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Abstract: In the last decade, different omic technologies have experiences an exponential 

technological advancement. However, metabolomics has not followed a similarly vertiginous 

improving improvement and are far from genomics or transcriptomics in terms of throughput, cost 

and even accuracy. Therefore, genome-scale in-silico methodologies to estimate metabolic activities 

from genomic data constitute an active field. The solutions available fall into two extremes: those 

with few assumptions about the relationships among proteins and metabolites, which are easy-to-

use but less accurate and those that account for the complex relationships among molecules and 

proteins defined in the metabolic pathways, which are more accurate but require mathematical 

skills. Here, we introduce Metabolica, an algorithm that considers the complex functional 

relationships among all the molecules and proteins involved in the metabolic pathway analyzed but 

keeping an easy use that do not require of advanced mathematical skills. Metabolica has been 

implemented in a freely available software R package. The software inputs transcriptomic data and 

infers the activities of the reactions that produce the different metabolites in the pathway analyzed. 

An example shows how detected dysregulated metabolites in several cancers are related to patient 

survival.    

Keywords: metabolic pathways; mechanistic model; Transcriptomic;  

 

1. Introduction 

The deviant levels of metabolites are precise indicators of metabolic irregularities behind the 

neoplastic cell requirements during cancer initiation and progression. These requirements include 

mainly the biosynthesis of building blocks (nucleotides, lipids, and amino acids) and the fulfilment 

of the enormous energy dependencies of rapidly proliferating tumor cells. The main elements of 

metabolism are the metabolites and the biochemical reactions that are catalyzed by enzymes, which 

participate in a network of complex interactions that are described in detail in different pathway 

repositories, like Reactome [1], KEGG [2], Wikipathways [3], etc., or other ones more specific, like 

disease maps [4]. The quantification of these elements is essential to understand their mechanistic 

interactions with cellular functions (e.g. apoptosis, metastasis, etc.) [5] and to elucidate their 

cancerous/oncogenic activities [6].  

Despite the relevance of metabolism in cancer was known for almost one century [7], with the 

observation of enhanced aerobic glycolysis (the well-known Warburg effect) [8], the number of 
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studies using differential metabolite profiles is still very limited [9, 10]. Actually, large-scale, 

consortium-based studies like TCGA [11], TARGET or METABRIC [12] lack of a systematic 

metabolomics characterization. This is mainly due to the technical difficulties for the correct detection 

and the quantitative systematic measurement of small molecules. The current challenges in the 

metabolomics area make of genome-scale metabolic network based in-silico methods an active area 

[13]. 

  

While pathway enrichment analysis (EA) methods [14] were initially used for exploratory 

genome-scale metabolic analysis, other more sophisticated methods, such as Constraint-based flux 

Balance analysis Methods (CBM) [15], demonstrated to be more accurate for specific tasks, like the 

characterization of oncometabolites [16, 17]. Several features of metabolism, such as the numerous 

feedback loops, the reversibility of reactions, the existence of alternate paths (bifurcations) for the 

production of metabolites or the stoichiometric equilibrium between metabolites [18] cannot be 

properly captured by EA methods, which focus on sets of genes, even if these are weighted by the 

proximity in the pathways [19]. Contrarily, CBM consider the features generated by the complex 

wiring of proteins within metabolic pathways. However, the tradeoff for this analytic advantage is 

that CBM applications require prior experience in the selection of thresholds for setting the correct 

constraints to shrink the solution space and need previous skills in the mathematical solvers to obtain 

an optimal solution space [20-22]. Moreover, setting a correct objective function for the metabolic 

network modeling of complex animal cells, especially for the cancer cells, is one of the main 

challenges in CBM [15]. Therefore, it is not surprising that EA algorithms, such as the Reporter 

Metabolites (RM) [23], are still frequently used to identify metabolites related to significant 

transcriptional changes. RM aggregates the p-value of the genes that directly influence the 

production and consumption of metabolites, and assigns a unique p-value to any metabolite. Two 

recent studies presented the extensions of RM on pathways: the metabolite-centric Reporter Pathway 

Analysis (RPA) [24], and Metabolic Classifier and Feature generator (MCF) [25].  

A recent genome-scale analysis strategy that takes into consideration the topology of the 

pathways in a simpler algorithmic framework is mechanistic modeling of pathway activity [26]. 

Mechanistic models have successfully been applied to uncover details of the disease mechanisms 

behind different cancers [5, 27], including neuroblastoma [28, 29] and glioblastoma [30], mechanisms 

of action of drugs [31] including drug repurposing [32], gender-specific effects of drugs in cancer [33] 

and the description of the mechanisms of emergence of drug resistances in cancer at single-cell level 

[30]. Moreover, mechanistic models have an interesting property: they allow predicting the 

consequences of perturbations in a given condition [34], which make them excellent tools for drug 

discovery or personalized therapeutic interventions. A specific version for metabolic analysis that 

models metabolic modules, defined within KEGG [2] as a comprehensive curated summary of the 

main aspects of metabolic activity, accounting for the production of the main classes of metabolites 

(nucleotides, carbohydrates, lipids and amino acids) [35] was recently proposed [36]. Despite 

metabolic modules provide only a reduced coverage of the whole complexity of the metabolism, this 

approach was successfully applied to predict gene essentiality in cancer with a high accuracy [5].  

Here we present the Metabolica algorithm, an extension of the mechanistic modeling of 

metabolic modules extended to the whole metabolism, to predict the dysregulated metabolite 

production activities in cancer using the transcriptomics and/or genomic data. Metabolica considers 

reversibility of reactions, deals with feedback loops and does not need mathematical solvers. Some 

examples illustrate how metabolites whose production was dysregulated in cancer were clearly 

associated to bad prognostic.  

2. Results 

2.1. Prediction of metabolite production in BRCA and KIRK 

To demonstrate Metabolica, the BRCA and KIRC datasets of TCGA project were used. The 

results obtained were compared with the reporter metabolites algorithm (RM) and real metabolomics 
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measurements. The benchmark was restricted to 267 metabolites that were contained within 

metabolomics datasets and had KEGG compound identifiers. The significant differentially regulated 

metabolites (DRM) are depicted in Figure 1. A total of 74% of DRMs predicted by Metabolica were 

coincident with the the experimental metabolic profiling. The percentages provided by RM for the 

same comparison were lower than %1.  

 

 
 

Figure 1. Results of the algorithms compared. DiReMs found by the Metabolica, the reporter 

metabolites algorithm (RM), and metabolomics dataset (as ground truth) in BRCA and KIRC cancer 

types. 

The total number of DRMs predicted by Metabolica was almost twice the number obtained from 

the metabolomics datasets. It is important to note that the Metabolica determines DRMs based on the 

production rate of metabolites but does not necessarily report the actual balance of the metabolite, 

which is what experimental technologies such as gas chromatography and mass spectrometry detect, 

given that intermediate metabolites could be further depleted, transformed by other reactions. In 

order to assess the real ratio of false positives of the algorithm a test was carried by a systematic 
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comparisons between pairs of groups of individuals sampled from the same condition. Since the 

individuals in the compared groups belong to the same condition, and are actually identical, any 

difference reported by Metabolica can be considered a false positive. (see Methods). The mean 

percentage of false positive results was always lower than % 0.003 when the conventional alpha value 

of 0.05 set as the threshold of significance (Figure 2). Therefore, biases due to false positives in 

Metabolica can be discarded. 

 

 

Figure 2: Specificity study. False positive rate of the Metabolica when the different groups of same 

condition were compared. For each sample size, 1000 different samplings were done and 

compared. The percentages of significant (FDR-adjusted p<0.05) DRMs that were found in all 

iterations are given in this figure. The median percentage of false positive results of the Metabolica 

is given as line and the outliers as dots. 

2.2. Impact of metabolites in cancer progression 

In order to check whether the estimated metabolite production activities were related with 

cancer progression and patient prognosis, patient survival and cancer stage analyses were carried 

out. The number of metabolites significantly associated with patient survival was remarkably 

different between the two cancer types studied: only 2 metabolites in BRCA and 307 metabolites in 

KIRC (FDR-adjusted p<0.05 of hazard ratio for Cox model). Out of 307 significant metabolites found 

in KIRC, 19 were members of arginine and proline metabolism, glutathione metabolism, and primary 

bile acid biosynthesis pathways. The abundances of these metabolites also showed high correlation 

with the cancer stages (pearson | r | > 0.9). The results of patient survival and cancer stage of three 
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clinically relevant metabolites from this list, putrescine (C00134), Acyl-CoA (C00040) and Acetyl-CoA 

(C00024) are given in Figure 3.There is a significant increasing trend for Acetyl-CoA (Correlation 

coefficient=0.73) and a decreasing trend for putrescine (CC=-0.92) and Acyl-CoA (CC=-0.90).  

 

 

Figure 3: Relationship between metabolite prodiuction and patient survival. (A) The K-M plots of 

putrescine (C00134) and Acyl-CoA (C00040) are showing the significant relationship between the 

abundance of these metabolites and the patient survival in KIRC. The 45th and 55th percentiles 

(red and blue lines) were used to discretize the samples into two groups. The x-axis shows time in 

months and the number of patients at risk in the high two groups of samples. (B) The box plots of 

putrescine (C00134), Acetyl-CoA (C00024) and Acyl-CoA (C00040) are showing the relationship 

between metabolite abundance and cancer stage. The x-axis shows sample groups; normal and 

tumor stages. The y-axis shows -log2 metabolite abundances by the Metabolica. Survival data are 

available in Table S1. 

3. Discussion 

Metabolica is based in a generalized mechanistic model that accounts for the activity of the 

reactions required to produce any metabolite in the whole metabolic pathway. The results suggest 

that there is a production of the metabolite, which doesn not mean that the metabolite is detectable 

given that it can be consumed in another reaction. However, if the metabolite plays a relevant role, 

this information about its production is relevant.   

Figure 1 shows a remarkable difference in the number of predicted DRMs by the Metabolica and 

RM, suggesting that the use of sub-pathways or circuits in the context of mechanistic models 

produces a more accurate detection of metabolite production activity [26, 36, 37]. In particular 

Pyridoxate, also known as vitamin B6, was identified as a DRM in KIRC by both methods (Figure 1). 

Pyridoxate and its bioactive form has been identified as a critical factor to alter apoptosis induction 

properties of chemotherapeutics. Actually, In lung cancer, low expression of pyridoxal kinase gene, 

which encodes the enzyme that generates the bioactive form of vitamin B6, was found to be associated 

with poor prognosis and proposed as a biomarker for risk stratification among lung cancer patients 

[38]. Glucose dependence is known to be the main metabolic characteristic exhibited by tumor cells 
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[7]. Interestingly, both Metabolica and real measurements show different levels of differential activity 

in the production of this metabolite between KIRC and BRCA (Figure 1). This observation may be a 

consequence of the differences that exist between the glucose metabolization in different cancer cells, 

that was recently reported by isotope tracing in KIRC [39]. There were metabolites which have been 

identified as DRMs only by the Metabolica in both cancer types. For example, 5,6-dihydrouracil 

(Figure 1), which is an intermediate product of breakdown process of uracil into beta-alanine  

required for epithelial-mesenchymal transition [40]. This catabolic process is also called pyrimidine 

degradation module and was found to be essential for cancer cell survival in some tumor types and 

experimentally validated by us [5]. Although a comprehensive description of the results is beyond 

the scope of this manuscript, it is worth mentioning how the dysregulation of metabolites in BRCA 

like succinate and kynurenine (Figure 1) that are taking a key role in the initiation of tumorigenesis 

and its progression were correctly predicted [41, 42]. 

The therapeutic perspective of the metabolites is an important aspect that cannot be despised. 

Since metabolites can act as direct regulators of gene expression, they have been used for decades as 

therapeutic agents, targets, or biomarkers [43]. Thus, one the main motivations here was to 

demonstrate the clinical relevance of metabolites. To achieve so, patient survival and cancer stage 

analyses were performed for the metabolites. As previously mentioned, both cancers showed a 

remarkably different number of metabolites significantly associated with patient survival, which was 

in agreement with recent observations of pan-cancer analyses of prognostic genes and metabolic 

modules [5, 44]. On the other hand, the low number of significant associations observed in BRCA has 

been suggested to be an artifact derived from the short follow-up time of the TCGA samples [45]. 

Figure 3 shows three clinically relevant metabolites detected by Metabolica from this 10 members of 

the arginine and proline metabolism, glutathione metabolism, and primary bile acid biosynthesis 

pathways, putrescine (C00134), Acyl-CoA (C00040) and Acetyl-CoA (C00024). Putrescine is a 

polycationic alkylamine and the precursor of spermidine and spermine. These polyamines are 

involved in many fundamental processes, essential for normal cell growth and their depletion may 

have a cytostatic effect on some tumors. It is known that polyamine metabolism is frequently 

dysregulated in cancer and polyamine blocking therapies are used to heighten immune responses in 

cancer [46-48]. Acyl-CoA and Acetyl-CoA are the important metabolites of the fatty acid biosynthesis 

and elongation processes. They have been identified as critical factors for tumor growth by means of 

their effect on histone acetylation and gene expression [49, 50]. The high production rate of Acetyl-

CoA from acetate is known to be associated with poor prognosis cancer cell survival [51]. 

Mitochondrial respiration under prolonged hypoxic conditions increases the generation of reactive 

oxygen species (ROS) that results in the cell death [52]. Therefore, the cancer cells adapt to the hypoxic 

microenvironment by limiting the conversion of pyruvate to acetyl-CoA that is entering into the 

tricarboxylic acid (TCA) cycle. For all that, the required acetyl-CoA in the other cellular processes can 

be generated by alternative routes like using acyl-CoA in β-oxidation [52, 53]. The negative 

correlation between the tendencies of acyl-CoA and acetyl-CoA from healthy tissue to tumor stage 4 

is also confirming this alternative process (Figure 3). 

In summary, the Metabolica has been designed to predict metabolite production activity that 

can be used as potential diagnostic biomarkers or drug targets for complex traits. In particular, it can 

be used for in-silico targeted enrichment of metabolites to prioritize them for experimental 

metabolomics studies. The Metabolica tool, the data used in this study and more comprehensive 

results can be found at https://github.com/babelomics/Metabolica.  

4. Materials and Methods  

4.1. Breaking down the pathway into elementary sub-pathways 

Metabolica requires the definition of sub-pathways in which the activity of the reactions of 

metabolite synthesis are modeled. Breaking down a pathway into sub-pathways and estimating the 

activity of a sub-pathway do not depend on a particular pathway repository, but it requires essential 

information for metabolic reactions (substrate, product, and reversibility descriptions). Here, the 
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canonical pathways presented in KEGG database [54] were used. A total of 78 human metabolic 

pathways, containing 1901 reactions and 1270 metabolites (Table S2) were downloaded. The KGML 

files were parsed using the KEGGgraph Bioconductor package [55].  

 

 

Figure 4: Example of a sub-pathway. The production sub-pathway of 4-Androsten-16alpha-ol-3,17-

dione (blue node) starting from cholesterol and 20alpha,22beta-Dihydroxycholesterol (green 

nodes). This sub-pathway (left) was dissected from the steroid hormone biosynthesis pathway 

(right). The circles, rectangles and arrows are representing metabolites, metabolic reactions and 

reaction reversibility, respectively. 

The sub-pathway that produces a given metabolite is defined by all the nodes which were visited 

inside its pathway using breadth-first search algorithm. This process starts from the metabolite 

produced (so-called product) and continues iteratively on the direction of the edges which are 

arriving at the product and its connected neighbor nodes. Figure 4 shows a real example of a sub-

pathway which is extracted from its pathway as described above. 
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Figure 5: Effect of thresholds on the reactions. A) The selected threshold was fulfilling the following 

expectations: the highest amount of lactate production (reaction (S)-Lactate + NAD+ <=> Pyruvate 

+ NADH + H+; KEGG ID: R00703) [56], decrease in pyruvate decarboxylation (L-Alanine + 2-

Oxoglutarate <=> Pyruvate + L-Glutamate, KEGG ID: R00258) [56] and increase in the nitrogen 

transfer from glutamine to alanine over pyruvate (Pyruvate + Thiamin diphosphate <=> 2-(alpha-

Hydroxyethyl)thiamine diphosphate + CO2, KEGG ID: R00014) [57]. B) The different percentile 

thresholds applied for transcriptomics data mapping into from reactions nodes and for each 

threshold the activities of (S)-Lactate + NAD+ <=> Pyruvate + NADH + H+ (KEGG ID: R00703), L-

Alanine + 2-Oxoglutarate <=> Pyruvate + L-Glutamate (KEGG ID: R00258) and Pyruvate + Thiamin 

diphosphate <=> 2-(alpha-Hydroxyethyl)thiamine diphosphate + CO2 (KEGG ID: R00014) are 

compared between healthy and tumor samples of BRCA and KIRC. The y-axis shows the percentile 

thresholds tested and the x-axis log2 fold-change of reactions. Down regulated and up regulated 

reactions in tumor samples are shown with blue and red dots, respectively. Dashed lines are 

showing zero and 50th percentile fold-changes. 

Because of the highly interconnected nature of metabolic pathways and the numerous feedback 

loops, the convergence of calculations is challenging when the propagation algorithms are applied 

on metabolic hypergraphs. To deal with this issue, the feedback loops which are not derived from 
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the product were kept, however, all the feedback loops (outdegree edges) of the product were 

removed. By this means, we also restrict the consumption of the product by its producing pathway. 

Similarly to the signaling [27] or metabolic module [36] implementations, Metabolica requires 

starting node(s) to initialize the propagation of metabolic flux along sub-pathways. The definition of 

starting nodes is a 2-steps process: first, the metabolites with indegree of zero and the metabolites at 

the farthest position in the sub-pathway (products) are selected, and the propagation algorithm (see 

below) is ran without any objective function. In the second step, the nodes which were not visited in 

the previous run to the list of starting nodes are included in order to guarantee that all the nodes can 

be visited in the further runs. All the decomposing steps were done only one time and saved for 

future analysis of the pathway. 

4.2. Estimating reaction node activities 

The method proposed in this study uses the expression levels of the genes that encode enzymes 

as proxies of levels of the corresponding gene product enzymes and, consequently, of their activity 

levels [58-60]. The transcriptomics data mapping from genes to enzymes (proteins) and reactions 

were done using the gene-protein-reaction (GPR) relationships [61]. In the case of single gene 

(protein) - reaction relationships, the normalized gene expression level is used as the activity level of 

the reaction. For reaction nodes composed of multiple genes (proteins), where the reaction is 

catalyzed by isozymes or enzyme complexes, a 50th percentile of expression values of the genes is 

assigned as the activity of the reaction. The percentile threshold (50th) used to summarize gene 

expression values into a reaction activity was empirically obtained from the observed regulation 

patterns of 3 well characterized metabolic reactions in the context of the Warburg effect: (S)-Lactate 

+ NAD+ <=> Pyruvate + NADH + H+ (KEGG ID: R00703), L-Alanine + 2-Oxoglutarate <=> Pyruvate + 

L-Glutamate (KEGG ID: R00258) and Pyruvate + Thiamin diphosphate <=> 2-(alpha-

Hydroxyethyl)thiamine diphosphate + CO2 (KEGG ID: R00014), depicted in Figure 5A.  

To define the optimal threshold the Warburg Effect, defined as an increase in the rate of glucose 

uptake and preferential production of lactate (anaerobic), even in the presence of oxygen (aerobic) 

[56], was used. Therefore, the observation of an increase in the reaction activities of anaerobic 

respiration compared to aerobic in tumor samples (Figure 5A) was expected. Figure 5B illustrates the 

upregulation of the main reaction of anaerobic branch (R00703) at 10th, 30th, 40th and 50th percentiles 

when tumor samples compared to healthy samples. Actually, the highest up regulation was observed 

at 50th percentile for both cancer types. The first reaction of the aerobic branch, R00014, was down 

regulated at all percentiles (from 10th to 90th percentiles). Finally, the reaction R00258 was up 

regulated at 10th, 20th, 30th, 40th and 50th percentiles in both cancer types [57]. Therefore, although 

the whole range from 10th to 50th percentiles is compatible with the Warburg Effect, the highest 

amount of lactate production, decrease in pyruvate decarboxylation and increase in the nitrogen 

transfer from glutamine to alanine over pyruvate is attained at 50th percentile, with the highest lactate 

production using pyruvate, which is the essential metabolic process in tumorigenesis [57] . 

4.3. Computing the sub-pathway activity 

For each reaction node ri of a sub-pathway, the metabolic flux propagation is computed by the 

given formula according to the following recursive rules: 
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Figure 6. Recursive rules of the propagation algorithm. 

 

Where Wms,ri is the amount of substrate (ms) used by reaction (ri), Wrimp is the amount of 

product (mp) produced by the reaction ri and mp is the final amount of product which is produced by 

different reactions. N+ and N- denote neighborhood of a node on the direction of its outgoing and 

incoming edges, respectively. n is the total number of Wrimp plus 1 for mp. Thus, the equation (1) 

distributes the substrate proportionally with the activities of its consuming reactions. The equation 

(2) aims to elucidate the reaction rate (limited by the minimum amount of the substrates used). The 

amount of metabolite produced per unit time depends on the capacity of enzyme (saturation) and 

the amount of substrate. This is the combination of Michaelis-Menten kinetics and systems-level 

analysis of mechanisms regulating metabolic fluxes [62]. The equation (3) updates mp node with the 

amount of contributing product of the reaction ri without saturating this node and it can also handle 

the loops appropriately. The loops in a sub-pathway need a high number of iterations to stabilize the 

flux propagated. Thus, the Metabolica iterates the flux that is in a loop until it reaches the convergence 

state. Here, the convergence state is defined as almost-zero flux change between iterations. Therefore, 

the Metabolica repeats the steps 1, 2 and 3 until the flux initiated in the initial nodes reaches the 

product in a sub-pathway and while the flux which is propagated in a loop has not reached 

convergence. Metabolica input values in the [0,1] interval and returns output values in the same 

interval. Such results are non-dimensional values that, like gene expression values, can be interpreted 

in the context of a comparison. 

4.4. Samples and data processing  

RNA-seq counts and simple somatic mutations data for a total of 1550 samples, 1365 

corresponding to tumor and 185 to healthy reference tissues, belonging to breast invasive (BRCA) 

and kidney renal clear cell (KIRC) carcinomas were downloaded from The International Cancer 

Genome Consortium (ICGC) repository [63]. The trimmed mean of M-values (TMM) normalization 

method [64] was used for gene expression normalization. Normalized samples were log-transformed 

and a truncation by quantile 0.99 was applied. The COMBAT method [65] was used for batch effect 

correction. Finally, the data was re-scaled between 0 and 1.  

Annovar tool [66] with its ljb26 database was used for functional annotation of non-synonymous 

genetic variants. The variants predicted as damaging by at least 3 out of 5 in-silico pathogenicity 

predictors were considered loss-of-function (LoF) mutations. These in-silico methods are: SIFT [67], 

Polyphen2 [68], FATHMM [69], MutationTaster [70], MutationAssessor [71]. For each tumor sample, 

expression value of the genes that were affected by the damaging variants were multiplicated by a 

decreasing constant: 0.001, to simulate LoF in the enzyme (equivalent to a non-expressed gene). 
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4.5. Comparative performance of Metabolica 

The performance of Metabolica and the RM method in detecting DRMs were compared to real 

mass spectrophotometry (MS) metabolic profiles. An R implementation of RM method, as described 

in the original paper [23] was used. As it is recommended in the RM article, the aggregated Z scores 

were corrected for the background distribution by subtracting the mean and dividing by the standard 

deviation. For each dataset size, random sampling was repeated 10000 times to calculate background 

mean and standard deviation statistics. Scaled and imputed metabolomics datasets of BRCA and 

KIRC were downloaded from supplementary materials of their articles [72, 73]. Additionally, 

quantile normalization was applied to these datasets using preprocessCore Bioconductor package 

[74]. 

Here, the samples and sample sizes which were used in RM and the Metabolica calculations 

belong to TCGA datasets and they are different than the samples of metabolomics datasets analyzed. 

But all these datasets contain the paired samples of tumor and healthy. Therefore, Student's t-test for 

paired samples is used to assess the significance of observed changes of metabolites when samples 

of two conditions are compared.  

Finally, significant (FDR-adjusted p<0.05) DRMs of 3 methods were compared. The results of 

metabolomics profiles are taken as gold standards for this comparison. 

4.6. False positive rate of Metabolica 

In order to estimate the false positive rate (type I error), different testing datasets of samples 

were generated from the original dataset, and divided them into two equally sized groups that were 

further compared to each other for finding DRMs with Metabolica. Since the compared groups are 

composed of the same type of individuals, any significant change found in sub-pathway activities, 

can be considered a false positive result. To avoid biases derived from sample size or from the type 

of sample, different group sample sizes were tested both in cancer and in normal individuals. Sample 

sizes of groups ranged from 5 to 55 for normal samples and from 50 to 450 for tumor samples, which 

were also proportional to the total number of normal and tumor samples used in this study. For each 

sample size, 1000 different simulated samplings were carried out and compared. Student's t-test for 

unpaired samples used to assess the significance of the observations.  

4.7. Clinical Relevance of Metabolite Producing Sub-pathway Activities 

Since the Metabolica provides individual-level results the clinical relevance of metabolites can 

be tested. In order to show the potential prognostic value of sub-pathway activities, tumor stage and 

overall survival time of BRCA and KIRC patients were analyzed. Clinical data were obtained from 

the cBIOportal [75].  

Cox hazards multivariate regression model was used considering the following variables: 

metabolite abundances, age, tumor stage, sex, race, and tumor purity. Metabolites having significant 

Cox proportional hazards regression models (p-value of log rank test < 0.05, in which metabolite 

abundances presented significant contribution with p<0.05) were prognostic metabolite candidates. 

For the visualization of the survival results Kaplan–Meier (K-M) plots were used. The K-M analysis 

needs a stratification variable with at least two categorical groups [76]. For this reason, we have 

discretized the metabolite level values. As a common discretization procedure, for each metabolite, 

lower 45th and upper 55th percentiles of its abundance were used to categorice the samples into two 

groups. Samples between these two percentiles were not used. Survival analysis was carried out 

using survival R package [77]. Similarly to the case of two class comparison, multiple testing effects 

are corrected by FDR [78]. 

For the tumor stage analysis continuous values of the metabolite abundances were used. The 

tumor stage codes of American Joint Committee on Cancer, which are divided into four categories 

(T1, T2, T3 and T4) were used for this analysis. Samples with detailed subdivision codes were pooled 

under their main designators (e.g. T3’ = |T3| U |T3a| U |T3b| U … |T3n|). To find metabolites with 

a significant role in tumor progression, a linear correlation between tumor stages and metabolite 

abundances was used. 
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5. Conclusions 

The Metabolica provides a simple and elegant algorithmic framework for genome-scale 

metabolic analysis of transcriptomic and genomic data, which accounts for the complexity of the 

relationships between proteins within metabolic pathways, and delivers estimations of metabolite 

production activity.   

Supplementary Materials: Table S1: Death events for the survival analysis. Table S2: List of human metabolic 

pathways, reactions and metabolites downloaded from KEGG and used in this study.  
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