
Article 

Hybrid approach utilizing unmanned aerial vehicle and un-

manned surface vehicle to assess the map of chlorophyll-a in a 

stream 

Eunju Kim 1, Sook-Hyun Nam 1, Jae-Wuk Koo 1 and Tae-Mun Hwang 1,2*  

1. Korea Institute of Civil Engineering and Building Technology, 283 Goyangdar-Ro, Ilsan-Gu, Goyang-Si, 

Gyeonggi-Do 411-712, Republic of Korea; kej@kict.re.kr; fpnsh@kict.re.kr; koojaewuk@kict.re.kr; 

taemun@kict.re.kr 

* Correspondence: taemun@kict.re.kr; Tel.: +82-31-910-0741+82-31-910-0291 (F.L.) 

Abstract : The current study investigated the use of two-dimensional spatial distribution mapping 

representing the chlorophyll-a level in a river generated via an unmanned aerial vehicle (UAV) and 

an unmanned surface vehicle (USV). A domestically developed UAV (Remo-M, Uconsystem Inc., 

Korea) and a USV developed by our research team were used to collect data from the Nae Seong 

stream in Korea. An adaptation of the “Data Cleaner” tool was developed and used for USV data 

processing and analysis. The operation of the autonomous USV was successful. Four previously 

described indices for quantifying algal blooms in rivers were utilized to create chlorophyll-a images, 

the normalized difference vegetation index (NDVI), the normalized green red difference index, the 

green normalized difference vegetation index (GNDVI), and the normalized difference red edge 

index. The suitability of the linear regression analysis of the correlation between the spectral indices 

obtained using the UAV and the in situ chlorophyll-a data obtained using the USV was evaluated 

with the coefficient of determination (R2) at a significance level of p < 0.001. Infield application and 

correlational analysis, the NDVI was strongly correlated with chlorophyll-a (R2 = 0.88, p < 0.001), 

and the GNDVI was moderately correlated with chlorophyll-a (R2 = 0.74, p < 0.001). The map of 

chlorophyll-a was successfully quantified using the UAV and USV hybrid platforms. 
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1. Introduction 

Algal blooms are a natural phenomenon that occurs in water-based ecosystems in 

response to environmental factors such as nutrition, light, water temperature, and wind 

speed [1]. Harmful algal blooms can cause substantial water quality problems that persist 

in rivers, lakes, and reservoirs [2-4]. Accordingly, monitoring algae in rivers, lakes, and 

other freshwater bodies is emerging as an increasingly critical issue. Of the various types 

of algae, blue-green algae is of particular concern given the potential existence of toxins 

within it, necessitating a fundamental solution for its reduction to avoid economic and 

social problems [5,6]. Because green algae exhibits repeated cycles of growth and death 

depending on environmental conditions such as light (solar radiation), water tempera-

ture, nutritional salts (nitrogen, phosphorus), and duration of residence, the data pertain-

ing to green algae hot-spots need to be collected quickly and frequently.  

Chlorophyll-a (Chl-a) is one of the photosynthetic pigments contained in algae, and 

it has traditionally been used as an indicator of algal biomass via field sampling to monitor 

algal growth. Fixed chlorophyll-a sensors are currently installed in South Korea to moni-

tor sites such as major water sources, rivers, and lakes by way of an automatic water qual-

ity monitoring network. Field sampling and assessment of algae is also conducted to mon-

itor chlorophyll-a levels and measure algal biomass [7]. Monitoring via field sampling and 



 

chlorophyll-a measurement can be problematic with regard to temporal and spatial reso-

lution however, because the locations and/or compositions of large-scale algal outbreaks 

can change dramatically in a short time due to multiple ubiquitous factors such as rain 

and wind. In an effort to address this issue recent studies have investigated the use of 

unmanned aerial vehicles (UAVs) to monitor chlorophyll-a [8-13]. 

Because most images acquired by UAVs for analysis are taken from a distance of 50–

200 m, atmospheric correction is not necessary and multispectral sensors have proven ef-

fective for environmental monitoring [14-18]. The estimation of chlorophyll-a levels via 

remote detection data combined with field measurement involves the use of various algo-

rithms [19-23]. The normalized distribution vegetation index (NDVI) is one of many spec-

tral indices [24] that has been used in this context [1, 11, 18]. 

In order to capture chlorophyll-a images using a UAV, field analysis must be per-

formed in the target aquatic area in conjunction with UAV measurement. Field analysis 

requires data collection at various points of the target waterway. Traditionally a boat has 

been required to measure chlorophyll-a in a river that is difficult to reach from land, but 

this is time and labor intensive, and entails numerous associated limitations. It is therefore 

necessary to develop a mobile but less cumbersome technology for immediate water qual-

ity measurement in the field [25]. Unmanned surface vehicles (USVs) have been the sub-

ject of recent research and development. They are being used in a variety of research areas, 

including water quality monitoring, surveillance, underwater terrain mapping, and 

oceanography [26-34]. As well as ameliorating space and time constraints by automating 

data collection, autonomous USV technology can be conducive to improved chlorophyll-

a and water quality monitoring methods [34,35]. 

To date few studies have investigated the development and application of USVs in 

conjunction with UAVs in the field for visual two-dimensional spatial distribution map-

ping of chlorophyll-a. In the current study UAV and USV hybrid platforms combining the 

UAV spectrum with field data derived from a USV were used to capture chlorophyll-a 

images and monitor chlorophyll-a in the N Nae Seong stream (N36.805, E128.695) in Ko-

rea. As well as the NDVI, the use of other spectral indices to estimate chlorophyll-a was 

investigated. 

2. Materials and Methods 

2.1. The UAV 

The UAV (Remo-M by Uconsystem Inc., Korea) used in the study is shown in Figure 

1. It has fixed wings with a wingspan of 70.8 inches, and weighs 3.4 kg. It is equipped with 

a brushless AXI 2826/10 motor (Model Motors LTD., Czechia) and an Aero-naut carbon 

propeller (Germany). Its maximum speed is 80 km/hour and it has a minimum operating 

distance of 8 km. A Sequoia multispectral camera (Parrot Cor., France), is mounted on the 

UAV. Four sensors in the camera create multispectral images in four spectral bands; green 

(550 nm), red (660 nm), red edge (735 nm), and near-infrared (NIR) (790 nm). 

 
 

(a) (b) 

Figure 1. (a) The unmanned aerial vehicle (Remo-M) used in the study, and (b) its camera (Se-

quoia). 

2.2. The USV 

The USV used in the study was developed by our research team specifically for mon-

itoring chlorophyll-a in the N stream, and it is shown in Figure 2. It is 1.3 m long, weighs 



 

approximately 10 kg, and can operate at a maximum speed of 18 km/hour. The commu-

nication distance is 2 km or more, and the communication frequency is 2.400–2.483 GHz. 

In addition to a general camera sensor, an echo sound apparatus for measuring the depth 

of the river, and a Lidar sensor to prevent collisions, AlgaeChek Ultra (Modern Water, 

England) is installed for the measurement of chlorophyll-a. The water quality sensor is 

mounted at a location on the vehicle that is not affected by the propeller. The location 

receiving system consists of the global navigation satellite system L1 (GNSS) and a satel-

lite-based augmentation system-class receiver of 5 Hz or higher. An autonomous naviga-

tion program is used to set the unmanned travel route. The main operation modes and 

functions are autonomous route operation, point navigation, and automatic return. The 

maximum operation time is approximately 5 hours. The water quality sensor and location 

data are synchronized with the flight control computer via a parsing protocol, and are 

stored in real time. Chlorophyll-a levels are recorded in the sensor in µg/L. The architec-

ture of the USV system is shown in Figure 3. 

 

Figure 2. The unmanned surface vehicle used in the study. 

 

Figure 3. The architecture of the unmanned surface vehicle used in the study. 

2.3. Study area 

The UAV and USV were configured for field application targeting the N River (Fig-

ure 4). The N River is of interest because algal blooms occur there every year. The altitude 

of the UAV takeoff point was 150 m. Data were collected from a 3.2 km section during a 

single 15-minute flight. The flight commenced at approximately 8 am. To ensure lateral 

overlap of ≥ 65% and longitudinal overlap of ≥ 75% the images were taken in four 

strips at an altitude of 150 m. The wind speed during the flight was 0-10.8 km/hr . 



 

 

Figure 4. The study area (N River). 

The entire 15-minute flight covering the 3.2 km section was photographed, with the 

camera set at 60-m strip intervals and a shooting interval of 2 seconds. For image identifi-

cation, 15 ground control points were installed around the site before the flight so that 

positional image displacement could be corrected. Calibrated reflectance panel images 

were taken before and after UAV take off to calibrate the reflection values of the index 

calculator. The USV continuously measured chlorophyll-a during autonomous operation 

within a 2.31 ⅹ 0.10 km2 area along the N River. The route width was 20 m and the op-

erating speed of the USV was 1.6 km/hour. 

2.4. Statistical analysis 

The data obtained from the USV were statistically analyzed using software devel-

oped in this study. USV data outside the 10%–90% range were considered outliers. Histo-

gram analysis was applied to the USV field data to set the frequency and segment range. 

The suitability of the linear regression analysis of the correlation between the spectral in-

dex obtained using the UAV and the in situ chlorophyll-a data obtained using the USV 

was evaluated with the coefficient of determination (R2) at a significance level of p < 0.001. 

2.5. Chlorophyll-a spectral indices 

The previously described multispectral indices that have been used as indicators of 

algal blooms in rivers [24] shown in Table 1 were used to generate UAV images of chlo-

rophyll-a. The indices applied in the present study were the normalized difference vege-

tation index (NDVI), the normalized green red difference index (NGRDI), the green nor-

malized difference vegetation index (GNDVI), and the normalized difference red edge 

index (NDREI). 

Table 1. Spectral indices used for chlorophyll-a assessment in the current study. 

Name Derivation 
Refer-

ence 



 

Normalized difference vegetation index (NDVI) (NIR* – red)/(NIR + red) 
[34] 

[18] 

Normalized green red difference index (NGRDI) (green – red)/(green + red) [36] 

Green normalized difference vegetation index 

(GNDVI) 
(NIR – green)/(NIR + green) 

[37] 

[38] 

Normalized difference red edge index (NDREI) 
(NIR – red edge)/(NIR + red 

edge) 
[39] 

* NIR, near-infrared. 

3. Results 

3.1. UAV Image processing 

A flowchart representing the UAV imaging and image analysis procedures used in 

the study is shown in Figure 5. The two main components were imaging performed by 

the UAV, and in situ water quality analysis performed by the USV. Spectral index was 

extracted from the image analysis data acquired via flight photogrammetry, chlorophyll-

a estimations derived from USV field analysis were collated, and the combination of the 

two was used to generate a regression equation. R2 was then the estimated to determine 

whether to create chlorophyll-a images. If R2 in the regression equation is greater than or 

equal to 0.5 (i.e., “yes” in the flowchart), then chlorophyll-a is mapped. If R2 is less than 

0.5 (i.e., “no”), the data are preprocessed again through data processing until the criterion 

is satisfied. The photographs were processed using orthomosaics, georeferenced digital 

surface models, and the two-dimensional mapping software Pix4D (Lausanne, Switzer-

land). At the initial processing stage external distortions caused by the UAV tilting and 

internal distortions caused by camera characteristics were corrected, and photo junction 

points were extracted via a scale-invariant key points algorithm [40]. To acquire a high 

quality ortho-image, the registration lines between two adjacent ortho-images and the 

mosaic registration lines must be checked. Due to the fact that all noise of the 3D point 

cloud can affect the editing of the ortho-image of the measured target area, image-taking 

activities were undertaken by maintaining the crosspoints at the same altitudes, and by 

maintaining the cross points of the measured subject area as much as possible. The ground 

sample distance of the data obtained from the stream was 19 cm. NDVI, NGRDI, GNDVI, 

and NDREI images were generated using green (550 nm), red (660 nm), red edge (735 nm), 

and near-infrared (790 nm) bands, which were four spectral bands of the sensor mounted 

on the UAV. NDVI values were extracted from the red (668 nm) band and the NIR (840 

nm) band value calculation. NGDVI values were extracted from the red (668 nm) band 

and the green (550 nm) band value calculation. GNDVI values were extracted from the 

NIR (840 nm) band and the green (550 nm) band value calculation. NDREI values were 

extracted from the NIR (840 nm) band and red edge (735 nm) band value calculation. 

These values were calculated from -1 to +1. 



 

 

Figure 5. Flowchart representing the process used to map chlorophyll-a via a combination of an 

unmanned aerial vehicle and an unmanned surface vehicle. 

3.2. USV data analysis 

In situ chlorophyll-a data was obtained from the river by the USV as it travelled the 

route shown in Figure 6. The USV covered an area of 2.31 ⅹ 0.10 km2 to acquire reliable 

data. The operating speed of the USV was set to 1.6 km/h, and it operated autonomously 

along the preprogrammed route. 

 

Figure 6. The operator’s remote field interface during examination of the N River. 



 

Because raw data obtained from the USV are extensive, they must be processed prior 

to being compared with the UAV-derived image data. Exploratory data analysis is re-

quired for data processing [41]. To analyze the extensive raw data, an adapted version of 

the data analysis tool “Data Cleaner” was developed in this study. Data Cleaner is soft-

ware written in the C# language and R. R is a programming language and free software 

environment for statistical computing (https://www.r-project.org/). In this study, it was 

programmed to compile and run on Windows. Data Cleaner sequentially conducts data-

set verification, missing value processing, outlier removal, then feature engineering. Data 

Cleaner enables the user to visualize a histogram of the data obtained by the USV and the 

processed data within the target range. A histogram of the chlorophyll-a data obtained 

via the application of Data Cleaner is shown in Figure 7. In the present study values out-

side the 10%–90% range were deemed to be outliers. Figure 7 (a) shows a histogram of 

raw data obtained by the USV, and Figure 7 (b) shows a histogram of data within the 10–

90 % range, in which the outliers were removed. The range of chlorophyll-a in the prepro-

cessing of raw data was 0.2-48 µg/L, and the range of chlorophyll-a after data prepro-

cessing was 4.0-29.0 µg/L. The number of data obtained by operating the USV was 242,818, 

and the number of data obtained by data processing was 194,258. 

 
(a） (b) 

Figure 7. Exploratory data analysis tool developed in the study. (a) Histogram of USV raw data (b) 

Histogram of processed data within the 10%–90% range. 

Using this tool, the chlorophyll-a measurements were segmented via histogram anal-

ysis, then the value of each segment was used for comparison with the spectral indices. 

The histogram range of chlorophyll-a was divided in 0.2 µg/L intervals to classify the con-

centrations. Then, the mean of spectral indices corresponding to the range of chlorophyll-

a showing frequencies was extracted and used.  

3.3. Spectral indices analysis 

In this study, we observed the four different indices (band ration algorithms), which 

were used to identify the chlorophyll-a, as indicators of algae bloom in the UAV images. 

These indices include NDVI, GNDVI, NDREI and NGRDI. The results of applying the 

four spectral indices are shown in Figure 8. The NDVI ranged from -0.3 to -0.08, the 

GNDVI from -0.35 to -0.16, the NDREI from -0.04 to 0.01, and the NGRDI from 0.02 to 



 

0.13. The NDVI and the GNDVI showed lower values than the NDREI and the NGRDI. 

The results of correlational analysis between the four spectral indices and the in situ chlo-

rophyll-a measurements obtained via the USV are shown in Figure 9. Chlorophyll-a was 

significantly correlated with the NDVI (R2 = 0.88, p < 0.001) and the GNDVI (R2 = 0.74, p < 

0.001). It was not significantly correlated with the NDREI (R2 = 0.04) or the NGRDI (R2 = 

0.004). As shown in Figure 10, the GNDVI and the NDVI have high correlations while the 

NGRDI shows the lowest correlation. These results demonstrate that although the NDVI 

reflects the characteristics of chlorophyll-a better than the GNDVI in the remote detection 

by UAV, the GNDVI can be also used to estimate the chlorophyll-a. In other words, chlo-

rophyll-a can be estimated by identifying the green band, in addition to the red and NIR 

bands. Maps of chlorophyll-a derived using the NDVI and the GNDVI are shown in Fig-

ure 11. The legend for chlorophyll-a had a range of 0-120 µg/L in both the maps using the 

NDVI and the GNDVI. Analyses using these indices indicated that the level of chloro-

phyll-a in the Nae Seong stream was in the range of 0–30 µg/L.  

  
(a) (b) 



 

  
(c) (d) 

Figure 8. Results of image processing using each of the four spectral indices. (a) Normalized dif-

ference vegetation index. (b) Green normalized difference vegetation index. (c) Normalized differ-

ence red edge index. (d) Normalized green red difference index. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Regression analysis of the four spectral indices and chlorophyll-a. (a) Normalized differ-

ence vegetation index (NDVI). (b) Green normalized difference vegetation index (GNDVI). (c) 
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Normalized difference red edge index (NDREI). (d) Normalized green red difference index 

(NGRDI). 
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Figure 10. Correlation of the analysis between the NDVI and three vegetation index (GNDVI, 

NDREI, NGRDI). 



 

  
(a) (b) 

Figure 11. Chlorophyll-a maps derived using (a) the normalized difference vegetation index 

(NDVI) and (b) the green normalized difference vegetation index (GNDVI). 

4. Discussion 

UAV and USV hybrid platforms that use multispectral sensors and water quality 

sensors to detect and map chlorophyll-a as an indicator for algal blooms, they provide 

more reliable spatial information than UAV or USV alone and help identify specific algal 

species. The NDVI and the GNDVI were also reported to be effective indices in a previous 

study conducted on the detection of chlorophyll-a using vegetation indices and images 

obtained from a multispectral sensor-integrated UAV [24]. The results of the previous 

study revealed that the NDVI and the NGRDI had the highest and the lowest effective-

ness, respectively, among the vegetation indices in the comparison between NDVI (Nor-

malized Difference Vegetation Index), ENDVI (Enhance Normalized Difference Vegeta-

tion Index), NDREI (Normalized Difference RedEdge Index), NGRDI (Normalized Green-

Red Difference Index), and GNDVI (Green Normalized Difference Vegetation Index) for 

waterside plants and floating plants of a certain period. Particularly, the NGRDI had a 

higher value on the water surface and was not useful for detection of aquatic plants. The 

NDVI and GNDVI, which showed the most apparent difference between aquatic vegeta-

tion and water surface, were reported to be the most effective for detecting aquatic plants 

[42]. Similar results were derived in this study when the vegetation indices were applied 

for detection of chlorophyll-a based on these results. In recent years, studies have been 

increasingly conducted using hyperspectral sensor to classify various types of phyto-

plankton. Although hyperspectral sensor is disadvantageous in terms of sensor weight 

and cost, there is an advantage in that higher spatial and temporal resolutions are pro-

vided compared to aircrafts or satellites. It is very important to collect and analyze many 

water-quality samples in order to visualize the chlorophyll-a element of river using vege-

tation indices with more reliable spectral resolution [43]. Furthermore, analysis results can 

be distorted due to wavelet distortion, solar reflection, shadow, and turbidity for subjects 



 

with fast flow rate such as river. Regardless of which sensor is used, a large number of 

water quality data should be secured from the river having a characteristic of continu-

ously fast flow rate for a same flight duration. This study used multispectral sensors of 

green (550 nm), red (660 nm), red edge (735 nm), and near-infrared (790 nm) bands. Fur-

thermore, because chlorophyll-a shows different reflected signals depending on seasonal 

or visual appearance, the chlorophyll-a was measured at numerous points of the target 

waterbody using the USV during the flight time of UAV. In the results of analyzing the 

characteristics of the water quality data measured using the USV and various vegetation 

indices extracted from the multispectral images of UAV, the NDVI showed a very high 

correlation in terms of representing the characteristic of chlorophyll-a in the river. In ad-

dition to the NDVI, the GNDVI can be used to estimate chlorophyll-a because of identifi-

cation of the green band, besides the red and the NIR bands, facilitates estimation of chlo-

rophyll-a (Figure 10, Figure 11).     

5. Conclusions 

In order to capture chlorophyll-a images using a UAV, field analysis must be con-

ducted in the target aquatic area in conjunction with UAV measurements. In the current 

study an autonomous USV and UAV hybrid system was developed to assess chlorophyll-

a map. The use of the autonomous USV was successful because it facilitated the acquisi-

tion of two-dimensional visual chlorophyll-a data. The Data Cleaner tool was adapted and 

used in the analysis of USV data, and four types of spectral indices were applied to the 

UAV images to derive estimations of chlorophyll-a concentrations. The chlorophyll-a 

maps thus derived indicated that both the NDVI and the GNDVI were useful. Increased 

use of autonomous USVs to monitor water quality and chlorophyll-a concentrations is 

expected in the future. 
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