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What is already known on this topic? 

Since December 2019, the coronavirus disease (COVID-19) pandemic has changed our daily lives, 

caused near million deaths, and has resulted in a socio-economic impact worldwide. 

What question this study addressed? 

In this largest systematic review analysis and meta-analysis including 189 studies consisting of 

53,659 patients, we demonstrated satisfactory positive and negative likelihood ratios by combining 

symptoms to provide direction to front-line clinicians confronting the COVID-19 pandemic 

outbreak.  

What this study adds to our knowledge? 

In our quantitative synthesis, approximately one in five test-positive adults was not febrile, and we 
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found that the sensitivity threshold of fever should be 37.3 °C. Overall, we found a lower 

prevalence (i.e., sensitivity) of symptoms among COVID-19 patients than in earlier studies, and 

we demonstrated that the stage of the outbreak is an important factor for the prevalence of the 

symptoms. 

How this is relevant to clinical practice? 

We demonstrated satisfactory positive and negative likelihood ratios by combining symptoms to 

provide direction to front-line clinicians confronting the COVID-19 pandemic outbreak. We 

further demonstrated that fever should not be used as a single measure to screen for patients with 

possible COVID-19 infection, and the selection of threshold should be carefully evaluated.  
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Abstract 

 

Study objective 

Since December 2019, the coronavirus disease (COVID-19) pandemic has caused over a million 

deaths and resulted in adverse socio-economic impacts worldwide. However, predictability and 

prognostication of clinical features vary among different populations.  

 

Methods 

We search PubMed, EMBASE, Cochrane Library, Google Scholar, and WHO Global Health 

Library from December 2019 to April 2020 for studies reporting the risk factors, clinical features, 

and outcomes. The random-effect models for transformed prevalence (single-arm) or bivariate 

random-effect models (sensitivity and specificity) for correlated performance indicators.   

 

Results 

Among the 189 included studies representing 53,659 patients, the most sensitive predictor for 

COVID-19 infection was fever in adults (83%, 95% confidence interval [CI]:73–90%), and the 

most specific predictor was fatigue (96%, 95% CI: 80–99%). Fever was the most sensitive 

symptom in predicting the severity (89%, 95% CI:83–92%), followed by cough (71%, 95% CI:63–

78%). The most specific predictor of severe COVID-19 was a chronic obstructive pulmonary 

disease (99%, 95% CI:98–99%). The stage of the outbreak and age significantly affect the 

prevalence of fever, fatigue, cough, and dyspnea. Fever, cough, fatigue, hypertension, and diabetes 

mellitus combined have a 3.06 positive likelihood ratio (PLR) and a 0.59 negative likelihood ratio 
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(NLR) in the diagnosis. Additionally, fever, cough, sputum production, myalgia, fatigue, and 

dyspnea combined have a 10.44 PLR and a 0.16 NLR in predicting severe COVID-19.  

 

Conclusions 

Understanding the different distribution of predictors essential for screening potential COVID-19 

infection and severe outcomes and the combination of symptoms could improve the pre-test 

probability.  
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Introduction  

 

Background 

Since the initial cases were identified in Wuhan, China, the coronavirus disease (COVID-19) has 

spread worldwide at an alarming rate, changed our daily lives, caused over a million deaths, and 

resulted in an adverse socio-economic impact worldwide.1, 2 The World Health Organization 

(WHO) has declared COVID-19 a global health emergency, and over ten months since its outbreak 

was first reported, countries across the world are struggling with a rise in the incidence of 

confirmed cases.3  

Importance  

The data on the incidence, risk factors, case fatality rate, and clinical features of COVID-19 have 

been growing daily.4 Interestingly, the reported case fatality rate differs according to clinical 

characteristics and by country.5-7 Furthermore, as the number of cases rapidly increases, its clinical 

features, epidemiological characteristics, and risk factors for mortality are still not completely 

understood.8-10  

Goals of this investigation  

An increased understanding of the epidemiological and clinical course of COVID-19 could 

significantly improve public health interventions needed to contain the pandemic. An essential 

measure to prevent COVID-19 from spreading is the timely recognition of infected patients. 

However, the predictive value of clinical features could vary among different populations. 

Therefore, we conducted a systematic review and meta-analysis to provide up-to-date qualitative 
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and quantitative evidence of the epidemiology, clinical characteristics, laboratory data, and test the 

hypothesis that the distribution of symptoms, comorbidities, and severity would be different 

among patients different age groups, countries, and stages of outbreak. 

Keywords: COVID-19; sensitivity; specificity; diagnosis; prognosis 

Methods  

This study was performed in adherence to the Meta-Analysis Of Observational Studies in 

Epidemiology (MOOSE) guideline11 and the Preferred Reporting Items for Systematic Reviews 

and Meta-analysis (PRISMA) guidelines.12 The protocol was registered in PROSPERO 

(CRD42020176289).13  

 

Search strategy  

We searched PubMed, EMBASE, Cochrane Library, Google Scholar, and WHO Global Health 

Library for articles published between December 1, 2019 and April 30, 2020. With a combination 

of Boolean operations, the following keywords were used as search terms: COVID-19, coronavirus 

disease, novel coronavirus, SARS-CoV-2, 2019-nCoV infection, Wuhan coronavirus, Wuhan 

pneumonia, clinical characteristics, epidemiology, incidence, physical examination, signs and 

symptoms, clinical manifestation and diagnosis. Additionally, references of included articles were 

manually searched to ensure that all relevant articles were included (the ‘snow-ball’ search 

strategy).14 The detailed search strategy is presented in Table S1. 

 

Eligibility criteria   
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We included cohort, cross-sectional, case-control, and case-series studies reporting the risk factors, 

clinical features, and outcomes of COVID-19 patients confirmed by a positive reverse-

transcriptase polymerase chain reaction of severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2). To avoid language bias,15 we included articles published in any language. We 

also included articles that reported outcomes of patients without restriction to clinical settings 

(inpatients, outpatients, or the general population). We excluded studies considering pregnant 

women and neonates, owing to many asymptomatic evaluations. We excluded manuscripts without 

peer-review, non-human studies, non-original studies, duplicates, reviews, case reports, or case 

series with fewer than four subjects. Ambiguously described data, such as ‘fever or cough’, were 

excluded. 

 

Primary and secondary outcomes  

The primary outcomes were the diagnostic performance of symptoms, demographics, 

comorbidities, and laboratory data in predicting COVID-19 infection. The secondary outcomes 

were the performance of predictors in prognosticating severe infection (e.g. mortality, pneumonia, 

and ICU hospitalisation).  

 

Data extraction  

We extracted data on study characteristics (e.g. author, country, study design, date of a study 

conducted, number of participants), patient characteristics (e.g. age, gender, ethnicity, 

comorbidities), symptoms (e.g. degree of fever, cough), laboratory data (e.g. white blood cell 

(WBC) and lymphocyte counts), and adverse outcomes (e.g. severity, mortality, hospitalisation). 

If detailed information was missing in the papers, we contacted the authors of those studies to ask 
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for the relevant data. We transformed medians and interquartile ranges into means and standard 

deviations and standard errors to standard deviations.16 We included the most up-to-date and 

complete data for overlapping patient populations in the studies identified. Additionally, we 

examined published systematic reviews on COVID-19 to ensure that no study was missed.  

 

Study quality assessment   

We used the National Institute of Health in the U.S. Quality Assessment Tool to assess the quality 

of studies (Supplementary Table S2).17 Two reviewers reviewed and assessed article by screening 

(i.e. title screening, abstract screening, full-text review), followed by data extraction and quality 

assessment independently. Any discrepancy between the reviewers was resolved by discussion 

with a senior reviewer (K-F C) to reach a consensus. 

 

Data synthesis 

The summary measures estimated in this meta-analysis depending on the outcome were mean, 

standard deviation, prevalence, and weighted mean differences (WMD). The WMD was used to 

summarise continuous variables such as WBC and lymphocyte counts between severe and non-

severe COVID-19 infections. We used the random-effects models to pool estimates of the 

prevalence of symptoms with the maximum likelihood methods and variance stabilising 

transformation.18-20 Some eligible studies had a prevalence of various predictors equal to zero; 

hence, we computed the pooled estimates using the Freeman–Tukey double arcsine transformation 

(PFT).21 We then used the bivariate random-effect models to synthesise evidence of diagnostic 

accuracy.22 We also used the hierarchical summary receiver operating characteristic (HSROC) 
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models23 to calculate the pooled sensitivity and specificity, and the area under the summary 

receiver operating characteristic (AUHSROC) curve.  

 

We further utilised the Fagan nomogram24-26 to illustrate how clinicians could apply the predictors 

in their daily practice. A nomogram is a two-dimensional graphical tool that is important in 

estimating the post-test results given a specific pre-test probability and the likelihood ratio of the 

predictor. The nomogram was based on the combination of the likelihood ratios of a series of 

predictors obtained from the meta-analysis. 

 

We examined the statistical heterogeneity by visual inspection of the forest plots and the Cochrane 

Q chi-squared (χ2) test, and calculated the I2 statistics.27 We considered I2 values of up to 25%, 

50%, and 75% to indicate low, moderate, and high heterogeneity, respectively.28 We determined 

the statistical significance of heterogeneity using the Cochrane Q test at p<0.1.  

 

Publication bias  

We examined the potential publication bias by visual inspection of funnel plots using sample size 

as a measure of precision on the y-axis while dealing with extremely low or high prevalence, rank 

correlation test, and Egger’s regression test.29  

 

Sensitivity analyses  
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We examined how the estimates changed according to study quality, transformation methods, 

study designs, country, stage of the outbreak, age of patients, and threshold of fever. The stage of 

the outbreak was divided into early and later stages (conducted after January). The age of the 

patients was categorised into adults (>18 years) and children. The study designs were sub-

classified into cohort studies, case-series, and case-control studies, and the ethnicity was sub-

classified into Chinese and non-Chinese settings. The random-effects Q-test for heterogeneity was 

used to evaluate the subgroup differences. For between-study heterogeneity, we performed an 

outlier analysis to explore the source of heterogeneity that may be caused by one or more studies 

with extreme effect sizes. We performed multivariable meta-regression analyses with bivariate 

binomial mixed-effect models to explore the sources of heterogeneity.  

All statistical analyses were conducted using the ‘meta’ package for general meta-analysis, and 

‘meta4diag’ or ‘HSROC’ packages for diagnostic meta-analysis in R (The R Foundation for 

Statistical Computing, Vienna, Austria; version 3.6.3) and Stata 15.1 (Stata Corporation, College 

Station, TX, USA). 

 

Role of the funding source  

The funder of this study had no role in study design, data collection, data analysis, data 

interpretation, writing of the report, or in the decision to submit for publication. The authors had 

full access to all the data, and the corresponding author was responsible for the decision to submit 

for publication.  
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Results  

Study selection and characteristics of the included studies  

Out of 5,180 reports retrieved from the initial search of different databases, we included 189 

articles representing a total of 53,659 patients in the study (Figure 1). Most of the included studies 

were cohort studies (N=129), followed by case series (N=52) and case-control studies (N=8). We 

included studies from 11 countries, and 171 studies reported data from China. The average age of 

the reported adult studies was 50.4 years. The most reported symptoms were fever (N=182), cough 

(N=169), diarrhea (N=110), dyspnea (N=95), and fatigue (N=94, Supplementary Figure S1). The 

detailed study characteristics are shown (Supplementary Table S3). 

 

Distribution of symptoms of COVID-19  

Variables such as mortality rate, the prevalence of COVID-19 infection, fever, cough, sputum 

production, sore throat, myalgia, fatigue, dyspnea, headache, nausea, and diarrhea were included 

in the meta-analyses (Supplementary Table S4). The overall prevalence of fever among COVID-

19 cases reported in 182 studies was 76% (95% confidence interval [CI]: 72–79%, Supplementary 

Table S4 and Figure 2). The prevalence of fever was significantly lower among children and in 

non-Chinese studies (52% vs. 80% and 53% vs. 78%, both P<0.001, Supplementary Table S4 and 

Figure S2b). After removal of 82 considered outliers, the prevalence of fever significantly 

increased from 76% to 78% (P<0.05, Supplementary Table S5). Moreover, the second common 

reported symptom, cough, had a prevalence of 56% in 169 studies (95% CI: 52–59%) and was 

significantly less common among children (44% vs. 57%, P=0.018, Supplementary Table S4 and 

Figure 2). The pooled prevalence of the remaining variables is shown in Supplementary Table S4.  
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The overall prevalence of severe cases among COVID-19 patients reported in 27 studies was 31% 

(95% CI: 25–37%). The most common symptom of severe cases was fever (89%, 95% CI: 83–

92%), followed by cough (71%, 95% CI: 63–78%). The severe cases had significantly higher white 

blood cell (WBC) counts and lower lymphocyte counts (WMD) (1.06×109/L, 95% CI: 0.36–

1.77×109/L, P<0.01 and -0.38×109/L, 95% CI: -0.47−-0.30×109/L, P<0.01, respectively, Figure 3 

and Supplementary Figure S3), whereas the pooled WBCs for severe and non-severe cases were 

5.89×109/L (95% CI: 5.45–6.33×109/L) and 5.00×09/L (95% CI: 4.75–5.26×109/L), respectively, 

and the pooled lymphocyte counts for severe and non-severe cases were 0.78×109/L (95% CI: 

0.72–0.84×109/L) and 1.16×109/L (95% CI: 1.10–1.23×109/L), respectively.  

 

Diagnostic and prognostic performance analysis  

Only adult patients were included in the studies for diagnostic and prognostic performance 

analyses. The most sensitive symptom in the diagnosis of COVID-19 was fever, with a fair pooled 

sensitivity of 83% (95% CI: 73–90%), but a poor overall performance (AUHSROC: 0.55, 95% CI: 

0.51–0.60, Figure 4a), followed by cough (39%, 95% CI: 11–76%). The most specific predictor 

of COVID-19 was fatigue (96%, 95% CI: 80–99%), followed by diabetes mellitus (85%, 95% CI: 

77–91%) and hypertension (74%, 95% CI: 60–84%, Figure 4b). The overall positive likelihood 

ratio (PLR) to predict COVID-19 for the combination of five predictors (fever, cough, fatigue, 

hypertension, and diabetes mellitus) was 3.06, while the overall negative likelihood ratio (NLR) 

was 0.59 (Figure 5a). 

 

Furthermore, fever was also the most sensitive symptom in predicting severe COVID-19 (89%, 

95% CI: 83–92%), followed by cough (71%, 95% CI: 63–78%). The most specific predictor of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 January 2021                   



15 
 

severe COVID-19 was chronic obstructive pulmonary disease (COPD) (99%, 95% CI: 98–99%), 

followed by diabetes mellitus, hypertension, and dyspnea (93%, 95% CI: 91–95%; 87%, 95% CI: 

84–89%; and 87%, 95% CI: 75–93%, respectively, Figure 4b). Moreover, we developed a 

nomogram to aid in predicting the risk of severe infection. The overall PLR for predicting severe 

COVID-19 for the combination of six symptoms (fever, cough, sputum production, myalgia, 

fatigue, and dyspnea) was 10.44, while the overall NLR was 0.16 (Figure 5b).  

 

Adverse outcome assessment  

The overall pooled mortality rate among the reported COVID-19 cases was 10% (95% CI: 6–14%, 

Supplementary Table S4, and Figure 2). In sub-group analyses, mortality rates were lower among 

children (0% vs. 12%, P<0.0001), Chinese studies (9% vs. 15% P=0.462) and in cohort studies 

(compared to case series: 9% vs. 17%, P= 0.101, Supplementary Table S4 and Figure S2).  

 

Publication bias 

Significant publication bias by Egger’s test was found in mortality, severity and the following 

symptoms: fever, cough, sore throat, myalgia, fatigue, dyspnea, headache, nausea, and diarrhea 

(Supplementary Table S5 and Figure S5).  

 

Sensitivity analysis 

We found that the sensitivity of fever was strongly correlated with the thresholds (75% for 37.3 

oC, 45% for 38 °C, and 16% at 39 °C, Table S6). We found no significant difference among 

different transformation methods such as logit transformation (PLO), arcsine transformation 

(PAS), PFT, and generalised linear mixed model (GLMM, Supplementary Table S7). However, 
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we found substantial heterogeneity with >75% I2 for mortality, the prevalence of severe COVID-

19, and symptoms including fever, cough, sputum production, sore throat, myalgia, fatigue, 

dyspnea, headache, nausea, and diarrhea (Table S4). Additionally, the prevalence of symptoms 

among COVID-19 patients ranged widely among different study designs. In case-control studies, 

the prevalence of fever, cough, myalgia, fatigue, and nausea was found to be higher than that in 

cohort studies (Supplementary Table S4 and Figure S2a). After the removal of 31 studies by outlier 

analysis, the pooled mortality rate decreased insignificantly from 10% to 9% (Egger’s test: -2–

0.375, P=0.145, Supplementary Table S5). We further investigated the potential sources of 

heterogeneity in the multivariable meta-regression. 

 

Meta-regression results  

We identified the correlation between the sensitivity of symptoms such as fever, cough, fatigue, 

and dyspnea, and potential confounders, such as the stage of the outbreak, age, and comorbidities. 

The sensitivity of fever in COVID-19 cases decreased significantly with the stage of the outbreak 

(85% to 50%, P<0.001), with a correlation coefficient of -0.152 (Supplementary Figure S4a and 

Figure S5). Moreover, the sensitivity of fever was positively correlated with age, ranging from 50% 

to 80% (P<0.001), with a correlation coefficient of 0.283 for the adult age (Supplementary Figure 

S4b and Figure S5). Cough was negatively correlated with the stage of the outbreak (80% to 60%, 

P<0.001, Supplementary Figure S4a), while it was positively correlated with age (sensitivity: 45% 

to 60%, P<0.001, Supplementary Figure S4b), with a correlation coefficient of 0.121 for age in 

adults (Figure S5). Similarly, fatigue was negatively correlated with the stage of the outbreak but 

positively correlated with age (sensitivity: 60–10% and 10–45%, respectively; both P<0.001, 

Supplementary Figure S4). After multivariable meta-regression adjusting for the potential 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 January 2021                   



17 
 

confounders, the prevalence of dyspnea, myalgia, and headache among COVID-19 patients 

increased slightly, while that of fever, cough, fatigue, diarrhea, and nausea decreased slightly 

(Supplementary Figure S5).  

 

Quality assessment  

The risk of bias assessment is illustrated in Supplementary Figure S6 and Table S2. Most of the 

studies lacked adequate justification of sample size and blinding of the outcome assessment. The 

other common risks of bias were the lack of confounder adjustment, prospective measurement of 

exposure, sample size justification, and blinding of the outcome assessment (Supplementary 

Figure S7). In the subsequent sensitivity analysis, we found that predictors such as fever, headache, 

and sore throat could be over-estimated in non-prospectively measured exposures and that there 

was a lack of concurrent controls (Supplementary Tables S8 and S9). 
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Limitations 

Our study has several limitations. First, to maximise the sample size to deliver the most confident 

estimates of the predictors, we pooled different kinds of studies together. However, in the 

subsequent sensitivity analyses, we provided further detailed results for clinicians. Second, at the 

beginning of the outbreak, patients included in these studies could have had severe disease 

manifestation, considering the lack of medical resources, attention, and consistent screening and 

diagnostic criteria. Nevertheless, we also provided adjusted pooled sensitivity of these predictors 

in the meta-regression, attempting to minimise the influence of age, comorbidities, and the stage 

of the outbreak. Third, although we attempted to evaluate the influence of the risk of bias in the 

subgroup analyses, it is not possible to incorporate different risks of bias in different study designs. 

Accordingly, we could only provide the potential influence in the sensitivity analyses. Fourth, few 

studies reported the control group results, which could have influenced the precision of specificity 

in our study. Fifth, smell and taste dysfunctions, or olfactory and gustatory dysfunctions, were 

discussed in various articles as important symptoms of COVID-19. Previous systematic reviews 

indicated that the prevalence of olfactory and gustatory dysfunctions was 41.0% (95% CI: 28.5–

53.9%) and 38.2% (95% CI: 24.0–53.6%), respectively.30 However, since these symptoms 

remained unrecognised during the early stages of the pandemic, most reports did not consider these 

symptoms and thus we do not have sufficient data for an accurate analysis. Lastly, the composite 

criteria of severe COVID-19 used in different studies might have influenced the predictor 

performance. 

 

Discussion  
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To the best of our knowledge, this is the largest systematic review analysis and meta-analysis, 

including 189 studies consisting of 53,659 patients, to evaluate predictors for COVID-19 and 

severe COVID-19 infection. In our quantitative synthesis, approximately one in five test-positive 

adults was not febrile, and we found that the sensitivity threshold of fever should be 37.3 ºC. 

Overall, we found a lower prevalence of symptoms among COVID-19 patients than in earlier 

studies, and also that the outbreak stage was an important confounding factor. We also 

demonstrated two nomograms with satisfactory PLR and NLR by combining symptoms to provide 

direction to front-line clinicians in their daily practice. 

 

We found a lower prevalence of symptoms among COVID-19 patients than earlier studies.31, 32 

The most reported predictors were fever, cough, diarrhea, dyspnea, and fatigue.33 A previous 

small-scale study indicated fever as the most prevalent clinical symptom (91.3%, 95% CI: 86–

97%), followed by cough (67.7%, 95% CI: 59–76%), fatigue (51.0%, 95% CI: 34–68%), and 

dyspnea (30.4%, 95% CI: 21–40%).31 The findings of another larger study that considered patients 

with more severe infection were similar (fever: 88.7%, 95% CI: 84.5–92.9%, cough: 57.6%, 95% 

CI: 40.8–74.4%).32 Furthermore, a previous systematic review of 16 studies identifies fever, 

myalgia or arthralgia, fatigue, and headache as having clear predictive value (defined as having a 

PLR of at least 5) for COVID-19 as their specificity was above 90%.9 However, meta-analyses 

could not be performed due to the small number of studies, heterogeneity across studies, and the 

high risk of bias. They also identified incorporation bias, which may increase the sensitivity of the 

symptoms used to screen patients as well as spectrum bias caused by including participants with 

only pneumonia for imaging in five of the included studies. However, a recent study found 10% 

lower estimates from prior systematic reviews and meta-analyses, similar to our results.34 
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Nonetheless, the authors did not examine the risk of bias in the included studies, and they only 

used fever for dichotomisation.  

 

Another important reason that might result in different prevalence of fever among COVID-19 

patients could be due to the thresholds selected in different studies. As we indicated in our study, 

the prevalence of fever of patients ranged largely from 75% for 37.3 °C to 45% at 38 °C. Since a 

thermal detector may be used as the only measure to screen patients in many resource-limited 

settings, the understanding of different thresholds and their related sensitivities is important.  

The effect of different stages of the outbreak could be the reason for these discrepancies. We found 

a lower prevalence of fever and fatigue among studies conducted in later stages of the outbreak, 

which may be due to different patient selection, different definitions of the disease syndrome, and 

different resource utilisation. The clinical features of COVID-19 patients might differ in different 

outbreak stages.35 The insufficient understanding of the virus, shortage of medical resources, and 

the spectrum of the patients reported could be the reason patients in different outbreak stages could 

have different manifestations.36 Further, fever and cough occurred in the early stage of the 

infection. Accordingly, clinicians should pay attention to the stage of the pandemic or epidemic in 

their practice locations as well as the infection stage of the patients. 

 

We also found a lower prevalence of fever, cough, fatigue, dyspnea, and severe cases among 

younger infected populations. Similar to an updated meta-analysis,37 we found that only half of 

the pediatric COVID-19 patients had fever. It is thought that children might have an 

underdeveloped immune system, which may inversely prevent the likelihood of severe infection 

induced by an over-reacting immune response.38 
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The pooled mortality rates and prevalence of severe infection were found to be 10% and 31%, 

respectively. Fever was the most sensitive predictor, and COPD was the most specific predictor 

for severe COVID-19 infection. These two predictors are less reported, whereas other 

comorbidities such as hypertension, respiratory system disease, and cardiovascular disease are 

found to be associated with disease severity.31, 39 Similar to previous studies, we found that 

leucocytosis and lymphopenia were associated with severe infection.40, 41 We provided pooled 

WBC and lymphocyte counts, along with the WMD between severe and non-severe patients in 27 

studies. This phenomenon occurs because T lymphocyte cells, including CD4 and CD8 cells, 

might be killed by viruses such as influenza in severe cases and result in profound lymphopenia.42, 

43 

 

Furthermore, many other confounders could influence the diagnostic and prognostic performance 

of the predictors in the observational studies included. One of the most important factors is the 

selection of study populations. As we indicated in our subgroup analyses, case-control studies tend 

to give overestimated prevalence of symptoms among COVID-19 patients. Furthermore, age and 

many comorbidities could influence the performance of these predictors. The multivariable meta-

regression results reveal that the prevalence of dyspnea, myalgia, and headache among patients 

increased slightly, while that of fever, cough, fatigue, diarrhea, and nausea decreased slightly. 

Therefore, clinicians should consider different sensitivities in different patient populations. 

 

We provided two nomograms to assist front-line clinicians in predicting and prognosticating 

COVID-19 in their daily practice. Assuming the independence of these symptoms, patients with 
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fever, cough, sputum production, sore throat, myalgia, and fatigue would be three-fold more likely 

to have a positive COVID-19 infection, which could increase a presumed 10% pre-test probability 

to 25% post-test probability (Figure 5). Similarly, clinicians could use a combination of another 

six predictors, including fever, cough, sputum production, sore throat, myalgia, and fatigue, to 

increase their post-test likelihood to ten-fold from a presumed 10% pre-test probability to 54% 

post-test probability for severe infection. 

 

In conclusion, understanding the different distributions of predictors is essential to screen for 

potential COVID-19 infection and severe outcomes. Researchers should consider these potential 

confounders in future studies conducted to evaluate the distribution of symptoms, comorbidities, 

and severity. The combination of symptoms could improve the pre-test probability before 

screening for potential infection and severe outcomes.  
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Table 

 

Table 1. Sensitivity analysis of different thresholds for fever. Each study could report results 

from more than one threshold 

Definition 
Number of 

Studies 

Proportion (%, 

95% C.I.) 
Q I2 

Without 

temperature 
126 76 (72-80) 6362.54 98.0% 

Temperature 

>37.3oC 
42 75 (68-81) 444.94 90.8% 

Temperature 

>38oC 
47 45 (38-52) 979.58 95.3% 

Temperature 

>39oC 
35 16 (11-22) 525.80 93.5% 

 

 

Figure Legends 

 

Figure 1. Flow chart of study identification, screening, inclusion, and exclusion in the systematic 

review. 

 

Figure 2. Forest plot for the proportion of symptoms and outcomes in COVID-19 patients among 

the overall and different age groups. 

 

Figure 3a. Forest plot of weighted mean differences of white blood cell counts between severe 

and non-severe COVID-19 patients. 

Figure 3b. Forest plot of weighted mean differences of lymphocyte counts between severe and 

non-severe COVID-19 patients. 
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Figure 4a. Performance for predictors in detecting COVID-19 infection. 

Figure 4b. Performance for predictors in prognosticating severe COVID-19 infection. 

 

Figure 5a. Fagan's nomogram plot of the combination fever, cough, fatigue, hypertension, and 

diabetes mellitus to detecting COVID-19 infection. 

Figure 5b. Fagan's nomogram plot of the combination fever, cough, sputum production, myalgia, 

fatigue, and dyspnoea to prognosticate severe COVID-19 infection. 
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Figure 1. Flow chart of study identification, screening, inclusion, and exclusion in the systematic 

review. 
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Figure 2. Forest plot for the proportion of symptoms and outcomes in COVID-19 patients among 

the overall and different age groups. 
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Figure 3a. Forest plot of weighted mean differences of white blood cell counts between severe and non-severe COVID-19 patients. 1 

Figure 3b. Forest plot of weighted mean differences of lymphocyte counts between severe and non-severe COVID-19 patients. 2 

 3 

 4 

  5 
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Figure 4a. Performance for predictors in detecting COVID-19 infection. 6 

Figure 4b. Performance for predictors in prognosticating severe COVID-19 infection. 7 

 8 

  9 
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Figure 5a. Fagan's nomogram plot of the combination fever, cough, fatigue, hypertension, and diabetes mellitus to detecting COVID-10 

19 infection. 11 

Figure 5b. Fagan's nomogram plot of the combination fever, cough, sputum production, myalgia, fatigue, and dyspnoea to prognosticate 12 

severe COVID-19 infection. 13 
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