incorporated by cycling cells from dead cells [83].515

It has been estimated that BrdU has a half-life of only 12 min in mice and bioavailability516

of BrdU is lost 60 min after administration [84,85]. Thus, it is well-suited for short-term517

pulse labelling of cells.518

3.2.1. Direct EdU or BrdU staining519

Direct EdU or BrdU staining reveals cells that are currently incorporating DNA520

It can be used ex vivo to label the cells currently in the S phase, or in vivo (Figure 3B)521

to measure the percent of labelled cells (i.e., that were in S phase during the labelling522

pulse) or the amount of labelled DNA inside these cells, and possibly to track them at523

later time-points. This technique does not directly indicate proliferation speed nor the524

frequency of cycling cells, because it does not provide information on the duration of525

G1, G2 or M phases. For instance, the same BrdU labelling could be generated either by526

all cells cycling with a long G1 phase, or by only a fraction of cells cycling with a short527

G1 while the rest would be quiescent. BrdU labelling has widely been used to compare528

the cycling speed of different populations, but it therefore can be misleading, if the529

populations have different G1+G2M durations, or if they contain different proportions530

of quiescent cells. Nevertheless, very low frequencies of labelled cells are an indicator of531

low proliferation percent or speed (extremely long G1 for instance).532

Such methods have revealed that all DN populations are highly proliferating except533

the DN3a population that is rearranging the Tcrb locus prior to β-selection [86]. Further,534

among the DPs, mostly pre-selection DP cells, but not post-selection DP cells, proliferate,535

and only a small fraction of CD4SP and CD8SP cells. Therefore, proliferation would536

mainly stop before the post-selection DP phase and partially restart in the late stages of537

single positive populations.538

Altogether, these single-labelling strategies are an indirect way to observe a wave of539

labelled cells but do not directly capture the details of proliferation (how many divisions,540

synchronous, and percent of cells dividing). Further, the dilution of signal along with541

the divisions in the SP stage, as well as the increase in the frequency of labelled cells542

by division of two half-labelled daughter cells can make the interpretation of results543

tedious and require mathematical modelling to extract cell cycle parameters, as done in544

[87] for population turnover.545
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[Ramos 2020, thymus in vivo]
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Figure 4. Mathematical approaches used to infer proliferation speed. (a-c) ODE-based models for simulating in vivo labelling
of cells. Such models typically model an instant labelling of all cells in S phase, and possibly a decay of the labelling by
proliferation (in (a) only). In (b), a two-pulse labelling is applied and the dynamics of labelling are simulated for both labels.
Assuming instant labelling of all cells in S phase, the first labelling stains the equilibrium value of such cells. Two strategies
lead to different analytical formula: assuming the labelling interval t is negligible compared to the cell cycle, cells cannot
return in S; or simulating a 2-states markov chain for the state of the cells at second labelling allows some cells to cycle
multiple times. In (c), the ODEs can be represented with a matrix formalism. (d) From mean field equations of growing
populations, assuming a certain synchrony of the total cycle, the state of initially labelled cells over time can be predicted.
(e-f): Stochastic models for cell proliferation with time-distribution of each cycle phase under exponential growth, assuming
delayed exponential distributions (e) or with generic cycle and death times convenient when using gamma distributions (f).
(g) Agent-based explicit simulation of each event at the cellular level, predefined from time distributions.
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3.2.2. One-point EdU or BrdU pulse followed by DNA staining at different time points546

This approach allows to track the fate or cycle phase of cells that were in the S phase547

during the pulse at later time-points (Figure 3C). The study by Baron et al. followed the548

percent of BrdU+ cells after a single pulse labelling in vivo, in the full thymus [88]. They549

observe that DNA amounts linearly increase with time among BrdU+ cells. By linearly550

estimating the time to reach the highest DNA amounts (4N at G2), they estimated that551

the S phase would be around 6.5 hours. This approach implies to take an average552

DNA content of all cells in S phase to 3N, because a single BrdU pulse does not allow553

for the determination of the precise onset of DNA replication in individual cells. By554

following when BrdU+ cells return to the G1 and to the S phase, they concluded that555

the G1 duration would be around 10 hours while the G2M phase would be of 1.5 hours556

resulting in a full cycle of around 18 hours (Figure 3C). Such a fast cycle would be557

consistent with the fast reconstitution of the thymus after transient atrophy for instance.558

Since the authors used all thymocytes without gating sub-populations, the results of559

this study most likely reflect an average behavior among the largest populations of560

proliferating cells.561

Vibert et al. [89] developed a staining protocol, with a first set of 2 pulses of EdU562

intravenous injections one hour apart, followed by a third EdU pulse 14 hours later563

just before a unique time-point of harvesting the cells, aiming at labelling more cells564

among slowly proliferating populations in vivo. At the time of measurement, the authors565

additionally stained for DNA content to separate the G0/G1, S and G2 phases together566

with the EdU labelling. They analyzed in that way three populations: i) EdU+ cells,567

i.e., all the cells that were in S phase during at least one pulse. ii) Cells in G0/G1568

that were not in the S phase during the labellings “G0/G1 EdU−“, and iii) cells in569

G2/M that were not in the S phase during one of the labellings. They measured aged570

and young mice of two different backgrounds, for the main populations including571

separated DN1 to DN4 populations. They built an ODE model for each population with572

6 compartments: ‘G0/G1’, ‘S’ and ‘G2M’, each EdU labelled or unlabelled (Figure 4A),573

and simulated the experimental set-up with instant labelling of the cells in the S phase574

at the three time-points of the pulses. They inferred the parameters of the model (speed575

of transfer from each compartment to the next) by fitting the simulations to the three576

populations at the final time-point of measurement. Obviously, fitting 6 parameters to 3577

observed variables at one time-point per compartment was not feasible so the authors578

took realistic assumptions to reduce the system down to 2 parameters, by limiting death579

to the G0/G1 stage, by fixing the S phase to 6.5 hours from literature [88] (although this580

value might not apply to all populations), and by neglecting the inflow/outflow of cells581

from upstream populations during the 16 hours of the experiment. This approach raised582

values of G0/G1 duration from typically 2.5 to 12 days for proliferating populations,583

while non-proliferating populations like CD44lowCD4SP or CD8SP reached more than584

300 days cell cycle (probably an artifact indicating that most of them do not cycle at all).585

They also observed a lower frequency of labelled cells in 18-month old mice compared586

to young mice, consistent with literature [48], and interpreted the results as shorter587

cell cycle times in younger mice. The inferred cell cycle durations by Vibert’s model588

[89] are longer in comparison with above mentioned in vitro proliferation assays that589

suggested at least one division per day along DN and early DP stages. Although the590

model equations were validated by recapitulating the single pulse BrdU kinetics from the591

study by Baron et al. [88] along a few hours, several factors might need to be accounted592

for, due to the 14 hours period between pulses in [89]. First, some cells could actually593

have been in two consecutive S phases at first and last labelling (i.e. performing G2, M,594

G1 and returning into the S phase during the 14 hours interval). For the SP populations,595

bystander non-proliferating cells could help interpreting the low percent of labelling.596

Finally, there is a possibility that labelled cells from highly proliferating early DP cells597

could contaminate the late DP compartment that has a shrinking dynamics due to high598
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death (i.e. recently arriving cells can occupy a high percent of late DPs at steady state).599

Finally, the G2/M EdU− population is supposed to be very minor because most cells600

at G2M at the measuring time-point were in S phase just before (during the last pulse),601

which can generate noise in the parameter fitting. Altogether, albeit labelling more cells,602

this time-extended experimental setting seemed to generate new layers of complexity603

in interpreting the labelling results, that might require a more complex model design.604

This example illustrates the complexity of matching a theoretical model with a practical605

experimental setup.606

3.2.3. Dual labelling with EdU and BrdU at different time-points607

This technique allows to differentially label the cells entering or leaving the cell cycle,608

and to follow their cycle phase over time (Figure 3D). For instance, with 1 hour difference609

between EdU and BrdU pulses, this technique has the power to mark synchronized cells610

entering or leaving S phase at a given interval, and could reveal heterogeneity in the S or611

G1 phase durations. Thus, Ramos et al. employed such a system to determine alterations612

in cell cycle duration of the DN2 and early DN3 compartments suggested to serve as613

sensors for DP thymocyte cellularity [69]. At an excess of DP cells in an experimental614

model of cellular competition, DN2 cells incorporated less EdU, suggesting that higher615

amounts of DP thymocytes slowed down the cell cycle of DN2 cells. They then used the616

EdU / BrdU dual pulse experiment to build a linear ODE model for cells in S or G phase,617

labelled or not labelled (Figure 4B), constituting a simplified version of Vibert’s model618

[89] (Figure 4A). After an EdU pulse, followed by a BrdU pulse at 2 hours and harvesting619

the cells at 4 hours, they fit the model with the amount of cells in each quadrant.620

Using a continuous Markov chain model (Figure 4B, right equation), taking into621

account that some cells can leave and re-enter the S phase during the time of labelling (2622

hours) while other cells would be extremely slow (which is a consequence of assuming623

exponential residence time in each compartment), DN2 cells were estimated to have624

a total cell cycle duration of 9 hours at normal DP thymocyte cellularity as compared625

to 15 hours in the presence of excess DP thymocytes [69]. This model was useful in626

comparing the cycling behavior of cells in two environments (for which the EdU/BrdU627

labelling were already indicative, but additionally providing an estimate of the difference628

in cell-cycle duration). Notably, an earlier model, assuming that labelled cells cannot629

return to S phase during the 4 hours of staining, inferred very short cell cycle durations630

in the range of 3 to 4 hours from the same data (Figure 4B, left equation) [90]). This631

example highlights the impact of model design on the inferred cycle duration values,632

and underscores that single linear ODEs generate an exponential residence time of cells633

at each stage, requiring some care in model design or interpretation.634

Jolly et al. [91] have proposed an ODE-based model that solves this problem635

(Figure 4C) by separating each cycle phase into many sequential steps, and applied it on636

a EdU labelling kinetics scheme in cell cultures, and that would also be valid for dual637

pulse. Due to the complexity of the model, an analytical solution for the dynamics of638

labelling is not easily available, and a fitting procedure to experimental datasets allows639

to infer the cell cycle duration. The equations can conveniently be represented as matrix640

multiplication and the authors propose an analytical formula linking the frequency of641

cells expected in each cycle phase with the population parameters assuming steady642

state growth (also called balanced growth). This approach allows for a reduction of the643

parameter space or validation of predictions by comparing predicted proportions in644

each phase to experimental results.645
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3.3. Future models and finding the optimal experimental set-up646

The models described above were only partially successful in extracting robust647

durations of the cell cycle. This might be due to limitations of the datasets that might648

not contain the appropriate time-points or due to the assumptions of the modelling649

strategies. One also needs to take into account that the models cannot have more degrees650

of freedom than the complexity of the datasets to avoid overfitting. Combining all651

approaches described above a EdU/BrdU dual pulse coupled with DNA labelling at652

multiple time-points may solve some of these issues [92]. Other modelling approaches653

could be successful in extracting thymocyte proliferation rates, and in particular how654

to link the single cell proliferative behavior to the observed population parameters at655

the higher scale. Stochastic models for cell division based on time distribution of events656

seem most suitable for this task.657

Recently, Kretschmer et al. [93] studied the cell cycle duration of memory T-cell658

precursors and effector cells in vivo using the dual EdU/BrdU labelling strategy. As-659

suming an exponentially growing population, they approximate the relation between660

the growth rate and the average division time assuming it has no standard deviation.661

They also derived an approximated mean-field formula of the stochastic model for the662

amount of cells that divided and re-entered the G1 phase (Figure 4D).663

In [94], the authors derived analytical formulas for the fate of labelled cells through664

their progression along the cell cycle. They used a stochastic model where each cycle665

phase duration follows a delayed exponential distribution (Figure 4E). The authors666

assumed a ‘balanced exponential growth’ of the population without death, i.e. cells667

are growing with apparent rate µ (curve proportional to exp µt), and kept a constant668

fraction of cells in each phase over time. The type of chosen time-distribution can allow669

for analytical formulation. Starting from a pool of labelled cells in S phase (just after670

BrdU), such cells that entered G2M after a time t can be separated as cells of all possible671

‘age’ a within G2M and therefore the corresponding time δ they took before exiting the672

S phase since the beginning of (instant) labelling, such that a + δ = t. This is actually673

a convolution, and using a Laplace transform of the delayed exponential distributions674

yields an analytical formula for the dynamics of labelled cells either remaining in the675

initial S phase (Figure 4E, low formula), or progressing to the next phases. Further, the676

authors provide a formula relating the expansion rate µ to the phase parameters αi and βi677

and the ratio of cells in phase G1, S and G2M: n1, n2 and n3 (Figure 4E, medium formula).678

They predict that the dynamics of labelled cells from any phase φ that progressed to679

the next phases typically follow two steps: a first period, of duration βφ where labelled680

cells exit the initial population with a constant speed, followed by a period where the681

very last labelled cells exit, revealing the exponential decay part of the S phase duration682

distribution. The authors show that the initial derivative of the curve requires two683

early experimental points and is enough to set the expansion rate and some alpha684

parameters, while a third experimental data point is needed after t = βφ to identify685

the average duration of the exponential decay. This approach therefore seems suitable686

to interpret in vivo thymocyte EdU/BrdU labelling, with the limitation that the third687

optimal experimental time-point is difficult to estimate because it needs a pre-existing688

guess on after how long the cells in S phase start to leave (time βφ), and the exponential689

decay might be very short. Since the model has been designed for cells growing in690

culture, it is yet to be determined whether the hypotheses of no death and balanced691

growth would still be valid in vivo where cells can exit a compartment, potentially after692

a regulated number of divisions.693
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Zilman et al. [95] proposed a more general stochastic model including a distribution694

of inter-mitotic time (cell cycle completion) and death, derived from the von Voerster695

equation [96], which relates the amount of cells and their age within a population as a696

partial differential equation. More precisely, the distribution of the age of cells within697

each generation is stored, and evolved at each time-point. The fate of the cells at the next698

time-point is a convolution of cells at each age and the distribution of time inside this699

generation (inter-mitotic time) or death. Again, a Laplace transform becomes convenient700

because it transforms the convolutions into multiplications (Figure 4F). The authors701

derive analytical formula for the dynamics of a pool of labelled cells and reproduced702

quite well experimental datasets using labelled dye dilution in vitro. They show that703

the gamma distribution ia a good approximation to the lognormal distribution, whose704

transform is too complex [97]. The authors also adapt their formula to branching705

imbalanced divisions allowing to introduce asymmetric divisions.706

Altogether, it is likely that a combination of Weber et al. approach [94] with the707

generational model of Zilman et al. [95] including death could allow to derive analytical708

formulas for BrdU or EdU labellings that fit with synchronized proliferation with a fixed709

number of divisions in the thymus and be used for in vivo experimental datasets.710

A last and most general strategy is the explicit simulation of the stochastic equations711

using an agent-based model with thousands of cells with an associated distribution of712

time for each event (Figure 4G), as done for 2D tumor tissue cell cycle in [98]. Each cycle713

phase can follow a lognormal distribution (like in the cyton model [99,100], and death714

can be drawn as an exponential distribution, or could be restricted to the G1 phase for715

instance. It becomes easy to simulate the exact experimental setting.716

Future technical development might guide the design of new types of models, such717

as for the interpretation of Ki67 expression [101,102] and its degradation at specific718

cycle phases. The measurement of TREC recombination circles dilution from TCR719

recombination is an indirect read-out for proliferation and population dynamics that720

has been leveraged using mathematical modelling [103] and is suitable for analyzing721

human samples as well as the use of labelled deuterium in drinking water [104]. Finally,722

newly developed in vivo reporters for cell cycle might allow more precise longitudinal723

evaluation of cell cycle over time [105].724

4. Estimation of in vivo cell death in the thymus725

Estimating the rates of thymic selection is critical for the calibration of mathematical726

models of T-cell developmental dynamics. However, cell death is particularly hard to727

visualize in vivo and macrophages can remove thymocytes extremely fast and even seem728

to contribute to inducing cell death [106]. Experimental approaches to determine the729

extent of thymic selection, sometimes combined with mathematical modelling, have been730

reviewed in [12]. We provide a brief overview here, illustrating some key experimental731

constraints. Of note, depending on the study, the ‘efficiency of selection’ can be estimated732

either as flow of cells dying per day at a certain stage (rate), or as the amount of cells that733

will die or survive through selection from a defined pool of cells (percent). The latter734

definition depends on the residency time of cells at different stages, which is also hard735

to measure for heterogeneous populations. A number of early studies estimated rates736

of selection by either directly inducing negative selection [107] or removing selecting737

ligands (i.e. MHC) from a variety of thymic APCs to induce failure of positive or738

negative [108–111]. Together, these studies yielded a broad range of frequencies of739

death by neglect or clonal deletion. However, interpreting these data is difficult, as740

removal of MHC removes both positively and negatively selecting signals and negative741

selection in particular is likely to occur over prolonged periods of time, ranging from DP742

thymocytes that have just completed Tcra rearrangement to SP thymocytes, as well as743
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upon interaction with more than a single type of thymic APC. Another approach was744

based on continuous BrdU labelling using transgenic T cells with CD4 or CD8- biased745

TCRs that were known to survive positive selection [112]. The aim was to monitor the746

maximum number of cells that could survive through positive selection in vivo by filling747

the thymus by survivable TCRs and compare this number to that of surviving cells in748

the WT setting. This study suggested that at least 40% CD8 TCRs and 90% CD4 TCRs749

are removed through both positive and selection combined.750

Two more recent studies have revisited the death estimations using more direct,751

signaling reporters. Stritesky et al. used a Nur77GFP reporter to quantify levels of752

TCR signaling in thymocytes [34], comparing WT or Bim-deficient mice, in which753

negatively selected thymocytes fail to undergo apoptosis. The authors distinguished754

three populations based on GFP reporter expression: GFP low cells that die by neglect755

(positive selection), GFP intermediate cells that have received a positively selecting TCR756

signal, but may still audit for negative selection, and finally GFP high cells that are757

deleted in WT mice but persist in Bim−/− cells. Following the observation that Bim−/−
758

cells spend longer in the SP4/SP8 compartment than WT cells on average, they estimated759

that, at the scale of a 200-250 million cells per thymus, 3 million cells survive both positive760

and selection per day, while 16,7 million cells would die by negative selection. A minor761

caveat for determining exact rates of selection stems from the observation that Bim−/−
762

thymocytes have an increased residence time when compared to WT cells in the SP763

compartment, because they do not die and are kept longer in the thymus. However,764

Bim−/− cells comprise both GFP intermediate positively selected cells, which should765

exit normally as WT cells, as well as GFP high cells, which are indeed staying longer. As766

raised by Yates [12], dying cells and surviving cells have a different residence time (even767

if following the same mechanism). This means that extra Bim−/− cells that “should have768

died” stayed actually longer than the average residence time of all Bim−/− cells, and769

negative selection could therefore be slightly lower than estimated.770

Daley et al. [113] used a similar approach based on accumulation of cells poised771

for clonal deletion in Bim−/− mice in combination with a dual transgenic TCR/cognate772

antigen model. Expression of self-antigen deleted 60% of the CD4 SP cells compared773

to mice without expression, while in Bim−/− cells, those cells survived. The authors774

identified Helios as a surrogate marker for cells undergoing negative selection. Using775

this marker in combination with markers of progressive thymocyte maturation, they776

proposed a multi-step model of clonal deletion, concluding that negative selection777

deletes 55% of the positively selected thymocytes already in early SP cells.778

Finally, some population models described above, such as those developed by779

Sinclair et al. [44] or Thomas-Vaslin et al. [54] inferred death rates from their experi-780

mental datasets, but from populations lacking proliferation. This means the inferred781

rates are actually including the effect of proliferation, and could be re-estimated based782

on proliferation studies. Sinclair estimated that 75% of cells fail positive selection and783

only 2 to 5 percent of cells become CD8 and CD4 at the end, respectively. Including784

proliferation at SP stage would actually mean that more cells died by negative selection,785

probably not that far away. In Thomas-Vaslin’s model, where cells can die only at the786

DP stage, 97.5% of the pre-selection cells die at that stage.787

Taken together all studies converge on a very high frequency of death through788

selection, between 90 to 97.5%, which could be even higher when including proliferation.789

However, it remains a challenge to fully disentangle the contribution of death by neglect790

vs. clonal deletion as well as the type of APC, onto this death load. In conclusion, a791

thorough comparison of experimental datasets ranging from signaling reporters, dy-792

namical datasets (like recovery after atrophy), and EdU/BrdU labelling into a single793

mathematical analysis could narrow down the selection rates with better understanding794

on the experimental perturbation biases, yet is very tedious.795
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5. Multiscale considerations on thymic dynamics796

Selection processes in the thymus constitute quality control mechanisms down-797

stream of the bona fide random somatic recombination of TCR genes into a functional798

but not self-reactive repertoire. Thymic selection emerges from events at the molecular799

and cellular level (Figure 5A). Understanding how the dynamics of T-cell development800

arise from these lower scales requires multiscale modelling.801

At the molecular (and genetic) scale, virtually each thymocyte that completed the802

pre-selection DP stage, carries a different somatically recombined TCR, composed of803

one TCRα chain and one TCRβ chain at its surface. Lack of allelic exclusion of the Tcra804

locus allows for the generation of T cells with two distinct TCRs. APCs display a sub-805

sampling of possible self-peptides on their surface MHC complexes. Binding between806

TCR complexes and pMHC complexes triggers TCR signaling on the thymocyte. The807

landscape of self-antigens presented in the thymus is particularly complex as it depends808

on the type of APC, their capacity to express many proteins from the genome, distinct809

mechanisms of antigen processing, and the structure of the 6 MHC proteins encoded by810

highly polymorphic genes.811

At the cellular level, thymocytes move and sequentially interact with APCs. The812

multiple pMHC complexes and TCRs of the APC and thymocyte, respectively, located813

in the membrane cell-cell contact, have the possibility to interact. The affinity (existence814

of high affinity binding) as well as the avidity (amount of binding TCR-pMHC couples)815

is translated into TCR signaling that is integrated between cellular contacts.816

At the physiological level, the outcome of thymic selection is defined by successful817

recognition of foreign peptides (antigens) in the context of self-MHC, resulting in T cell818

activation. Cells whose TCR form high-affinity interactions with self-peptide loaded819

MHC on APCs in the thymus die in the process of negative selection. It is not fully820

clear how positive and negative selections are decided, depending on the TCR affinity,821

TCR cross-reactivity to different self-peptides, and the avidity of sequential cellular822

interactions, through TCR signaling [11,114]. Finally, the boundary between negative se-823

lection and Treg cell differentiation is unclear as both Tregs and Tconvs surviving thymic824

selection share some identical TCRs (see the overview of Klein et al. [72] for a review825

on Treg differentiation models). Several multi-scale mathematical models predicted the826

properties of the produced TCR repertoire due to positive and negative selection, based827

on a static set of TCRs and MHCs. These models, comprehensively reviewed in [12],828

have been helpful in particular to understand trade-offs between TCR cross-reactivity,829

pathogen recognition and auto-immunity; the induction of MHC recognition, restriction830

or Treg differentiation from positive and negative affinity selection thresholds; or how831

thymic selection generates holes in the repertoire for pathogen coverage. Very few832

models however have investigated how thymus dynamics arise from the lower scale833

of single cell motility and fate decision, and how it affects the higher scale of repertoire834

generation and TCR clonality.835
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Figure 5. Different biological scales underlying thymic selection and models linking cellular interactions to signal and fate.
(a) TCR signaling, and thereby thymic selection fate, is mediated by the encounter with Antigen Presenting Cells (APCs)
displaying samples of self-peptides on their MHCs. TCR signaling can be induced by high affinity to a MHC (typically
at each interaction), or to a cognate peptide (more rarely). Specific types of APCs express a larger scale of self-antigens
(Tissue Restricted Antigens) and are compartmentalized in space (yellow box). (b) Model predicting that T cells would show
increasing signal over time due to increased TCR expression, and suggesting two self-adapting thresholds, for positive and
negative selections. (c) Experimental observations on ex-vivo thymic slices, where T cells migrate and get signaling at each
APC encounter. The encounter with cognate peptide leads to stop and strong signaling, while non-self-reactive interactions
are shorter. D. Signal integration model. Each encounter with APCs leads to a transient increase in the integrated TCR
signaling depending on the affinity (or avidity) of TCR-pMHC binding at each cell interaction. The integrated signal is
translated into peak signal (Transient Signaling Level, TSL) and basal signal (Sustained Signaling Level, SSL), used by the T
cells to decide their fate. Due to the correlation of SSL with MHC affinity and TSL with highest self-peptide affinity, the
decision translates into Tconv with intermediate affinity to MHC while Tregs emerge with higher MHC affinity.
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5.1. Linking the history of TCR signaling to cell fate836

Several studies have proposed to link the dynamics of TCR signaling to thymic837

selection processes, which would constitute suitable bases to simulate thymus dynamics838

in the future:839

First, Grosmann et al. [115] proposed a theory on how the dynamics of TCR840

signaling could look like, and how it could be translated into positive or selection841

decisions (Figure 5B). Based on the observation that TCR expression and signaling842

gradually increase over the DP stage the authors proposed that T cells maintain two843

tunable activation thresholds: a lowest signaling level threshold to survive positive844

selection, and a higher threshold to delineate deletion by negative selection, and that845

both thresholds would adapt to each other or to the current signal level. They defined a846

variability-maintenance threshold that grows together with the expression of TCRs at847

the surface, and an activation threshold, linked to the former threshold, relatively higher848

than the maintenance threshold, for negative selection. This theory can explain that DP849

and SP cells have different activation thresholds, and allows T cells to self-tune their850

signaling thresholds to their environment (antigen expression pattern), possibly giving851

a robust response independently of a constant inflammatory context or perturbation.852

A large body of evidence has detected quantitative and qualitative differences in the853

TCR signaling leading to positive or negative selection [6–10]. Kurd et al. [116] and a854

series of papers from Ellen Robey’s lab [117–119] could directly visualize the temporal855

signals received by thymocytes during positive and negative selection, thanks to ex vivo856

calcium imaging of thymic slices (Figure 5C). Basal signaling was observed, composed857

of peaks of typically 5 mins interspersed by 25 minutes of resting, matching patterns of858

stop and migration, while encounter of cognate ligand lead to pronounced arrest and859

elevated levels of sustained signaling, eventually resulting in cell death. The observation860

that positive selection happened in ex vivo 3D slices but not in in vitro cultures [116],861

support the hypothesis that transient regularly interspersed signals are required for862

proper signal-to-fate decisions. It is plausble that a cell needs to regularly detach from863

one APC to the next to avoid strong signaling. This is a rare study linking calcium864

signaling to changes in motility suggesting that the patterns of T-cell search are also865

impacted by TCR signaling and could benefit from a modelling on their own.866

An agent-based model has been developed by Khailaie et al [120] (Figure 5D) to867

link cell-cell interactions with single cell TCR signal integration, using string models for868

TCR-pMHC affinity with short range positional correlations. In this model, a list of T869

cells with random TCRs sequentially interact with APCs carrying a random sampling of870

pre-defined self-peptides at each time-point, all presented on the same MHC molecule,871

and a TCR signal is integrated over time at each interaction with a decay rate. This leads872

to peaks due to encounter with higher affinity peptides with a constant contribution of873

the MHC at each interaction. Similar to the studies of Grossman et al. [115] and Kurd874

et al. [116], the authors proposed to use a threshold on the basal signaling level of a875

thymocyte as a decision to survive positive selection, while a threshold on the highest876

peak would define autoreactivity of a TCR. Khailaie also noted a trade-off for selected877

cells between sustained and peak signaling (cells with higher basal peak would die878

when they encounter a medium affinity peptide while low basal peak would allow to879

bind peptides with higher affinity and survive), and suggested that Treg cells are more880

affine to MHC, that would endorse them with higher cross-reactivity.881

Recognition of self-peptides plays a substantial role in positive selection [121–124],882

but their relative abundance is heterogeneous [125]. It is tempting to propose that883

frequent or groups of structurally similar antigens could generate a signal supporting884

positive selection of TCRs recognizing them with medium affinity, while rare antigens885

would not have this capacity. It would be interesting to check whether this happens886

in Khailaie’s model using a mixture of frequent (possibly similar) antigens and more887
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rare antigens, and correlating cell fate with affinity to these frequent antigens instead of888

MHC affinity.889

Although the link between basal and peak signaling into positive and negative890

selections is still speculative, different signaling pathways have been associated with891

both selections and Treg cell development (for instance ERK and Ras signaling [9,10]). It892

is tempting to hypothesize that different pathways could behave as band-pass filters,893

with some ‘fast’ pathways getting activated by rare but strong encounters (peak signal)894

and other pathways slowly activated after many repeated interactions [6]. For instance,895

an ODE-based model for TCR signaling has been predicted to be able to discriminate896

self and foreign peptides [126] based on interaction frequency. More generally, in the897

context of frequential inputs, a Fourier transform of TCR signaling models could help898

predicting the signal properties required for different fate decisions.899

Together, these studies support the notion that positive and negative selection could900

be mechanistically defined by different types of signaling, in which a rapid, high peak901

promotes negative selection while basal signaling defines positive selection. Notably, the902

experimentally observed signals were in almost perfect agreement to those predicted by903

[115]. Further, these models are suitable to simulate developmental dynamics at the DP904

and SP stage from single cell encounters, although at present these models cannot yet905

incorporate a possible interdependence between TCR signaling and a cell’s decision to906

proliferate at the early DP or late SP stages. In contrast to single cell models, dynamical907

models presented in section 1 encoded differentiation (to CD4SP, CD8SP or Treg cells) as908

a constant rate, thus masking potential regulatory mechanisms that agent-based models909

would intrinsically include. For instance, Kurd et al. [116] suggested that mismatched910

CD4SP or CD8SP with a TCR that recognizes the ‘wrong’ MHC would not get sustained911

signaling in the SP stage, and die by neglect, showing that signal integration is likely912

also important for CD4 vs. CD8 differentiation dynamics.913

5.2. 3D models of thymic development, APC types and antigen spatial compartmentalization914

T-cell development is coupled with regulated migration patterns. ETPs enter at915

the cortico-medullary junction from blood vessels, and both DN and DP development916

happen inside the cortex, where cTEC and other APCs support positive and negative917

selection of DPs. The maturation of DPs into SP is associated with changes in chemokine918

receptors and migration towards the medulla that occur typically 12 to 24 hours after919

the onset of positive selection [116]. CD4 and CD8 T cells downregulate the opposing920

coreceptor with different timing, later for CD8 SP cells. In the medulla, AIRE-expressing921

mTECs show a larger panel of antigens referred to as tissue restricted antigens (TRAs),922

while other APCs (dendritic cells (DCs), B cells, stromal cells [127]) can also present923

self-antigens, or antigens captured in the periphery by migratory DCs [72,128,129]. For924

instance, DCs seem to be more efficient at mediating negative selection in the cortex925

while cTECs are also presenting self peptides. Rare DCs are located close to capillaries926

and surrounded by CCL21. Interestingly, DCs and mTECs as well as vascularization927

are much denser at the cortico-medullary interface, suggesting its crossing has the928

highest strength of selection (or avidity) [72]. The molecular cues guiding the transit of929

thymocytes from cortex to medulla are poorly understood. While it is well established930

that chemokine receptors CCR7 and CCR4 play dominant roles in this process, it has931

recently been suggested that these receptors indirectly promote spatial organization932

of thymocytes by organizing the localization of thymic APCs, in particular DCs, and933

mediating their interaction with thymocytes [130,131]. As a consequence, loss of either934

chemokine receptor results in defects in central tolerance [131,132]. Notably, the presence935

of a thymic medulla is critical for development Treg, but not Tconv, cells [59]. The egress936

of T cells is mediated by the S1P1 receptor, which is upregulated only at the latest stage937

of SP maturation. Treg cells are believed to stay longer in the thymus, and different938
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types of APCs harbor different Treg inducing capacity [133]. It has been suggested that939

certain antigens could be expressed in spatial niches, added to the fact that TRAs are940

preferentially expressed in the cortico-medullary junction [72]. These arguments support941

the notion that the spatial organization of the thymus is critical for its function and942

would call for spatial mathematical models.943

So far, only a few models have attempted to simulate the thymus in 2D or 3D. Elfroni944

et al. [134] developed a framework able to simulate motility, chemokine sensitivity,945

proliferation and death on a 2D lattice system, similar to later developed platforms946

like Morpheus [135], and including the cortex and medulla. The model was used to947

recapitulate the migration of cells following chemokine gradients [136], in the context of948

WT versus CCR9-deficient mice. They also measured an effect of space competition into949

apoptosis and the subsequent amounts of generated CD4 and CD8 T cells. Further, the950

cell-cell contact dissociation rates impacted the CD4 to CD8 decision. Souza-e-Silva et951

al. [137] used a simpler mathematical formalism and simulated chemokine levels and952

cell decisions as a cellular automata, i.e. a 2D grid, where each position can only have953

predefined states that are updated according to the neighboring states. Interestingly, the954

authors could reproduce realistic movement between cortex and medulla, and proper955

dynamics of development and residence times from a few cells to a full thymus at956

equilibrium. They could modulate the T-cell dynamics from changing the properties957

of the epithelial network. The fact that correct dynamics can emerge from simple958

2D models makes it tempting to believe that it will soon be possible to incorporate959

multi-scale models in a 3D setting, incorporating data on migration from thymic slices,960

proliferation, population dynamics and signal integration. The findings that thymocyte961

migration and signals are correlated [116] would suggest to use such models to calculate962

a signal integration and fate decision from the interactions like [138,139], feeding back to963

a modulated searching behavior of the cells.964

5.3. Thymus dynamical models can help the analysis of TCR repertoires965

High throughput sequencing has provided in-depth information on TCR diversity966

generated in the thymus [140]. Dynamical models of T-cell development are likely to967

help understand the formation of pre-selection repertoires and their shaping through968

selection.969

For instance, a mathematical model has been developed to simulate V(D)J recom-970

bination of the Tcra or Tcrb gene [141]. This tool takes a repertoire and proposes the971

most likely V(D)J recombination event for each sequence by inferring probabilities of972

using each V, D or J segment (called recombination parameters), including deletion and973

insertion events. Then, from inferred recombination parameters, it becomes possible974

to generate new TCR sequences following the same recombination model. While this975

model has been used to analyze peripheral TCR repertoires, it actually simulates Tcrb976

recombination before the DN3b stage or Tcra recombination during the DP stage, which977

are impacted by both thymic selection and population dynamics. An example in Figure978

6 demonstrates that proliferation can strongly alter the relative frequency of clones in979

the periphery. We speculate that, using knowledge or models on thymus population980

dynamics, new recombination models could be designed, which include variation in981

clonal expansion for the analysis or generation of TCR repertoires. Further, such mod-982

els comparing pre-selection and post-selection repertoires could identify which TCR983

sequences are preferentially deleted or expanded.984

Moreover, the patterns of thymocyte clonal expansion are poorly described and985

it is not clear whether T cells are selected independent from each other, and to which986

extent there is competition between antigen-specific clones, or how the competition for987

cytokine signals determines terminal differentiation. Newly developed in vivo barcoding988
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approaches coupled with statistical analyses are suitable to follow the clonality of pro-989

genitors along thymic selection [142]. Such datasets will likely support the development990

of lineage tree algorithms possibly combined with population dynamics and branching991

fate decisions in the thymus. In turn, this could provide valuable information on the992

relative clonal expansion in DP and SP stages to simulate proper population dynamics.993
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Figure 6. Cross-talk between recombination probabilities, proliferation and selection on the observed TCR frequencies in
the repertoire, suggesting that the mechanistic recombination events and the frequencies of TCRs with a recombination
scenario might not directly be equal and need more mathematical investigation.

5.4. Future types of multiscale models994

New experimental datasets like single cell RNA sequencing showing both popula-995

tion delineation by transcriptomics and receptor sequencing [143] will surely unveil new996

properties of thymic selection, reveal new hidden subpopulations and link cell fate to997

their TCR sequence.998

Recently, a multi-scale dynamical model has been developed covering the earliest999

steps of intrathymic T-cell development until completion of lineage commitment (i.e.1000

the DN2b stage) [38]. This agent-based model comprises gene regulatory networks,1001

epigenetics and population dynamics based on single-cell gene expression data for key1002

transcription factors as well as in vitro differentiation and proliferation dynamics of1003

populations and individual clones. Experimental data had revealed that expression of1004

the T-lineage commitment Bcl11b is subject to complex regulatory mechanisms involving1005

an interplay of cis-acting and trans-acting elements in combination with a degree of1006

stochasticity [144]. Furthermore, simple gene regulatory networks were not able to fully1007

explain observed and modelled population dynamics of immature thymocytes, which1008

we extensively discussed in Section 2. This type of multi-scale model allows for a smooth1009

transition between differentiation stages, going beyond the ’yes-or-no’ gating strategies1010

shown in Figure 1A, and could reveal unexpected cell conversion or differentiation1011
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pathways in the future. Together, this study highlights the requirement of extensive1012

and complementary datasets to build a mathematical model with sufficient explanatory1013

power as well as the requirement for multi-scale approaches to adequately represent1014

the increasing level of detail of our moleculatr, cellular and organismal knowledge of1015

developmental processes.1016

6. Outlook1017

We aimed to provide a broad overview of scales of intrathymic T-cell development1018

that have been simulated by mathematical modelling, where the same mechanisms1019

are treated from different angles and data types. Modelling has been necessary to1020

infer hidden experimental information at the cellular (proliferation speed, death) or1021

population scales (developmental dynamics), or to understand fundamental properties1022

of this complex selection system. The next generation of models will most likely include1023

multi-scale datasets, like proliferation speed, population dynamics, as well as signaling,1024

and will likely be single-cell based.1025

T-cell developmental dynamics as a model system highlights the diversity of mod-1026

elling methods used at the same scale, and the complexity to measure and bridge cellular1027

events to population dynamics. ODE models are not always best suited, due to their1028

assumption that cells stay with an exponentially distributed time before leaving, and1029

might require special care in their design or interpretation. Generational models can1030

replace logistic growth mechanisms, suggesting that controlled number of divisions is a1031

potential homeostatic mechanism for a fast thymic reconstitution. Dynamical models1032

were powerful at hypothesis testing, by providing the most suited mechanistic scenario1033

to explain the datasets, but were poorly able to identify biological parameters from1034

experimental datasets. Underlying reasons were either parameter uncertainties (only1035

few studies actually showed identifiability of their parameters) or model uncertainties1036

(that another model structure would cause the model to infer different parameter values).1037

Rigorous testing of different possible model structures requires a dissuasive amount of1038

work. As a consequence, no consensus on the proliferation, death (although quite close)1039

or differentiation rates during T-cell development has been reached, despite the large1040

extent of datasets. Given the diversity of datasets and complex experimental setups,1041

these datasets remain difficult to combine. A more general question would be: what1042

is missing from these datasets to finally infer these biological rates? Or which pertur-1043

bations would be needed to actually identify the strength of competition or regulation1044

between populations? The panel of models reviewed here may provide cues to design1045

next generation multiscale models.1046
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Abbreviations1062

The following abbreviations are used in this manuscript:1063

1064

APC Antigen Presenting Cell
BrdU Bromodeoxyuridine
CLP Common Lymphoid Progenitor
CD4SP Single Positive CD4+CD8− thymocyte
CD8SP Single Positive CD4−CD8+ thymocyte
DC Dendritic Cell
DN Double Negative thymocyte
DP Double Positive thymocyte
EdU 5-Ethynyl-2’-deoxyuridine
ETP Early T-lineage Progenitor
ISP8 Immature Single Positive CD8+ thymocyte
LMPP Lymphoid-Primed Multipotent Progenitors
MHC Major Histocompatibility Complex
ODE Ordinary Differential Equation
SP Single Positive thymocyte
TCR T-cell Receptor
TRA Tissue Restricted Antigen
Treg Regulatory T-cell
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