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Abstract: Natural circulation loop (NCL) systems are buoyancy-driven heat exchangers that are1

used in various industrial applications. The concept of passive heat exchange in NCL systems is2

attractive, because there is no need for an externally driven equipment (e.g., a pump) to maintain3

the fluid circulation. However, relying on buoyancy as the sole driving force may lead to several4

potential difficulties, one of which is generation of (possibly) time-varying nonlinearities in the5

dynamical system, where a difference in the time scales of heat transfer and fluid flow causes6

the flow to change from a steady-state regime to either an oscillatory regime or a flow-reversal7

regime, both of which are undesirable. In this paper, tools of symbolic time series analysis (e.g.,8

probabilistic finite state automata (PFSA)) are proposed to identify selected regimes of operation9

in NCL systems, where the underlying principle is built upon the concept of pattern classification10

from measurements of fluid-flow dynamics. The proposed method is shown to be capable of11

identifying the current regime of operation from the initial time response under a given set of12

operational parameters. The efficacy of regime classification is demonstrated by testing on two13

data sets, generated from numerical simulation of a MATLAB SimuLink model that has previously14

been validated with experimental data. The results of the proposed PFSA-based classification are15

compared with those of a hidden Markov model (HMM) that serves as the baseline.16

Keywords: Natural circulation loops; Symbolic time series analysis; Early detection of anomalous17

events.18

1. Introduction19

Natural circulation loops (NCL) are commonly used for passive heat exchange20

and have found important applications in thermal systems, where there are a high-21

temperature heat source and a low-temperature heat sink that is located at a higher22

elevation than the heat source. The fluid flow in the heat exchanger is gravity-driven23

and is established as a balance of the buoyant force due to the temperature difference24

(and hence the fluid-density difference) between the source and the sink, the inertial25

force, and the frictional force. The NCL-based heat transfer requires no external power26

or driving force and has no moving parts; thus NCL systems are relatively less difficult27

to maintain and operate, and are also less expensive to manufacture.28

Based on the concept of natural convection due to heating and cooling, the resulting29

density difference drives the cooling fluid to flow through a loop. However, if the30

heating becomes excessive, the flow velocity increases to a point where there is not31

enough time for the fluid to sufficiently cool down due to inadequate heat transfer. This32

phenomenon leads to reduced buoyant forces and deceleration of the flow. A reduced33

flow rate, in turn, may enhance heat transfer by increasing the residence time of the fluid34

near the heater and the cooler sections, causing accelerated fluid flow, which may lead35

to an unstable oscillatory condition. Increased heating may cause even larger density36
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gradients and chaotic flow patterns. Although apparently simple and easy to use, NCL37

systems are potentially unstable; this is true, in general, because the flow under natural38

circulation is less stable than that under forced circulation.39

NCL-based heat exchanger systems have found applications in several thermos-40

mechanical devices (e.g., combustors, nuclear reactors, solar water-heaters, gas-turbine41

blade-cooling, electrical-machine rotor-cooling, and geothermal processes). Thus, the42

past several years have seen a significant amount of research in the field of NCL systems43

and the associated flow instabilities and dynamics, in order to improve the design44

of advanced thermos-mechanical devices. From different experiments and numerical45

simulations, Vijayan et al. [1–3] found that fluid-flow dynamics in NCL systems are46

strongly dependent on the heater power and loop shape & configuration. Using the47

stability map approach, they concluded that flow dynamics in NCL systems can be48

divided into three categories: Steady-state, Oscillatory, and flow-reversal. Misale et al. [4–49

6] conducted laboratory experiments and numerical simulations, using Cathare and50

RELAP codes, to analyse and validate the transient and stable flow dynamic behavior of51

rectangular NCL in single-phase, where the experimental & numerical results were in52

good agreement. They also observed the effects of thermal boundary and heater power53

on the flow dynamics and concluded that the instability of flow dynamics increases with54

an increase in heater power.55

Cammi et al. [7] performed different numerical investigations to investigate the56

effects of pipe wall material on fluid flow dynamics; for this purpose, they used object-57

oriented (O-O) one-dimensional model and the RELAP5 code. From this investigation,58

they found that wall material has a significant impact on the stability of the NCL system.59

Goudarzi and Talebi [8] conducted numerical simulations to study the dynamical behav-60

ior of NCL systems by using nonlinear stability analysis. From this investigation, they61

found that the loop geometry and orientation of heater and cooler have a significant62

impact on the system stability. Desrayaud et al. [9] conducted 2-D numerical simula-63

tions to observe that an increase in the Rayleigh number leads to flow in instability in64

NCL. Along this line, Krishnani and Basu [10] performed 3-D numerical simulations to65

investigate the effects of loop rotation on flow behavior. They observed that the flow66

pattern changes if the rotation angle is varied.67

Nayak et al. [11] performed numerical simulations on an NCL system of rectangular68

cross-section, where they analyzed the simulation results by the Nyquist stabiity criterion.69

Stability analysis of NCL systems has also been performed by other researchers [12,13]70

for categorization of flow dynamics in NCL. In general, unstable flow dynamics of NCL71

can be classified as follows; (a) For the single-phase condition, only one unstable regime72

is prevalent; and (b) for the two-phase condition, two unstable regimes may exist.73

In view of the above discussions, the following conclusions are made. Since an74

NCL system may become unstable and its dynamics are (possibly) time-varying and75

non-linear, it is difficult to predict a priori how a particular NCL will behave for a certain76

energy input into the heater section. Furthermore, NCL systems have a large initial77

transience and the length of transience is not constant, owing to the inherent nonlinearity78

of the system. However, the NCL system evolves rather slowly, and the system stabilizes79

into its final regime.80

A numerical model of a single-phase NCL loop, which was already validated with81

experimental data [14,15], has been used to generate the time-series response in the82

work reported in the current paper. For different inputs of heater power under different83

(physically relevant) initial conditions, the simulated NCL system is observed to stabilize84

to a steady-state regime of operation within the 7,200 seconds (2 hours) mark.85

This paper proposes a hybrid (i.e., a combination of model-based and data-driven)86

method of identifying the long-term operational regime of NCL systems under a given87

range of power inputs, where the underlying algorithm makes use of the concept of88

symbolic time series analysis (STSA) [16,17] in conjunction with the physics-based89

model of a single-phase NCL system; specifically. time series of mass flux measurements90
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through the circulation loop have been used for STSA. Along this line, probabilistic finite91

state automata (PFSA) models [18,19] are developed to identify the long term behavior of92

the NCL system at hand. The rationale for choosing PFSA as the data-driven algorithm93

is their inherent simplicity that ensures good classification accuracy, while still having94

low computational complexity. In the past, PFSA-based methods have shown good95

performance in various applications such as, analysis of combustion instabilities [20,21],96

failure prognosis of structural materials [22] and rolling-element bearings [23], as well97

as usage of sensor networks for detection of moving targets [24].98

An alternative data-driven method that is commonly used is hidden Markov mod-99

eling (HMM) which has shown good performance in several problems, such as speech100

recognition [25], time series classification [26], image classification [27] and recently101

in classification of chaotic system data [28] and pressure data in a multi-nozzle com-102

bustor [21]. It has been shown by Mondal et al. [29] that PFSA methods are able to103

achieve classification accuracy nearly as close as HMM methods but at much lower104

computational costs, being almost two orders of magnitude faster in both training and105

testing than HMM. Thus, in this paper, the authors compare the results obtained using106

PFSA to those of a baseline HMM.107

The proposed algorithm is initially trained and tested on time-series data obtained108

from a set of simulation runs conducted on the numerical model mentioned above109

without radiation heat loss. In order to prove the efficacy of the model, it is later again110

tested on more data generated from the same simulation program, but with different111

process parameters and by incorporating the effects of radiation heat loss in the model.112

These modifications cause significant changes in the system response, while leaving the113

core underlying physics essentially the same. Testing the algorithm on this new set of114

data proves that the algorithm is not dependent on the process parameters, but rather,115

learns the underlying physics and is capable of effectively working across different NCL116

systems.117

From the above perspectives, the main contributions of this paper are succinctly118

delineated below:119

• Development of a computationally fast algorithm for behavior prediction of NCL systems:120

The long-term behavior of an NCL system is predicted from the initial transient121

data.122

• Validation of the underlying algorithms on an experimentally validated NCL system sim-123

ulator: The validation process is based on testing with different sets of system124

parameters and initial conditions. The test results demonstrate that the the per-125

formance is independent of the process parameters and that the predictions are126

consistent with the physics of NCL systems.127

2. Description of the Numerical Model128

Figure 1 depicts a schematic diagram for the physical process of a natural circulation129

loop (NCL) system. The circulation loop is 4 m in length with the inner tube diameter of130

30 mm; an electrical heater of length 400 mm is placed in the middle of the bottom limb131

of the loop, which acts as the heat source to the NCL system. An annular-type cooler,132

having a length of 600 mm, is placed with a 100 mm offset on the upper horizontal arm133

of the loop to cool the loop fluid; this offset is necessary to start the simulation. While134

detailed descriptions of the loop geometry, model construction & validation, and grid &135

time independence studies are reported in previous publications [14,15,30], a concise136

description of the model equations is provided in this section for completeness of the137

paper and ease of readability. The nomenclature of the terms used in the development138

of equations is provided at the end of the paper.139

The governing equations (e.g., conservation of mass, momentum, and energy) for140

the loop fluid flow, and coolant and wall temperatures are solved numerically. These141

equations, which are similar to those in earlier publications [14,15,30], are only briefly142

explained here. For example, the continuity, momentum, and energy equations are143
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Figure 1. Schematic diagram of the NCL system

represented by Eqs. (1), (2), and (3), respectively. Here the mass flux is denoted by144

G (= ρv) and the fluid flow by the subscript ’ f ’ .145

146

Conservation of mass (liquid phase):

∂ρ f

∂t
+

∂

∂t
(G f ) = 0 (1)

Conservation of momentum (liquid phase):

dG f

dt
Lloop = −

f G2
f

2ρ f din
Lloop +

∫
vertical limbs

ρ f g cos θβav(Tf − Tre f )dz (2)

The momentum equation is integrated over the entire loop to arrive at the current147

form of Equation (2), which shows the forces acting on the loop fluid. In Equation (2),148

the left-hand side represents the fluid inertia force, the first term on the right-hand side149

represents the friction force, and the second term represents the buoyancy force. The150

balance of these forces determines the magnitude and direction of the force due to the151

fluid flow inside the loop.152

As seen below in the equations of dynamic energy balance for the loop fluid and the153

coolant (that is flowing inside the cooler in Figure 1), the first term on the left-hand side154

indicates the transient energy and the second term on the left-hand side is the convective155

heat transfer. The first term on the right-hand side is the conduction heat transfer and156

the second term on the right-hand side is the heat exchange due to convection.157

158

Conservation of energy (liquid phase):

∂

∂t
(ρ f Cpt f ) +

∂

∂z
(G f CpTf ) =

∂

∂z

(
k f

∂Tf

∂z

)
−

4hi(Tf − Tw)

din
(3)

Conservation of energy (heat exchanger):

∂

∂t
(ρexCp,exTex) +

∂

∂z
(GexCp,extex) =

∂

∂z

(
kex

∂Tex

∂z

)
−hex Aex(Tw − Tex)

vex
(4)

In Equation (3), heat exchange takes place between loop fluid and loop wall; and,159

in Equation (4), heat exchange takes place between loop wall and coolant. Accordingly,160

the respective convective heat transfer coefficient is assumed for the loop fluid and the161

coolant.162

163
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Conservation of energy (heat-exchanger tube wall):

∂

∂t
(ρwCp,wtw) =

∂

∂z

(
kw

∂Tw

∂z

)
+

hi Ai(Tf − Tw)

Vw1
− (h0 + hr)A0(Tw − Ta)

Vw1
+

Q̇
Vw2

(5)

In Equation (5), the left-hand term is the transient energy flow and the first term on164

the right-hand side is the conduction heat energy flow in the tube wall, while the second165

and third terms on the right hand side are the flow of convective heat energy to and166

from the tube wall, respectively; and the fourth term on the right hand side is the flow167

of exogenous (electrically heated) energy input. Therefore, if the entire apparatus except168

the heater and the cooler is perfectly thermally insulated from the environment (i.e., no169

heat transfer takes place between the loop wall and ambient), the net exogenous heat170

input is absent (i.e., Q̇ = 0) for the loop except the heater and cooler. The loss of thermal171

energy from the heater and cooler to the environment is represented in the third term172

on the right-hand side of Equation (5) that has two parts: one is convective heat loss173

and the other is radiation heat loss, where h0 and hr are the convective and (linearized)174

radiation heat transfer coefficients, respectively.175

Several closure relations are needed to complete the governing equations of the176

numerical model. These closure relations are furnished in detail in the earlier work [14]177

and are only briefly presented here for completeness of the paper. For the numerical178

simulation, several correlations are used in computing: (i) the friction factor, (ii) the179

heat transfer co-efficient between wall and loop fluid, (iii) the heat transfer co-efficient180

between wall and coolant in the heat exchanger, and (those between the wall and air).181

For evaluating the friction factor ( f ) the following correlations have been used:

f =
64

Red
, for Red < 2300 (Laminar) (6)

f = 3.03× 10−12Re3
d − 3.67× 10−4Red − 0.151

for 2300 < Red < 4500 (Transition)
(7)

f = (0.79lnRed − 1.64)−2, for Red > 4500 (Turbulent) (8)

Red is the Reynolds number based on the mass-flux (G f ) generated by buoyancy182

effects given by: Red = (G f din)/µ f , G f . The correlations used for determining fluid to183

wall heat transfer are listed below [31,32].184

For the laminar flow:

Nud = 1.86Re1/3
d Pr1/3

( din
Lloop

)1/3(µ f

µs

)0.14
, for Gz > 10 (9)

Nud = 3.66, for Gz ≤ 10 (10)

where the Graetz Number (Gz) is defined as Gz = (πdin)/(4Lloop)RedPr, and Pr being185

the Prandtl number.186

For the transition and turbulent flow, the Nusselt number (Nud) is determined by the
Petukhov correlation with Gnienlinski modification [31,32]:

Nud =
( f /8)(Red − 1000)Pr

1 + 12.7( f /8)1/2(Pr2/3 − 1)
(11)

where the friction factors are computed as in Eqs. (6), (7) and (8). The heat transfer from187

tube wall to ambient for the riser and down-comer sections is evaluated by using the188

correlations for the vertical cylinders [31,32]:189

Nul,cyl = CF× Nul (12)
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where

Nul =
2.8
l

n(1 +
2.8

C1Ra1/4 (13)

Ra = Gr.Pr =
gβavL3

H(Tw − Ta)

ν2 .
v
α

(14)

and

CF =
1.8Φ

ln(1 + 1.8Φ)
(15)

Φ =
LH/d0

Cl Ra1/4 (16)

The heat transfer from tube wall to ambient for the horizontal sections is estimated
by the following correlation.

Nul =

(
0.6 +

0.387Ra1/6[
1 + ( 0.559

Pr )9/16
]8/27

)2

, for 10−5 < Ra < 1012 (17)

The numerical model used in this paper was compared and validated with the190

experimental and numerical results in the previous publications [14,15,30]; therefore, a191

validation study is not repeated here for compactness of the paper.192

Remark 1. The governing equations of the NCL system have been solved by using a finite193

volume approach on a lumped parameter model. As such this model may not capture certain194

phenomena arising from local two-phase behavior and bubble formation. However, the lumped195

parameter approximation is reasonable in this case, because the average operating temperatures196

are well below the saturation temperature of the fluid.197

3. Numerical Results198

In the first set of numerical simulation, radiation heat loss is ignored and accordingly,199

the parameter hr is set to zero in Equation (5). It is observed in the numerical simulation200

that the flow dynamics change with an increase in heater power. For relatively low201

heater power, the flow dynamics approximately exhibit a steady-state nature; as the202

heater power is gradually increased, the dynamic behavior first changes to an oscillatory203

nature and then, with further increase in the heater power, it exhibits flow-reversal [15],204

as seen in Figure 2.205

The fluid flow in an NCL system is established by the temperature difference206

between its two vertical limbs: the riser (having a higher temperature) and the down-207

comer (having a lower temperature). The difference in temperature produces a density208

difference, which in turn produces the fluid flow to balance the buoyancy, friction and209

inertia forces. For a relatively low heater power, a steady unidirectional flow is seen in210

Figure 2a, and this region is said to exhibit a steady-state behavior. In this regime of211

operation, the flow dynamics remain unaltered as heater power is moderately increased,212

but the steady-state value of mass-flux increases as the input power increases.213

With a further increase in the heater input power, the flow velocity may become214

so high that sufficient time is not available for the fluid to be heated via heat transfer at215

the heater. Accordingly, the relatively cold fluid having higher density enters the riser216

section, and consequently, the buoyancy force is reduced, which causes a drop in the flow217

velocity. This, in turn, allows sufficient time for the fluid to get heated and consequently218

flow velocity increases due to the increase in the buoyancy force. This periodic change in219

flow velocity yields the oscillatory nature of the time series, as seen in Figure 2b and this220

regime is called oscillatory. In this regime, increase of the heater power keeps the flow221

dynamics oscillatory, which also increases the oscillation amplitude of the mass-flux.222
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(a)

(b)

(c)
Figure 2. Sample mass-flux variation time-series in absence of radiation heat loss for
(a) Steady-state, (b) Oscillatory, and (c) Flow-reversal regimes

With a still further increase in the heater power, the flow velocity becomes very high223

due to the high buoyancy force. This high flow velocity reduces the further residence224

time of the fluid in the heater and the cooler sections. Consequently, more of the225

relatively cold fluid (i.e., having higher density) enters the riser section, and relatively226

hot fluid (i.e., having lower density) enters the down-comer section. Therefore, similar227

to the oscillatory case, the temperature difference between the riser and the down-comer228

sections significantly decreases; and when this temperature difference approaches zero,229

it causes the flow velocity to approach zero. Due to the inertia, however, fluid begins230

to flow in the opposite direction causing the flow to reverse. This is the reason behind231

the chaotic flow-reversal characteristics in the time series, as seen in Figure 2c and this232

region is said to be the flow-reversal regime. In this region, the flow dynamics is rather233

chaotic with frequent switching of the flow direction.234
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(a)

(b)

(c)
Figure 3. Sample mass-flux variation time-series in presence of radiation heat loss for
(a) Steady-state, (b) Oscillatory, and (c) Flow-reversal regimes

In the next set of numerical simulation, radiation heat loss is included (see Equation (235

5)); a similar behavior of flow dynamics is observed, where the increase in the heater236

power causes the flow dynamics to change. Once again, relatively low heater power237

shows steady-state flow; and an increased heater power first changes to the oscillatory238

regime and then a further increase in heater power yields flow-reversal as seen in Figure239

3. However, due to the radiation heat loss, the change-over points of flow dynamics (i.e.,240

the value of heater power at which flow regimes change, are different as seen in Table 1.241

A similarity between the trends in the cases with and without radiation is apparent.242

It is also noted that the duration of the initial transience is not constant. Another243

interesting point is seen in Figure 3b, where the system undergoes a bifurcation within244

the 4000-5000 second window, while retaining the same regime of operation. This is245

possibly an outcome of the inherent non-linearity in the system.246
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Table 1. Heater power at which NCL regimes move from steady-state to Oscillatory regimes, and
oscillatory to flow-reversal regimes when radiation loss is ignored / included

Change-point for
Steady-state to Oscillatory

Change-point for
Oscillatory to Flow-reversal

Without radiation heat loss 625 W 743 W
With radiation heat loss 665 W 786 W

4. Mathematical Theory247

This section presents the essential background for construction of probabilistic finite248

state automata (PFSA) (see Subsection 4.1) and D-Markov machines (see Subsection 4.2),249

which belong to the class of symbolic time series analysis (STSA) [16–19].250

4.1. Probabilistic Finite State Automata251

Using a Symbolic Time Series Analysis (STSA) approach, the measured signal is252

converted to a symbol string by first partitioning (or quantizing) the signal and then253

followed by its symbolization. Thus, the signal space is converted into a finite number254

of partitioned cells, where the number of cells is identically equal to the cardinality |A|255

of the (symbol) alphabet A. A symbol from the alphabet A is assigned to a point in the256

signal, corresponding to the cell to which it belongs [33,34]; details are given in [19].257

The following definitions, which are available in standard literature (e.g., [18,19]), are258

recalled for completeness of the paper.259

Definition 2. A finite state automaton (FSA) G, having a deterministic algebraic structure, is a260

triplet (A, Q, δ) where:261

• A is a (nonempty) finite alphabet, i.e., its cardinality |A| is a positive integer.262

• Q is a (nonempty) finite set of states, i.e., its cardinality |Q| is a positive integer..263

• δ : Q×A → Q is a state transition map.264

Definition 3. A symbol block, also called a word, is a finite-length string of symbols belonging265

to the alphabet A, where the length of a word w , s1s2 · · · s` with every si ∈ A is |w| = `, and266

the length of the empty word ε is |ε| = 0. The parameters of the FSA are extended as:267

• The set of all words, constructed from symbols in A and including the empty word ε, is268

denoted as A?.269

• The set of all words, whose suffix (respectively, prefix) is the word w, is denoted as A?w270

(respectively, wA?).271

• The set of all words of (finite) length `, where ` is a positive integer, is denoted as A`.272

Remark 4. A symbol string (or word) is generated from a (finite-length) time series by symbol-273

ization.274

Definition 5. A probabilistic finite state automaton (PFSA) K is a pair (G, π), where:275

• The deterministic FSA G is called the underlying FSA of the PFSA K.276

• The probability map π : Q × A → [0, 1] is called the morph function (also known as277

symbol generation probability function) that satisfies the condition: ∑s∈A π(q, s) = 1 for278

all q ∈ Q which can be converted to a
(
|Q| × |A|

)
morph matrix Π279

• The state transition probability mass function κ : Q × Q → [0, 1] is constructed by280

combining δ and π, which can be structured as a |Q| × |Q| state transition probability281

matrix T . In that case, the PFSA can also be described as the triple J = (A, Q, T ).282

Equivalently, a PFSA is a quadruple K = (A, Q, δ, π).283
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4.2. D-Markov Machines284

The PFSA model in a D-Markov machine generates symbol strings {s1s2 · · · s` : ` ∈285

N+ and sj ∈ A}, where N+ , {1, 2, 3, · · · }, on the underlying Markov process. The286

primary assumption in the construction a D-Markov machine, is that the generation of a287

symbol depends only on a finite history of at most D consecutive symbols, i.e., a symbol288

block of length not exceeding length D. A D-Markov machine [19] is defined as follows.289

Definition 6. A D-Markov machine [18] is a PFSA in the sense of Definition 5 and it generates
symbols that solely depend on the (most recent) history of at most D consecutive symbols, where
the positive integer D is called the depth of the machine. Equivalently, a D-Markov machine
is a statistically stationary stochastic process S = · · · s−1s0s1 · · · , where the probability of
occurrence of a new symbol depends only on the last consecutive (at most) D symbols, i.e.,

P[sn | · · · sn−D · · · sn−1] = P[sn | sn−D · · · sn−1] (18)

Consequently, for w ∈ AD (see Definition 3), the equivalence class A?w of all (finite-length)290

words, whose suffix is w, is qualified to be a D-Markov state that is denoted as w.291

For the PFSA method, there are primarily four choices as listed below:292

• Alphabet size (|A|): In order to separate out the regimes in the feature space, a293

larger alphabet size is preferred but more data is required for training the model.294

For the purpose of this paper, an alphabet size |A| = 6 was sufficient.295

• Partitioning Method: Maximum entropy partitioning (MEP) [19,33,34], which is a296

commonly used partitioning technique, has been chosen in this paper.297

• Depth (D) in the D-Markov machine: Sometimes, a higher value of the Markov298

depth D may lead to better results. However, this comes at the expense of increased299

computational time, due to larger dimension of the space and the need for more300

training. In this work, D = 1 has been chosen in order to keep lower word lengths301

and smaller PFSAs which leads to faster training and testing.302

• Choice of Feature: The feature needs to be one that best captures the nature (e.g.,303

texture) of the signal. The morph matrix Π (which for D = 1 is identical to the state304

transition matrix T ) has been chosen as the feature, because it is easily computed305

and captures the pertinent dynamics embedded in the signal.306

NOTE: In this paper, raw data are normalized before partitioning, ensuring that the data307

has a zero mean and unit variance prior to partitioning. However, a global partition is not used,308

i.e., the partitions are recomputed for every window. This is necessary as the data have varying309

amplitudes, as seen in Figures 2 and 3.310

4.3. Hidden Markov modeling for classification311

Hidden Markov modeling (HMM) has found applications in multiple problems and312

has shown high classification accuracy in almost all of them [35]. Thus, HMM has been313

chosen as the baseline to evaluate the performance of the (computationally much less314

expensive) PFSA-based method. The details of hidden Markov modeling (HMM) are315

extensively reported in technical literature (e.g., [36]), and thus, only the key concepts316

are reiterated here for completeness of the paper. For the detailed mathematics, the317

readers are requested to follow the references.318

HMMs are capable of learning and representing long-range dependencies be-
tween observations, with the underlying models being assumed to be probabilistic
functions of the hidden states [37]. For a discrete-time representation of a data string
Y = {y1, y2, . . . , yT} of T continuous (real-valued) observations, and assuming a first-
order Markov property [38] over the observations, the joint probability density function
of Y is obtained as:

p(Y) = p(y1)
T−1

∏
t=1

p(yt+1|yt) (19)
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HMMs have been widely used for speech recognition [25], time series classification319

[26] and, more recently, the classification of chaotic data [39]. HMMs essentially belong320

to a class of doubly-embedded stochastic processes, with a latent stochastic process of321

hidden state evolution. Although not directly observed, this evolution can be inferred322

by observing another stochastic process that produces the sequence of observations323

[36], which capture the long-range dependencies among observations and enables the324

usage of HMMs as black-box density models on observation sequences. The major325

difference between the HMM and the standard Markov model is that the HMM does326

not directly assume the Markov property (i.e., conditional dependence on the states and327

being independent of each other) for the observations themselves. Instead, the hidden328

state sequence Z = {z1, z2, . . . , zT} is assumed to follow Markovian dynamics. That is,329

given the current state zt, the future state zt+1 is independent of all the states prior to330

time instant t.331

Formalizing the mathematical structure, for a string of observations {y1, ...., yT}332

assumed to be generated by a hidden state sequence {z1, ...., zT}, a HMM is constructed333

as a triplet λ = {A, B, π} [36], where:334

1. A , [aij] is the |N| × |N| state-transition probability matrix, where |N| is the finite335

number of hidden states belonging to the set N of hidden states:336

aij = p(zt+1 = qj|zt = qi) : qi, qj ∈ N337

where ∑j aij = 1 ∀i and aij ≥ 0 ∀i, j.338

2. B , [bj(yt)] is the probability density of the observation given the state:339

bj(yt) = p(yt|zt = qj)340

3. π , [πi] is the probability distribution of the initial state z1: πi = p(z1 = qi), where341

π is a 1× |N| vector with ∑i π
|N|
i=1 = 1 and πi ≥ 0 ∀i.342

Following a model λ, the corresponding joint probability distribution of states and
observations has the form:

p(Y, Z) = p(z1:T)p(y1:T |z1:T) =[
p(z1)

T−1

∏
t=1

p(zt+1|zt)

][ T

∏
t=1

p(yt|zt)

] (20)

During the training phase, a commonly used expectation maximization (EM) proce-343

dure, called the Baum-Welch algorithm [36], is used to learn HMM models belonging to344

each of the K classes. The Baum-Welch algorithm [36] is applied to train the HMM triplet345

(see above) λk which is a triplet λk = {Ak, Bk, πk} [36], k = 1, · · · ,K, where Ak, Bk, and346

πk are defined similarly as A, B, and π for each class k. The procedure is repeated for347

each of the K classes.348

During the testing phase, data from an unknown class are provided as inputs to the349

algorithm. Given this observational sequence and the HMM models for each of the K350

classes, λk = {Ak, Bk, πk}, the problem is to find the most likely model associated with351

this data. This is expressed as:352

p(Y|λk) = ∑
Z

p(Y|Z, λk)p(Z|λk) =

∑
z1,z2,...,zT

πz1 bz1(y1)az1z2 bz2(y2) . . . azT−1zT bzT (yT)
(21)

which is obtained by using the Forward Procedure [36] to compute the log likelihood (Lk)
of the given time series data belonging to each of the K classes. The final decision, as to
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which class the unknown data belongs, is made by selecting the class with the largest
log likelihood as follows:

Selected Class = argmax
k∈{1,2,··· ,K}

Lk (22)

A continuous HMM formulation has been used in this paper, which uses a Gaussian353

mixture model with M = 2 Gaussian components to model the emission and there are354

N = 4 hidden states. Detailed algorithms for HMM are available in [36,37].355

5. Problem Formulation and Algorithm Development356

Referring back to Figures 2 and 3, it is seen that the operational regimes of the NCL357

system, namely, steady-state (SS), oscillatory (OL) and flow-reversal (FR), are charac-358

terized by the textures of respective fluid flow. The primary objective here is to build a359

data-driven classifier that would be capable of identifying these three regimes, while the360

second objective is to determine how early the decisions of classification can be made,361

given that the duration of initial transience varies for individual operating conditions,362

irrespective of the final regime. This phenomenon occurs due to the nonlinearity of the363

NCL system, which may not have a fixed bifurcation point.364

5.1. Regime classification365

This subsection develops PFSA-based algorithms for classification of NCL system366

regimes; the objective here is to classify the system regime within a specified time limit,367

which is taken to be 7,200 seconds (2 hours) in this paper.368

During the training phase, the time-series at a given operating condition is win-369

dowed, with window length WL and window skip WS, where having WS < WL implies370

that the windows do overlap. For each window, a PFSA feature (i.e., the morph matrix371

Π as described in 4.2) is generated, and the mean morph matrix is computed for the372

entire time-series. Once all the time-series data from a given regime are observed, and373

their mean morph matrices are generated, yet another mean of the morph matrices is374

taken to arrive at the final representative morph matrix for each regime, which yields375

this yields ΠSS, ΠOL and ΠFR.376

During the testing phase, the time-series (that belongs to an an unknown) is win-
dowed in the same manner and a final morph matrix for the entire time-series, ΠTS, is
computed by averaging as described above. The final decision of which regime the test
time-series belongs to, is made as follows:

Selected Class = argmin
c∈{SS,OL,FR}

|| ΠTS −Πc || (23)

It is noted that the above approach to training a PFSA is different from those seen in377

the standard PFSA-based classification literature (e.g., [40]). This modified approach378

is needed because the problem here is to capture the evolving nature and not just to379

classify a statistically stationary time-series.380

For the HMM based classification, the time series in its entirety is used for training
of the three HMMs corresponding to each of the regimes. A windowed formulation
is not needed here due to the fact that the HMM method inherently learns long-term
dependencies. In the testing phase of HMM, the log-likelihood (L) of the time-series for
each of the three regimes is computed, and the final classification decision is made by
following Subsection 4.3 as:

Selected Class = argmax
c∈{SS,OL,FR}

Lc (24)
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5.2. Identification of System Nature381

The algorithm described in the subsection above allows for detecting the regime of382

operation only after observing the time-series for a considerable amount of time, because383

the region of observation is kept identical for both training and testing. This region of384

observation needs to be relatively large, because the final dynamics may evolve late in385

the operation and, for appropriate training, it needs to be observed and included in the386

learning of the system dynamics.387

However, for appropriate prognosis of a continuously evolving plant, it is desirable388

to identify any change in the regime of operation as soon as possible. As mentioned389

before, the initial transience is rather long and may vary significantly. This makes390

it difficult to specify an early fixed point by which the system would settle into its391

final regime. In this subsection, a methodology is proposed to attempt to make this392

identification as fast as possible.393

In the PFSA method, the training of the morph matrices (i.e., ΠSS, ΠOL or ΠFR) of394

the regime is identical to that of the method described in the previous section. During395

testing, however, the region of observation is varied from a small region (of length WL)396

to the entire region considered in the algorithm described in the previous subsection.397

Accordingly, the morph matrix evolves and the endeavour is to see how fast the regime398

can be correctly identified using Equation (23).399

Similarly, for the HMM method, the HMM models for each regime is trained400

identically to the previous section, and the transient identification is done for a varying401

region of observation as in the PFSA method.402

6. Results and Discussions403

As stated in Section 3, two data sets are generated from the numerical model404

described in Section 2. One data set is an ensemble of 43 time series, consisting of the405

following contents: 6 from the steady-state regime, 23 from the oscillatory regime, and406

14 from the flow-reversal regime, where the effects of radiation heat loss are neglected.407

In the second data set, the effects of radiation heat loss is considered, which consists408

of 33 time series with the following contents: 7 from the steady-state regime, 20 from409

the oscillatory regime, and 6 from the flow-reversal regime. Each of the above time410

series is typically run until over 10,000 seconds (i.e., ∼2.7 hours) of operation. The initial411

transience ranges from anywhere between 1,000 seconds to 3,000 seconds. Thus, the412

total region of observation is taken to be from 1,000 seconds (to preclude observing too413

much of the transient data) till 9,000 seconds, by which time (e.g., 7,200 seconds) the414

NCL system is expected to arrive at the final regime of operation. The PFSA method uses415

the following windowing parameters: window length WL = 600 seconds and window416

skip WS = 60 seconds.417

6.1. Classification Accuracy418

To test the efficacy of the regime classification algorithm, described in Section 5-A,419

the PFSA models are trained exclusively using the no-radiation-loss data, where the data420

set is split into 50% for training for both PFSA (i.e., morph matrices ΠSS, ΠOL and ΠFR)421

and HMM, and the remaining 50% are used to test the performance of the respective422

algorithms of PFSA and HMM. Each of the two confusion matrices in Table 2 shows the423

average accuracy of classification over 20 trials after until 7,200 seconds; the training424

and testing sets are randomly chosen for each trial for both methods. The total error (i.e.,425

percentage of total number of time-series classified incorrectly) is 10.71% for the PFSA426

method and 18.57% for the HMM method.427

Remark 7. Some combinations of test-train data split have yielded a total error of 0% for the428

PFSA method and 4.57% for the HMM method. The morph matrices and HMM models for each429

regime corresponding to these trials have been saved as the optimal trained representative PFSAs430

(morph matrices) / HMMs for the three regimes. These trained PFSAs /HMMs were once again431
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Table 2. Confusion matrix showing the average (over 20 trials) classification accuracy of the
time-series regime from the data-set with no radiation heat loss

PFSA Method:
Classified as

HMM Method:
Classified as

SS OL FR SS OL FR

Truly SS 100% 0 0 73.33% 16.67% 10.00%
Truly OL 0 79.55% 20.45% 1.82% 76.82% 21.36%
Truly FR 0 0 100% 0 7.86% 92.14%

used to classify all 43 data sets of time-series in the no-radiation data set, including both the432

training and testing data. The resulting confusion matrices for both the methods are listed in433

Table 3, and the total error is seen to be ∼6.98% for both PFSA and HMM methods.434

Table 3. Confusion matrix showing the classification accuracy of the regimes from the data-set
with no radiation heat loss using the optimally trained PFSA and HMM

PFSA Method:
Classified as

HMM Method:
Classified as

SS OL FR SS OL FR

Truly SS 100% 0 0 83.33% 16.67% 0
Truly OL 0 79.55% 20.45% 0 95.65% 4.35%
Truly FR 0 0 100% 0 7.14% 92.86%

The next step is to check whether the PFSAs and HMMs trained on data, with no435

radiation heat loss, are capable of successfully classifying simulated data generated by436

including the radiation heat loss.437

Table 4 lists the confusion matrix reporting the classification accuracy of all (33) time438

series incorporating radiation heat loss by using the PFSAs / HMMs that are optimally439

trained with the no-radiation data.440

Figure 4. Case-wise classification accuracy for both data-sets (without and with radiation) for
PFSA

Good classification accuracy is seen in Table 4 for the PFSA method, with a total441

error of 9.09%, and an error of 15.15% for the HMM method. Thus, the PFSA method442

apparently captures the system dynamics modestly better than the HMM method and443

the results do not strongly depend on the actual system operating conditions. The444

charts of Figure 4 show the classification accuracy of the optimal PFSAs for the data445

sets, with and without radiation heat loss. It is concluded that the PFSA algorithm is446
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Figure 5. Case-wise classification accuracy for both data-sets (without and with radiation) for
HMM

generally accurate, with very few time-series mis-classifying the regimes and these mis-447

classifications generally arise near the change points. The HMM method too presents448

largely similar results, as seen in Figure 5.449

Table 4. Confusion matrices showing the classification accuracy of the 33 time-series regimes from
the data-set with radiation heat loss

PFSA Method:
Classified as

HMM Method:
Classified as

SS OL FR SS OL FR

Truly SS 100% 0 0 71.43% 28.57% 0
Truly OL 5% 90% 5% 5% 85% 10%
Truly FR 0 0 100% 0 0 100%

6.2. Computation Overhead450

Table 5 compares the training and testing times of PFSA-based and HMM-based451

classification, where the individual computation times are calculated as an average of 20452

independent trials using the total length of time series. It is seen that training and testing453

times for PFSA (with the parameters described in Subsection 4.2) is much lower than454

those for HMM. The rationale is that the PFSA algorithm is computationally very fast in455

both training and testing due to its non-iterative and algebraic construction, whereas456

the HMM algorithm is iterative and has a more complex mathematical construction as457

outlined in Subsection 4.3. It is concluded that, on the average, the PFSA method is of458

comparable accuracy as the HMM method at a small fraction of the computational cost,459

especially during training (e.g., with almost two orders of magnitude reduction in the460

training time).461

Table 5. Training and testing times: PFSA and HMM

PFSA HMM
Training Time per Time Series (in ms) 18.7 5252.89
Testing Time per Time Series (in ms) 22.8 67.43
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NOTE: All the computations in this paper have been conducted using MATLAB PFSA codes by462

the authors1 with Murphy’s [41] Hidden Markov Model (HMM) Toolbox for MATLAB2. The463

computations have been conducted serially on a single core processor of a DELL Precision Tower464

7910 Workstation running an Intel® Xeon® E5-2670 CPU.465

6.3. Efficacy of Identification/Classification466

Although the PFSA algorithms (as well as the HMM algorithms serving as a base-467

line) produce good accuracy in identifying the regime of operation in the simulated468

NCL system, the classification occurs after observing 9,000 seconds (i.e., 2.5 hours) of469

data; this is not adequate for prognosis or control of the NCL system. Therefore, from470

an operational perspective, it is desirable to maintain the system under the steady-state471

operating condition and may be allowed to go into the oscillatory regime under extra-472

neous circumstances. Nevertheless, it is not desirable to operate the NCL system in473

the chaotic flow-reversal regime, which causes a sharp degradation in the heat transfer474

characteristics of the heater and cooler (see Figure 1). Thus, the operating regime of475

an evolving NCL operation should be assessed as soon as possible to take necessary476

corrective actions whenever a tendency to go into the flow-reversal regime is observed.477

The methodology proposed in Section 5 is utilized to test the algorithms for early478

assessment of the operational regime. This PFSA-based procedure is called transient479

classification, wherein at any point in time in the evolution of the NCL system character-480

istics, the morph matrix for the time-series is obtained only by using the data available481

at that point (i.e., the beginning of the current time epoch). The classification proceeds as482

described in Eqs. (23) and (24). The earlier the algorithms can identify the final regime,483

the better it is.484

Figure 6. Transient classification accuracy over all data without radiation heat transfer for PFSA
and HMM

For comparison of transient classification using PFSA and (baseline) HMM methods,485

Figures 6 and 7 respectively exhibit the profiles of classification accuracy as a function of486

the time epochs for no-radiation-heat-loss and radiation-haet-loss data sets. It is noted487

that the classification at any point involves only data observed prior to it to maintain488

causality. The first identification occurs at ∼1,600 seconds, because the first ∼1,000489

seconds are ignored (due to initial transience) and the window length needed to be490

observed is 600 seconds.491

It is seen in Figures 6 and 7 that the initial transient region (i.e., first∼ 3,000 seconds,492

including the initial transience) does not allow for good accuracy of identification (i.e.,493

classification) using either PFSA or HMM. However, the accuracy almost monotonically494

1 https://github.com/Chandrachur92/PFSA
2 https://www.cs.ubc.ca/∼murphyk/Software/HMM/hmm.html
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Figure 7. Transient classification accuracy over all data sets with radiation heat transfer

increases as more data are observed, with almost 90% accuracy observed at the 7,200495

second mark using the PFSA method with HMM performance being slightly inferior;496

and an accuracy of greater than 75% after about merely 3,600 seconds (slightly later for497

the HMM method on the data with radiation).498

Although Figures 6 and 7 provide a qualitative idea of how well the algorithms499

work at identifying the eventual regime of operation of the NCL system, a true evaluation500

of the method would be to study the time-series individually. This is necessary because501

the initial transience may vary significantly for each case and that causes an apparent502

mis-classification. Figures 8 and 9 exhibit six representative time-series, in which three503

are form the no-radiation data set and the remaining three are from the data set with504

radiation, corresponding to each of the three regimes. In it, the identified regime using505

either method is superimposed to show how the proposed algorithm is able to identify506

the eventual regime of operation.507

It is seen in Figures 8 and 9 that, after the initial transient region, the PFSA method508

is able to correctly identify the final regime of operation quite ahead of time. In fact, in509

both Figures 8b and 9b, it is seen that the PFSA method is also capable of identifying510

the imminent change into the oscillatory regime long before the signal texture changes511

significantly, while the HMM method makes an accurate identification because of the512

transient phase itself. It is also interesting to note that although a bifurcation occurs in the513

6,000-8,000 second window in Figure 8b, both PFSA and HMM are still able to correctly514

classify the ongoing system regime to be oscillatory. Similarly, in Figure 9c, the transition515

into the flow-reversal regime is preceded by both PFSA and HMM by detecting the516

imminent change. In Figure 8c, however, both PFSA and HMM initially mis-detect the517

system to be in the oscillatory regime, but later classifies it as the flow-reversal regime518

with the PFSA method identifying the change very early while the HMM method takes519

longer to make the correction. In Figure 9a, it is seen that the HMM method completely520

mis-classifies the steady time series to be oscillatory until 9,000 second.521

In view of the above observations, it is reasonable to conclude that the PFSA method522

is capable of early identification of the final regime of operation of the NCL system, and523

outperforms the (baseline) HMM method in many cases.524

7. Summary, Conclusions, and Future Work525

This paper has developed a supervised method to classify/identify the operational526

regimes of natural circulation loop (NCL) systems. The underlying algorithms are built527

upon the theory of probabilistic finite state automata (PFSA), where ensembles of time528

series data have been generated from a previously validated numerical simulator of529

an experimental NCL system. Two data sets have been generated from the simulator:530

one where no radiation heat loss is included in the computation and the other one with531
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(a)

(b)

(c)
Figure 8. Transient classification for time-series in absence of radiation heat loss using PFSA and
HMM for regimes of:
(a) Steady-state, (b) Oscillatory, and (c) Flow-reversal

radiation heat loss. The exclusion of radiation heat loss changes the regime transition-532

points, i.e., the heater power at which the system switches from a steady-state to an533

oscillatory regime of operation and then again from an oscillatory to a flow-reversal534

regime.535

The proposed PFSA method is shown to be capable of classifying the regime536

of operation with good accuracy when tested with a sufficient length of dynamically537

evolving data. The PFSA method is also effective for identifying the regimes of operation,538

where the NCL system eventually settles down. This prediction capability enables539

prognosis of the NCL system and this knowledge can be used for decision & control of540

the NCL system. The PFSA method shows good accuracy even though NCL systems are541

non-linear and (possibly) chaotic, leading to large variations in the system characteristics542

in independent operations.543
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(a)

(b)

(c)
Figure 9. Transient classification for time-series with radiation heat loss using PFSA and HMM for
regimes:
(a) Steady-state, (b) Oscillatory, and (c) Flow-reversal

The performance of PFSA has been compared to that of hidden Markov modeling544

(HMM) [36] which has served as a baseline method in this investigation. While exten-545

sive test results demonstrate that the accuracy of regime identification/classification is546

comparable for PFSA and HMM, the computational time to test and train the HMM547

algorithm is significantly larger than that for the PFSA algorithm. It is concluded from548

the observed results that PFSA is apparently more suitable than HMM for solving the549

problem of regime identification/classification in NCL systems.550

While there are many areas of theoretical and experimental research, which must551

be investigated before the proposed PFSA method can be implemented in real-life appli-552

cations, the following topics of future research are suggested to be pursued immediately.553
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1. Investigation of the efficacy of the PFSA algorithms using data from other experimen-554

tal and industrial NCL systems and more simulations with varying geometry555

parameters.556

2. Enhancement of the PFSA algorithms to accommodate smaller data window lengths557

(i.e., faster detection & identification of regimes).558

3. Investigation of other regime identification/classification methods, such as different con-559

figurations of neural networks.560

Funding: The first author thanks Indo-US Science and Technology Forum (IUSSTF) for granting561

the Research Internship for Science and Engineering (RISE) scholarship for collaboration between562

Pennsylvania State University (PSU) and Jadavpur University (JU). All authors acknowledge563

SPARC, MHRD, Govt. of India for supporting collaboration between PSU and JU through its564

Project No. P1065. The work reported here has also been supported in part by the U.S. Air Force565

Office of Scientific Research (AFOSR) under Grant No. FA9550-15-1-0400 in the area of dynamic566

data-driven application systems (DDDAS).567

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the568

design of the study; in the collection, analyses, or interpretation of data; in the writing of the569

manuscript, or in the decision to publish the results.570

References571

1. Vijayan, P.; Austregesilo, H.; Teschendorff, V. Simulation of the unstable oscillatory behavior572

of single-phase natural circulation with repetitive flow reversals in a rectangular loop using573

the computer code ATHLET. Nuclear Engineering and Design 1995, 155, 623–641.574

2. Vijayan, P. Experimental observations on the general trends of the steady state and stability575

behaviour of single-phase natural circulation loops. Nuclear Engineering and Design 2002,576

215, 139–152.577

3. Vijayan, P.; Sharma, M.; Saha, D. Steady state and stability characteristics of single-phase578

natural circulation in a rectangular loop with different heater and cooler orientations. Experi-579

mental Thermal and Fluid Science 2007, 31, 925–945.580

4. Misale, M.; Tagliafico, L. The transient and stability behaviour of single-phase natural581

circulation loops. Heat and Technology 1987, 5, 101–116.582

5. Misale, M.; Garibaldi, P.; Tarozzi, L.; Barozzi, G.S. Influence of thermal boundary conditions583

on the dynamic behaviour of a rectangular single-phase natural circulation loop. International584

journal of heat and fluid flow 2011, 32, 413–423.585

6. Misale, M. Experimental study on the influence of power steps on the thermohydraulic586

behavior of a natural circulation loop. International Journal of Heat and Mass Transfer 2016,587

99, 782–791.588

7. Cammi, A.; Luzzi, L.; Pini, A. The influence of the wall thermal inertia over a single-phase589

natural convection loop with internally heated fluids. Chemical Engineering Science 2016,590

153, 411–433.591

8. Goudarzi, N.; Talebi, S. Heat removal ability for different orientations of single-phase natural592

circulation loops using the entransy method. Annals of Nuclear Energy 2018, 111, 509–522.593

9. Desrayaud, G.; Fichera, A.; Lauriat, G. Two-dimensional numerical analysis of a rectangular594

closed-loop thermosiphon. Applied thermal engineering 2013, 50, 187–196.595

10. Krishnani, M.; Basu, D.N. Computational stability appraisal of rectangular natural circulation596

loop: Effect of loop inclination. Annals of Nuclear Energy 2017, 107, 17–30.597

11. Nayak, A.; Vijayan, P.; Saha, D.; Raj, V.V. Mathematical modelling of the stability characteris-598

tics of a natural circulation loop. Mathematical and computer modelling 1995, 22, 77–87.599

12. Der Lee, J.; Pan, C.; Chen, S.W. Nonlinear dynamic analysis of a two-phase natural circulation600

loop with multiple nuclear-coupled boiling channels. Annals of Nuclear Energy 2015, 80, 77–94.601

13. Luzzi, L.; Misale, M.; Devia, F.; Pini, A.; Cauzzi, M.T.; Fanale, F.; Cammi, A. Assessment of602

analytical and numerical models on experimental data for the study of single-phase natural603

circulation dynamics in a vertical loop. Chemical Engineering Science 2017, 162, 262–283.604

14. Saha, R.; Sen, S.; Mookherjee, S.; Ghosh, K.; Mukhopadhyay, A.; Sanyal, D. Experimental605

and numerical investigation of a single-phase square natural circulation loop. Journal of Heat606

Transfer 2015, 137.607

15. Saha, R.; Ghosh, K.; Mukhopadhyay, A.; Sen, S. Dynamic characterization of a single phase608

square natural circulation loop. Applied Thermal Engineering 2018, 128, 1126–1138.609

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 January 2021                   doi:10.20944/preprints202101.0309.v1

https://doi.org/10.20944/preprints202101.0309.v1


Version January 14, 2021 submitted to Sci 21 of 22

16. Daw, C.; Fenney, C.; Tracy, E. A review of symbolic analysis of experimental data. Review of610

Scientific Instruments 2003, 74, 915–930.611

17. Dupont, P.; Denis, F.; Esposito, Y. Links between probabilistic automata and hidden Markov612

models: probability distributions, learning models and induction algorithms. Pattern613

Recognition 2005, 38, 1349 – 1371.614

18. Ray, A. Symbolic dynamic analysis of complex systems for anomaly detection. Signal615

Processing 2004, 84, 1115 – 1130.616

19. Mukherjee, K.; Ray, A. State splitting and merging in probabilistic finite state automata for617

signal representation and analysis. Signal Processing 2014, 104, 105 – 119.618

20. Sarkar, S.; Chakravarthy, S.; Ramanan, V.; Ray, A. Dynamic data-driven prediction of619

instability in a swirl-stabilized combustor. International Journal of Spray and Combustion620

Dynamics 2016, 8, 235–253.621

21. Bhattacharya, C.; O’Connor, J.; Ray, A. Data-driven Early Detection of Thermoacoustic622

Instability in a Multi-nozzle Combustor. Combustion Science and Technology 2020.623

22. Ghalyan, N.F.; Ray, A. Symbolic Time Series Analysis for Anomaly Detection in Measure-624

invariant Ergodic Systems. Journal of Dynamic Systems, Measurement, and Control 2020,625

142, 061003 (1 to 11).626

23. Jha, D.; Virani, N.; Reimann, J.; Srivastav, A.; Ray, A. Symbolic analysis-based reduced order627

Markov modeling of time series data. Signal Processing 2018, 149, 68 – 81.628

24. Li, Y.; Jha, D.K.; Ray, A.; Wettergren, T.A. Information-Theoretic Performance Analysis of629

Sensor Networks via Markov Modeling of Time Series Data. IEEE Transactions on Cybernetics630

2018, 48, 1898–1909.631

25. Najkar, N.; Razzazi, F.; Sameti, H. A novel approach to HMM-based speech recognition632

systems using particle swarm optimization. Mathematical and Computer Modelling 2010,633

52, 1910 – 1920. The BIC-TA 2009 Special Issue.634

26. Oates, T.; Firoiu, L.; Cohen, P. Using dynamic time warping to bootstrap HMM-based635

clustering of time series. In Sequence Learning; Springer, New York, NY, USA, 2000; pp. 35–52.636

27. Ali, S.S.; Ghani, M.U. Handwritten Digit Recognition Using DCT and HMMs. 2014 12th637

International Conference on Frontiers of Information Technology, 2014, pp. 303–306.638

28. Bhattacharya, C.; Ray, A. Data-driven Detection and Classification of Regimes in Chaotic639

Systems via Hidden Markov Modeling. ASME Letters in Dynamic Systems and Control 2021,640

1, 021009. doi:10.1115/1.4047817.641

29. Mondal, S.; Bhattacharya, C.; Ghalyan, N.F.; Ray, A. Real-Time Monitoring and Diagnostics642

of Anomalous Behavior in Dynamical Systems. In Dynamics and Control of Energy Systems;643

Springer, 2020; pp. 301–327.644

30. Saha, R.; Ghosh, K.; Mukhopadhyay, A.; Sen, S. Flow reversal prediction of a single-phase645

square natural circulation loop using symbolic time series analysis. Sādhanā 2020, 45, 1–11.646
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