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Abstract: Remote sensing is one of the modern methods that have significantly developed over the 

last two decades and nowadays provides a new means for forest monitoring. High spatial and 

temporal resolutions are demanded for accurate and timely monitoring of forests. In this study 

multi-spectral Unmanned Aerial Vehicle (UAV) images were used to estimate canopy parameters 

(definition of crown extent, top and height as well as photosynthetic pigment contents). The UAV 

images in Green, Red, Red-Edge and NIR bands were acquired by Parrot Sequoia camera over 

selected sites in two small catchments (Czech Republic) covered dominantly by Norway spruce 

monocultures. Individual tree extents, together with tree tops and heights, were derived from the 

Canopy Height Model (CHM). In addition, the following were tested i) to what extent can the 

linear relationship be established between selected vegetation indexes (NDVI and NDVIred edge) 

derived for individual trees and the corresponding ground truth (e.g., biochemically assessed 

needle photosynthetic pigment contents), and ii) whether needle age selection as a ground truth 

and crown light conditions affect the validity of linear models. The results of the conducted 

statistical analysis show that the two vegetation indexes (NDVI and NDVIred edge) tested here have a 

potential to assess photosynthetic pigments in Norway spruce forests at a semi-quantitative level, 

however the needle-age selection as a ground truth was revealed to be a very important factor. The 

only usable results were obtained for linear models when using the 2nd year needle pigment 

contents as a ground truth.  On the other hand, the illumination conditions of the crown proved to 

have very little effect on the model’s validity. No study was found to directly compare these results 

conducted on coniferous forest stands. This shows that there is a further need for studies dealing 

with a quantitative estimation of the biochemical variables of nature coniferous forests when 

employing spectral data acquired by the UAV platform at a very high spatial resolution. 
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1. Introduction 

Forests play a significant role in the Earth’s ecosystems and contribute greatly to reducing 

adverse climate change impacts. They provide a natural environment for many species of animals 

and plants, represent a significant carbon sink and support an effective hydrological cycle. In 

addition, forests serve as an important source of timber and other non-wood materials [1,2]. Due to 

the aforementioned functions of forests and the increasing level of damage they suffer, at the 

beginning of the 1980s forest health and the sustainability of their ecosystems became a highly 

discussed topic for politicians, the public and scientists [3].  

In Europe, temperate forests are mainly affected by climate change and air pollution, which was 

particularly significant in the study area too [4,5]. During the 20th century the region on the Czech, 
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Polish and German borders was influenced by extensive coal mining which was linked to large 

emissions of SO2 and NOx from power plants [6,7]. In order to monitor the process of ecosystem 

recovery after the reduction in pollution that started in the 1980s and accelerated in the 1990s, the 

GEOMON network of small catchments was initiated across the Czech Republic. Since 1993, when 

the GEOMON network began, the data collected from observations of these catchments have been 

used for many studies [7,8] corresponding mainly to catchment biogeochemistry (e.g., [6,9–13]). The 

recent study published by Švik et al. [7] supplied the aforementioned research based on field 

observations using remote sensing methods which have been focused on in this study. 

Remote sensing techniques have been frequently used to study forest areas for multiple 

purposes over the last decade. They have been proven to be less costly and time-consuming 

alternatives to ground level research [14]. Satellite and aerial imagery have offered an opportunity to 

investigate forests at the regional scale, for example to estimate forest biomass, monitor forest cover 

changes or classify types of biome [15–18]. The usage of airborne multispectral and hyperspectral 

sensors has led to closer forest observation, such as the classification of tree species, monitoring 

forest health or estimating chlorophyll content [19–24]. The newly developed Unmanned Aerial 

Vehicles (UAV) complement the established remote sensing (RS) methods. UAVs have increased the 

number of benefits such as acquiring extreme high-spatial resolution data, flexibility in usage and 

over time, and the capacity to carry various sensors such as a multispectral camera to observe 

vegetational health [25,26].  

 Most of the studies use a combination of UAV complemented by a multispectral sensor to 

analyse agriculture crops for precision farming (e.g. tomato, vineyard or wheat production) where 

they usually employ Vegetation Indices (VIs) such as the Normalized Difference Vegetation Index 

(NDVI), the Green Normalized Difference Vegetation Index (GNDVI) or the Soil Adjusted 

Vegetation Index (SAVI) to monitor crop health [27–30]. Authors monitoring vineyards described 

the use of multispectral and thermal sensors in combination to obtain additional information about 

crop water status [31,32]. Despite the high potential of UAVs, not many studies have dedicated an 

analysis of multispectral data during forest observation. For instance, Dash et al. [33] simulated 

disease symptoms on Pinus radiata trees through herbicide application to test the sensitivity of 

spectral indices based on repeating UAV multispectral data acquisition. Minařík and Langhammer 

[34] suggested the use of VIs to classify forest disturbance on a Norway spruce monoculture to 

identify bark beetle infestation. A more sophisticated technique to detect symptoms caused by bark 

beetle attack was described by Näsi et al. [35] who employed k-nearest neighbour classification on 

3D hyperspectral data. Moreover, the comparison of a pixel- and object-based classification of UAV 

multispectral data for coniferous tree species in Canada was discussed in Franklin [36] where 

automated tree crown delineation was also applied. All these studies listed above deal with 

qualitative forest classifications, so a need for quantitative approaches, focusing on forest 

biochemical variable estimations employing UAV-based multispectral sensing, is clearly demanded. 

For such quantitative spectral-based approaches, that employ very high-spatial resolution data, 

an accurate definition of the extent of individual trees is a crucial task. Delineation of a tree crown 

boundary has been studied before and several approaches to detect individual trees have been 

published. Lim et al. [37] applied a segmentation method to a combination of the RGB orthoimage 

and the Canopy Height Model (CHM) obtained by UAV. A similar approach using multispectral 

data instead was described in Díaz-Varela et al. [38]. A popular technique is hydrological terrain 

analysis - watershed algorithm, where the inverse CHM is delineated by the watershed algorithm 

where catchment basins represent individual trees and holes substitute tree peaks [15,39–41]. 

Among the recent methods are the LiDAR point cloud segmentation, which achieves highly accurate 

results. This technique uses a regional growth principle where the highest vertex point (tree top) is 

defined as the start point. The region is iteratively growing from the tree top downwards in a range 

of set threshold values to delineate the tree crown [39,42,43]. 

This study tested if a UAV equipped with a multispectral camera can be employed for 

photosynthetic pigment estimation in mature coniferous trees. Two small catchments (part of the 

GEOMON network in Czech Republic) inhabited by Norway spruce monocultures were selected 

based on relatively close spatial proximity, alongside differences in parent material, which 
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significantly influenced nutrient availability for forest ecosystems. The research further focused on 

the following issues:    

• An accurate definition of the individual tree extents (crown delineation) and derivation of other 

parameters such as tree top and height using the UAV-based multispectral data. 

• Testing if linear relationship can be established between selected vegetation indices (NDVI and 

NDVIred edge) derived for individual trees and the corresponding ground truth (e.g., 

biochemically assessed needle photosynthetic pigment contents). 

• Testing if the needle age selection as ground truth affects the validity of the linear models. 

• Testing if the tree crown light conditions affect the validity of the linear models. 

Figure 1. Location of the test sites Pluhův Bor and Lysina in the Czech Republic, Europe: (a) the test sites 

displayed on a map of the Czech Republic; (b) maps of the Lysina and Pluhův Bor catchments with tree 

stands highlighted; an Orthophoto of the Czech Republic in the background [44]. 

2. Materials and Methods  

2.1. Test sites 

Two test sites representing rural mountainous landscapes in the western part of Bohemia were 

selected - Lysina (LYS) and Pluhův Bor (PLB) (Figure 1). These two catchments have been part of the 

European network - GEOMON established in 1993 to assess changes in precipitation and stream 

chemistry after reducing pollution in Eastern Europe. The selected catchments were heavily affected 

by acid pollution during the 20th century. Nowadays, both sites are part of the Slavkov Forest 

Protected Landscape Area. The vegetation cover consists mostly of managed Norway spruce 

monocultures [10] which are situated around 800 m a. s. l. The main difference between these two 

sites is the lithology and soil type as well as the forest age. Detailed catchment characteristics are 

given in Table 1 and 2. 
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Table 1. Characteristics of selected catchments: Lysina and Pluhův Bor [10]. 

Site Bedrock Soils Elevation 

(m a. s. l.) 

Forest 

age 

(year 

range) 

Spruce 

forest 

(ha) 

Broadleaf 

forest 

(ha) 

Non- 

forested 

area 

(ha) 

LYS Granite Cambisols, Podzols 880 12–53 27 0.0 0.4 

PLB Serpentinite Magnesic Cambisols, 

Stagnic–Magnesic 

Cambisols, 

Magnesic Gleysols 

 

755 41–129 18 0.0 4.0 

Table 2. Tree ages at the two catchments selected in this study. 

Test site Average age Min age Max age 

LYS 1K 14 12 17 

LYS 2K 16 15 18 

LYS 4K 47 44 53 

PLB 2K 120 109 129 

PLB 3K 72 70 74 

PLB 5K 47 41 50 

2.2. In-situ ground truth 

In this study three tree stands were selected in the LYS catchment (LYS 1K, LYS 2K, LYS 4K) 

and three stands in the PLB catchment (PLB 2K, PLB 3K, PLB 5K), these stands were the object of 

previous long-term research, thus the soil conditions were known as well as tree height information 

which was measured in-situ and modelled using the LiDAR data [45].  
At each stand three representative trees were selected and branch samples were collected by a 

climber from the sunlit crown part one day before the UAV-based data were acquired (August 2018). 

The needle age was identified and three different age classes were sampled: 1st, 2nd and a mixed 

sample of 4th year and older needles (hereinafter referred to as 4th year for simplicity) [46]. The 

needles were cooled and immediately transported to the laboratory where they were kept at a stable 

temperature at -20° C until further processing. Photosynthetic pigments - chlorophyll a, b and total 

carotenoids - were extracted in dimethylformamide following the procedures described in detail by 

Porra et al. [47] and then spectrophotometrically determined [48]. Mean pigment contents for both 

sites are summarized in Table 3. 

Table 3. Mean contents of photosynthetic pigments based on in-situ needle samples for both 

catchments. 

 Catchment 
All 

needles 

1st year 

needles 

2nd year 

needles 

4+years 

needles 

Total Chlorophyll 

(ug . cm-2) 

Lysina (LYS) 52.580 35.756 56.055 65.399 

Pluhův Bor (PLB) 44.425 31.148 43.895 57.172 

Chlorophyll a 

(ug . cm-2) 

Lysina (LYS) 37.939 26.124 40.679 46.637 

Pluhův Bor (PLB) 32.071 22.810 31.989 40.672 

Chlorophyll b 

(ug . cm-2) 

Lysina (LYS) 14.641 9.631 15.373 18.761 

Pluhův Bor (PLB) 12.354 8.343 11.904 16.500 

Carotenoids 

(ug . cm-2) 

Lysina (LYS) 6.724 4.400 7.018 8.602 

Pluhův Bor (PLB) 5.596 3.451 5.284 7.591 
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2.3. UAV data acquisition 

2.3.1. Equipment 

In this experiment, an unmanned aerial vehicle DJI Phantom 4 (SZ DJI Technology Co., Ltd. 

[49]) was employed (Figure 2b). It is a widely used quadcopter weighing 1380 g with an RGB camera 

in 4K (4096 x 2160 px) [50]. The UAV was complemented by a multispectral camera Parrot Sequoia 

scanning system (senseFly Inc. [51]). The camera was specially designed to support vegetation 

studies therefore besides Red and Green bands there is a band placed in the Red edge region as well 

as one band in the Near infrared (NIR) (Table 4).   

Table 4. Overview of a Parrot Sequoia spectral band setting. 

Band name Spectral Range (nm) Central Wavelength (nm) 

Green 530 – 570 550 

Red 640 – 680 660 

Red edge (RE) 730 – 740 735 

Near infrared (NIR) 770 - 810 790 

 

The Parrot Sequoia consists of two parts - the main camera and a sunshine sensor calibrating 

the measured spectral radiation by the main sensor. These two parts of the multispectral camera 

were attached to the drone by mounts designed by the CGS team (Figure 2a). The 3D models of 

mounts were created in CAD software. It was important to make a free space for the GPS sensor 

to ensure good signal reception. The holder for the sunshine sensor had to be placed in a manner so 

as not to have any contact with the propellers (Figure 2a). The mounts were printed using the Prusa 

i3 3D printer (Prusa Research a.s. [52]). 

2.3.2. Data acquisition 

The RGB and Parrot Sequoia multispectral data were obtained for both test sites. The flights 

were made on 6 and 7 August 2018, between 11 am and 3 pm to ensure the multispectral camera 

captured the required maximum reflected sunlight and to eliminate shadows. Prior to data 

acquisition, a flight path was planned in the flylitchi.com web tool (Figure 2c), which was connected 

to the litchi android application (VC Technology Ltd. [53]) controlling the UAV. Areas of 40 x 40 m 

were defined to cover the tree groups and their surroundings. All the flight paths covering the area 

of interest were planned in a north-south direction and in a way so the parallel scanning lines would 

reach 70% of the side overlap to ensure errorless image mosaicking when creating photogrammetric 

products. Flight height was set up according to the highest terrain point (40 - 70 m above ground 

level) and was 25-30 m above the treetops. UAV speed was set at 3.6 km/h to ensure well-focused 

images were recorded. Sequences of images were recorded every 2 seconds (s) with 95% overlap in 

the direction of the flight. According to flight height, the resulting spatial resolution of RGB imagery 

varied between 1.1 - 1.9 cm/px and 3.76 - 6.59 cm/px for multispectral imagery, respectively. 

Regarding multispectral data calibration, images of the calibrated reflectance panel were 

acquired before and after each flight. The same routine was used for each flight - the calibration 

target (Aironov) was placed on the ground and the UAV was held above the panel always keeping 

the same position - the Sun was behind the UAV, so no reflection and shadow was affecting the 

panel as this was recommended by the manufacturer. The same rules were applied to the other 

cameras (e.g., [54]). 
GPS data from DJI Phantom 4 and Parrot Sequoia camera were used to reference the resulting 

orthomosaics into the coordinate system (WGS 84 / UTM 33N). The imaging data (RGB and 

multispectral bands) were processed in Agisoft Metashape software (Agisoft LLC [55]), which 

allowed orthomosaics (RGB and multispectral) and digital surface models (DSMs) to be created 

using the structure from motion method [56]. The multispectral data calibration was made 

automatically by the Agisoft Metashape software which detected the images of the calibrated panel 

by the QR code in it as described in [57]. 
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Figure 2. UAV equipment used in this study: (a) 3D models of the mounts designed for the Parrot 

Sequoia multispectral camera; (b) DJI Phantom 4 quadcopter with attached Parrot Sequoia camera; 

(c) planned flight path in the flylitchi.com web tool. 

2.4. Tree height, crown and top detection 

Tree height detection was based on the Canopy Height Model (CHM) described as the 

difference between treetop elevation and the underlying ground-level elevation [58]. In this study, 

the 5th Digital Elevation Model (DEM) generation (DMR 5G; [44,59]) was used as a source of 

ground-level information while treetop information was obtained from the digital surface model 

(DSM) obtained from the Parrot Sequoia camera multispectral images (Seq DSM): 

CHM = Seq DSM - DMR 5G           (1) 

First, the DMR 5G data (original spatial resolution 0.5 m) was resampled to a Seq DSM spatial 

resolution of 16 - 25 cm (Table 6), and Seq DSM was calibrated by DMR 5G elevation to obtain 

proper results. The calibration was performed at each site by extracting the average heights from the 

Seq DSM of a clearing or forest path then it was possible to compare this height value with the 

average site altitude derived from the DMR 5G. The elevation of the Seq DSM was then corrected by 

this difference. 

To derive tree tops, the following procedure was employed. Focal statistics was employed to 

the CHM raster to get rid of noisy pixels and a new dataset was created (CHMfoc). According to the 

empirical tests carried out, the best results were achieved when using the maximum value and a 

5x5-pixel window [60]. A window with a smaller size caused frequent double peak detection. On the 

other hand, a bigger window did not identify a sufficient number of tree peaks. Tree tops were 

detected by identifying the local maxima in the CHMfoc raster. The representative pixels for the 

highest CHMfoc values were then identified in the original CHM raster, as it was important to keep 

the original pixel positions and values and the treetop point layer was derived [40]. The tree height 

detection workflow is shown in Figure 3. 
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Figure 3. Workflow used in this study to detect tree height, crown and top. 

To delineate the tree crowns the workflow described by Jaakkola et al. [41] was followed, which 

used watershed analysis to identify tree crown borders using the CHM derived from UAV-based 

laser scanning. First, inverse CHM (iCHM) was created where trees were visualized as depressions 

and treetops represented the lowest points in the digital elevation model: 

iCHM = CHM * (-1)           (2) 

The iCHM, together with the tree peak layer representing pour points, were used to compute 

watershed regions. The watershed analysis showed good results even in the case of splitting two or 

multiple nearby standing trees (Figure 4a).  

Tree borders in places with no connection to another tree crown were defined using a height 

mask (Figure 4b) allowing the space under the tree crowns to be removed. The height mask was 

created by excluding such areas where the CHM altitude was at least 3 m lower than the actual 

lowest detected tree height (Table 5). 

Consequently, to visualise only sunlit crown parts convenient for the following multispectral 

analyses, the shadow mask was derived by thresholding the Red band of the multispectral 

mosaic  (Seq Mosaic) and selecting those values lower than 0.04 [61]. In the next step, the height 

mask was merged with the shadow mask (Figure 4c). The final tree crown boundaries were obtained 

by applying the merged mask to the watershed layer (Figure 4d), as a result the individual tree 

crowns were extracted. 

Table 5. Height mask thresholds used in this study. 

Test site Height mask threshold [m] 

LYS 1K 3 

LYS 2K 5 

LYS 4K 20 

PLB 2K 19 

PLB 3K 13 

PLB 5K 18 
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Figure 4. An example of tree crown detection (tree peaks visualized by green dots): (a) watersheds 

surrounding treetops (white line) split nearby trees - the borders are highlighted in red; DSM on the 

background; (b) the height mask (yellow line) cuts one side of the tree crowns in a place with a high 

altitude difference (red highlight); (c) the shadow mask (orange line) reduces the dark parts of tree 

crowns and completes the tree crown borders; multispectral imagery from the Parrot Sequoia sensor 

on the background (false-colour composition: Green, Red, Red edge); (d) final result of tree crown 

detection. 

2.5. Multispectral data processing 

As was mentioned, the Parrot Sequoia camera captures 4-band images (Green, Red, Red edge 

and Near infrared), which were designed specifically for vegetation analysis (Table 4). These bands 

allow the Normalized Difference Vegetation Index (NDVI) [62] to be computed, which is a universal 

vegetation index, but also, more importantly, they allow modification of NDVI when using the Red 

edge band instead of the Red band. Red Edge Normalized Difference Vegetation Index (NDVIred edge) 

has been used to assess vegetation stress [63], as the stress directly affects the wavelength position of 

the red-edge inflexion point on the electromagnetic spectrum [64,65]. NDVIred edge index is defined as: 

NIR−RE

NIR+RE
 ,               (3) 

where NIR is the Near infrared band and RE is the Red edge band of the Parrot Sequoia camera. 

Individual tree masks derived from the Sequoia image data (described in detail in Section 2.4) were 

used to find the relationship between the photosynthetic pigment contents and the two VIs (NDVI 

and NDVIred edge),.  

As the UAV-based imaging data are provided at exceptionally high spatial resolution, the 

intention was to test whether crown illumination affects the estimation of the photosynthetic 

pigments. Therefore, the tree crowns derived from the iCHM (Section 2.4) were classified into two 

classes - class 1 representing the part of the crown which received higher illumination and class 2, 

which represents the part of the crown that receives lower illumination compared to class 1. To 

create these two classes Principal component analysis (PCA) transformation [66] was employed. The 

first three PCA components were then classified using ISODATA (Iterative Self-Organizing Data 

Analysis Technique; [67]) the unsupervised classifier placing them into two classes. The 

classification results were visually assessed - compared to the orthophotomosaics (RGB and 

multispectral) - and it was concluded that using the above-described method it was possible to 

differentiate between the higher and lower-illuminated parts of a crown. Figure 5 gives an example 

of tree No. 22 (PLB 5K stand), the distribution of class 1 and 2 within the tree crown and the average 
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reflectance derived for these two classes. Three scenarios have been defined for further statistical 

analysis (Figure 6):   

• Scenario 1: all the pixels representing the whole tree crown have been included. 

• Scenario 2: pixels representing the higher-illumination top part of the crown have been 

included. 

• Scenario 3: pixels representing the lower-illumination part of the crown have been included.  

Figure 5. Scheme of Tree No. 22 at the PLB-5K stand showing (a) Parrot Sequoia multispectral data 

in band combination 4-2-1 (NIR, Red, Green) corresponding to  Scenario 1; (b) Two classes 

representing Scenario 2 (the top higher-illumination part of the crown) and Scenario 3 (the 

lower-illumination part of the crown); (c and d) Mean reflectance per different illumination 

scenarios. Vertical bars represent minimum and maximum values for each band and scenario. 
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Figure 6. Parrot Sequoia multispectral data processing workflow chart. 

2.6. Statistical evaluation 

For Scenarios 1-3, the linear models between VIs (NDVI and NDVIred edge) and ground truth 

(needle photosynthetic pigment contents defined in the laboratory) were derived individually. Since 

the extent to which the selection of the needle age as ground truth affects the model validity was 

tested, four ground truth age groups were created: i) all needles included, ii) 1st year needles 

included, iii) 2nd year needles included, and iv) 4 year old year needles included. 

For the statistical evaluation of the linear models the coefficient of determination (R2) was used: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
 ,                 (4) 

where SSres represents the residual sum of squares and SStot represents total sum of squares [68].    

3. Results 

3.1. UAV photogrammetric products  

The UAV data were acquired over 3 stands in the Lysina catchment (LYS 1K, LYS 2K, and 

LYS 4K) and 3 stands in the Pluhův Bor catchment (PLB 2K, PLB 3K, and PLB 5K). At each stand, the 

DSM, RGB and multispectral orthomosaics were created (Figure 7). The resulting spatial resolution 

and photogrammetric model errors are shown in Table 6. The total errors of the photogrammetric 

products oscillated around 1 m. The calculated vertical error of DSMs varied between 0.51 and 0.78 

m. The obtained accuracy was considered sufficient for the purposes of this study. The RGB data 

from DJI Phantom 4 were then used mainly for a visual control while the calibrated multispectral 

data were used for further statistical assessment. 
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Figure 7. Example (LYS 2K) of the UAV survey products used in this study: (a) the RGB 

orthomosaic obtained from the DJI camera; (b) the multispectral mosaic derived from the Parrot 

Sequoia sensor (false-colour composition: Green, Red, Red edge); (c) the DSM derived from the 

Parrot Sequoia multispectral data.   

Table 6. The resulting spatial resolution and photogrammetric model errors of multispectral and 

RGB data. 

 Parrot Sequoia - Multispectral Camera DJI Camera - RGB 

Test site 

DSM 

(cm/px) 

(Seq DSM) 

Orthomosaic 

(cm/px) 

(Seq Mosaic) 

Vertical 

error (m) 

Total 

error 

(m) 

Orthomosaic 

(cm/px) 

Total 

error 

(m) 

LYS 1K 23.95 5.99 0.78 1.02 2.26 0.77 

LYS 2K 16.41 4.09 0.55 0.67 1.12 1.14 

LYS 4K 19.64 4.91 0.65 0.94 2.17 0.79 

PLB 2K 23.30 5.82 0.51 0.82 2.05 0.71 

PLB 3K 24.47 6.11 0.53 0.74 2.36 1.27 

PLB 5K 23.00 5.74 0.61 0.72 1.87 0.83 

3.2. UAV Tree height, crown and top detection  

The tree characteristics - height, crown and top - derived from the CHM raster (Figure 8) were 

compared with the in-situ measurements collected in 2015 [45]. Table 7 summarizes the evaluation 

statistics. One stand - LYS 1K - showed very high error, for the other stands the success rate for the 

tree top identification varied between 72 and 87 %. (Table 7). When checking the in-situ data for LYS 

1K, it was found that this stand is represented by significantly younger trees with the highest trees 

measured around 12 m. At this particular stand the trees were very dense and rather short, therefore 

tree detection could be problematic. As this stand also obtained very high errors in all other 

statistics, it was defined as an outlier and excluded from further statistics. In the case of tree crown 

estimation, the comparable success rate achieved varied between 76-94% (Table 7). In two cases, PLB 

3K and PLB 5K, the tree crown detection results showed a higher number of estimated numbers than 

those measured in the field. This could possibly be caused by false crown splitting when using the 

tree shadow mask in the detection algorithm.  

The box plots showing the distributions of tree height values for all stands - CHM-derived and 

in-situ - are displayed in Figure 9. Furthermore, following the assumption that the highest trees are 

the most recognizable by the detection algorithm, the results obtained for the 20 highest trees were 

assessed at each stand and their averaged CHM-estimated tree height values were compared with 

the in-situ data. It can be concluded that the tree height values derived for these trees from CHM 

were always higher than the in-situ measurements, the differences ranged between 1.54 - 2.36 m 

(Table 8). These differences are most probably a combination of the vertical error of the Seq DSM 

(0.51 - 0.78 m; Table 6) and tree growth between the years 2015 and 2018. However, the correlation 

between the estimated heights of the 20 tallest trees using CHM and in-situ measured data was high 

(Figure 10), as the coefficients of determination (R2) obtained were higher than 0.90 in four out of five 

cases. 
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Figure 8. Example of result data from tree peak, height and crown detection process: (a) LYS 1K test 

location; (b) LYS 2K test location. Green dots represent estimated tree peaks, yellow polygons 

delineate detected tree crowns and red-line polygons show the three trees at each stand which were 

sampled for photosynthetic pigment contents. The background image is the Multispectral Parrot 

Sequoia mosaic (false-colour composition: Green, Red, Red edge). 

 

 

Table 7. Comparison between the number of detected tree peaks and crowns (CHM-estimated) and 

in-situ measured data. 

Test 

site 

No. of trees 

measured 

in-situ (above 

set height 

mask) 

No. of 

detected 

tree peaks 

based on 

UAV data 

Success rate of 

detected tree tops 

(%) (compared to 

the trees  

measured in-situ) 

No. of 

detected tree 

crowns 

based on 

UAV data 

Success rate of 

detected tree 

crowns (%) 

(compared to the 

trees  measured 

in-situ) 

LYS 1K 177 45 25.42 61 34.46 

LYS 2K 67 49 73.13 57 85.07 

LYS 4K 25 18 72.00 19 76.00 

PLB 2K 34 25 73.53 31 91.18 

PLB 3K 15 13 86.66 17 86.67 

PLB 5K 32 26 81.25 34 93.75 
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Figure 9. Tree height distribution visualized by box plots. Blue boxes represent trees detected by the 

automatic algorithm from UAV-based CHM data (2018) and orange boxes display the distribution 

of the tree heights measured in-situ in 2015. 

Table 8. Comparison of average tree heights of the 20 tallest trees for each stand: CHM-estimated 

tree heights and the situ measured data. 

Test site 

Average tree top 

height (m) - in-situ 

data 

Average tree top 

height (m) based 

on the CHM data 

Difference of 

average tree 

heights (m) 

LYS 2K 13.33 14.87 1.54 

LYS 4K 24.34 26.62 2.28 

PLB 2K 27.08 29.44 2.36 

PLB 3K 22.86 24.63 1.77 

PLB 5K 23.95 25.70 1.75 
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Figure 10. Linear regression and coefficients of determination (R2): the CHM-estimated heights of 

the 20 highest trees at each stand compared to the in-situ data. 

3.3. Relationship between selected vegetation indexes and the ground truth 

Both tested catchment areas were characterized by comparable NDVIred edge values, however a 

bigger difference in the NDVI values could be seen between the LYS and PLB catchments (Table 9). 

In the methodological chapter (Section 2.5) three different scenarios were defined to assess the 

relationship between the spectral indices and photosynthetic pigments: Scenario 1: the whole crown 

(all pixels); Scenario 2: the top and the higher-illuminated part of the tree crown; Scenario 3: the 

lower-illuminated part of the tree crown. When comparing the results obtained for Scenarios 1-3 

(Table 9, Figure 11) the NDVI index showed almost negligible differences among all three Scenarios, 

while the NDVIred edge index showed little bit bigger differences among the defined scenarios.   

Table 9. Mean values of vegetation indices based on Sequoia optical data per evaluated Scenarios 

for both catchments. 

 Catchment Scenario 1 Scenario 2 Scenario 3 

NDVI 
Lysina (LYS) 0.836 0.832 0.829 

Pluhův Bor (PLB) 0.782 0.772 0.770 

NDVIred edge 
Lysina (LYS) 0.138 0.130 0.149 

Pluhův Bor (PLB) 0.140 0.121 0.146 
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Figure 11. NDVI, NDVIred edge: mean value and standard deviation for two illumination Scenarios 2 

and 3 (summarized for each catchment area). 

Figure 12. Linear regression of NDVI and NDVIred edge at evaluated catchments reaching R2 values of 

0.45 in Scenario 2 and 0.28 in Scenario 3. After excluding the LYS 1K stand, the R2 values 

significantly increased (Scenario 2: R2 = 0.85; Scenario 3: R2 = 0.84). 

Linear models were built between the VIs (NDVI and NDVIred edge) and the ground truth (in-situ 

needle chlorophyll and carotenoid contents). As was mentioned in Section 3.2, the LYS 1K stand was 

identified as an outlier. Besides the significant difference in average tree age, which can be seen in 

Table 2, the LYS 1K stand was also identified as an outlier in the statistics derived for the VIs and 

was therefore excluded (Figure 12). As a result, there were 9 trees in total from the PLB catchment 

and 6 trees from the LYS catchment which were used for this statistical assessment. As already 

described, 3 different scenarios were used (Figure 14 and 15) for which the VIs were correlated with 

the ground truth (laboratory analysis of Chlorophyll a and b and carotenoids) using four different 

needle age groups too - all needles together included, 1st year needles included, 2nd year needles 

included and 4 year old needles included (Tables 10 and 11). For both VIs a similar pattern was 

identified. It can be concluded that the results differ significantly depending on what needle age 

group was used as ground truth. The worst results were obtained when the 1st year needle group 

was used (no correlation), followed by the 4 year old needle group and all age needle group used as 

ground truth (very weak correlation). On the other hand, for both VIs the best results were obtained 

when the 2nd year needle group was used as ground truth. 

Assessing the different illumination crown conditions (Scenarios 1-3) in the case that the 2nd 

year needle group was selected as ground truth (Table 10-11, Figure 13-14), the worst results were 

surprisingly obtained for Scenario 2, where the top crown part receiving the higher-illumination was 

assessed, followed by Scenario 1 - the whole crown case; the best results were obtained for Scenario 3 

- where the lower illumination part of the crown was assessed. For the NDVI index the differences 

between Scenarios 1 - 3 are very small, slightly bigger differences could be found for the NDVIred edge 

index. It can be concluded that the best results were achieved when the 2nd year needle group was 

used as ground truth together with Scenario 3 for both VIs. Using this setting for the NDVI index, 

the following R2 were obtained for photosynthetic pigments (Table 10): Total chlorophyll - R2 = 0.49, 

Chlorophyll a - R2 = 0.48, Chlorophyll b - R2 = 0.51 and Carotenoids - R2 = 0.50. Comparable results 

were then also obtained for the NDVIred edge index (Table 11): Total chlorophyll - R2 = 0.46, 

Chlorophyll a - R2 = 0.45, Chlorophyll b - R2 = 0.48 and Carotenoids - R2 = 0.52. The NDVI index 

achieved a slightly higher R2 for Total chlorophyll, Chlorophyll a and b contents while NDVIred edge 

showed slightly better results for Carotenoids. 

 

 

 

 

Table 10. Coefficients of determination (R2) for NDVI index and the four ground truth needle age 

groups. 

NDVI Parameter Scenario 1 Scenario 2 Scenario 3 
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All needles 

Total chlorophyll 0.33284 0.3132 0.34764 

Chlorophyll a 0.31794 0.30137 0.33012 

Chlorophyll b 0.36924 0.34138 0.39117 

Carotenoids 0.31854 0.2931 0.33969 

1st year 

needles 

Total chlorophyll 0.03731 0.04066 0.03605 

Chlorophyll a 0.03489 0.03854 0.03333 

Chlorophyll b 0.04373 0.04618 0.04336 

Carotenoids 0.07389 0.0579 0.08686 

2nd year 

needles 

Total chlorophyll 0.4801 0.44667 0.49043 

Chlorophyll A 0.47219 0.44141 0.48051 

Chlorophyll B 0.49659 0.45638 0.51224 

Carotenoids 0.48543 0.44873 0.50073 

1st and 2nd 

year needles 

Total chlorophyll 0.32343 0.30964 0.32722 

Chlorophyll a 0.31349 0.30185 0.31563 

Chlorophyll b 0.34721 0.32763 0.35556 

Carotenoids 0.34096 0.30585 0.36069 

4+ years year 

needles 

Total chlorophyll 0.21125 0.19238 0.23391 

Chlorophyll a 0.19768 0.18171 0.21753 

Chlorophyll b 0.24389 0.21744 0.27382 

Carotenoids 0.18607 0.16277 0.21334 

Legend:  

Table 11. Coefficients of determination (R2) for NDVIred edge index and the four ground truth age 

groups. 

NDVIred edge Parameter Scenario 1 Scenario 2 Scenario 3 

All needles 

Total chlorophyll 0.33424 0.3367 0.32031 

Chlorophyll a 0.32371 0.32902 0.30735 

Chlorophyll b 0.35841 0.35316 0.35132 

Carotenoids 0.37654 0.37009 0.36017 

1st year 

needles 

Total chlorophyll 0.03079 0.05179 0.01875 

Chlorophyll a 0.03029 0.05143 0.0181 

Chlorophyll b 0.03195 0.05241 0.0181 

Carotenoids 0.07625 0.09464 0.07331 

2nd year 

needles 

Total chlorophyll 0.44861 0.43218 0.46261 

Chlorophyll a 0.44209 0.42862 0.45333 

Chlorophyll b 0.46151 0.43743 0.48268 

Carotenoids 0.51865 0.50788 0.52091 

1st and 2nd 

year needles 

Total chlorophyll 0.29587 0.3163 0.28207 

Chlorophyll a 0.28979 0.31194 0.27428 

Chlorophyll b 0.3093 0.32489 0.30031 

Carotenoids 0.36182 0.37105 0.36049 

4+ years year 

needles 

Total chlorophyll 0.2499 0.22732 0.24152 

Chlorophyll a 0.23973 0.22026 0.22884 

Chlorophyll b 0.27252 0.24211 0.27104 

Carotenoids 0.26164 0.23661 0.25304 

Legend:   

0.1> 0.1 0.2 0.3 0.4 0.5 

0.1> 0.1 0.2 0.3 0.4 0.5 
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Figure 13. Linear regression between NDVI index and 2nd year needles photosynthetic pigment 

content for Scenarios 1-3. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 January 2021                   doi:10.20944/preprints202101.0255.v1

https://doi.org/10.20944/preprints202101.0255.v1


 

 

Figure 14. Linear regression between NDVIred edge index and 2nd year needles’ photosynthetic 

pigment content for Scenarios 1-3. 

4. Discussion 

So far, most of the studies using UAVs and multispectral cameras have been carried out on 

agricultural species such as maize [69–71], sugar beet crops [72] and wheat [73,74]. As concerns 

woody species, the UAV-based approach has been applied to managed plantations with regular 

plant arrangement, such as vineyards [75] and fruit tree orchards [76,77]. Recently, the UAV-based 
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multispectral sensing has been used for high-throughput monitoring of photosynthetic activity in a 

white spruce (Picea glauca) seedling plantation [78]. When assessing the foliage traits of forest trees, it 

is necessary to take in account the tree size, branch geometry and foliage clumping. Dealing with 

evergreens, particularly conifers, a higher level of complexity emerges as different needle age 

generations contribute to the final signal received by the sensor. Few studies on forest health 

assessment using the UAVs and multispectral cameras have been published, Dash et al. [33] 

demonstrated the usefulness of such approaches for monitoring physiological stress in mature 

plantation trees even during the early stages of tree stress when using a non-parametric approach for 

the qualitative classification. Chianucci et al. [79] used the true colour images together with a 

fixed-wing UAV to quantify the canopy cover and leaf area index of beech forest stands. Dash et al. 

[80] tested the sensitivity of the multispectral image data time-series acquired by the UAV platform 

and satellite imagery to detect herbicide-induced stress in a controlled experiment conducted on a 

mature Pinus radiata plantation. Another successful qualitative forest health classification using 

UAVs and hyperspectral cameras has been demonstrated by Näsi et al. [35], and Berveglieri and 

Tommaselli [81]. It can be concluded that no study was found in which it was possible to directly 

compare the results of this study conducted on coniferous forest stands. 

Regarding the first part of this analysis - tree height, crown and top detection - it can be 

concluded that the results obtained satisfy the requirements of this study, which is basically aimed at 

identifying individual tree crowns and masking the background and shades. A relatively quick 

method was employed using Seq DSM and high resolution DEM (DMR 5G) and it obtained reliable 

results achieving R2=0.90 and higher between CHM-estimated heights and the in-situ tree 

measurements for most of the stands, with the exception of PLB 2K (R2= 0.7) (Figure 10). The lower 

accuracy obtained for PLB 2K can be explained by changes happening between the time the in-situ 

data were collected (2015) and the UAV data acquisition (2018). In the field it was observed that tree 

cuts were common in this particular forest stand. It will be interesting to test in the future, if this 

approach can be further employed or adjusted for estimating the forest aboveground biomass in a 

similar way as airborne laser scanning has been employed [45]. 

Laboratory analyses of needles collected as a ground truth showed typical chlorophyll and 

carotenoid values (Table 3) for non-stressed mature Norway spruce trees in a similar region and at a 

similar altitude [46,82]. This was despite the fact that forest in the PLB catchment showed evidence 

of suppressed growth due to the nutritional stress caused by the extreme chemistry of the 

underlying bedrock [83]. This further indicated that photosynthetic pigment content alone provided 

a somewhat limited indication of stressed trees. At both study sites, almost all trees exhibited the 

usual accumulation of chlorophyll and carotenoids in older needles in comparison with the 1st year 

needles (Apendix A: Figure A1) [22,82,84]. Similarly as for needle biophysical traits, their optical 

properties are also influenced by needle age [85–87] in the following manner: for reflectance in 

Green and NIR (particularly 750-1000 nm) there is a decrease with needle age [46,86]. 

For both VIs a similar R2 was obtained between the index values and the laboratory analysis of 

photosynthetic pigments, NDVI showed a slightly higher R2 for chlorophyll content 

while NDVIred edge had the highest R2 for carotenoid content. The Red edge is commonly used for 

detecting vegetation stress [88] and in this study it was also a slightly better index to estimate 

carotenoids - the vegetation stress indicators. The biggest influence on linear models for both was 

the selection of the needle age group used as a ground truth. As summarized in Tables 10 and 11, 

basically the only usable results were obtained when using the 2nd year needle pigment contents. The 

age-dependence of correlation strength between vegetation indices and measured pigment contents 

were expectable. However, the absence of a NDVI and NDVIred edge correlation to chlorophyll and 

carotenoids for the 1st year needles was highly surprising. Such needles were already fully 

developed at the date of sampling (August 4-5th), thus the immaturity of needles as a likely reason 

was excluded. Moreover, 1st year needles are routinely and successfully used for taking ground truth 

for a broad range of spectroscopic and remote sensing studies at various scales from leaf- to stand 

level [86,88–92]. 

However, in some studies, 2nd year needles, similarly as in this study, also proved to be the best 

option for predicting needle traits [46,93], although the physiological and optical causes have not 
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been elucidated. Second year needles were also successfully used as ground truth for pigment 

content estimation from multispectral UAV data in mature Scots spine (Pinus sylvestris) [92]. The 

authors justified the selection of the 2nd year needles literally as “avoiding non-representative 

outliers in current and mature needles” [92]. The absence of correlation between chlorophyll content 

in first year needles and vegetation indices could be partly related to other interfering needle traits 

than chlorophyll content itself. Although water has absorption features in near- and shortwave 

infrared region, it sometimes shows intercorrelation with chlorophyll content [94] and may influence 

its prediction from leaf spectral signal. The sampling year 2018 was rather dry and water content in 

needles exhibited the opposite (increasing) trend towards older needles in comparison to previous 

season 2017 (Apendix A: Figure A2). We hypothesize that lower water content in 1st year needles 

could also negatively influence chlorophyll prediction from NDVI and NDVIred edge. 
 In addition, this study’s results showed that 1st year needles exhibited the lowest chlorophyll 

contents (31-35 ug.cm2, Table 3) and it can be hypothesized that such values, in combination with 

coniferous canopy structure, may be below the detection limit of the Parrot Sequoia multispectral 

camera. In a maize field case study [71] the authors concluded that hemispherical-conical reflectance 

factors, NDVI and chlorophyll red-edge index derived from the Sequoia sensor, exhibit bias for high 

and low reflective surfaces. In comparison to broadleaf trees, conifer canopy NIR reflectance is 

generally lower [95] due to needle clustering within shoots and self-shading [96,97] and it is 

speculated that the needle photosynthetic pigment contents of the 1st year needles were, in this case, 

too low to be resolved by the Parrot Sequoia multispectral camera, which has limited spectral 

resolution and sensitivity compared to hyperspectral sensors. 

In this study, the crown light condition showed to be much less important than the needle age 

selection as a ground truth. Surprisingly the highest R2 for both VIs were achieved when using 

the less sunlit, lower part of the crown (Scenario 3), followed by Scenario 1 (full crown) and then 

Scenario 2 (the more sun-lit top part of the crown). It seems that at such a high spatial resolution, 

achieved when using the UAV platform, the tree structure and the needle/branch position can cause 

these differences. As shown in Figure A3 (Apendix A), the tree branches of the more sun-lit top part 

of the crown have a different position;  they are shorter and more pointed up, while the less sunlit 

lower part of the crown has wider and flatter branches thus the needles have a better position 

regarding the Sun, flight and sensor geometry. Also, the more sunlit top part of the crown is 

presented by a higher percentage of the 1st year needles, which were found to be problematic for the 

reasons discussed above. To date, the effect of heterogeneous light conditions within the crown on 

UAV-based leaf traits modelling was tested on broad leaved apple and pear trees with similar result 

to those in this study: the full canopy spectra provided, in some cases, more accurate models than 

only sunlit pixels [77]. The authors suggest that including the signal from the whole crown results in 

a bigger sample size which may lead to model improvement. However, it can be concluded that very 

little is known about this issue and a complex study on reflectance variations regarding the 

tree/crown structure, needle configuration and light conditions is still needed. 

5. Conclusion 

The results show that there is a big potential in using UAVs together with affordable 

multispectral cameras as a platform for monitoring forest status at a local scale, however, at high 

resolution. Tree crown delineation and derivation of other parameters such as tree top and 

height, which was based on the Canopy Height Model (CHM) obtained from two data sources - 

digital surface model derived from the Parrot Sequoia camera multispectral images (Seq DSM) and 

high resolution Digital Elevation Model (DEM: DMR 5G), corresponded well with the in-situ data 

and was satisfactory for the purposes of this study. The results of the conducted statistical analysis 

show that the two tested VIs (NDVI and NDVIred edge) have a potential to assess photosynthetic 

pigments in Norway spruce forests at a semi-quantitative level, however the selection of needle-age 

as a ground truth was revealed to be a very important factor. The only usable results were obtained 

for linear models when using the 2nd year needle pigment contents as a ground truth.   
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On the other hand, the illumination conditions of the crown showed to have very little effect on 

the model’s validity, whereas slightly better results were obtained when assessing the less sunlit 

lower part of the crown, which is characterized by wider and more flat branches. Compared to the 

whole crown Scenario, the improvement was very small and it is proposed that the whole part of the 

crown be used for simplicity. However, this effect might have a bigger impact on data with a very 

high spectral resolution (e.g. hyperspectral data) and further systematic research on reflectance 

variations regarding the tree/crown structure, needle configuration and light conditions is still 

needed. No study was found in which it was possible to directly compare these results conducted on 

coniferous (Norway spruce) forest stands, this shows that there is also a further need for studies 

dealing with a quantitative estimation of the biochemical variables of coniferous forests when 

employing spectral data acquired at the UAV platform at a very high spatial resolution. 
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Appendix A 

Figure A1. In-situ ground truth - biochemically assessed total chlorophyll content in different 

needle age classes of studied trees. In most cases chlorophyll content increased from 1st to 2nd year 

needles and usually the pigment further accumulated in older needles. 
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Figure A2. Selected biophysical traits of needles at LYS and PLB sites in 2017 (year before sampling) 

and 2018 (year of sampling and UAV data acquisition). (a), (b) Leaf mass per area; (c), (d) Needle 

chlorophyll content; (e), (f) Needle water content per area basis. NAC = needle age class: 1 – first year 

needles, 2 – second year needles, 4 – four years and older needles. 

Figure A3.  3D representation of a solitary growing coniferous tree with a Norway spruce-like 

crown architecture. Side (a) and nadir view (b). 
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