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Abstract: One of the key components of application performance monitoring (APM) software is
AI/ML empowered data analytics for predictions, anomaly detection, event correlations and root
cause analysis. Time series metrics, logs and traces are three pillars of observability and the valuable
source of information for IT operations. Accurate, scalable and robust time series forecasting and
anomaly detection are desirable capabilities of the analytics. Approaches based on neural networks
(NN) and deep learning gain increasing popularity due to their flexibility and ability to tackle complex
non-linear problems. However, some of the disadvantages of NN-based models for distributed cloud
applications mitigate expectations and require specific approaches. We demonstrate how NN-models
pretrained on a global time series database can be applied to customer specific data using transfer
learning. In general, NN-models adequately operate only on stationary time series. Application
to non-stationary time series requires multilayer data processing including hypothesis testing for
data categorization, category specific transformations into stationary data, forecasting and backward
transformations. We present the mathematical background of this approach and discuss experimental
results from the productized implementation in Wavefront by VMware (an APM software) while
monitoring real customer cloud environments.

Keywords: time series analysis; anomaly detection; neural networks; hypothesis testing; trend
analysis; periodicity analysis; cloud applications; pretrained models; transfer learning
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1. Introduction

One of the main goals of IT infrastructure and application monitoring/management solutions
is full visibility into those system with increasingly more intelligence. Prediction of performance
degradations, their root cause analysis, as well as self-remediation of issues before they affect a
customer environment are anticipated features of modern cloud management solutions. Self-driving
data centers require the availability of proactive Analytics with Al for IT operations (AIOps) [1] in
view of nowadays very large and distributed cloud environments. The key capabilities of the AIOps
are predictions, anomaly detection, correlations and root cause analysis on all acquired data including
traces, logs and time series (see [2-10] with references therein).

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.
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Time series collection and analysis is of great importance for various reasons like anomaly
detection, anomaly prediction, correlations and capacity planning [11-15]. Administrators of cloud
environments require automated forecasts of future metric-data values for prediction of future states
of applications or infrastructure components. Capacity planning requires trend analysis for resource
consumption like CPU, memory, etc. for prediction of additional needed processor bandwidth or
mass-storage capacity in order to prevent delays and failures. Time series data can also be used for
correlation analysis and as a source of anomaly events for further root cause analysis.

Time-series analysis is a significant branch of mathematics and computing that includes a variety
of different types of analytical procedures, computational tools, and forecasting methods. It is sufficient
to mention the well-known and powerful approaches like Fourier analysis, time series decompositions,
forecasting by SARIMA and Holt-Winters’ methods (see [16-20] with references therein). However,
distributed cloud infrastructures and applications require relatively quick forecasts and are associated
with significant temporal constraints, forestalling lengthy and computationally intensive analyses.

In this paper (see also [2]), we focus our attention to time series forecasting with further application
to anomaly detection problem. Application of NN-models and other ML techniques may produce
efficient methods [21,22], but naive implementation in a cloud-computing environment fails to provide
adequate response times and would likely be far too expensive for most clients. Training and storing of
neural networks are both time-consuming and expensive with respect to the necessary resources (CPU,
GPU and memory). Hence, it is not feasible to train those models in demand for the specified time
series data. Moreover, it would not be attainable to train and store special-purpose neural networks for
all of the different possible types of time series. From the other side, a naive attempt to train a single
neural network to analyze all of the various different types of time-series data would also likely fail,
since different types of time-series data exhibit different types of behaviors and temporal patterns. A
single neural network would need a vast number of nodes and even vaster sets of training data to
produce reasonable forecasts for global time-series data. The truth should be somewhere in the middle.

The purpose of the paper is application of NN-based models to time series forecasting in cloud
applications. The main idea is training of a generic NN-model and transferring the acquired knowledge
to a customer specific time series data never seen before. This should be the only way of overcoming
the challenges regarding the resource utilization (GPU trainings of the networks) as the application
of the pretrained model doesn’t require on-demand network training. We already have criticized the
naive approach to this problem due to overwhelming complexity. Such a solution is feasible if we
can narrow down the problem to some classes of time series data with specific behaviors for which
application of pretrained models are attainable. Moreover, those classes should be enough large to
cover the sufficient portion of unseen customer data and enough specific by the behavior to deal
with moderate network configurations. We found that class of stationary time series can be properly
handled by NN-models. Unfortunately, this class is not common in the discussed domain. Conversely,
the majority of time series data contain non-stationary patterns like trend, seasonality or stochastic
behavior. However, the class of stationary time series data can be extended to time series categories
which can be transformed into the needed class by some simple transformations.

This outlines the main idea of our approach - perform time series classification, find those
needed transformations and utilize the pretrained model. We develop the theoretical foundation of the
approach and show the results of its realization in real cloud-computing environments. Implementation
and testing are performed in Wavefront by VMware [23]. Wavefront offers a real-time metrics
monitoring and analytics platform designed for optimization of cloud and modern applications.

Worth noting that our main goal is the performance of the approach for cloud environments
rather than accuracy compared to the well-known techniques that perform individual training for
each specified time series data in the GPU accelerated environments. For us, the performance is
balance between accuracy and resource utilization. We observed that the accuracy of the forecasts
is comparable to the classical ARMA related approaches while preserving resource consumption on
acceptable levels. In particular, application of the pretrained network to a specified time series in a
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cloud environment can be performed without GPU acceleration and with moderate number of CPU
cores.

One of the important applications of time-series forecasts is detection or prediction
of infrastructure and application performance degradations or failures. Accurate and fast
anomaly /outlier detection leads to proactive problem resolution and remediation before it affects
a customer environment. It means that timeliness and preciseness of anomaly detection are of
great importance for distributed systems. However, worth noting that forecasts based anomaly
detection may be associated with low response times especially for longer forecast horizons.
Moreover, precautionary procedures should be taken for reduction of false positive anomalies that can
unnecessary disturb users with alarms.

Another important aspect tightly related to the problem is association of time series outliers
with system anomalies which is roughly saying not always true. In any case, such problems are
unsolvable without intrusion of domain expertise into mathematical models or their outcomes. Our
solution to anomaly detection utilizes a test window which is smaller than the forecast window
for providing adequate response times and meanwhile contains enough data points to reduce the
possible false positives. The fraction of violations of the confidence bounds of the forecasts in the test
window generate an anomaly signal (time series). Whenever the anomaly score rises above a particular
threshold, the anomaly monitor can generate alarms and warnings or launch preventive procedures.

2. Related Work

Application of pretrained NN-models to solution of different problems is a well-founded approach
for many domains like classification, image processing, voice recognition, text mining, etc. (see [24-28]
with references therein). It is known as transfer learning for some applications [28] and is a natural
approach for knowledge generalization and complexity reduction. Such pretrained networks (VGG,
ResNet, BERT, etc.) have deep learning sophisticated architectures requiring serious resources and
datasets for their trainings. Application of this idea to time series forecasting is a novel approach.
We only consider the first steps and many questions still need clarifications. We trained the simplest
networks like MLP or LSTM, but the exact required architecture remains unknown and extended
research will be carried out elsewhere.

Time series forecasting is an important area for many diverse areas such as econometrics, signal
processing, astrophysics, etc. The classical theory of forecasting [16—18] deals with time series data
with wide range of properties. ARMA models are very powerful for stationary time series data.
However, in many problems (e.g. economy, business) time series exhibit non-stationary variations
due to trend or seasonality (deterministic or stochastic). Models that analyze non-stationary data
require knowledge of those patterns. Some models assume that variations are deterministic and apply
regression analysis to handle both trend and seasonality. One of the interesting approaches is time
series decompositions known as STL [20]. Other approaches model data as having stochastic trend
as in ARIMA and stochastic seasonality as in SARIMA. Holt-Winters’ seasonal and SARIMA models
represent a broad and flexible class relevant for many applications. It has been found empirically that
many time series can be adequately fit by those models, usually with a small number of parameters.

Naturally, models based on artificial neural networks should have better performance due to their
non-linearity, flexibility and ability of generalization [21,29,30]. It was assumed that no any specific
assumptions need to be made about the model which should be one of the most important advantages.
Different authors showed in their studies and experiments [31] that better results compared to SARIMA
and related models could be achieved only by combination of transformations that ‘stabilize’ the
behavior (e.g. detrending, deseasoning) of the specified time series [32]. However, the results regarding
the forecasting of non-stationary time series data via NN models are very controversial [31,33-35].

It turned out that time series data categorization is the crucial milestone for the analyses.
Application of NN-models and deep learning for time series classification should be explored elsewhere
[36]. In the current research, we restrict ourselves by the classical hypothesis testing methods for trend
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and seasonality detection. Each data category identifies the set of transformations that will convert any
class-representative into a stationary time series. For example, deterministic and stochastic trends can
be detected via KPSS [37] and ADF [38—41] tests, respectively, that have the best combined power for
data with moderate length. Seasonality detection has some additional peculiarities. It requires two-fold
investigations. First, the periodicity lag should be explored and for many applications multi-seasonality
is preferable with different lags. One of the powerful methods for period-lag determination is Fourier
analysis treating in the frequency domain [19]. Another interesting and very simple approach is phase
dispersion minimization (PDM) [42—44] treating the time domain with some advantages over the
classical Fourier analysis. It is admitting efficient optimal implementation and is applicable for data
with few observations, with non-regular sampling, with gaps and with non-sinusoidal periodicities.
Secondly, some tests should be applied to reveal either deterministic or stochastic seasonality. PDM
approach can test both categories based on some importance measures. Valuable tests for detecting
deterministic versus stochastic seasonality are CH [45], HEGY [46], OCSB [47] and more [48-51]. In this
article, we restrict ourselves by the determinisitic seasonality. Stochastic seasonality will be considered
elsewhere.

Time series anomaly/outlier detection have been investigated by numerous authors for many
applications [11-14,52-57]. It is known as very hard problem with many diverse ramifications.
NN-based methods and deep learning are now becoming very popular and powerful [54,58].

3. Main Idea

Application of NN-based models to time series forecasting in cloud applications faces several
challenges. One of the main ones is the restriction on the computing resource utilization. Complex
network trainings require powerful GPUs and sufficient volume of data. Those are real issues in cloud
environments, and the solution is in transfer learning, or in other words, in utilization of pretrained
NN-models. We train a network on a global dataset collected across different customers and store it for
further application to a specific time series data definitely never seen before. It means application of
the NN-models on-demand for a specified time series via several CPU cores without GPU acceleration.
The training of the models will be performed in private on-premises powerful data centers with
enough GPU resources. Figure 1 shows a high level schema of this idea.

Off-Line Training

Network Configuration 4,
Network Weights sd,,
Yo%
RN
%,
(A

%
Training ) %,)
Database NN On-Line Forecasting
Customer
Database NN

Figure 1. Utilization of pretrained NN-models for cloud applications.

The entire system consists of two separate and totally independent subsystems called as off-line
and on-line modes. The off-line mode performs model training for a global training database containing
time series data with different behaviors. We store the network configuration and weights in a cloud
(as a file in "json" format) for on-demand access. The on-line mode corresponds to a customer
cloud-computing environment. The weights and configuration of the pretrained network can be
restored from the file and applied to the specified time series data. Off-line mode requires GPU
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empowered data centers while on-line mode is the customer common computing space without GPU
acceleration.

The diversity of time series data behaviors is a crucial milestone connected with the system of Fig.
1 that probably will not allow to handle all of them with a unique trained model. We already mentioned
the role of data categorization for proper model construction. One of the scenarios is selection of data
classes and the corresponding class-specific network models. Those pretrained networks can be stored
and called on-demand. Preliminary data categorization should be performed in both on-line and
off-line modes for treating with the required models. This scenario should be considered elsewhere.

Another scenario developed in this paper is selection of a single class that can be adequately
treated by some NN-models and transformation of other time series into it. This scenario should be
more optimal as only one model should be trained, stored and applied. How to find the class with the
best trainable and transformable characteristics? Our previous discussion indicated that the class of
stationary time series should be the first candidate for experiments. They can be properly modeled
by NN-models, and the techniques of transformation of a non-stationary time series into a stationary
(called before as stabilization) are theoretically well-founded. The set of stabilizing transformations
is time series class specific. A deterministic trend can be stabilized via detrending by a regression
(linear or non-linear), a stochastic trend by a differencing of the proper order, etc. Our implementation
applies different well-known hypothesis testing algorithms for time series classification. Deterministic
versus stochastic trend classification can be performed via KPSS and ADF tests. Deterministic versus
stochastic periodicity analysis can be performed via PDM and CH tests.

As a result, we perform model trainings only for stationary time series data. We have two
possibilities. Either collect only stationary time series data for a global database where selection
similarly can be performed by a hypothesis testing or collect all available time series and feed the
models after preliminary stabilization.

Hypothesis \
Training = " - Transformations NN-Model
esting
Database Training

Figure 2. Off-line training of an NN-model for stationary time series.

Flowchart of Figure 2 describes the second possibility. The training dataset contains time series of
any behavior. Hypothesis testing engine performs data categorization. A stationary time series will be
used directly for the model training. In case of non-stationary time series, the engine also identifies the
set of transformations that will transform it into a stationary one and only then feed the network. In
case of unknown data type, the time series will be skipped from the process of training.

0 Hypothesis \
Training > - > Transformations Pretrained
Database e NN-Model
U Inverse
Capacity Planning Transformations
Anomaly Monitor

Figure 3. On-line forecast for a user specified time series data.

Application of the pretrained neural networks to a user specified time series data will similarly
pass through the hypothesis testing engine for data categorization (see Figure 3). The model will be
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straightforwardly applied to a stationary data. Non-stationary time series should be transformed into
a stationary one, and then the corresponding inverse transformations should be applied to the forecast
for recovering the original scale and behavior.

The next challenge is limited number of predefined input/output nodes of the network models
which means limited number of history and forecast data points included in the process of a prediction.
In the current implementation, we use networks with 40 inputs and 20 outputs. It means utilization of
40 history points to get 20 forecast values which restricts the ability of models to utilize bigger number
of points even when they are available. Figure 4 shows the sparse grid as red dots selected from the
entire history windows consisting of black and red dots. As a consequence, the forecast grid will be
sparse.

Our idea is in mobilization of the entire available data points in a history window. NN-models
require uniformly sampled history points. The forecast points will appear with the same monitoring
interval. We take N uniformly sampled history points multiple to the size of a network input. In a
specific implementation, it should be multiple to 40 and N = k x40 where k = 1,2, - - - can be selected
from the complexity considerations. This is the entire history window (see the full grid in Figure 4).
We divide the full grid into k different uniformly sampled sparse grids containing 40 data points and
all sub-grids with the same monitoring interval. All those sparse grids can be fed into the network
model, get the corresponding forecast values (20 points in each) and by gathering them together derive
the forecast window with k * 20 points.

Worth noting that the hypothesis testing should be applied to the entire full grid to have enough
data points for understanding the behavior of a time series, then the forecast should be applied to each
sparse grid.

Sparse Grid
N N N\ N N I »
.....................o.oeeoo ......................................... >
Current Time
Full Grid
/\ /\ ........... . ‘
~ T e T v

CurrentTime

Figure 4. The construction of the full grid for the forecast models with a comb-like selection approach.

4. Hypothesis Testing for Data Categorization

In this paper, we restrict ourselves by some specific data categories that contain deterministic and
stochastic trends, deterministic and stochastic periodicities. In all those cases, we are aware how to
transform a non-stationary data into a stationary one with further application of NN-models. The
list of categories can be enlarged if the corresponding transformations are available. It should be
reasonable to add more domain specific data categories based on some domain expertise. Flowchart of
Figure 5 illustrates the workflow of data categorization engine.

The engine starts with the periodicity analysis. It tests for three data categories - stationary
periodic, trendy periodic and stochastic periodic. The PDM test inspects for the first two categories
and CH test is for the last one. PDM test runs across different lags and measures the importance. The
value of the importance above a threshold is the clear evidence of the deterministic periodicity with
the corresponding lag. We call it as stationary periodic time series. PDM examines data for trendy
periodicity if all previous importances were below the threshold. It removes a possible deterministic
trend via linear regression and test for the period once more. The positive result identifies trendy
periodic time series. CH test runs for the stochastic periodicity if both tests fail to categorize data. Time
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series is non-periodic if all periodicity tests fail. A non-periodic time series data should be scanned for
a trend. Combination of KPSS and ADF tests will classify data as stationary or trend stationary (trend
is deterministic) or unit root time series (trend is stochastic). Data type is unknown if all tests fail. We

don’t utilize unknown types.

1 Stochastic
Trend
Unknown
Category

Stationary Trendy Stochastic
Periodic Periodic Periodic

Figure 5. Data categorization engine.

The engine starts with the periodicity analysis. It tests for three data categories - stationary
periodic, trendy periodic and stochastic periodic. The PDM test inspects for the first two categories
and CH test is for the last one. PDM test runs across different lags and measures the importance. The
value of the importance above a threshold is the clear evidence of the deterministic periodicity with
the corresponding lag. We call it as stationary periodic time series. PDM examines data for trendy
periodicity if all previous importances were below the threshold. It removes a possible deterministic
trend via linear regression and test for the period once more. The positive result identifies trendy
periodic time series. CH test runs for the stochastic periodicity if both tests fail to categorize data. Time
series is non-periodic if all periodicity tests fail. A non-periodic time series data should be scanned for
a trend. Combination of KPSS and ADF tests will classify data as stationary or trend stationary (trend
is deterministic) or unit root time series (trend is stochastic). Data type is unknown if all tests fail. We
don’t utilize unknown types.

4.1. Periodicity Detection

We restrict ourselves by stationary periodic and trendy periodic categories. Stochastic periodic
time series will be discussed elsewhere although the idea of the NN-model application is identical.

Let us start with period-lag determination. Let y;, t = 1,..., T be the observed time series data
with ¢y period-lag. We define it as the equality

Yn+ksty = Yns k=0,1,2,... 1)

In reality, we can only expect approximate equality due to noise and instability in a time series

y?l-"k*fo ~ ]/n/ k - O, 1,2,. .. (2)

We follow [42—44]. The idea is very simple and Figure 6 illustrates it. It shows pure periodic time
series data with {5 = 37. We consider two different subsequences uniformly sampled from the data.
The sampling rate of the first subsequence is matching the true period-lag ¢, (see the top chart). It is
a constant subsequence with zero variance due to the periodicity. The sampling rate of the second
subsequence doesn’t match the period-lag. The variance of the second subsequence is almost identical
to the variance of the entire time series.
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period lag=37 the variance of the sample is 0
f 0., b L0, L0, o0, R 0.,
* L = A = A N A = A * J
T T T T T
lag=37 lag=37 lag=37 lag=37 lag=37
period lag=37 : . . 5 :
the variance of the sample is close to the variance of the time series
“'.0 o* e, o* - o* *e 0. - * o* L)
..' :.' L S . :.' . - B -,‘ ; S '_‘
* L * ' = * A * A = J
1 1 T T
lag=45 lag=45 lag=45 lag=45
Figure 6. An example illustrating the idea of the PDM method.
More precisely, let time series variance be
1 N
(72 -\2
R )

where 7 is the average. Assume M distinct samples collected from the time series containing ; data
points with variances sjz, j=1,..., M. Note, that all M samples must be collected with uniform and
fixed lag. We denote by s(lag) the average variance of the samples as follows

Einl(n]' —1)s;

, 4
T (o, — M) @

s(lag) =

The preliminary goal is minimization of s(lag) via lag selection. Let us reformulate the problem that
allows more efficient implementation. We define the phase of each data point y; at the time stamp ¢; by
the following expression
t; t;
b= _ || P 1

=1 | @b ®
where [-] stands for the integer part. If data points are sampled regularly, then t; = i,i = 1,2,....
In order to detect data points with similar phases, we divide the full phase interval (0,1) into fixed
bins (20 in our experiments) and pick M samples from time series from the same bin. Consider the
following statistic

0(lag) = S((ITLE). (6)
If lag # £y
s(lag) ~ 0% and 6(lag) ~ 1. (7)

Otherwise, if lag = ¢y, statistic 8 will reach a local minimum compared with neighboring periods,
hopefully near zero
(lag) =~ 0. 8)

We define "importance” of each lag as

importance(lag) =1 — 0(lag). )
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Time series called to be periodic if one of the local maximums of the importance(lag) is greater than
0.6. Period-lag can be identified as solution of the following optimization problem

{EO = argmins(lag) (10)

importance(ly) > threshold

PDM method has another interpretation connected with time series decompositions. Assume the
following additive decomposition of a time series depending on a lag (details see in [16])

Time Series = Seasonal Component(lag) + Residual Time Series(lag). (11)
Then, the strength of the seasonal component corresponding to a specified lag can be measured by the

following fraction of variances
variance(Residual(lag))

variance(Time Series) (12)
with the corresponding importance of the /ag
importance(lag) — 1 — variance(Residual (lag)) (13)

variance(Time Series)

which exactly coincides with the importance defined via PDM method.

Figure 7 illustrates the process of identification of a trendy periodic time series. The left chart
shows almost periodic time series with a slight trend. The red line indicates the trend. The right charts
show the behavior of importance versus lag (like periodograms in the Fourier analysis). The second
chart corresponds to the original time series. The importance of the largest local maximum is far below
the threshold (0.6) and there is no evidence of a period. The third chart corresponds to the detrended
time series via linear regression. The first local maximum (¢y = 19) has the importance above the
threshold. The time series can be categorized as trendy periodic with 19 period-lag.

19, importance = 065)

“Trendy Almost Periodic Data PDM (Lag = 5, Importance = 0.27)

POM of
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25
23 05
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. g : Il
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T 7 ) ED EJ
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Figure 7. Categorization of a trendy periodic time series.
4.2. Trend Detection

Data categorization engine exploits three tests named as KPSS.;, KPSS.; and ADF, for trend
type detection. They test a time series for three possible categories - stationary, trend stationary and
unit-root process. We follow [37-39,59].

Lety:; t =1,...,T be the observed time series data. We consider the following decomposition of
the time series into the sum of a deterministic trend, a random walk, and a stationary error

yr =Ct+ri+ ¢, (14)

where r; is the random walk
Ty =141+ Ug (15)

and u; are iid(0,02). The initial value ro = c is fixed and serves as an intercept. Under the null
hypothesis y; is trend-stationary if (T,% = 0. We call this test as KPSS,;. In a special case, = 0, in which
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case under the null hypothesis y; is stationary around a level c. We call the test as KPSS.. Thus, we
consider the following two hypothesis testing scenarios:

KPSS,_ test :
— Null Hypothesis : level stationarity (16)

— Alternative Hypothesis : unit root process

and

KPSS; test:
— Null Hypothesis : trend stationarity (17)

— Alternative Hypothesis : unit root process

Tests use ordinary least squares (OLS) to find the coefficients and the corresponding residuals e;,
t =1,2.., T. They apply one-sided LM statistic for the hypothesis 02 = 0 defined as follows

t
St:Zei,t:Lz,...,T (18)
i=1
and
T 52
LM =Y 5, (19)
= 07

1

where 67 is the estimate of variance of ¢;. The test is an upper tail test. The corresponding p-values
(Py) can be found in [37].
ADF test uses data model

p
Ayt =yr — Y1 = CH+ oY1+ Y asAyt—s + €y, (20)
s=1

where c is the level, ¢; is a stationary process, p is the number of lags used in the model. The value
p = 0 corresponds to DF test. Test uses OLS to find the coefficients and applies Akaike information
criterion for automatic lag selection. The unit root test is then carried out under the null hypothesis
xg = 0. Alternatively, test checks the condition &g < 0 that corresponds to a stationary process. We call
this test as ADF,:

ADF, :
—Null Hypothesis : unit root process (21)

— Alternative Hypothesis : stationary process

The value ¢ = 0 corresponds to a unit root process without a drift. The ADF, test calculates the
following statistics

X0
DF = 22
SE(a) 2)
and compare with the critical values known from the DF test to calculate the corresponding p-values

(Po)-

Flowchart in Figure 8 illustrates the workflow for the trend and stationarity testing. It shows the
priority of test applications. We sequentially apply KPSS., KPSS; and ADF; and inspect the p-values
of the tests. If the corresponding P, > 0.05, we stop the procedure and categorize data accordingly.
The data type is unknown if all tests fail.
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Figure 8. The priority order for a trend detection.

Figure 9 shows how the flow of Figure 8 works for specific examples. We present the
corresponding p-values of the tests for inspection. We use in our experiments implementation of
KPSS., KPSSct and ADF. from Python module "statsmodels". The p-value of the KPSS, test for the
first example is larger than 0.05. Although, the p-value of the KPSS; is also bigger than 0.05, the
priority order categorizes data as the stationary. By the way, in the production, we don’t need the
second p-value if the first one is already the winner. The p-value of the KPSS, for the second example
is smaller than 0.05 and the categorization engine tries the next one. The p-value of KPPS,; test equals
to 0.05. We accept the null hypothesis and categorize data as trend stationary. However, interesting to
see that the p-value of the ADF, test is also very big. It means that data can be categorized either as
trend stationary or as a unit root process, but the priority order (actually based on the simplicity of a
category) selects the trend stationarity as the winner. For the third example, the p-values of KPSS, and
KPSS,; tests are smaller than 0.05 while for ADF, it is bigger. The last example belongs to a unit root
process.

Stationary Deterministic Trend Stochastic Trend
“| KPSS,:0.01; KPSS,:0.05; ADF.: 0.9 |
o )
M
=

. KPSS,:0.1; KPSS,:0.1; ADF;: 0 ‘|

1] E3 ) 3 0 E3 B0 s £ 3 ) 10 1 %0 £ ED ED r 0 E) ) B %0 £ ED E &

KPSS.:0.01; KPSS,:0.01; ADF:0.9

Figure 9. Trend identification by the data categorization engine.
5. Time Series Forecasts with Confidence Bounds

In this section, we discuss application of the pretrained NN-models to time series forecasting
in the on-line mode. The entire engine was described in Figure 3. Recall that NN-models were
only pretrained for stationary time series. A non-stationary time series should be converted into a
stationary one and the corresponding forecast should be reconverted by backward transformations.
We restricted ourselves by five specific data types: stationary, trend stationary (deterministic trend),
unit root process (stochastic trend), stationary periodic and trendy periodic. More extended version of
data categorization will be considered elsewhere.

5.1. Stationary Time Series

We treat with this class without any forward and backward transformations. We only perform
scaling into the interval [0,1] as the standard procedure for NN-models. We apply the following

transformation
X — sz'n

Xscaled = Xm—ux — Xmin, (23)

where X is the original time series and X,,;;;, Xiuax are its minimum and maximum values, respectively.
We apply reverse scaling to the corresponding forecast by multiplying with (Xyax — Xpin) and
summing by X,
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The confidence bounds of the forecasts are one of the important pieces of any approach. Ideally,
we need rather long historical data with different forecasts that will help to extract the bounds based
on some criticality levels (say 95%). Unfortunately, we have only one history window with the
corresponding forecast window and forced to extrapolate that available information to future data
points without strong evidence.

Assume yi, k = 1,...,T be the observed data points from a stationary time series, fjx, k =
T+1,...,T+ M be the corresponding forecast values and y = average{yy}. Let yZlgh, k=1,..., Nuign
and yff’w, k=1,..., Ny, be history window data points that are bigger or equal and lower or equal
than y, respectively. Then, we calculate higher and lower standard deviations as follows

1 N 2\ ”
_ ig
Thigh = - , (24)
81\ Nygn — 1 k; (5" = n)

and

1
1 Niow low 2 2
Olow = <Nlow—1 k; (yk - #) , (25)

respectively. We define upper and lower bounds (UB and LB as confidence bound vectors) for each of
the point in the forecast window as follows

UBy = Yk + 2 * Ohigh, LBr = Yk — 2% Olow, (26)

respectively, where parameter z stands for the criticality levelsz = 1,2,3, - - -.

Confidence bounds for any data category can be found similarly. We perform forward
transformations for converting a time series into a stationary, calculate the corresponding forecast with
the confidence bounds and apply backward transformations.

O

History Window
Forecast Window
° Observed Data Points

400 500 600 700 800 900 1000

Figure 10. The forecast of a stationary data.

Figure 10 illustrates an example of a forecast for a stationary time series. History window contains
400 points (full grid). It consists of 10 sparse grids with 40 points that we used for independent
forecasts. They provide with 10 forecasts with 20 points in each. We collect those forecasts together and
get 200 points in the forecast window. The forecast is smoother (less variable) than the really observed
data points which is common for the NN-based models.

5.2. Trend Stationary Time Series

This class contains time series data with deterministic linear trend that can be removed via
ordinary least squares (linear regression). Linear regression identifies the corresponding slope (k)
and intercept (b). We remove the trend (kt + b) and apply the pretrained NN-model to the resulting
stationary data, get the forecast and recover the trend by the same slope and intercept. Figure 11 shows
an example for a trend stationary time series.
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Figure 11. The forecast of a trend stationary time series.
5.3. Unit Root Processes

We apply differencing to the time series of this type and convert them to a stationary process.
After application of the pretrained NN-model, we apply backward transformation (cumulative sums)
and restore the original trend and scale. Figure 12 shows an example for a trend stationary time series.

History Window
w1 v

Forecast Window
° Observed Data Points

40.0

399

398

1800 1900 2000 2100 2200

Figure 12. The forecast of a unit root process.
5.4. Stationary Periodic Time Series

We assume that for any time series from this class, the period-lag ¢y is known. We consider two
different approaches for the corresponding forecasts. The first approach is connected with the grid
construction described above. History window consists of data points multiple to the size of the
input of the NN-model. We already mentioned that the current model has 40 inputs and the history
window will have 40 * k data points. Hence, we have k different sub-grids for separate forecasts. The
idea of the first approach is to take k = ¢, get k different stationary (almost constant) data samples
due to the periodicity and directly apply NN-model to each sub-grid without any forward-backward
transformations. Figure 13 shows an example of a stationary periodic time series with £y = 19. We
show also data points of the history window for better visual perception.

Almost Periodic Data with Lag = 19

History Window

Forecast Window .
.

° Observed Data Points

600 650 700 750 800 850 900 950

Figure 13. The forecast of a stationary periodic data.
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The mentioned approach will cause problems if the process of grid extraction is connected with
time consuming database calls and the period-lag is unknown for a time series. In that cases, it is
impossible to detect the period-lag with further resampling of the time series. In such situations,
we can apply different deseasoning approaches like seasonal means. Hence, we can subtract the
periodicity, forecast the corresponding stationary time series and return the seasonal-means.

5.5. Trendy Periodic Time Series

The procedure is identical to the previous one as after removal of a deterministic trend by the
linear regression, we get a stationary time series. At the end, we just return the trend back.

Figure 14 illustrates the forecast for a trendy periodic time series with application of the
seasonal-means approach.

———— History Window

e ] Forecast Window
Observed Data Points

[ 200 400 600 800 1000 1200

Figure 14. The forecast of a trendy periodic data.
6. Anomaly Signals From Time Series Data Forecasts

In this section, we discuss an approach to anomaly signal time series generation based on the
confidence bounds of the forecasts. Each datapoint in the anomaly signal shows the percentage
(fraction) of observed data points in a test window that violate upper and/or lower confidence bounds.
The anomaly signal may detect or predict anomalous conditions whenever its values exceed a particular
threshold. In such situations, an anomaly monitor will generate alarms indicating some behavioral
changes in a specified time series. We consider details for NN-based forecasting methods described in
the previous sections, although the approach is applicable to any predictive model.

One of the principle problems in time series data anomaly/outlier detection is setting of the
proper trade-off between the timeliness and confidence of the detections. From the one side, the alarms
should be detected as faster as possible for preventive actions before the alarms will impact customers’
environments. From the other side, the big number of false positive alarms overwhelms system
administrators and decreases the confidence towards the anomaly detection system. The trade-off may
be resolved by the proper selection of underlying parameters for the anomaly signal generation.

An initial indication that the state of a monitored system has begun to change in an unexpected
fashion is that an observed data point diverges from its forecast. However, no one is expecting that this
single indication will be used as a detectable signal due to a significant noise in time series data and
its non-deterministic nature which makes very accurate predictions impossible. Another indication
can be violation of a confidence bound by an observed data point. Nevertheless, no one will pay
attention to that signal if the subsequent observed time series data are within the bounds or even
close to the predicted values. The violation may possibly be an outlier due to noise or some sudden
instability rather than an indication of a serious malfunctioning of a system. It is likely that many
false-positive alarms will appear if alarms and warnings will be generated based on single-data-point
or short-term departures of observed time series data values from the forecast ones. However, by
waiting until a pattern of detected preliminary behavioral change will emerge, the problem may have
already cascaded to a point when proactive actions can no longer be possible due to some catastrophic
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impacts on the system. The period of time between the initial indication of an anomaly and the onset
of serious degradation depends on the nature of time series and the process that it describes.

Figures 15 and 16 illustrate the basis of the solution to the mentioned problems. Recall that
there are three forecast time series data that should be used for anomaly signal generation. The first
one is the predicted time series (forecast window) and the next two ones are predicted upper and
lower bounds. We are not showing the last two time series data in the figures for the simplicity but
the term violation always refers to the bounds. Also, we refer to a history window which contains
time series data points from which the mentioned forecasts were calculated. Moreover, observation
window contains actually monitored time series data points. It is assumed that the history and forecast
windows contain uniformly sampled time series data points with the same monitoring intervals.
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Figure 15. The hidden background of an anomaly monitor.

Figure 15 represents the hidden background of an anomaly monitor while following a specific
time series data. The monitoring will be started by indication of the length of the forecast window.
We describe below the process of parameter selection in more details. Now, we assume that the
forecast window contains T uniformly sampled data points. To be more precise, parameter T must be
a multiple of the size of the output of the pretrained NN-model. Moreover, in the previous sections
it was indicated the strict connection between the sizes of a history window and the corresponding
forecast window.

The current pretrained network uses 40 historical points to predict 20 future points. It means that
the history window is twice longer than the forecast window for the current model. For generality,
assume that a history window is r times longer than a forecast window (see Figure 15). The user will
not see the history window. His UI chart will contain several forecast windows, as much as possible to
fit. We show m such intervals in Figure 15. The engine will calculate the forecast for the first window
and the corresponding anomaly signal will be estimated for all observed data points. Then, the engine
will repeat the process for the other forecast windows by shifting the history window to the right
by T data points until it will reach the final forecast window. There are different reasons why we
didn’t calculate a unique forecast for the entire UI chart (for m - T data points). The first reason is the
complexity of data preprocessing. If a user opens rather big Ul chart (T is big) than the forecast engine
will fail to process r - T data points. The second reason is the desire of immediate incorporation of the
latest observed data points into the process of anomaly signal generation.

Figure 16 shows the process of calculation of the anomaly signal for each of the forecast windows.
Moreover, the anomaly score must be assigned to each data point in a forecast window. As the entire
forecast window can be rather large, and by recalling the requirement for the timeliness, we incorporate
a test window (smaller or equal to the forecast window) for the percentage calculation (see the "blue"
rectangles in Figure 16) for faster reaction to possible anomalies. To each just observed time series
data point a test window should be assigned extending to the left by the time axis where the point of
interest is the last point of the window. The percentage of violations in the test window is the anomaly
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score of that last point. Then, the anomaly monitor can visualize the anomaly signal or trigger an
alarm based on some threshold value (say 0.8).

-
/ 1 2 3 m
1',
t"’

moving test windows

Figure 16. Utilization of test windows for the anomaly signal calculation.

Figures 17, 18 and 19 show some specific time series data with the corresponding anomaly signals.
"Blue" curves correspond to time series data and "red" ones to the anomaly signals. The values of time
series data are shown on the left y-axes, and the values of the anomaly scores on the right. Anomaly
scores take values from interval [0, 1]. Value 0 means that all observed data points in the test window
arrived within the confidence bounds. Value 1 means that all observed data points in the test window
violated the confidence bounds.

Let us explain some peculiarities regarding time series visualization in Wavefront. Figures 17,
18 and 19 refer to the Wavefront Ul. The UI can’t handle all time series data points available in
a database and it applies a method known as summarizing. The figures show that in the current
situation the summarizing function uses averaging of data points within a bucket with 7200 seconds
duration. However, NN-model utilizes totally different data points derived from the database via
interpolation for uniform sampling. Unfortunately, it means that the actual time series data utilized by
the NN-model is not the one that we see in the UL This was one of the big challenges for the current
implementation as the situation should be explained to our product users for increasing the confidence
towards the forecasts and anomaly detection visualization.

Figure 17 shows the example of a stationary time series data without visible outliers/anomalies
and the corresponding anomaly score is almost flat near the zero value. Small fluctuations in the
anomaly score are outcomes of random outliers that go out of confidence bounds but are not visible
due to Wavefront data summarization procedure. Figure 18 shows piecewise constant data with two
change points. In both cases the anomaly score detect the behavioral changes with the values bigger
than 0.8 (the threshold for an alarm generation). It is important that the jumps in the anomaly scores
ideally coincide with the jumps in time series data. Figure 19 shows almost constant time series data
with some spikes. The behavior of the anomaly signal mimics those spikes. In two cases, the scores
became bigger than 0.8, so alarms should be announced. In other cases, the changes and spikes should
be ignored.

198
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Figure 17. Example of a stationary time series data with the anomaly signal.
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Figure 18. Example of a piecewise-constant time series data with the anomaly signal.
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Figure 19. Example of a constant time series data with random spikes with the anomaly signal.

The biggest problem that the Wavefront customers encountered while consuming the described
system for anomaly detection was the large number of false positive alarms. Our experience shows
that the customers agree with the reduction of false positives even at the expense of the rising number
of false negatives. The common approach to reduction of false positives is through smoothing methods.
Paper [60] describes such a kernel-smoothing simple procedure. The kernel smoothing can be applied
both to time series data and /or anomaly scores. It actually performs a weighted averaging of data
points or anomaly scores where the weights can be extracted via some kernel function. The Gaussian
kernel is the most common kernel

2
Ki(x,y) = exp (—zx”"hy”) : @7)

where h is the width (window) of the kernel, « > 0 is some sensitivity parameter and || - || stands
for the Euclidian distance. Assume that x; are time series data points and s; are the corresponding
anomaly scores. A new anomaly score §; ([60] ) is estimated as follows (the weighted mean of anomaly
scores detected before the current time)

i

Z K, (xj, x;)s;

Y. Ki(xjx;)

j=i—n

where 1 is the number of points within the window h. We can set & to be equal to the test window
mentioned above. It is possible to calculate two-sided averages if time allows us to wait for new data
points to arrive. Similarly, instead of the anomaly scores, we can smooth time series data points. Let £;

be the estimate: '
1

. Z Kh (Xj, xi)xj

Y. Ki(xj,x)

j=i—n
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Then a new anomaly score estimate $; based on £; can be calculated. Experiments showed that the
first approach is preferable. However, more experiments should be performed for the final decision.
Probably, time series category (semi-constant, trendy, etc.) should be important for the approach.

7. Materials and Methods

In this section, we introduce the NN-model training process in the off-line mode. The trainings
were performed in VMware private data centers equipped with powerful GPUs. However, our
experimental training database is not big. It includes around 3300 time series, taken from real customer
cloud environments. The database contains around 1500-"cpu", 400-"disk", 110-"IOps", 320-"memory",
450-"network bandwidth", 100-"network packets" and 410-"workload" metrics. Metrics in the database
have 1-minute monitoring interval and, in average, 1-month duration. It doesn’t contain any specific
information crucial for model trainings and similar results should be possible to get via other datasets
of time series. Moreover, interesting should be application of synthetic datasets of time series.

The current network has 40 inputs and 20 outputs. We experimented with different dimensions
without any serious difference. We noticed that longer input compared to the output result in better
forecast accuracy. Taking into account the grid structure, we can utilize 40 * k data points in history
window to estimate 20 * k points in the forecast window with k = 1,2,--.. We applied a sliding
window containing 600 points to each time series. The sliding window had 400 = 10 * 40 history
points and 200 = 10 * 20 forecast points. We performed hypothesis testing to the entire sliding window,
identified needed transformations, and applied those transformations to each sub-grid containing 60
training data points (presumably stationary) for the network input (40 points) and output (20 points).

We tried different network architectures. The first was LSTM networks with stateless
configuration, 2 hidden layers with 256 nodes in each. The next was MLP networks with identical
configuration. We didn’t find significant differences between LSTM and MLP networks for our small
dataset. The current model is MLP network which is very easy to implement without special libraries.
We used ‘relu” activation function for the hidden layers and "linear" activation for the output layer.
‘Adam’ optimizer and mean average error (‘mae’) as a loss function were used. We applied 5 epochs
for each time series and 20 epochs for the entire database and batchsize = 1500. The idea was in getting
a generic model for the entire database. The trainings took from several hours to a day depending on
the available GPUs.

8. Discussion

We tried different implementations of the on-line mode in Java as enterprise cloud service. The
first attempt was utilization of Deep Learning for Java (DL4]) library [61]. It caused some problems due
to bigger memory consumption and longer response time. The second attempt was total independent
implementation of the MLP network without external libraries. The latest approach is more reasonable
as on-line mode doesn’t require on-demand trainings and complete deep learning functionality of
DLA4] is wasteless. Figure 20 shows comparison of timings for both implementations while forecasting
a stationary time series. The y-axis shows the timings in milliseconds. The x-axis illustrates different
runs for averaging purposes. We see that "DL4]J" is far behind compared to "MLP" especially while
loading the library.

We performed some comparisons of the current model and classical ARIMA (our internal
implementation without the periodicity analysis for both approaches). We applied both models
to a database of time series data from our internal cloud environments with different history windows
sliding across the time axis. We experimented with 120 points (2 hours), 1440 points (1 day), 11520
points (1 week) and 30240 points (2 weeks). We calculated the corresponding root mean square
relative errors (RMSRE) for each forecast. Table of Figure 21 summarizes the results. It shows overall
279148 forecast cases. Each column shows the number and percentage of the forecasts for which the
corresponding RMSRE is smaller than the mentioned value 0.5,1,2,5 and 10. For example, the last
column of the table shows that 126682 forecasts via NN-model or 45% of all cases have errors smaller
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than 0.5 while for the ARIMA the same number is bigger by 1%. The difference is insignificant. In
average, both methods perform similar, although ARIMA is slightly better as it was expected.

Timing (millisecond)

500

440
400
300

200

: 46 34 3% 34 26——30

DL4J

MLP

Figure 20. Comparison of different implementations.

It should be interesting to compare the average errors across all metrics from the same class. For
example, for the class of stationary metrics, NN-model shows an average error 1.2 while ARIMA

shows 1.3. For the class of trend stationary time series, NN-model has an average error 1.57 while
ARIMA has 1.52.

; E— - E— eaan
NN 279148 268924 (96%) | 262833 (94%) | 243169 (87%) | 144684 (52%) | 126682 (45%)
ARIMA 279148 270267 (97%) | 264994 (95%) | 246483 (88%) | 166155 (60%) | 127776 (46%)

Figure 21. Comparison of root mean square relative errors for different models.

Figure 22 represents an example from the Wavefront Al Genie UI [62].
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Figure 22. An example of a trend stationary time series in the Wavefront AI Genie UL

It illustrates the on-line mode for a specific time series data. AI Genie Ul of Wavefront simplifies
and automates time series forecasting and anomaly detection capabilities. It requires minimal set of
parameters to start running the Al engine. A user can specify (or use defaults) a time series, select the
forecast period, and the corresponding sensitivity of the confidence bounds. In Figure 22, the red curve
corresponds to the historical data, the black curve to the forecast, and the green area to the confidence
bounds. The forecast window is 1 week. It means that the history window is 2 weeks as the pretrained
network works with 2:1 ratio. Confidence bounds correspond to “moderate” setting (the others are
“conservative” and “aggressive” ).

The current NN-model uses 4000 data points (uniformly sampled via interpolation) for 2 weeks
history, 8640 points for 2 months history and 12960 points for 6 months. Those selections are the
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trade-offs between the complexity and grid density. We think that those numbers can be reduced
without affecting the accuracy especially for some data categories.

9. Conclusions and Future Work

We considered application of NN-based models to time series forecasting and anomaly detection
in cloud applications. Throughout the paper, we discussed approaches for overcoming some of the
challenges.

The first and main challenge is restrictions on resource consumption in distributed cloud
environments. Neural networks require intensive GPU utilization and sufficient data volume which
make on-demand training and application of NN-based models unrealistic due to additional costs
and unacceptable response times. We proposed a solution along with the ideas of transfer learning.
We generate a global database for time series data collected across different cloud environments and
customers, train a model in a private GPU-accelerated data centers and apply the acquired knowledge
in the form of a pretrained model to a user specified time series data never seen before without
GPU utilization. The weights and configuration of the pretrained network are stored in a cloud and
monitoring tools can easily access the corresponding files and retrieve the required information for
on-demand application to forecasting and anomaly detection.

The second challenge is the weakness of NN-models for analyzing non-stationary time series
data. It is a well-known problem and many researchers suggest application of stabilizing procedures
like detrending and deseasoning before feeding the network. The stabilizing transformations convert a
non-stationary time series into a stationary one, and properly trained NN-models can adequately treat
those metrics. We utilize this common idea and train models only for stationary time series. We detect
the stabilizing transformations via hypothesis testing. In the off-line mode, we perform hypothesis
testing to all time series data within the database for finding the set of required transformations for
all examples. Those transformations convert all non-stationary time series data into stationary ones
before sending to a model for the training. In the on-line mode, we transform a user specified time
series into a stationary data, calculate the corresponding forecast and by application of the backward
transformations return to the original scale and behavior. Throughout the paper, we demonstrated the
main capabilities of the approach. Moreover, the approach was implemented as a SaaS solution for
Wavefront by VMware and it passed full validation in real cloud environments. Our customers mainly
utilize the service for anomaly detection.

However, many questions need further investigations. One of the key problems is improvement of
the current approach via different networks and configurations. The second interesting problem should
be hypothesis testing via NN-based models. We already received some results with one-dimensional
convolutional neural networks for data classification. It should be natural to combine both networks
to automate data categorization and forecasting. Another interesting problem is designing of new
models for some new classes of time series data that should improve the accuracy. We also need to
check wether bigger datasets will improve the accuracy of the current models.

It is not fair to compare the proposed approach with the methods that train network models
in demand for a specific time series data. Undoubtedly, the latest will be more accurate or at least
comparable to our approach. Our main goal is the balance between the power and resource utilization.
We aimed to develop methods for cloud environments without consumption of valuable resources
and with acceptable accuracy.

10. Patents
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Abbreviations

The following abbreviations are used in this manuscript:

ADF test Augmented Dickey-Fuller test

Al Artificial Intelligence

AlOps Al for IT operations

APM Application Performance Monitoring
ARMA model Auto Regressive Moving Average model
ARIMA model Auto Regressive Integrated Moving Average model
CH test Canova-Hansen test

Cru Central Processing Unit

DF test Dickey-Fuller test

DL4J Deep Learning For Java

GPU Graphical Processing Unit

HEGY test Hylleberg-Engle-Granger-Yoo test

IT Information Technologies

KPSS test Kwiatkowski-Phillips-Schmidt-Shin test

LB Lower Bound

LSTM network Long Short Term Memory network

ML Machine Learning

MLP network Multi Layer Perceptron network

NN Neural Network

OCSB test Osborn—-Chui-Smith-Birchenhall test

OLS Ordinary Least Squares

PDM test/method  Phase Dispersion Minimization test/method
RMSRE Root Mean Square Relative Error

SaaS Software as a Service

SARIMA model Seasonal ARIMA model

STL decomposition  Seasonal and Trend decomposition using Loess
UB Upper Bound

Ul

User Interface
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