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Abstract: The thymus hosts the development of a specific type of adaptive immune cells called
T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the
highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process com-
prising lineage commitment, somatic recombination of Tcr gene loci and selection for functional,
but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the
thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous
attack while preserving the body through self-tolerance. The thymus has been of considerable
interest to both immunologists and theoretical biologists due to its multiscale quantitative proper-
ties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here,
we review mathematical modelling strategies that were reported to help understand the flexible
dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize
the current challenges to estimating in vivo cellular dynamics and to reaching a next-generation
multiscale picture of T-cell development.
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00 The thymus is a unique environment. It is the site of T-cell development. At
steady state, it is dependent on continual colonization by a very low number of bone-
marrow derived progenitor cells (for review see [1]). In the absence of an influx of
T-lineage competent progenitors, T-cell development may be sustained for extended
periods of time [2,3]. Thymic size and output are dynamic. The thymus gradually
involutes with age, and can transiently shrink up to 90% under stress, pregnancy or
infection [4]. Surface markers allowed delineation of many subpopulations of developing
T cells (the thymocytes), corresponding to key steps of development and selection.
Their dynamics have been extensively measured in vivo following organ reconstitution
after irradiation, injection of labelled progenitors, thymic grafts, or in vivo labelling.
Further, the development of thymocytes involves the decision to differentiate into
several downstream populations either carrying an a STCR, as CD8 T cells, Foxp3~
CD4 T cells, Foxp3™ regulatory T cells, but also as unconventional T cells carrying
either af or yd TCRs [5]. This complexity has sparked the design of population-based
mathematical models to understand the dynamical properties of T-cell development and

/ differentiation in the thymus, and predicted the existence of feedback regulation yet to be
verified experimentally. Interestingly, despite the large amount of available data, it is still
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very tedious to identify the death and proliferative behavior of thymocytes, in particular
the duration of their cell cycle. This knowledge gap limits our understanding of the
quantitative regulation controlling T-cell development, and mathematical models are
well suited to infer such quantitative parameters hidden inside complex experimental
datasets.

The thymus is also known for its substantial quality control of thymocytes. After
they have somatically rearranged their TCR loci by V(D)] recombination, it has been
estimated that more than 90% of thymocytes die through a process called thymic selec-
tion (see section 4). At the molecular level, a prototypical « fTCR binds to a complex
composed of major histocompatibility complex proteins (MHC type I or II) and a small
peptide antigen (pMHC). MHC complexes allow cells from the body to present the
peptidic signatures of their intracellular content to the T cells. At the cellular level,
a thymocyte sequentially interacts with many cells, including dendritic cells, cortical
thymic epithelial cells and medullary thymic epithelial cells that present a large sampling
of all proteins of our body, the self-antigens, as a training initiation. Thymocytes with
non-productive TCR gene rearrangements or expressing TCRs with low affinity to MHC
proteins do not survive and undergo “death by neglect”. Successful formation of a TCR
capable of recognizing pMHC results in positive selection. Developing T cells whose
TCR has high affinity for self-peptides are eliminated in a process termed negative
selection. It is only partially understood how TCR signaling received through sequen-
tial interactions with MHC-self-peptides is integrated into apoptosis or differentiation.
However, there is evidence that both kinetic and spatial differences in activation of
signaling modules downstream of the TCR contribute to discriminating positively and
negatively selecting pMHC ligands [6—10] and it has been proposed that these differences
integrate the duration of pMHC-TCR interactions [11]. It remains unknown how single
cell decisions explain the population dynamics of the thymus.

Here, we complement previous reviews on thymic selection theories [12] and quan-
tification of T-cell development [13] by providing an updated view of mathematical
modelling approaches of the dynamics of T-cell development in the thymus. We de-
liberately omit mathematical models studying the quantitative impact of positive and
negative selection onto the produced repertoire, pathogen escape or MHC recognition,
which are already comprehensively described in [12] and were not extensively revisited
since then. Instead, we focus on the complexity of inferring in vivo T-cell development
properties from sometimes indirect experimental settings. Every model relies on assump-
tions and simplifications needed to match the complexity of the available experimental
dataset. We discuss how experimental and model design limitations may be overcome
in future studies.

After describing population dynamic models, models to infer cell cycle speed in
the thymus in vivo, and estimation of cell death through the selection steps, we highlight
pioneering models that link thymocyte motility and signaling cell fate and dynamics.
We discuss how next-generation models may be formulated in the context of novel
high-throughput TCR sequencing technologies.

2. A journey through population models of T-cell development

The main steps of T-cell development in the thymus are depicted in Figure 1A
and described in Box 1. The earliest T-cell progenitors in the thymus form a subset of
the so-called DN1 (double negative, lacking the expression of CD4 and CD8) cells and
are also referred to as Early T-lineage Progenitors (ETP) [14,15]. They arise from bone
marrow derived cells transiting via the blood. It has been estimated that only a few
cells can enter the murine thymus, with a model of ‘gated entry” where one cell can
fill one out of 160 available niches [16,17]. The mechanisms underlying gated entry


https://doi.org/10.20944/preprints202101.0388.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2021 d0i:10.20944/preprints202101.0388.v1

lin- (TCRy3-, CD19-, NK1.1-, ly6, CD11b)

remain elusive. Periodic alterations in levels of chemoattractants as well as, yet to be
molecularly defined, gated release of progenitors from the bone marrow have been
proposed [18,19]. Once inside the thymus, an ETP undergoes multiple divisions before
sequentially becoming DN2, DN3 and DN4 based on expression of the surface markers
CD25 and CD44 [20,21] (Figure 1B).
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Figure 1. Major developmental steps in the thymus as a basis for population models of T-cell development. (a) Main stages
annotated with their degree of expansion and RAG1 expression (green levels). RAGI levels can be used as a timer and
distinguish newly generated versus recirculating or long-term populations. The main bottlenecks in transition between
thymocyte populations are B-selection, selecting for cells with functionally recombined TCRp, and positive and negative
selection that select for cells with functional MHC reactive, but not self-reactive fully expressed TCRaf. (b) Gating strategies
of functional sub-populations. The first lineage gating ‘lin-" on the left discards B, NK and myeloid cells. When the DN4
population is only gated on CD4~CD8~CD28~CD44", it also contains more differentiated populations containing TCRS
[22]. DN1 and early DN2a cells can also differentiate into B or NK cells while only late DN2bs are fully committed to the
T-cell lineage [23]. The relative size of each compartment is detailed in [22].
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Box 1 : Trajectory of murine intrathymic T-cell development.

Thymocytes can be broadly characterized based on their surface expression of the co-receptors CD4 and CD8. The
most immature thymocytes are negative for both co-receptors and are hence referred to as double-negative (DN).
They give rise to CD4 and CD8 double-positive (DP) thymocytes followed by loss of one of the co-receptors to
form CD4 or CD8 single-positive (SP) mature thymocytes, which egress from the thymus after final maturation.
Upon entry into the thymus, bone-marrow derived progenitors give rise to early T lineage progenitors (ETPs),
phenotypically characterized as CD44"CD117"CD25~. ETPs constitute a subpopulation of the heterogeneous
DN1 (CD44"CD25™) population. Acquisition of CD25 marks the next developmental DN2 stage. At this stage, T
lineage commitment is completed and pre-commitment and post-commitment DN2 thymocytes are referred to as
DN2a and DN2b, respectively. DN2b cells express somewhat lower levels of CD117, which progressively decline
towards the CD44~ CD25% DN3 stage. V(D)] recombination of Terb, Terg and Terd loci commences at the DN2b
stage and continues in a subset of small DN3 cells, termed DN3a (CD44~CD25"CD27~CD28 ). Upon successful
V(D)J recombination, DN3a cells give rise to either yJT cells or large DN3b cells (CD44~-CD25"CD27+CD28%)
in a process called B-selection. Progressive loss of CD25 marks the DN4 compartment, which in turn gives rise
to pre-selection DP thymocytes (CD4*CD8* TCRaf"®/"8CD69~CD5 ™) via an immature CD4~CD8* TCRa~
(ISP) intermediate. At the pre-selection DP stage rearrangement of the Tcra locus occurs followed by the initiation
of selection. Positively selected DP thymocytes up-regulate the « fTCR and acquire expression of CD69 and
CD5. Loss of one co-receptor marks generation of CD4 and CD8 SP thymocytes, whose maturation is further
characterized by loss of CD69 and CD24 as well as acquisition of CD62L and MHC-L

2.1. Early steps of thymus development

The dynamics of DN1 to DN4 cells have been monitored by injection of congenic
bone-marrow derived progenitors [24]. Injected cells remained at the DN1 stage for
10-12 days while transition through the DN2 population was short as DN3 cells appeared
after as early as 11 days, and DN4 cells after day 14-15. A mathematical model from
Manesso and colleagues [25] used this dataset to compare different proliferation model
structures for the DN1 population. The types of equations are depicted in Figure 2A and
the model structure in Figure 2B. The best model fit predicts that cells would remain
in DN1 for up to 11 divisions before transitioning to DN2s, spending on average 1 day
per cycle. Interestingly, no other hypotheses, in which cells would leave the DN1 stage
after fewer divisions, or with more distributed probabilities to leave DN1 at earlier
divisions, could explain the data well, revealing a synchronization of the cells to leave
after a certain number of divisions (or time). This prediction was further experimentally
supported by showing a higher differentiation potential of late DN1s [25] as well as
progressive transcriptional changes allowing the definition of a developmental trajectory
within ETPs [26].

Although identified parameters for the DN1 population and the synchronization
statement were robust to the Porritt dataset [24], the inferred residence or cycling times
for the DN3 and DN4 populations were not identifiable from this dataset, meaning
the exact same curves can be reproduced with different cycling speed of these popula-
tions due to compensation between parameters. This means additional experimental
constraints would be required to also fix the DN3 and DN4 dynamical parameters,
and likely comes from the fact that the dataset could only monitor the frequencies of
labelled donor cells rather than absolute numbers, possibly due to a high variation of
progenitor engraftment among transplanted mice. Altogether, the model was useful to
uncover the synchronized behavior of DN1s and suggest 11 divisions in 11 days for these
particular cells. Notably, the study by Porritt and colleagues employed a purification
strategy of donor cells that omitted some progenitor subsets with the potential of thymus
colonization and more rapid intrathymic differentiation kinetics [27,28].
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Since every 9 to 12 days a new wave of progenitors is initiated [17], it raises the
question how thymus size is maintained over time, and in particular, whether cyclic
colonization by progenitors would induce detectable fluctuations. The ‘synchronous
development hypothesis’ states that the periodic seeding induces such fluctuations,
while an opposing hypothesis argues that an asynchronous release of seeders or the
existence of size regulation within DN populations could smoothen such fluctuations to
undetectable levels. Cai et al [29] developed a model of DN2-3, DN4 and the subsequent
DP compartment without any size regulation and predicted fluctuations to be around
40% amplitude for the DP and total thymocyte populations while DN4 and SP would
be quite stable. If this were true, this would mean to expect a high biological variation
between different unsynchronized mice. The authors propose a statistical test based on
plotting different populations in the same x-y axis, expected to show an ellipse from
only one experimental time-point, if such fluctuations exist. The prediction has not yet
been verified. As a replacement for a direct longitudinal analysis of thymocyte numbers,
that is not possible, an approximation via ultrasound-based determination of thymus
size might be an alternative valid approach.

Bone-marrow derived thymus seeding progenitors most likely comprise multi-
ple cell types, including IL-7R* CLPs (common lymphoid progenitor), F1t3" LMPPs
(lymphoid-primed multipotent progenitors) and possibly others, as well as phenotyp-
ically ill-defined intermediates [1,27,28,30,31]. For instance, in vivo, CLPs displayed
a more rapid differentiation into DP thymocytes when compared to LMPPs, suggest-
ing that population heterogeneity of thymus seeding progenitors could contribute to
continuous thymic output despite gated entry [13,28].
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Figure 2. Population dynamics mathematical models of the thymus. (a) Types of equations used when simulating thymic
population dynamics: simple ODE with proliferation, death and differentiation (left), with an additional regulated logistic
growth according to a maximum carrying capacity K (middle) or generational models that simulate the cell numbers at
each division within a compartment (right). (b) Published mathematical models, following the equation design explained in
A. The red crosses denote neglected mechanisms in the models.


https://doi.org/10.20944/preprints202101.0388.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2021 d0i:10.20944/preprints202101.0388.v1

In general, despite possible variations due to the periodic seeding over weeks and
the slow thymic involution over years, most models for thymic populations could fairly
consider every population to be at ‘steady state” during the time of simulation (a few
days typically). During the next steps of DN development, the Tcrb locus is genetically
recombined and in-frame recombination results first in expression of TCRS in complex
with a surrogate pre-TCRa chain, defining completion of the DN3a stage [32]. Somatic
recombination is accompanied by cessation of proliferation and death of cells that fail
to productively recombine the Tcrb locus, called -selection (Figure 1A,B), estimated to
kill around 70% of the cells through this checkpoint [33]. Productive recombination of
TCRé can also happen at this stage and lead to the separate differentiation of ydT cells
(Figure 1B). The DN3b and DN4 stages are highly proliferative, and are accompanied
by upregulation of CD8, then both CD4 and CD8 to become ‘immature SP8’ (iSP8) then
‘Double Positive” thymocytes (DP), respectively. The latter can be further separated
as ‘pre-selection” DPs and ‘post-selection DPs’ (Figure 1B). Maturation from DN3b to
pre-selection DP is a continuous process that comprises massive proliferation followed
by recombination of the Tcra locus. Selection is then initiated to probe for formation
of a functional TCRap complex expressed on the surface. Failure results in death by
neglect, which also eliminates cells with « fSTCRs with low affinity interactions for pMHC.
Successful positive selection is accompanied by expression of activation markers like
CD69. DPs with surface expression of a functional «a STCR are also the first population
to be probed for high-affinity pMHC interactions during negative selection resulting in
massive cell death [34] (see section ). The final step of T-cell development is the choice
between becoming a CD4~CD8™ single positive T cell (future CD8 cytotoxic T cell)
or a CD4"CD8™ single positive T cell, (future conventional CD4 T helper cell (Tconv)
or Foxp3™ (Treg cell). With the exception of Treg-cell precursors, the SP populations
are not particularly proliferating, although the mature 2 (M2) stages of CD4SP and
CD8SP (Figure 2B) are able to proliferate upon stimulation [35]. Indeed, analysis of mice
expressing an H2B-GFP reporter in the TCR6 locus substantiated the hypothesis that
thymocytes post selection and during maturation undergo one or two rounds of division
[36]. Further, using TCR-transgenic mice, Le Campion et al. showed that proliferation
strength in the SP stage in vivo is related to the MHC settings and quantitatively impacts
on the thymic output [37], showing that clonal lineages might selectively be expanded at
this late stage.

Apart from the studies from Manesso et al. [25], Cai et al. [29], analysis of the DN
differentiation steps by mathematical modelling has been scarce. A recent transcriptional
multiscale model by Olariu et al. [38] is discussed in Section 5. Most other thymic
models considered the combined DN stages as one compartment (mainly because DN
datasets were poor at the time). The original naming of populations into DN1 to DN4
is biologically inconvenient because DN3a cells are more similar to DN2 than DN3b,
which in turn are similar to DN4 forming a continuum that is likely to extend to DP
cells prior to initiation of Tcra rearrangement. Therefore, one would need to be careful
which compartments to simulate and how to associate death and proliferation at the
proper stage. The DN2-3a and DN3b-DN4 could possibly be merged as functional
compartments, and one would expect a high death rate at the DN3a - DN3b transition.

The next level of models simulate the major populations of the full thymus, selected
according to the biological question of interest.

2.2. Estimation of the flow between compartments at steady state using larger models

Inferring the duration of each developmental stage and the flow of cells between
them at steady state has been approached both experimentally and mathematically.
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Turnover of thymocyte populations has been estimated based on in vivo labelling of
cells with nucleoside analogues, such as [3H]-thymidine, BrdU and EdU. These labels are
incorporated into the cell’s DNA during replication, i.e. they label actively cycling cells.
Label incorporation is detected through autoradiography, antibodies, and click chemistry,
respectively. Administration of a single pulse allows determination of the frequency of
actively cycling cells (see section 3), whereas continuous labelling allows to determine
turnover within a population by measuring replacement of non-labeled with labeled
cells or vice versa. Continuous labelling cannot discriminate between intra-population
proliferation and influx of labeled progenitors. Similarly, discrimination between death
and outflux of non-labeled progenitors is impossible. Thus, both pulsed and continuous
labelling have to be complemented with additional assays or mathematical inference to
discriminate between these parameters.

Using such sets of experiments, the life-time of DP thymocytes has been determined
to be 3.5 days [39]. Given that most DP cells have a comparatively low rate of prolifera-
tion, whereas all DN4 precursors proliferate rapidly, the majority of label accumulation
can be ascribed to influx. The same study indicated a fraction of only 3% of DP cells
becoming SP based on the flow of label to the next generation. A gap in the acquisition
of label in SP cells supported the notion that they were largely non-cycling, and their life-
time was estimated to be 12 to 14 days, which may be an overestimate, potentially due
to the presence of thymus-resident cells. Analysis of cellular flow through more imma-
ture populations was complicated by proliferating populations being interspersed with
less proliferating ones [33,40]. These limitations were partially overcome by the use of
RAG-deficient and TCR-transgenic strains to interfere with developmental checkpoints
[33]. Together these studies revealed population heterogeneity of the DN3 population,
consistent with the later identification of DN3a and DN3b subsets [40]. Together, it was
proposed that thymocytes undergo approximately 10 divisions between the DN3 to the
DP population, and that 70% of DN3 thymocytes die at the B-selection checkpoint [33].

A more recent continuous labelling study showed that most pre-selection DP be-
came post-selection DP within 4 to 5 days (although they might still proliferate and
would never reach 100%) [41], and that they display massive caspase activation after 3
days. Using continuous labelling as well, [42] showed that post-selection DPs become
fully labelled in 3 to 4 days; naive CD8SP and CD4SP gradually become labeled between
day 2 and 8. This shows that the post-selection DP stage is around 3 to 4 days, while
the replenishment of CD4 and CD8 might not be synchronous, some cells becoming
single positive more rapidly than others, thus refining the earlier study by Egerton and
colleagues [39]. Sinclair et al. [43,44] used a tetracycline inducible Tet murine model,
where TCR signaling is blocked by default and developing thymocytes are stuck at the
pre-selection DP stage. Treatment with tetracycline rescues T-cell signaling, leading
to a synchronized wave of cells from the pre-selection DP stage through positive and
negative selections.

In parallel, several mathematical models have been developed in order to estimate
how many cells transit between the populations (Figure 2B). A founding model was
published in 1995 [45] for DN, DP, CD4SP and CD8SP populations, where the DN
compartment is regulated by logistic growth, and DP and SP populations being regulated
by the size of the full thymus. Although no kinetic datasets were available at the time,
realistic boundaries for the model parameters were inferred from steady state, from
qualitative knowledge and developmental timing known at the time.

As a follow-up, Sawicka et al. [46] have used steady state values from WT mice to
identify the flow of cells entering and leaving the DP and SP compartments with single
ODEs per population but without size regulation since it is based on steady-state. They
assumed that SP proliferate but not DP thymocytes. Including newer estimations of
death by selection from [34], they identified that 35 million cells would enter the DP


https://doi.org/10.20944/preprints202101.0388.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2021 d0i:10.20944/preprints202101.0388.v1

compartment per day, and give realistic death rates, proliferation and export in each
compartment to match the previously estimated residence times in the thymus. The lack
of proliferation in the pre-selection DP compartment likely over-estimates the inflow
of cells in the DP compartment, which is probably in the order of a few millions per
day since the upstream DN3-DN4 compartment is typically less than 4 million cells
(depending on the murine background and age).

A major step for evaluating cell flow rates was the experimental measurement of
a developmental wave through the DP and SP populations. The model of Sinclair et
al. [43,44] has used the tetracycline-induced developmental wave of cells through post-
selection DP and SP stages to infer the flow of cells through CD4 and CDS8 differentiation
and selection. Their model consists of linear ODEs (Figure 2B), and delineates a 2-step
differentiation pathway for CD4 (DP1 and DP2) and a 3-steps pathway for CD8 T cells
(DP1 to DP3), which are believed to differentiate later from DP thymocytes. T cells with
CDS8 or CD4 biased TCRs evolve as separate populations with different parameters,
and DP1 refers to pre-selection DP. The authors did not assume proliferation at any
stage, restricting the main factors to be death, forward differentiation and thymic output.
The ratio between death and output at the last stage was inferred by an additional
experimental blockade of trafficking using FTY720 treatment [47]. The authors confirmed
the robustness of the inferred parameters by bootstrapping, and estimated 6.3 and 9.5
days respectively between entry into DP and exit as fully mature CD4 and CD8 T cells.
In the model, the larger steady state amount of CD4 SP cells in the thymus compared to
CDS8 SP cells was not due to a preferential differentiation into CD4 (nor an imbalance
in TCR-bias among pre-selection cells), but rather a much larger death rate of CD8-
biased T cells during DP stages. The authors discussed a limitation of the inducible Tet
experimental system, where T cells show a skewed CD4 vs. CDS8 differentiation ratio in
comparison to WT mice, likely due to the manipulation of TCR signaling. Although the
hypothesis of non-proliferation in post-selection DP stages is experimentally supported,
exclusion of limited proliferation in SP [36] and pre-selection DP cells might slightly
affect the identified parameters, yet including proliferation would likely create structural
correlation between parameters and require additional experimental data to separate
proliferation rates from death/export.

2.3. Models for thymus involution and shrinkage

A second line of models have used dynamic perturbations to infer dynamical
properties of T-cell development in the thymus. Some of them have been used to
compare mechanistic hypotheses to explain the perturbation.

The thymus shows an intriguingly dynamic cellularity during life. First, its size
progressively involutes with time, associated with a decrease in both proliferation and
survival of the cells [48]. Second, it considerably shrinks following pathophysiological
perturbations like infection, stress, chemotherapy or malnutrition [4]. For instance,
Trypanosoma cruzi infection induces a slow decay of all populations during 15-20 days
and is associated with DP thymocyte death and the unexpected presence of DP cells in
the periphery [49]. Pregnancy also induces thymic atrophy on a longer period [50], which
could be induced by injection of oestradiol in non-pregnant mice. Oestradiol-induced
atrophy was linked with loss of DN cells and reduced proliferation after 3-selection, but
did not seem to affect DP cells although Treg-cell development was altered [51]. Thymic
atrophy in the context of acute or viral infection like influenza has gained interest due
to recent reports showing the presence of the virus in the thymus [52], either by direct
infection due to proximity with the lungs, or imported by migratory APCs coming from
the lung [53], which might present foreign antigens as self during selection.
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A first full thymus model built on experimental kinetics has been introduced by
Thomas-Vaslin et al. [54]. The authors induced death of proliferating cells and measured
the dynamics of thymus shrinkage and recovery, using a conditional suicide gene and
injection of an activating compound. The data helped to calibrate a model where DN,
early DP (pre-selection DPs) and SP cells can proliferate, while late DPs die by (positive
or negative) selection. Interestingly, instead of a single linear ODE per population, they
developed a generational model for each proliferating compartment (Figure 2A,B) with
a fixed number of divisions (with a fraction of cells exiting before the last division to
have smooth average numbers of divisions). From an estimation of 20,000 cells per day
entering the DN compartment, they assume that DN cells divide 4 times, during a period
of 18 days, while early DPs proliferate 5 to 6 times with high speed (4 to 5 divisions
per day). Explaining the experimental rebound requested a very high speed of early
DP division in the model. They also estimate that CD4SP and CD8SP would divide
between 1 and 2 times and provide an estimation of thymic flow of cells between each
compartment including the spleen and lymph nodes together with estimated residence
times in each compartment that was consistent with literature.

Newer findings would suggest possible adaptations in the model design. The inflow
of 20,000 cells per day entering the DN suggests the DN compartment was referring
to DN2-DN3-DN4, as DN1 cells harbor many divisions [25]. The slow proliferation of
DN cells with 4.5 divisions in 18 days could be compensated by including death by -
selection, in which case the cells would divide more and faster. Further, separation of the
DN compartment into pre- and post-B-selection DNs could allow for higher proliferation
of the DN3b-DN4 compartment. In turn, this could result in an increased flow of cells
entering the early DP population, therefore requiring more realistic, slower divisions
at the early DP stage to get the fast rebound. Finally, the absence of simultaneous
proliferation and death, estimated as a single parameter, could be re-interpreted with
newer experimental estimates of cell death.

Altogether, the model of Thomas-Vaslin et al. [54] brought substantial contributions
to the field. First, it showed that it is possible to explain the dynamics of this strong
experimental perturbation with a simple model and without any size regulation nor
feedback. Indeed, we have noticed that single linear ODE models typically need to
include a logistic growth to get a faster recovery. It is likely that the generational model
of Thomas-Vaslin allows for faster reconstitution because cells cannot progress to the
next developmental stage until a few divisions whereas linear ODE models have a
constant exit rate. Second, the separation of proliferating early DP and highly dying
late DP compartments has a realistic model structure and replicated the time-resolved
experimental perturbation dataset, suggesting it can be re-used to build more precise
models with newer hypotheses like the one provided by Elfaki et al. [55]. Third, their
experimental dataset is valuable to test any new model for T-cell development.

As a different source of atrophy, Moleriu et al. induced thymic atrophy by dex-
amethasone injection in mice, which triggers cell death, as a surrogate to mimic stress-
induced atrophy [56], and used Mehr’s model to identify population dynamical parame-
ters [45]. The dynamics of dexamethasone in the blood are modelled as different possible
time-dependent functions. The effect of dexamethasone is modelled as perturbation at
the level of proliferation, death, or transfer rates, proportional to the dexamethasone
levels. The same dynamics of perturbation applied to all DP and SP populations was not
successful in replicating the dynamics, but rather each population needed a perturbation
with different strength /dynamics. They also showed that in the model, the proliferation
rate and the carrying capacity of the populations were structurally correlated (they
compensate each-other), meaning that one parameter needs to be fixed arbitrarily, or
maybe that a regulation of population sizes is not necessary to explain this dataset. It is
unclear whether the atrophy could be explained by a simpler perturbation model using
a different differentiation model structure. For instance, in Elfaki et al. [55], atrophy
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could already be well explained by the dynamic perturbation of only one compartment
(increasing death of DP cells). Altogether, Moleriu et al. have provided a detailed
explanation how far Mehr’s model can be used to infer dynamics of thymic populations.

Recirculating SP thymocytes have meanwhile been identified based on RAG ex-
pression, and previous models did not include the development of Treg cells. To this
end, Elfaki et al. followed influenza-induced thymic atrophy in mice [55], reaching a
90% shrinkage in cellularity 7 to 10 days after infection, followed by a very fast recov-
ery of 3-4 days, without prior knowledge on the mechanisms of atrophy. The authors
used a RAG1%FP reporter to distinguish newly-generated, RAG* cells from resident
or recirculating cells and asked whether influenza would skew the differentiation of
T-cell populations, including Treg cells. By following the dynamics of the main pop-
ulations during influenza-induced atrophy, they could show that only RAG™' newly
generated cells were impacted. The diversity of the Treg TCR repertoire was lower at
the peak of atrophy, and the frequencies of Treg populations appeared to be transiently
increased. In order to disentangle the mechanisms by which influenza induces atrophy;,
they developed a mathematical model, based on the early DP - late DP compartments of
Thomas-Vaslin [54]. They adapted the SP populations to include three different genera-
tion pathways for Treg cells, using single ODEs with proliferation and death, and fixing
most parameters from literature (Figure 2B). Most parameters for Treg generation are
unknown and were fitted. Death, proliferation and output of each SP population were
structurally correlated, so the authors could fix their sum (death + output — proliferation)
from steady state constraints and experimental residence times. The dynamics of atrophy
were completely insensitive to the contribution of death versus output and proliferation
provided their sum was constant. The mechanistic impact of influenza did not seem to
be direct, as influenza viremia peaks typically much earlier than the peak of atrophy
at day 10, suggesting the existence of a downstream factor inducing atrophy, such as
glucocorticoids or IFN-y production by NK or CD8ux« cells [55]. Therefore, the authors
hypothesized a downstream factor of unknown timing, as a Gaussian perturbation to
select population death or differentiation. Interestingly, transiently increased DP death
alone could explain well the dynamics of all DP and SP populations, including the
observed transient increase of Treg cells as a fraction of the CD4SP compartment. This
peak was a dynamical artifact likely due to different life-times, where Tconvs decay
faster than Foxp3™ populations and the frequency of the latter transiently increases as
an overshoot. Modulation of Treg differentiation did not help to explain the data better,
but instead, an increased export of all SP thymocytes could improve the fit. This shows
the importance of mathematical modelling in understanding the dynamic behavior of
populations under perturbations. Consistent with previously defined differentiation
trajectories of Tregs [57,58], generation of Treg precursors from CD4SP cells rather than
directly from DP precursors provided the best explanation of the data in the study of
Elfaki et al. [55], showing that the dynamical perturbation included biological infor-
mation on Treg ontogeny. It remains an open question, how thymic atrophy decreases
Treg TCR diversity and whether this leaves an imprint on the generated repertoire
through life. The model showed that the total increased export is minor, meaning that a
difference in exported TCR diversity might not have a strong effect on the peripheral
repertoire. An agent-based model with cells carrying diverse TCRs could help linking
population dynamics to TCR diversity and uncover potential regulatory mechanisms.
For instance, reduced Treg diversity could arise from a ‘wrong’ timing of crossing the
cortico-medullary junction that is a region with increased antigen presentation. Indeed,
modification of thymocyte migration between cortex and medulla does not change the
amount of generated Tregs [59,60] but likely impacts the type of encountered antigens.
Alternatively, de novo Treg formation could occur via different developmental interme-
diates, which generate Tregs of distinct self-reactivity and functionality [61,62]. Such
agent-based model could explain why a change in diversity is unnoticed when it comes
to dynamics.
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Finally, the natural thymic size involution during the very early stages of develop-
ment has been modelled in the study by Zaharie et al. using a linear ODE model [63]
adapted from Mehr and Moleriu’s models (Figure 2B). Pre-natal and post-birth develop-
ment are simulated with two different sets of parameters, and thymic involution with
age is simulated as an exponentially decreasing proliferation rate of each compartment
with time. It remains intriguing why the two developmental phases need two sets of
parameters and suggest the existence of a common regulatory mechanism to consider
for future models.

2.4. Regulations between thymic populations

The above-presented models have supposed a certain level of independence be-
tween the different cell fates. This is consistent with the essentially linear developmental
trajectory of thymocytes from thymus colonization to egress of mature T cells. However,
the size of certain thymocyte populations is likely to be subject to constraints, such as
availability of survival factors, including cytokines, or cell-cell contacts including inter-
action with stromal cells or other antigen-presenting cells. The existence of population
control or interactions are difficult to validate experimentally. Nevertheless, IL-7 controls
overall thymocyte cellularity [64,65]. Notably, in the absence of IL-7 or its receptor,
the relative proportions of major populations are retained. Consistently, Almeida et
al. [66] used murine background models carrying different amounts of DP cells and
showed that the number of SP cells were always proportional to the DP compartment
size, suggesting that the SP niche is not smaller in the presence of more DPs. Con-
versely, in conditions of severely limited thymus colonization, such as in CCR7/CCR9
double-deficient mice, population sizes recover to bona fide wild-type levels at the DN3
stage and beyond [67,68]. Recently, it was suggested that, at least in a model of cellular
competition, thymus cellularity is controlled through feedback regulation, in which
DN2 and early DN3 cells sense DP population size and tune cell cycle duration in an
IL-7-dependent manner accordingly [69]. There is substantial evidence for regulation of
mature Treg numbers by IL-2 or IL-15 availability [70]. Competition between T cells for
accessing spatially restricted antigens, types of APCs or cytokines could be an additional
mechanism balancing the relative amount of each population, and could bring multiple
possible fates for thymocytes carrying the exact same TCR, and has not been investigated
by mathematical modelling yet. Interestingly, a recent study [71] showed that RAG™
Tregs, resident or recirculating from the periphery, can inhibit the development of newly
generated Tregs. We refer to the overview by Klein et al. for details on the complex
mechanisms and models for Treg differentiation [72].

Only in some mathematical models, different populations sharing the same ‘niche’
regulate their relative size in a TCR- and antigen-independent manner through a logistic
growth control (Figure 2B). Further, the amount of cells becoming CD4, CDS, or Tregs
are pre-encoded into a differentiation rate instead of a homeostatic control between these
populations. The capacity of generational models like the one established by Thomas-
Vaslin to reproduce fast recovery, would argue that logistic growth is not required,
although this model inferred a supra-physiologically high proliferation rate for DPs. As
a rare attempt to model population inhibitions, Kaneko et al. [73] analyzed the kinetics
of thymic population dynamics after sub-lethal irradiation that leads to profound but
transient atrophy. They compared multiple model structures on how the availability
of TEC cells (depleted by irradiation) could regulate other populations (Figure 2B),
using iterative fittings [74]. Expectedly, a single ODE could not explain the speed of DP
reconstitution and needed a logistic growth mechanism. Further, among the different
tested scenarios, the model could best explain the data when DN and cTECs were
inhibiting each other’s dynamics. The authors attempted to explain the dynamics of
mTECs only from the dynamics of the DP and SP populations and needed to include
multiple mechanisms including i) self-inhibitions of the mTECs and ii) opposite effect of
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SP (positive) and DP (negative) on mTEC reconstitution, and/or iii) impact of DN or
cTECs onto DP, CD4 or mTECs. The modelling approach generated 5 possible models
explaining well the dynamics of mTECs and the authors selected the most biological
consistent with existing literature. This example highlights the complexity of identifying
unknown negative regulations between populations from kinetic data. Indeed, the
combinatorial number of possible interaction networks is huge, and one could expect
that many networks can explain the data equally well. Having many consistent models
may help narrow down possible mechanisms and prioritize which ones to measure
experimentally. Alternatively, one could use the mathematical model to design a new set
of minimal experiments that would be sufficient to discard as many remaining possible
explanations (models) as possible, as in [75]. This is very tedious.

In general, the study of regulation mechanisms might require modelling techniques
adapted to their scale, and for instance spatial competition could eventually be best
captured using agent-based models instead of population dynamics ODE models.

3. Estimation of in vivo cell proliferation in the thymus

Understanding the strikingly fast dynamics of thymus reconstitution and popula-
tion size regulation requires to visualize how fast thymic populations actually proliferate
in vivo and under perturbations. We have mentioned the work of Manesso et al. [25] and
Thomas-Vaslin et al. [54] that estimated the division number from population kinetics.
Here we focus on experiments (Figure 3A-D) and mathematical models (Figure 4A-G)
aiming at measuring and quantifying the duration of the cell cycle and its phases in vivo
in the thymus.

3.1. Measuring the number of divisions by dye dilution

A first measurement of proliferation involves a dye like CFSE or CTV that stays
in the cell and gets diluted during division. The level of remaining dye in comparison
with the original intensity levels thus informs on the number of divisions (Figure 3A).
This technique has been rarely used to study thymocyte proliferation in vivo, because
labelling is performed in vitro and thus requires isolation and subsequent transfer into
the thymus [76]. Nevertheless, dye dilution approaches have been employed to assess
divisions of thymocytes in vitro, for instance on a supporting layer of OP9-DL1 cells,
or using Reconstituted Thymic Organ Cultures (RTOCs). In particular, Kreslavsky et
al. [77] observed that 4 to 5 divisions separated the DN3a/DN3b transition to the entry
into the DP compartment in vitro, indicating that DN3b, DN4 and iSP8 altogether would
contain 4 to 5 divisions. The ETP/DN1 compartment has not directly been checked for
number of divisions and Manesso et al. suggested 11 divisions [25]. Finally, Yui et al.
[23] observed that ETP, DN2a and DN2b cultured in vitro were able to proliferate for 3
to 5 divisions in 3 days depending on the population, but did not check when the cells
acquired the next phenotype during these divisions, leaving the possibility of transition
to the next population. Meanwhile DN3a and DN2b cells proliferated heterogeneously,
whereas ETP and DN2a cells showed a fairly homogeneous proliferation. DN3a cells
underwent 2 to 4 divisions before downregulating CD25 and becoming DN4. Hare et al.
[35] showed that the most mature stage of SP4 and SP8 cells are able to proliferate for
multiple divisions in RTOCs under antigen stimuli. Consistently, an in vivo study showed
that MHC-dependent antigen recognition induced different strengths of proliferation
[37]. It is not completely clear whether in vitro conditions accurately reproduce the
in vivo signals controlling proliferation, death or emigration (for instance, RTOC cells
might not exit and continue proliferating). Finally, Fohse et al [36] estimated one to two
divisions at most from the post-selection DP stage. In general, the number of divisions
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has been limited to a qualitative constraint for building models rather than being used
as a quantitative training dataset.
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Figure 3. Experimental methods to measure proliferation in the thymus. (a) Following the number of divisions of injected
labelled cells by dye dilution. (b) Following the amount of cells in the S phase by BrdU or EdU injection. (c) Tracking of
labelled cells at later time-points. (d) Dual-pulse labelling with EdU followed by BrdU to label cells that enter or leave the S
phase in between pulses and track the cycle stage of the labelled cells later.

Similar to the dilution of labels introduced in vitro, dilution of genetic markers
may serve as measures for proliferation. Thus, RAG recombinase is stage-specifically
expressed in thymocytes undergoing somatic recombination of TCR genes and rapidly
shut-off thereafter. Thus, using RAG1-Cf” reporter knock-in or transgenic strains, di-
lution of GFP serves as surrogate for proliferation after termination of TCR gene rear-
rangement [61,78,79]. To overcome the need for normalization to correct for degradation
of GFP encoded by this model, the half-life of GFP has been prolonged to weeks or
even months by fusing it to histone 2B [80,81]. Such fusions have been used to generate
Terd-H2B-GFP mice to label vdT cells [82]. During recombination of the Tcra locus, Terd
and thus H2B-GFP coding sequences are excised and protein expression ceases, making
H2B-GFP levels virtually exclusively dependent on dilution through proliferation. This
system has been used to analyze dynamics of various aT-cell populations [36].


https://doi.org/10.20944/preprints202101.0388.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 January 2021 d0i:10.20944/preprints202101.0388.v1

3.2. Nucleoside analogue incorporation during S phase

A second approach is to use EAU or BrdU to label actively replicating cells, as
described in (Section 2). We deliberately omit older studies using Thymidine labelling
because the dye was later found to be re-incorporated by cycling cells from dead cells [83].
It has been estimated that BrdU has a half-life of only 12 min in mice and bioavailability
of BrdU is lost 60 min after administration [84,85]. Thus, it is well-suited for short-term
pulse labelling of cells.

3.2.1. Direct EdU or BrdU staining

Direct EAU or BrdU staining reveals cells that are currently incorporating DNA
It can be used ex vivo to label the cells currently in the S phase, or in vivo (Figure 3B)
to measure the percent of labelled cells (i.e., that were in S phase during the labelling
pulse) or the amount of labelled DNA inside these cells, and possibly to track them at
later time-points. This technique does not directly indicate proliferation speed nor the
frequency of cycling cells, because it does not provide information on the duration of
G1, G2 or M phases. For instance, the same BrdU labelling could be generated either by
all cells cycling with a long G1 phase, or by only a fraction of cells cycling with a short
G1 while the rest would be quiescent. BrdU labelling has widely been used to compare
the cycling speed of different populations, but it therefore can be misleading, if the
populations have different G1+G2M durations, or if they contain different proportions
of quiescent cells. Nevertheless, very low frequencies of labelled cells are an indicator of
low proliferation percent or speed (extremely long G1 for instance).

Such methods have revealed that all DN populations are highly proliferating except
the DN3a population that is rearranging the Terb locus prior to S-selection [86]. Further,
among the DPs, mostly pre-selection DP cells, but not post-selection DP cells, proliferate,
and only a small fraction of CD4SP and CDS8SP cells. Therefore, proliferation would
mainly stop before the post-selection DP phase and partially restart in the late stages of
single positive populations.

Altogether, these single-labelling strategies are an indirect way to observe a wave of
labelled cells but do not directly capture the details of proliferation (how many divisions,
synchronous, and percent of cells dividing). Further, the dilution of signal along with
the divisions in the SP stage, as well as the increase in the frequency of labelled cells
by division of two half-labelled daughter cells can make the interpretation of results
tedious and require mathematical modelling to extract cell cycle parameters, as done in
[87] for population turnover.
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Figure 4. Mathematical approaches used to infer proliferation speed. (a-¢) ODE-based models for simulating in vivo labelling
of cells. Such models typically model an instant labelling of all cells in S phase, and possibly a decay of the labelling by
proliferation (in (a) only). In (b), a two-pulse labelling is applied and the dynamics of labelling are simulated for both labels.
Assuming instant labelling of all cells in S phase, the first labelling stains the equilibrium value of such cells. Two strategies
lead to different analytical formula: assuming the labelling interval f is negligible compared to the cell cycle, cells cannot
return in S; or simulating a 2-states markov chain for the state of the cells at second labelling allows some cells to cycle
multiple times. In (c), the ODEs can be represented with a matrix formalism. (d) From mean field equations of growing
populations, assuming a certain synchrony of the total cycle, the state of initially labelled cells over time can be predicted.
(e-f): Stochastic models for cell proliferation with time-distribution of each cycle phase under exponential growth, assuming
delayed exponential distributions (e) or with generic cycle and death times convenient when using gamma distributions (f).
(g) Agent-based explicit simulation of each event at the cellular level, predefined from time distributions.
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3.2.2. One-point EdU or BrdU pulse followed by DNA staining at different time points

This approach allows to track the fate or cycle phase of cells that were in the S phase
during the pulse at later time-points (Figure 3C). The study by Baron et al. followed the
percent of BrdU™ cells after a single pulse labelling in vivo, in the full thymus [88]. They
observe that DNA amounts linearly increase with time among BrdU™ cells. By linearly
estimating the time to reach the highest DNA amounts (4N at G2), they estimated that
the S phase would be around 6.5 hours. This approach implies to take an average
DNA content of all cells in S phase to 3N, because a single BrdU pulse does not allow
for the determination of the precise onset of DNA replication in individual cells. By
following when BrdU™ cells return to the G1 and to the S phase, they concluded that
the G1 duration would be around 10 hours while the G2M phase would be of 1.5 hours
resulting in a full cycle of around 18 hours (Figure 3C). Such a fast cycle would be
consistent with the fast reconstitution of the thymus after transient atrophy for instance.
Since the authors used all thymocytes without gating sub-populations, the results of
this study most likely reflect an average behavior among the largest populations of
proliferating cells.

Vibert et al. [89] developed a staining protocol, with a first set of 2 pulses of EAU
intravenous injections one hour apart, followed by a third EdU pulse 14 hours later
just before a unique time-point of harvesting the cells, aiming at labelling more cells
among slowly proliferating populations in vivo. At the time of measurement, the authors
additionally stained for DNA content to separate the GO/G1, S and G2 phases together
with the EdU labelling. They analyzed in that way three populations: i) EQU™ cells,
ie., all the cells that were in S phase during at least one pulse. ii) Cells in G0/G1
that were not in the S phase during the labellings “G0/G1 EdU™", and iii) cells in
G2/M that were not in the S phase during one of the labellings. They measured aged
and young mice of two different backgrounds, for the main populations including
separated DN1 to DN4 populations. They built an ODE model for each population with
6 compartments: ‘G0/G1’, ‘S” and ‘G2M’, each EdU labelled or unlabelled (Figure 4A),
and simulated the experimental set-up with instant labelling of the cells in the S phase
at the three time-points of the pulses. They inferred the parameters of the model (speed
of transfer from each compartment to the next) by fitting the simulations to the three
populations at the final time-point of measurement. Obviously, fitting 6 parameters to 3
observed variables at one time-point per compartment was not feasible so the authors
took realistic assumptions to reduce the system down to 2 parameters, by limiting death
to the G0/Gl1 stage, by fixing the S phase to 6.5 hours from literature [88] (although this
value might not apply to all populations), and by neglecting the inflow /outflow of cells
from upstream populations during the 16 hours of the experiment. This approach raised
values of GO/G1 duration from typically 2.5 to 12 days for proliferating populations,
while non-proliferating populations like CD44/°“CD4SP or CD8SP reached more than
300 days cell cycle (probably an artifact indicating that most of them do not cycle at all).
They also observed a lower frequency of labelled cells in 18-month old mice compared
to young mice, consistent with literature [48], and interpreted the results as shorter
cell cycle times in younger mice. The inferred cell cycle durations by Vibert’s model
[89] are longer in comparison with above mentioned in vitro proliferation assays that
suggested at least one division per day along DN and early DP stages. Although the
model equations were validated by recapitulating the single pulse BrdU kinetics from the
study by Baron et al. [88] along a few hours, several factors might need to be accounted
for, due to the 14 hours period between pulses in [89]. First, some cells could actually
have been in two consecutive S phases at first and last labelling (i.e. performing G2, M,
G1 and returning into the S phase during the 14 hours interval). For the SP populations,
bystander non-proliferating cells could help interpreting the low percent of labelling.
Finally, there is a possibility that labelled cells from highly proliferating early DP cells
could contaminate the late DP compartment that has a shrinking dynamics due to high
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death (i.e. recently arriving cells can occupy a high percent of late DPs at steady state).
Finally, the G2/M EdU~ population is supposed to be very minor because most cells
at G2M at the measuring time-point were in S phase just before (during the last pulse),
which can generate noise in the parameter fitting. Altogether, albeit labelling more cells,
this time-extended experimental setting seemed to generate new layers of complexity
in interpreting the labelling results, that might require a more complex model design.
This example illustrates the complexity of matching a theoretical model with a practical
experimental setup.

3.2.3. Dual labelling with EAU and BrdU at different time-points

This technique allows to differentially label the cells entering or leaving the cell cycle,
and to follow their cycle phase over time (Figure 3D). For instance, with 1 hour difference
between EdU and BrdU pulses, this technique has the power to mark synchronized cells
entering or leaving S phase at a given interval, and could reveal heterogeneity in the S or
G1 phase durations. Thus, Ramos et al. employed such a system to determine alterations
in cell cycle duration of the DN2 and early DN3 compartments suggested to serve as
sensors for DP thymocyte cellularity [69]. At an excess of DP cells in an experimental
model of cellular competition, DN2 cells incorporated less EdU, suggesting that higher
amounts of DP thymocytes slowed down the cell cycle of DN2 cells. They then used the
EdU / BrdU dual pulse experiment to build a linear ODE model for cells in S or G phase,
labelled or not labelled (Figure 4B), constituting a simplified version of Vibert’s model
[89] (Figure 4A). After an EAU pulse, followed by a BrdU pulse at 2 hours and harvesting
the cells at 4 hours, they fit the model with the amount of cells in each quadrant.

Using a continuous Markov chain model (Figure 4B, right equation), taking into
account that some cells can leave and re-enter the S phase during the time of labelling (2
hours) while other cells would be extremely slow (which is a consequence of assuming
exponential residence time in each compartment), DN2 cells were estimated to have
a total cell cycle duration of 9 hours at normal DP thymocyte cellularity as compared
to 15 hours in the presence of excess DP thymocytes [69]. This model was useful in
comparing the cycling behavior of cells in two environments (for which the EAU/BrdU
labelling were already indicative, but additionally providing an estimate of the difference
in cell-cycle duration). Notably, an earlier model, assuming that labelled cells cannot
return to S phase during the 4 hours of staining, inferred very short cell cycle durations
in the range of 3 to 4 hours from the same data (Figure 4B, left equation) [90]). This
example highlights the impact of model design on the inferred cycle duration values,
and underscores that single linear ODEs generate an exponential residence time of cells
at each stage, requiring some care in model design or interpretation.

Jolly et al. [91] have proposed an ODE-based model that solves this problem
(Figure 4C) by separating each cycle phase into many sequential steps, and applied it on
a EdU labelling kinetics scheme in cell cultures, and that would also be valid for dual
pulse. Due to the complexity of the model, an analytical solution for the dynamics of
labelling is not easily available, and a fitting procedure to experimental datasets allows
to infer the cell cycle duration. The equations can conveniently be represented as matrix
multiplication and the authors propose an analytical formula linking the frequency of
cells expected in each cycle phase with the population parameters assuming steady
state growth (also called balanced growth). This approach allows for a reduction of the
parameter space or validation of predictions by comparing predicted proportions in
each phase to experimental results.
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3.3. Future models and finding the optimal experimental set-up

The models described above were only partially successful in extracting robust
durations of the cell cycle. This might be due to limitations of the datasets that might
not contain the appropriate time-points or due to the assumptions of the modelling
strategies. One also needs to take into account that the models cannot have more degrees
of freedom than the complexity of the datasets to avoid overfitting. Combining all
approaches described above a EAU/BrdU dual pulse coupled with DNA labelling at
multiple time-points may solve some of these issues [92]. Other modelling approaches
could be successful in extracting thymocyte proliferation rates, and in particular how
to link the single cell proliferative behavior to the observed population parameters at
the higher scale. Stochastic models for cell division based on time distribution of events
seem most suitable for this task.

Recently, Kretschmer et al. [93] studied the cell cycle duration of memory T-cell
precursors and effector cells in vivo using the dual EAU/BrdU labelling strategy. As-
suming an exponentially growing population, they approximate the relation between
the growth rate and the average division time assuming it has no standard deviation.
They also derived an approximated mean-field formula of the stochastic model for the
amount of cells that divided and re-entered the G1 phase (Figure 4D).

In [94], the authors derived analytical formulas for the fate of labelled cells through
their progression along the cell cycle. They used a stochastic model where each cycle
phase duration follows a delayed exponential distribution (Figure 4E). The authors
assumed a ‘balanced exponential growth’ of the population without death, i.e. cells
are growing with apparent rate y (curve proportional to exp ut), and kept a constant
fraction of cells in each phase over time. The type of chosen time-distribution can allow
for analytical formulation. Starting from a pool of labelled cells in S phase (just after
BrdU), such cells that entered G2M after a time t can be separated as cells of all possible
‘age’ a within G2M and therefore the corresponding time J they took before exiting the
S phase since the beginning of (instant) labelling, such that a + § = ¢. This is actually
a convolution, and using a Laplace transform of the delayed exponential distributions
yields an analytical formula for the dynamics of labelled cells either remaining in the
initial S phase (Figure 4E, low formula), or progressing to the next phases. Further, the
authors provide a formula relating the expansion rate y to the phase parameters a; and §;
and the ratio of cells in phase G1, S and G2M: n1, n and n3 (Figure 4E, medium formula).
They predict that the dynamics of labelled cells from any phase ¢ that progressed to
the next phases typically follow two steps: a first period, of duration 4 where labelled
cells exit the initial population with a constant speed, followed by a period where the
very last labelled cells exit, revealing the exponential decay part of the S phase duration
distribution. The authors show that the initial derivative of the curve requires two
early experimental points and is enough to set the expansion rate and some alpha
parameters, while a third experimental data point is needed after t = B to identify
the average duration of the exponential decay. This approach therefore seems suitable
to interpret in vivo thymocyte EAU/BrdU labelling, with the limitation that the third
optimal experimental time-point is difficult to estimate because it needs a pre-existing
guess on after how long the cells in S phase start to leave (time ), and the exponential
decay might be very short. Since the model has been designed for cells growing in
culture, it is yet to be determined whether the hypotheses of no death and balanced
growth would still be valid in vivo where cells can exit a compartment, potentially after
a regulated number of divisions.
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Zilman et al. [95] proposed a more general stochastic model including a distribution
of inter-mitotic time (cell cycle completion) and death, derived from the von Voerster
equation [96], which relates the amount of cells and their age within a population as a
partial differential equation. More precisely, the distribution of the age of cells within
each generation is stored, and evolved at each time-point. The fate of the cells at the next
time-point is a convolution of cells at each age and the distribution of time inside this
generation (inter-mitotic time) or death. Again, a Laplace transform becomes convenient
because it transforms the convolutions into multiplications (Figure 4F). The authors
derive analytical formula for the dynamics of a pool of labelled cells and reproduced
quite well experimental datasets using labelled dye dilution in vitro. They show that
the gamma distribution ia a good approximation to the lognormal distribution, whose
transform is too complex [97]. The authors also adapt their formula to branching
imbalanced divisions allowing to introduce asymmetric divisions.

Altogether, it is likely that a combination of Weber et al. approach [94] with the
generational model of Zilman et al. [95] including death could allow to derive analytical
formulas for BrdU or EdU labellings that fit with synchronized proliferation with a fixed
number of divisions in the thymus and be used for in vivo experimental datasets.

A last and most general strategy is the explicit simulation of the stochastic equations
using an agent-based model with thousands of cells with an associated distribution of
time for each event (Figure 4G), as done for 2D tumor tissue cell cycle in [98]. Each cycle
phase can follow a lognormal distribution (like in the cyton model [99,100], and death
can be drawn as an exponential distribution, or could be restricted to the G1 phase for
instance. It becomes easy to simulate the exact experimental setting.

Future technical development might guide the design of new types of models, such
as for the interpretation of Ki67 expression [101,102] and its degradation at specific
cycle phases. The measurement of TREC recombination circles dilution from TCR
recombination is an indirect read-out for proliferation and population dynamics that
has been leveraged using mathematical modelling [103] and is suitable for analyzing
human samples as well as the use of labelled deuterium in drinking water [104]. Finally,
newly developed in vivo reporters for cell cycle might allow more precise longitudinal
evaluation of cell cycle over time [105].

4. Estimation of in vivo cell death in the thymus

Estimating the rates of thymic selection is critical for the calibration of mathematical
models of T-cell developmental dynamics. However, cell death is particularly hard to
visualize in vivo and macrophages can remove thymocytes extremely fast and even seem
to contribute to inducing cell death [106]. Experimental approaches to determine the
extent of thymic selection, sometimes combined with mathematical modelling, have been
reviewed in [12]. We provide a brief overview here, illustrating some key experimental
constraints. Of note, depending on the study, the ‘efficiency of selection’ can be estimated
either as flow of cells dying per day at a certain stage (rate), or as the amount of cells that
will die or survive through selection from a defined pool of cells (percent). The latter
definition depends on the residency time of cells at different stages, which is also hard
to measure for heterogeneous populations. A number of early studies estimated rates
of selection by either directly inducing negative selection [107] or removing selecting
ligands (i.e. MHC) from a variety of thymic APCs to induce failure of positive or
negative [108-111]. Together, these studies yielded a broad range of frequencies of
death by neglect or clonal deletion. However, interpreting these data is difficult, as
removal of MHC removes both positively and negatively selecting signals and negative
selection in particular is likely to occur over prolonged periods of time, ranging from DP
thymocytes that have just completed Tcra rearrangement to SP thymocytes, as well as
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upon interaction with more than a single type of thymic APC. Another approach was
based on continuous BrdU labelling using transgenic T cells with CD4 or CD8- biased
TCRs that were known to survive positive selection [112]. The aim was to monitor the
maximum number of cells that could survive through positive selection in vivo by filling
the thymus by survivable TCRs and compare this number to that of surviving cells in
the WT setting. This study suggested that at least 40% CD8 TCRs and 90% CD4 TCRs
are removed through both positive and selection combined.

Two more recent studies have revisited the death estimations using more direct,
signaling reporters. Stritesky et al. used a Nur77¢? reporter to quantify levels of
TCR signaling in thymocytes [34], comparing WT or Bim-deficient mice, in which
negatively selected thymocytes fail to undergo apoptosis. The authors distinguished
three populations based on GFP reporter expression: GFP low cells that die by neglect
(positive selection), GFP intermediate cells that have received a positively selecting TCR
signal, but may still audit for negative selection, and finally GFP high cells that are
deleted in WT mice but persist in Bim~/~ cells. Following the observation that Bim~/~
cells spend longer in the SP4/SP8 compartment than WT cells on average, they estimated
that, at the scale of a 200-250 million cells per thymus, 3 million cells survive both positive
and selection per day, while 16,7 million cells would die by negative selection. A minor
caveat for determining exact rates of selection stems from the observation that Bim =/~
thymocytes have an increased residence time when compared to WT cells in the SP
compartment, because they do not die and are kept longer in the thymus. However,
Bim~/~ cells comprise both GFP intermediate positively selected cells, which should
exit normally as WT cells, as well as GFP high cells, which are indeed staying longer. As
raised by Yates [12], dying cells and surviving cells have a different residence time (even
if following the same mechanism). This means that extra Bim~/~ cells that “should have
died” stayed actually longer than the average residence time of all Bim~/~ cells, and
negative selection could therefore be slightly lower than estimated.

Daley et al. [113] used a similar approach based on accumulation of cells poised
for clonal deletion in Bim~/~ mice in combination with a dual transgenic TCR/cognate
antigen model. Expression of self-antigen deleted 60% of the CD4 SP cells compared
to mice without expression, while in Bim~/~ cells, those cells survived. The authors
identified Helios as a surrogate marker for cells undergoing negative selection. Using
this marker in combination with markers of progressive thymocyte maturation, they
proposed a multi-step model of clonal deletion, concluding that negative selection
deletes 55% of the positively selected thymocytes already in early SP cells.

Finally, some population models described above, such as those developed by
Sinclair et al. [44] or Thomas-Vaslin et al. [54] inferred death rates from their experi-
mental datasets, but from populations lacking proliferation. This means the inferred
rates are actually including the effect of proliferation, and could be re-estimated based
on proliferation studies. Sinclair estimated that 75% of cells fail positive selection and
only 2 to 5 percent of cells become CD8 and CD4 at the end, respectively. Including
proliferation at SP stage would actually mean that more cells died by negative selection,
probably not that far away. In Thomas-Vaslin’s model, where cells can die only at the
DP stage, 97.5% of the pre-selection cells die at that stage.

Taken together all studies converge on a very high frequency of death through
selection, between 90 to 97.5%, which could be even higher when including proliferation.
However, it remains a challenge to fully disentangle the contribution of death by neglect
vs. clonal deletion as well as the type of APC, onto this death load. In conclusion, a
thorough comparison of experimental datasets ranging from signaling reporters, dy-
namical datasets (like recovery after atrophy), and EAU/BrdU labelling into a single
mathematical analysis could narrow down the selection rates with better understanding
on the experimental perturbation biases, yet is very tedious.
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5. Multiscale considerations on thymic dynamics

Selection processes in the thymus constitute quality control mechanisms down-
stream of the bona fide random somatic recombination of TCR genes into a functional
but not self-reactive repertoire. Thymic selection emerges from events at the molecular
and cellular level (Figure 5A). Understanding how the dynamics of T-cell development
arise from these lower scales requires multiscale modelling.

At the molecular (and genetic) scale, virtually each thymocyte that completed the
pre-selection DP stage, carries a different somatically recombined TCR, composed of
one TCRu chain and one TCRp chain at its surface. Lack of allelic exclusion of the Tcra
locus allows for the generation of T cells with two distinct TCRs. APCs display a sub-
sampling of possible self-peptides on their surface MHC complexes. Binding between
TCR complexes and pMHC complexes triggers TCR signaling on the thymocyte. The
landscape of self-antigens presented in the thymus is particularly complex as it depends
on the type of APC, their capacity to express many proteins from the genome, distinct
mechanisms of antigen processing, and the structure of the 6 MHC proteins encoded by
highly polymorphic genes.

At the cellular level, thymocytes move and sequentially interact with APCs. The
multiple pMHC complexes and TCRs of the APC and thymocyte, respectively, located
in the membrane cell-cell contact, have the possibility to interact. The affinity (existence
of high affinity binding) as well as the avidity (amount of binding TCR-pMHC couples)
is translated into TCR signaling that is integrated between cellular contacts.

At the physiological level, the outcome of thymic selection is defined by successful
recognition of foreign peptides (antigens) in the context of self-MHC, resulting in T cell
activation. Cells whose TCR form high-affinity interactions with self-peptide loaded
MHC on APCs in the thymus die in the process of negative selection. It is not fully
clear how positive and negative selections are decided, depending on the TCR affinity,
TCR cross-reactivity to different self-peptides, and the avidity of sequential cellular
interactions, through TCR signaling [11,114]. Finally, the boundary between negative se-
lection and Treg cell differentiation is unclear as both Tregs and Tconvs surviving thymic
selection share some identical TCRs (see the overview of Klein et al. [72] for a review
on Treg differentiation models). Several multi-scale mathematical models predicted the
properties of the produced TCR repertoire due to positive and negative selection, based
on a static set of TCRs and MHCs. These models, comprehensively reviewed in [12],
have been helpful in particular to understand trade-offs between TCR cross-reactivity,
pathogen recognition and auto-immunity; the induction of MHC recognition, restriction
or Treg differentiation from positive and negative affinity selection thresholds; or how
thymic selection generates holes in the repertoire for pathogen coverage. Very few
models however have investigated how thymus dynamics arise from the lower scale
of single cell motility and fate decision, and how it affects the higher scale of repertoire
generation and TCR clonality.
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Figure 5. Different biological scales underlying thymic selection and models linking cellular interactions to signal and fate.
(a) TCR signaling, and thereby thymic selection fate, is mediated by the encounter with Antigen Presenting Cells (APCs)
displaying samples of self-peptides on their MHCs. TCR signaling can be induced by high affinity to a MHC (typically
at each interaction), or to a cognate peptide (more rarely). Specific types of APCs express a larger scale of self-antigens
(Tissue Restricted Antigens) and are compartmentalized in space (yellow box). (b) Model predicting that T cells would show
increasing signal over time due to increased TCR expression, and suggesting two self-adapting thresholds, for positive and
negative selections. (c¢) Experimental observations on ex-vivo thymic slices, where T cells migrate and get signaling at each
APC encounter. The encounter with cognate peptide leads to stop and strong signaling, while non-self-reactive interactions
are shorter. D. Signal integration model. Each encounter with APCs leads to a transient increase in the integrated TCR
signaling depending on the affinity (or avidity) of TCR-pMHC binding at each cell interaction. The integrated signal is
translated into peak signal (Transient Signaling Level, TSL) and basal signal (Sustained Signaling Level, SSL), used by the T
cells to decide their fate. Due to the correlation of SSL with MHC affinity and TSL with highest self-peptide affinity, the
decision translates into Tconv with intermediate affinity to MHC while Tregs emerge with higher MHC affinity.
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5.1. Linking the history of TCR signaling to cell fate

Several studies have proposed to link the dynamics of TCR signaling to thymic
selection processes, which would constitute suitable bases to simulate thymus dynamics
in the future:

First, Grosmann et al. [115] proposed a theory on how the dynamics of TCR
signaling could look like, and how it could be translated into positive or selection
decisions (Figure 5B). Based on the observation that TCR expression and signaling
gradually increase over the DP stage the authors proposed that T cells maintain two
tunable activation thresholds: a lowest signaling level threshold to survive positive
selection, and a higher threshold to delineate deletion by negative selection, and that
both thresholds would adapt to each other or to the current signal level. They defined a
variability-maintenance threshold that grows together with the expression of TCRs at
the surface, and an activation threshold, linked to the former threshold, relatively higher
than the maintenance threshold, for negative selection. This theory can explain that DP
and SP cells have different activation thresholds, and allows T cells to self-tune their
signaling thresholds to their environment (antigen expression pattern), possibly giving
a robust response independently of a constant inflammatory context or perturbation.
A large body of evidence has detected quantitative and qualitative differences in the
TCR signaling leading to positive or negative selection [6-10]. Kurd et al. [116] and a
series of papers from Ellen Robey’s lab [117-119] could directly visualize the temporal
signals received by thymocytes during positive and negative selection, thanks to ex vivo
calcium imaging of thymic slices (Figure 5C). Basal signaling was observed, composed
of peaks of typically 5 mins interspersed by 25 minutes of resting, matching patterns of
stop and migration, while encounter of cognate ligand lead to pronounced arrest and
elevated levels of sustained signaling, eventually resulting in cell death. The observation
that positive selection happened in ex vivo 3D slices but not in in vitro cultures [116],
support the hypothesis that transient regularly interspersed signals are required for
proper signal-to-fate decisions. It is plausble that a cell needs to regularly detach from
one APC to the next to avoid strong signaling. This is a rare study linking calcium
signaling to changes in motility suggesting that the patterns of T-cell search are also
impacted by TCR signaling and could benefit from a modelling on their own.

An agent-based model has been developed by Khailaie et al [120] (Figure 5D) to
link cell-cell interactions with single cell TCR signal integration, using string models for
TCR-pMHC affinity with short range positional correlations. In this model, a list of T
cells with random TCRs sequentially interact with APCs carrying a random sampling of
pre-defined self-peptides at each time-point, all presented on the same MHC molecule,
and a TCR signal is integrated over time at each interaction with a decay rate. This leads
to peaks due to encounter with higher affinity peptides with a constant contribution of
the MHC at each interaction. Similar to the studies of Grossman et al. [115] and Kurd
et al. [116], the authors proposed to use a threshold on the basal signaling level of a
thymocyte as a decision to survive positive selection, while a threshold on the highest
peak would define autoreactivity of a TCR. Khailaie also noted a trade-off for selected
cells between sustained and peak signaling (cells with higher basal peak would die
when they encounter a medium affinity peptide while low basal peak would allow to
bind peptides with higher affinity and survive), and suggested that Treg cells are more
affine to MHC, that would endorse them with higher cross-reactivity.

Recognition of self-peptides plays a substantial role in positive selection [121-124],
but their relative abundance is heterogeneous [125]. It is tempting to propose that
frequent or groups of structurally similar antigens could generate a signal supporting
positive selection of TCRs recognizing them with medium affinity, while rare antigens
would not have this capacity. It would be interesting to check whether this happens
in Khailaie’s model using a mixture of frequent (possibly similar) antigens and more
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rare antigens, and correlating cell fate with affinity to these frequent antigens instead of
MHC affinity.

Although the link between basal and peak signaling into positive and negative
selections is still speculative, different signaling pathways have been associated with
both selections and Treg cell development (for instance ERK and Ras signaling [9,10]). It
is tempting to hypothesize that different pathways could behave as band-pass filters,
with some ‘fast’ pathways getting activated by rare but strong encounters (peak signal)
and other pathways slowly activated after many repeated interactions [6]. For instance,
an ODE-based model for TCR signaling has been predicted to be able to discriminate
self and foreign peptides [126] based on interaction frequency. More generally, in the
context of frequential inputs, a Fourier transform of TCR signaling models could help
predicting the signal properties required for different fate decisions.

Together, these studies support the notion that positive and negative selection could
be mechanistically defined by different types of signaling, in which a rapid, high peak
promotes negative selection while basal signaling defines positive selection. Notably, the
experimentally observed signals were in almost perfect agreement to those predicted by
[115]. Further, these models are suitable to simulate developmental dynamics at the DP
and SP stage from single cell encounters, although at present these models cannot yet
incorporate a possible interdependence between TCR signaling and a cell’s decision to
proliferate at the early DP or late SP stages. In contrast to single cell models, dynamical
models presented in section 1 encoded differentiation (to CD4SP, CD8SP or Treg cells) as
a constant rate, thus masking potential regulatory mechanisms that agent-based models
would intrinsically include. For instance, Kurd et al. [116] suggested that mismatched
CDA4SP or CD8SP with a TCR that recognizes the ‘wrong” MHC would not get sustained
signaling in the SP stage, and die by neglect, showing that signal integration is likely
also important for CD4 vs. CD8 differentiation dynamics.

5.2. 3D models of thymic development, APC types and antigen spatial compartmentalization

T-cell development is coupled with regulated migration patterns. ETPs enter at
the cortico-medullary junction from blood vessels, and both DN and DP development
happen inside the cortex, where cTEC and other APCs support positive and negative
selection of DPs. The maturation of DPs into SP is associated with changes in chemokine
receptors and migration towards the medulla that occur typically 12 to 24 hours after
the onset of positive selection [116]. CD4 and CD8 T cells downregulate the opposing
coreceptor with different timing, later for CD8 SP cells. In the medulla, AIRE-expressing
mTECs show a larger panel of antigens referred to as tissue restricted antigens (TRAs),
while other APCs (dendritic cells (DCs), B cells, stromal cells [127]) can also present
self-antigens, or antigens captured in the periphery by migratory DCs [72,128,129]. For
instance, DCs seem to be more efficient at mediating negative selection in the cortex
while cTECs are also presenting self peptides. Rare DCs are located close to capillaries
and surrounded by CCL21. Interestingly, DCs and mTECs as well as vascularization
are much denser at the cortico-medullary interface, suggesting its crossing has the
highest strength of selection (or avidity) [72]. The molecular cues guiding the transit of
thymocytes from cortex to medulla are poorly understood. While it is well established
that chemokine receptors CCR7 and CCR4 play dominant roles in this process, it has
recently been suggested that these receptors indirectly promote spatial organization
of thymocytes by organizing the localization of thymic APCs, in particular DCs, and
mediating their interaction with thymocytes [130,131]. As a consequence, loss of either
chemokine receptor results in defects in central tolerance [131,132]. Notably, the presence
of a thymic medulla is critical for development Treg, but not Tconv, cells [59]. The egress
of T cells is mediated by the S1P1 receptor, which is upregulated only at the latest stage
of SP maturation. Treg cells are believed to stay longer in the thymus, and different
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types of APCs harbor different Treg inducing capacity [133]. It has been suggested that
certain antigens could be expressed in spatial niches, added to the fact that TRAs are
preferentially expressed in the cortico-medullary junction [72]. These arguments support
the notion that the spatial organization of the thymus is critical for its function and
would call for spatial mathematical models.

So far, only a few models have attempted to simulate the thymus in 2D or 3D. Elfroni
et al. [134] developed a framework able to simulate motility, chemokine sensitivity,
proliferation and death on a 2D lattice system, similar to later developed platforms
like Morpheus [135], and including the cortex and medulla. The model was used to
recapitulate the migration of cells following chemokine gradients [136], in the context of
WT versus CCR9-deficient mice. They also measured an effect of space competition into
apoptosis and the subsequent amounts of generated CD4 and CD8 T cells. Further, the
cell-cell contact dissociation rates impacted the CD4 to CD8 decision. Souza-e-Silva et
al. [137] used a simpler mathematical formalism and simulated chemokine levels and
cell decisions as a cellular automata, i.e. a 2D grid, where each position can only have
predefined states that are updated according to the neighboring states. Interestingly, the
authors could reproduce realistic movement between cortex and medulla, and proper
dynamics of development and residence times from a few cells to a full thymus at
equilibrium. They could modulate the T-cell dynamics from changing the properties
of the epithelial network. The fact that correct dynamics can emerge from simple
2D models makes it tempting to believe that it will soon be possible to incorporate
multi-scale models in a 3D setting, incorporating data on migration from thymic slices,
proliferation, population dynamics and signal integration. The findings that thymocyte
migration and signals are correlated [116] would suggest to use such models to calculate
a signal integration and fate decision from the interactions like [138,139], feeding back to
a modulated searching behavior of the cells.

5.3. Thymus dynamical models can help the analysis of TCR repertoires

High throughput sequencing has provided in-depth information on TCR diversity
generated in the thymus [140]. Dynamical models of T-cell development are likely to
help understand the formation of pre-selection repertoires and their shaping through
selection.

For instance, a mathematical model has been developed to simulate V(D)J recom-
bination of the Tcra or Tcrb gene [141]. This tool takes a repertoire and proposes the
most likely V(D)] recombination event for each sequence by inferring probabilities of
using each V, D or ] segment (called recombination parameters), including deletion and
insertion events. Then, from inferred recombination parameters, it becomes possible
to generate new TCR sequences following the same recombination model. While this
model has been used to analyze peripheral TCR repertoires, it actually simulates Tcrb
recombination before the DN3b stage or Tcra recombination during the DP stage, which
are impacted by both thymic selection and population dynamics. An example in Figure
6 demonstrates that proliferation can strongly alter the relative frequency of clones in
the periphery. We speculate that, using knowledge or models on thymus population
dynamics, new recombination models could be designed, which include variation in
clonal expansion for the analysis or generation of TCR repertoires. Further, such mod-
els comparing pre-selection and post-selection repertoires could identify which TCR
sequences are preferentially deleted or expanded.

Moreover, the patterns of thymocyte clonal expansion are poorly described and
it is not clear whether T cells are selected independent from each other, and to which
extent there is competition between antigen-specific clones, or how the competition for
cytokine signals determines terminal differentiation. Newly developed in vivo barcoding
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approaches coupled with statistical analyses are suitable to follow the clonality of pro-
genitors along thymic selection [142]. Such datasets will likely support the development
of lineage tree algorithms possibly combined with population dynamics and branching
fate decisions in the thymus. In turn, this could provide valuable information on the
relative clonal expansion in DP and SP stages to simulate proper population dynamics.
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Figure 6. Cross-talk between recombination probabilities, proliferation and selection on the observed TCR frequencies in
the repertoire, suggesting that the mechanistic recombination events and the frequencies of TCRs with a recombination
scenario might not directly be equal and need more mathematical investigation.

5.4. Future types of multiscale models

New experimental datasets like single cell RNA sequencing showing both popula-
tion delineation by transcriptomics and receptor sequencing [143] will surely unveil new
properties of thymic selection, reveal new hidden subpopulations and link cell fate to
their TCR sequence.

Recently, a multi-scale dynamical model has been developed covering the earliest
steps of intrathymic T-cell development until completion of lineage commitment (i.e.
the DN2b stage) [38]. This agent-based model comprises gene regulatory networks,
epigenetics and population dynamics based on single-cell gene expression data for key
transcription factors as well as in vitro differentiation and proliferation dynamics of
populations and individual clones. Experimental data had revealed that expression of
the T-lineage commitment Bcl11b is subject to complex regulatory mechanisms involving
an interplay of cis-acting and trans-acting elements in combination with a degree of
stochasticity [144]. Furthermore, simple gene regulatory networks were not able to fully
explain observed and modelled population dynamics of immature thymocytes, which
we extensively discussed in Section 2. This type of multi-scale model allows for a smooth
transition between differentiation stages, going beyond the "yes-or-no” gating strategies
shown in Figure 1A, and could reveal unexpected cell conversion or differentiation
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pathways in the future. Together, this study highlights the requirement of extensive
and complementary datasets to build a mathematical model with sufficient explanatory
power as well as the requirement for multi-scale approaches to adequately represent
the increasing level of detail of our moleculatr, cellular and organismal knowledge of
developmental processes.

6. Outlook

We aimed to provide a broad overview of scales of intrathymic T-cell development
that have been simulated by mathematical modelling, where the same mechanisms
are treated from different angles and data types. Modelling has been necessary to
infer hidden experimental information at the cellular (proliferation speed, death) or
population scales (developmental dynamics), or to understand fundamental properties
of this complex selection system. The next generation of models will most likely include
multi-scale datasets, like proliferation speed, population dynamics, as well as signaling,
and will likely be single-cell based.

T-cell developmental dynamics as a model system highlights the diversity of mod-
elling methods used at the same scale, and the complexity to measure and bridge cellular
events to population dynamics. ODE models are not always best suited, due to their
assumption that cells stay with an exponentially distributed time before leaving, and
might require special care in their design or interpretation. Generational models can
replace logistic growth mechanisms, suggesting that controlled number of divisions is a
potential homeostatic mechanism for a fast thymic reconstitution. Dynamical models
were powerful at hypothesis testing, by providing the most suited mechanistic scenario
to explain the datasets, but were poorly able to identify biological parameters from
experimental datasets. Underlying reasons were either parameter uncertainties (only
few studies actually showed identifiability of their parameters) or model uncertainties
(that another model structure would cause the model to infer different parameter values).
Rigorous testing of different possible model structures requires a dissuasive amount of
work. As a consequence, no consensus on the proliferation, death (although quite close)
or differentiation rates during T-cell development has been reached, despite the large
extent of datasets. Given the diversity of datasets and complex experimental setups,
these datasets remain difficult to combine. A more general question would be: what
is missing from these datasets to finally infer these biological rates? Or which pertur-
bations would be needed to actually identify the strength of competition or regulation
between populations? The panel of models reviewed here may provide cues to design
next generation multiscale models.
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Abbreviations

The following abbreviations are used in this manuscript:

APC Antigen Presenting Cell

BrdU Bromodeoxyuridine

CLP Common Lymphoid Progenitor
CD4SP  Single Positive CD4TCD8™ thymocyte
CD8SP  Single Positive CD4~CD8* thymocyte

DC Dendritic Cell
DN Double Negative thymocyte
Dpr Double Positive thymocyte

EdU 5-Ethynyl-2’-deoxyuridine

ETP Early T-lineage Progenitor

ISP8 Immature Single Positive CD8" thymocyte
LMPP  Lymphoid-Primed Multipotent Progenitors
MHC  Major Histocompatibility Complex

ODE Ordinary Differential Equation

SP Single Positive thymocyte

TCR T-cell Receptor

TRA Tissue Restricted Antigen

Treg Regulatory T-cell
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