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Abstract: In this paper, we present a high-speed, unified elliptic curve cryptography (ECC) proces-
sor for arbitrary Weierstrass curves over GF(p), which to the best of our knowledge, outperforms
other similar works in terms of execution time. Our approach employs the combination of the
schoolbook long and Karatsuba multiplication algorithm for the elliptic curve point multiplica-
tion (ECPM) to achieve better parallelization while retaining low complexity. In the hardware
implementation, the substantial gain in speed is also contributed by our n-bit pipelined Mont-
gomery Modular Multiplier (pMMM), which is constructed from our n-bit pipelined multiplier-
accumulators that utilizes DSP primitives as digit multipliers. Additionally, we also introduce
our unified, pipelined modular adder/subtractor (pMAS) for the underlying field arithmetic,
and leverage a more efficient yet compact scheduling of the Montgomery ladder algorithm. The
implementation on the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020, yields 0.139, 0.138, and
0.206 ms of execution time, respectively. Furthermore, since our pMMM module is generic for
any curve in Weierstrass form, we support multi-curve parameters, resulting in a unified ECC
architecture. Lastly, our method also works in constant time, making it suitable for applications
requiring high speed and SCA-resistant characteristics.

Keywords: elliptic curves cryptography (ECC); high speed implementation; unified; Montgomery
multiplication; field-programmable gate array (FPGA)

1. Introduction

Citation: Awaludin, A. M.; Larasati The advances in technology have resulted in the emergence of various applications,
H. T; Kim, H. Title. Sensors 2021, 1 such as 5G and blockchain-based services [1,2]. In most cases, acquiring high speed and
0. low latency without compromising security aspects has become of great importance.
hitps://dx.doi.org/ Hence, elliptic curve-based cryptography (ECC) have become prominent in modern

cryptography compared to the Rivest-Shamir-Adleman (RSA) due to its smaller key
size for an equivalent security level [3]. Several protocols based on ECC are the Elliptic
Curve Diffie-Hellman (ECDH) for the key agreement, as well as Elliptic Curve Digital
Signature Algorithm (ECDSA), which is used extensively in the current digital signature
schemes.

Among the existing ECC protocols, the use of the Weierstrass curve remains preva-
lent. In fact, this curve has still been widely adopted in the current implementations,
ranging from the blockchain-based applications to the 5G services. For instance, Bitcoin,
Ethereum, and Zcash employ secp256k1 curve for their signature verification [4] while
public-key schemes based on SM2 remains the standard for use in electronic authen-
tication systems, key management, and e-commercial applications within China [5,6].
Additionally, Transport Layer Security (TLS) as the favored protocol for securing 5G
communications, employs ECDH in its handshake process [7].

Since improving the performance of ECC is essential, several methods have been
proposed to speed up the computation of the protocol. One of the techniques is by
utilizing special primes (a.k.a. generalized Mersenne primes), as recommended by the

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


https://www.mdpi.com
https://orcid.org/0000-0002-5994-2823
https://orcid.org/0000-0001-6143-4134
https://orcid.org/0000-0001-8475-7294
https://dx.doi.org/10.3390/s1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://doi.org/10.20944/preprints202101.0250.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2021 d0i:10.20944/preprints202101.0250.v1

National Institute of Standards and Technology (NIST) [8], which greatly simplifies the
modular reduction operation. Another approach is by employing efficiently-computable
endomorphisms [9] to accelerate elliptic curve point multiplication (ECPM) in the curves
with special properties (e.g., secp256k1), such as by using the Gallant-Lambert-Vanstone
(GLV) method [10].

However, these schemes are specific to each modulus and curve’s domain param-
eters. Even though a very fast computation can be achieved, it comes with a huge
trade-off in flexibility for the hardware implementation. This drawback is undesirable
because in the real-life use, we may need to employ more than one curve to facilitate
different purposes. For instance, a web server may require multiple curves to comply
with different security requirements among various platforms. Furthermore, recent
applications of ECC have explored a nonstandard prime field that does not make use of
a specific prime structure [11], such as the post-quantum supersingular isogeny-based
key exchange (SIKE) algorithm [12] and bilinear pairing [13].

To maintain hardware implementation flexibility, several methods in literature have
proposed to accelerate ECC computation for generic curves rather than special curve,
including [11,14-20]. In 2013, Ma et al. [16] proposed a generic ECC processor which
leverages the combination of a quotient pipelining Montgomery multiplication with a
parallel array design. Their technique, implemented on Virtex-5, yields a speed of 0.380
ms, which can be considered the fastest among other proposals. Other works on a more
recent platforms (e.g., Xilinx 7-series) can be found in [11,14,15]. Specifically, Asif et al.
[14] utilized a residue number system (RNS) based ECC processor whereas Bajard et al.
[15] leveraged a Montgomery Cox-Rower architecture, which gives a relatively lower
speed of 0.730 and 0.612, respectively.

Recently, Roy et al. [11] proposed a fast implementation of ECC multiplication that
works for arbitrary Montgomery curves using DSP cores on modern FPGA. Their pro-
posed modular multiplier gives a competitive result: around 0.343 ms for the low area,
and 0.39 ms for the single-core implementation, making their paper the state-of-the-art
ECC processor for generic Montgomery curves. Additionally, the authors also provide
the extension to generic Weierstrass curve, which yields a slightly lower speed of 0.459
ms. However, their technique has dependent iterative variables, making further opti-
mizations (e.g., pipelining method) infeasible. Using their approach, multiple cores will
need to be used when dealing with simultaneous execution of several multiplications.

Since the performance of an ECC processor mostly depends on the underlying
modular multiplication operation, especially when the point operation is optimized
using Jacobian coordinate to avoid modular inversion during ladder operation, an
efficient multiplication technique will significantly increase the speed of the processor.
The support for pipelining and parallelization, for example, may give a considerable
speed increase in the hardware implementation. To date, one of the most favorable
methods for multiplication is the Karatsuba-Ofman multiplication [21] since it offers a
relatively low complexity. However, it would be very difficult to employ parallelization
due to its recursive approach when dealing with higher bit length. On the other hand,
the naive way to perform multiplication is the schoolbook long multiplication, which
scales quadratically in terms of complexity. Nevertheless, all digit multiplications can
be executed in parallel, which can be efficiently implemented in the high-performance
hardware by adopting a divide-and-conquer method.

In our study, we find that combining these two methods for our multiplication
enables us to perform better parallelization, which in turn brings a substantial gain in
speed for the FPGA implementation. Furthermore, we design our ECC architecture to
support pipelining for achieving an even higher speed. In particular, the speed-up is
mainly contributed by our n-bit pipelined Montgomery Modular Multiplier (referred to
as pMMM), which is built upon n-bit pipelined multiplier-accumulators utilizing DSP
primitives as digit multipliers. To support the high-speed use, we modify the modular
adder/subtractor in [11] to support pipelining, which here is referred to as pipelined
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Modular Adder/Subtractor (pMAS). Additionally, we adapt the Montgomery ladder
algorithm recently presented by Hamburg [22], which to date, provides the most efficient
computation. Moreover, we managed to employ a more efficient scheduling compared
to the original approach, which we eliminate the use of an additional temporary register.
Tested in the 7-series FPGA (i.e., Virtex-7, Kintex-7, and XC7Z020), our method yields the
latency of 0.139, 0.138, and 0.206 ms, respectively, which to the best of our knowledge, is
the fastest in literature for generic curves. In fact, even when compared to the methods
that use special prime forms (e.g., [23-26] which takes 0.054, 0.101, 0.400, and 0.620 ms,
respectively), our approach is still considerably competitive.

Apart from speed, another advantage of our approach is that it can work for
arbitrary prime modulus. Hence, multi-curve parameters can be provided in a single,
unified ECC processor. This will be very beneficial in the real-life cases, as previously
discussed. Lastly, we also aim to minimize the risk of side-channel attacks (SCA) by
making our algorithm works in constant time. This includes the field inversion operation,
in which we utilize Fermat’s little theorem as opposed to the more commonly used
algorithm, namely the extended Euclidean algorithm.

The contributions of this paper can be summarized as follows:

1.  We propose a high-speed, unified ECC processor that is generic for arbitrary prime
modulus on Weierstrass curves. To the best of our knowledge, in terms of generic
implementation, it is the fastest among the existing literature.

2. For the underlying architecture, we propose a novel and fast pipelined Mont-
gomery Modular Multiplier (pMMM), which is constructed from n-bit pipelined
multiplier-accumulator. The speed-up comes from combining two existing mul-
tiplication algorithms: schoolbook long and Karatsuba-Ofman multiplications,
enabling parallelization of digit multiplications while preserving low complexity.
Moreover, to further optimize the process, we utilize DSP cores as digit multipliers,
resulting in a higher speed multiplier compared to other existing methods.

3. Tobalance the speed of our fast p MMM, we also propose a unified and pipelined
Modular Adder/Subtractor (pMAS) for the underlying field arithmetic operations.
In particular, we modify the modular adder/subtractor in [11] to support pipelining,
and employ an adjustable radix. The proposed design offers better flexibility in
adjusting the performance of the ECC processor.

4.  Additionally, we propose a more efficient and compact scheduling of Montgomery
ladder for algorithm for ECPM in [22], in which our implementation does not
require any additional temporary register as opposed to one additional register in
the original algorithm. As a result, it only needs 97 clock cycles to perform ladder
operation per bit scalar (for 256-bit size).

5. Since our ECC processor and the underlying field multiplier (i.e., pMMM) are
generic for arbitrary prime modulus, we can support multi-curve parameters in a
single ECC processor, forming a unified ECC architecture.

6.  Lastly, our architecture performs the ECPM in constant time by employing a time-
invariant algorithm for each module, including using Fermat'’s little theorem to
carry out field inversion, making the algorithm secure against side-channel attacks.

The remainder of this paper is organized as follows. We provide several prelim-
inaries in Section 2 before moving on to the detail of our proposed ECC architecture
in Section 3. In Section 4, we present our result of hardware implementation and the
discussions regarding its comparison to the existing methods. Lastly, Section 5 concludes
the paper.
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2. Preliminaries
2.1. Hamburg’s Formula for ECPM with Montgomery Ladder

An elliptic curve over a prime field GF(p) is defined by the coordinates (x,y) that
satisfies the short Weierstrass equation as follows:

¥=x*+ax*+b mod p 1)

where a and b satisfy 443 + 2702 # 0 to avoid singularity on the curve.

The Montgomery ladder [27] is a general algorithm for computing the power or
scalar multiple of points, which is considered resistant against side-channel attacks
due to its constant-time operation. Let k be a scalar and P = (xp,yp) be a point in
an elliptic curve E. An elliptic curve point multiplication (ECPM) Q = [k]P can be
performed using the Montgomery ladder, which generally consists of point addition and
point doubling operation. In 2020, Hamburg [22] proposed an improved Montgomery
ladder formula for ECPM that reduces the number of arithmetic operation in the ladder
algorithm to as low as eleven multiplications and eight additions. This formula allows
four multiplications and three additions to be performed in parallel. To date, this
algorithm is considered as the state-of-the-art for the Weierstrass curve. = Let Equation 2
be the initial state of the Montgomery ladder for an elliptic curve in the short Weierstrass
equation as previously shown in Equation 1.

P = (xp,yp), Q= (xQ,yg), R:= P+ Q= (xr,Yr) 2)

A single step of the ladder operation calculates:

P = (xp,yp),S = Q+R = (xs,ys),T :=2R = (xT,yT) (3)

The ladder operation from Equation 2 to Equation 3 can be calculated using Algorithm 2.
Before performing ladder operation, the input P = (xp,yp) is encoded into Hamburg's
ladder state (Xop, Xrp, G, Yg, Yr), here referred to as the ladder setup. Accordingly, at
the final step, the ladder state is decoded back to Q = (xQ, yQ), which is the ECPM result
in the affine coordinate. Consequently, the complete Montgomery ladder algorithm for
ECPM with Hamburg’s formula is given in Algorithm 1. Note that since the initial state
of the ladder calculates (Q, R) < (Py, 2Py) which requires the most significant bit (MSB)
of input scalar k to be 1, the input scalar is rewritten by adding a multiple of 4.

Algorithm 1 Montgomery Ladder
Input: k,g < 2",P € E(Fy)
Rewrite k < 2" 4 (k—2" mod q)
Output: Q = kP
1: (XQP/ XRP/ YQ, YR/ G) — LADDER_SETUP(Xp,yp)
2: fori=n—-1to0do
if k; then
(Xop, Xrp, Y0, YR, G) <~ LADDER_UPDATE(Xgp, Xrp, Y0, YR, G)
else
(Xrp, Xop, YR, Y0,G) <~ LADDER_UPDATE(Xgrp, Xgp, YR, Y0, G)
7: (eryQ) — LADDER_FINISH(XRP, XQP/ YR/ YQ, G)
8: return (xo,yQ)

2.1.1. Ladder Setup

Essentially, the ladder setup calculates R = 2Py, which is the point doubling
operation. To eliminate the cost field inversions in ladder operation, Jacobian projective
coordinates is generally used; In our case, we use Z = 2yp, giving the ladder setup
formulas as in Equation 4 to Equation 7.
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Algorithm 2 Hamburg’s Montgomery Ladder Formula [22]

Input: (Xgp, Xrp, Yo, YR, G)
Output: (Xgp, X7p, Ys, Y7,G’)

1: X,QP = XQP.G 7. Xgp = H.L
2: X;(P = Xgp.G 8 V= H(X,QP —L)
3. L= YQ.YR 9: XTS = X%P']_'— 1%
¢« H=Y3 10: Ys = (J.L+V).H
5 ] = X%P —L 11: Yr = M. X754+ Ys
6:M:]+X§{P—H 12: GIIX%S
3x123 +a 2
M= ) Z =3xp+a 4)
yp
Xgp = (¥g — xp)Z% = M? — 3xpZ> (5)
YR = ZMXRP -+ Yp (6)
G = (xr —xQ)*Z" = Xgp @)

Note that since Q = P, then Xgp = (xg — xp)Z% =0 and Yo=Yp = 2ypZ3% = 7%,

2.1.2. Ladder Final

In order to complete the ladder operation, the final xg and yo must be recovered
from the ladder state, as presented in Equation 8-10.

Yp =Yg — MXgp (8)
1 2yp(M? — Xop — Xgrp) ©)
Z - 3prp

By calculating 1/Z from Equation 9, we obtain Equation 10.

_ ([ Xar Yo
(xQ yq) = ( 72 +Xxp, 223) (10)

2.2. Montgomery Modular Multiplication

Montgomery modular multiplication [28] is an efficient method for modular multi-
plication proposed by Peter L. Montgomery in 1985, which operates without any trial
divisions by transforming the number into a special form such that the dividend is
always a multiple of the divisor. Let R > P with gcd(R,P) = 1. The Montgomery
multiplication calculates ABR™1 mod P with 0 < AB < RP. Algorithm 3 shows a
constant-time implementation of the Montgomery modular multiplication. Since n-bit P
is an odd modulus, we can take R = 2", which results in an easy division by shifting.
Montgomery multiplication requires the number to be transformed into the Montgomery
domain. However, the transformation are performed only once when used with many
intermediate multiplications in the algorithm (e.g., ECPM).

3. Proposed Architecture

This section presents the proposed generic hardware architecture for high-speed
ECC processors over GF(p). Since the performance of ECC processors mostly depends
on the underlying modular multiplication, our proposed architecture focuses on opti-
mizing the modular multiplier module, mainly to reduce the latency of multiplication as
well as the number of multiplication for each Montgomery ladder step. Moreover, for

d0i:10.20944/preprints202101.0250.v1
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Algorithm 3 Montgomery Multiplication

Input: an odd modulus p of n-bits, R = 2", gcd(R, p) =1
M = — mod R,
AB:AB<p<R

Output: ABR™! mod p

1: x < AB > 15! multiplication
2: s < (x mod R)M mod R > 2" multiplication
3 t+ (x+sp)/R > 3" multiplication
4 us—t—p > subtraction
5. if u < 0 then > MSB of u
6: return ¢

7: else

8: return u

further optimization, we adopt the modular adder/subtractor first introduced in [11],
then modify it to support pipelining, which yields even higher speed performance.

First, to realize a generic ECC architecture, we employ Montgomery modular multi-
plier, which does not require any special prime form. Although this approach tends to
be slower, it offers much greater flexibility when dealing with various curve parameters.
Montgomery multiplication does require the input operands to be transformed into
the Montgomery form. The conversions are performed twice: at the beginning (i.e.,
before the multiplication), and at the end to convert the number back to its original
form. Nevertheless, the cost of conversion is negligible compared to the advantage of
the execution in the Montgomery domain.

Furthermore, to achieve a high-performance ECC processor, we propose a n-bit
pipelined Montgomery Modular Multiplier (pMMM), which is essentially constructed
from n-bit pipelined multipliers and the corresponding Montgomery reduction circuit.
The calculation for Montgomery reduction is presented in Algorithm 3, whereas the mod-
ular multiplication is performed via three multiplications and one subtraction, executed
in sequence while interleaved with other p MMM thread. In our FPGA implementation,
the n-bit pipelined multiplier-accumulator is mainly constructed from DSP primitives as
digit multipliers.

Consequently, to match the speed of pMMM when performing the point multiplica-
tion (i.e., ECPM), we also propose a fully pipelined Modular Adder/Subtractor (pMAS),
which offers better flexibility in adjusting the performance of the ECC processor (e.g.,
maximum frequency and latency).

We also implement the Montgomery ladder algorithm for ECPM by Hamburg [22],
which is complete (i.e., works on any input point and scalar), and thus, can work on
generic Weierstrass curve over GF(p). Furthermore, to date, [22] offers the most efficient
computation than other existing algorithms. By utilizing this algorithm, we can unify
the construction for multiple curves into a single-core ECC processor.

Furthermore, we managed to yield a slight improvement from [22] in our implemen-
tation. Instead of utilizing six registers as presented in [22], our compact and efficient
scheduling reduces the need to only five, without any additional temporary registers.
This is achieved by interleaving four modular multiplications using p MMM and d-stages
pMAS.

In terms of the field inversion, we employ Fermat’s little theorem to preserve the
SCA-resistant property by performing the inversion in constant time. This approach also
does not require a separate module because the inversion computation, which essentially
is exponentiation, is also carried out by pMMM.
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3.1. Pipelined Montgomery Modular Multiplication (pMMM)
3.1.1. Overview of pMMM

Modular multiplication is the most extensive arithmetic operation in an ECC pro-
cessor, which heavily affects the performance and the occupied area of the processor.
Our proposed approach, namely the pipelined Montgomery Modular Multiplication
(PMMM), can process multiple input operands. The pipelined architecture of pMMM
enables the sequence of multiplications to be executed concurrently, hence sharing the
same resources. Additionally, the heart of pMMM is a multiplier that supports pipelining
as well, enabling an even more speed-up in the computation. In the following subsection,
we will first go into the detail of our proposed pipelined multiplier-accumulator before
discussing the general architecture of the pMMM.

3.1.2. Proposed Pipelined Multiplier-Accumulator

Our pipelined multiplier-accumulator is essentially a combination of schoolbook
long multiplication and Karatsuba-Ofman multiplication algorithm [21]. Schoolbook
long multiplication is a naive way to perform multiplication with n?> complexity, where
n is the number of digits. Even though it has a relatively high complexity, all the digit
multiplications can be executed in parallel. Furthermore, it supports high-performance
hardware implementation by adopting the divide-and-conquer method. On the other
hand, Karatsuba-Ofman multiplication offers lower complexity but with the trade-off
that it is difficult for parallelization due to its recursive approach when dealing with
higher bit length. We have managed to find a better approach by combining both
algorithms to support multiplication in parallel while retaining the small complexity.

The mathematical formulation for our algorithm is as presented in Equation 11-14.
Let a and b be the two n-bit numbers to be multiplied, « be the chosen radix, whereas
i,j, and k be the indices. A general schoolbook long multiplication (Equation 11) can
be split into two terms: by certain index k, that is when j = i; and when j # i, as
shown in Equation 12. The derivation to Equation 14 shows that the second term is,
in fact, a Karatsuba-Ofman multiplication method while the first term remains the
schoolbook long multiplication formula. Utilizing the property of schoolbook long
multiplication which can be run in parallel since there is no dependency to the previous
nor the succeeding computation, while also reducing the length of multiplication by
employing Karatsuba-Ofman method, a significant gain in speed can be acquired. To be
exact, the time complexity is reduced to 1 (n? + n) from n? in the original schoolbook
case. Compared to Karatsuba-Ofman, our algorithm indeed is higher in complexity, but
with the significant advantage of parallelization for the hardware implementation.

m—1m—1 o
ab=Y Y aibjtx(“’]) (11)
i=0 j=0
2 aba® + Z Z a;bju (i+) (12)
i=0 j=0,j#i
=1 m-1 o
2 agbpa® + Z Y [aibj+abila (i+7) (13)
i= O] i+1
= ): b + Z(;) 21 a; + ;) (b; + b;) — a;b; — ajbj]alt) (14)
1 j=i+

In terms of the hardware implementation, the speed increase in our approach is
mainly contributed by the digital signal processor (DSP) cores in the modern FPGA that
function as digit multipliers. The proposed multiplier is fully pipelined, in which new
input can be processed for each cycle. The divide-and-conquer method employed in the
schoolbook long multiplication is adopted, but each digit is optimized with Karatsuba-
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Figure 1. Proposed Pipelined Multiplier-Accumulator

Ofman multiplication, which is later assembled with the compression module, the Carry
Save Adder Tree (CSAT). All ripple-carry adders (RCAs) used in the multiplier module
is implemented using a fast carry chain in modern FPGA. This primitive works in
conjunction with Lookup Tables (LUTs) to construct the adders [29].

Equation 14 is implemented as an 8-stages pipeline, as described below.

e  Stage-1: Two inputs A and B are split based on the radix (digit size), which is into
16 bit in our design. Afterward, a parallel 16-bit RCA is used to compute 4; 4 a; and
bj + b;. At the same time, parallel DSP cores are utilized as 16-bit digit multipliers
to compute agby. As shown in Figure 2a, we employ two-stages pipeline for the
DSP cores to achieve better performance, as recommended in [30].

(a) (b)
Figure 2. DSP utilization setup: (a) 16-bit multiplier, (b) 17-bit multiply-accumulate

e  Stage-2: We again utilize the DSP cores as a 17-bit Multiply-Accumulate (MAC)
function to compute the Karatsuba-Ofman multiplication, (a; + a ]-) (b; + b]-) — a;b;.
(a; +a;) and (b; + b;) are obtained from the output of RCAs at the first stage, as
shown in Figure 2b.

*  Stage-3: The outputs of 16-bit multipliers a;by are routed to the input accumulator
in the MAC modules as a;b;.

e  Stage-4: The final accumulation for Karatsuba-Ofman is computed by a 34-bit RCA.
The equation (a; + a;)(b; + b;) — a;b; — a;b; results in 33-bit length. At this stage,
mul_ocrdy is set when the CTL value is 3. It means that the input mul_ic is ready to
be included in the CSAT at Stage 5 as the final accumulation of the Montgomery
reduction algorithm. The algorithm itself is as presented in Algorithm 3.

e  Stage-5: Before being processed by the CSAT, all intermediate values are aligned to
reduce the number of inputs in CSAT as well as the depth of the tree. This is due to
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the additional bit length on each intermediate value, 33-bit instead of 32-bit length.
Figure 3 shows the example of alignment process for four-input CSAT.

All aligned intermediate values, including the input mul_ic, are assembled by CSAT
where the compressor components in the CSA use LUT6_2, a similar 3:2 compressor
circuit proposed by [11]. However, while they use multiple compressor circuits (e.g.,
a 4:2 compressor in [11]) to construct the multiplier, we employ the homogeneous
3:2 compressor to achieve a balanced performance.

w1 b 32:bit

02 | [ 33bit
ws o [i 33-bit i
Lo4 | [EE Lo1 32-bit 32-bit 32-bit
s 325it 102 [ [ 39biEI sabi | sz ]
ws | | [3Fbm E:> LO3 | [ _33bk [ 32bic_|
L07 | i [ 33bit ! Lo4 | [ 33-bit |
! ! i LOS | [ [ []
Log | | 32-bit
109 |  [I3hit
L10 (ST

Figure 3. Example of alignment for intermediate values in 64-bit multiplier
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=T 16 1T
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3:2
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c S

Figure 4. Carry Save Adder Tree (CSAT)

e  Stage-6&7: The sum and carry as the outputs of CSAT are then fed to the carry-select
adder to obtain the final product. Note that we use the carry-select adder proposed
by Nguyen et al. [31] due to its relatively short delay propagation. In the carry-select
adder by [31], both options for the carry are computed. Subsequently, the carry is
solved similar to that of the carry-lookahead adder (CLA). Lastly, the sum output is
then generated with the final carry for each bit [32].

e  Stage-8: The register is used to hold the output register mul_or. The output o_val
and o_ctl are given with respect to the input value i_val and i_ctl, respectively,
which are shifted through the stages via a shift register.

3.1.3. Montgomery Modular Multiplication using pMMM

In our pMMM architecture, a single execution of Montgomery modular multiplier
consists of three steps of multiplications and one step of subtraction, divided into four
steps as follows:

1.  The pMMM starts by multiplying the input n-bit pmmm_ia and pmmm_ib, resulting
in a 2n-bit product which is then stored in the first-in, first-out (FIFO) buffer. This
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product will be used later in the third multiplication. Note that our FIFO buffer uses
block RAM (BRAM) to reduce the required number of registers, where the depth of
the FIFO buffer depends on the number of possible multiplication processes that
can be executed concurrently.

2. The n-bit LSB product of Step 1 is multiplied with the precalculated constant
PARAM_M.

3. Accordingly, the n-bit LSB product of Step 2 is multiplied by the modulus PARAM_P.
In this multiplier, the product which was previously stored in the FIFO at Stage 1
is used as the input mul_ic to be included in CSAT in the multiplier module. This
gives the benefit that we do not need to make additional 2n-bit adders. Instead, we
include it in the CSAT.

4.  The n-bit MSB of the third multiplication product is then evaluated and corrected
using the carry-select subtractor, so that the output of pMMM is within the range
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Figure 5. Proposed Pipelined Montgomery Modular Multiplier (pMMM)

Since the multiplier can be pipelined, the input operand for pMMM can as well
be pipelined. In particular, we support up to 8 pipelined multiplications, in accordance
with the number of pipeline stages of our multiplier. Each execution in a single pMMM
operation is controlled by CTL, which is propagated during pMMM execution and incre-
mented for each step. However, in our case, Hamburg’s formula for Montgomery ladder,
as previously discussed in Algorithm 2, can only be performed up to 4 multiplication
concurrently. Therefore, we adjust the FIFO depth to four, with a data width of 2n.
Each pMMM operation does not need to be executed in sequence next to each other in
one cycle, yet it can be performed even if there is a delay step between input operand.
However, all sequences must fit in 8 clock cycles and can be used again after the first
PMMM output is received. This is done to ensure that no internal steps of pMMMs are
in conflict. The full sequence of multiple inputs of pMMMs are illustrated in Figure 6.

MMUL1 | MUL | | MUL | | MUL | | SuB |
MMUL2 | MUL || MUL || MUL || SuB |
MMUL3 | MUL || MUL || MUL || SUB |
MMUL4 | MUL || MUL | | MUL | | SUB |
Cycle

Figure 6. Example of scheduling for pipelined four pMMM processes
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3.2. Pipelined Modular Adder/Subtractor (pMAS)

Modular addition and subtraction operation also plays a significant role in an ECC
architecture, which also affect the processor’s performance. The authors of [11] propose
a unified 64-bit modular adder/subtractor that is designed to work with redundant
numbers. However, their design can not be pipelined and uses a shift register to compute
modular adder for higher bit length. In this paper, in order to match the speed of our
multiplier, we introduce the pipelined version of modular adder/subtractor in [11],
which is also able to operate as a modular adder or subtractor by specifying inputi_op.
Furthermore, instead of fixing the radix to a 64-bit operand, the radix in our design can
be adjusted by specifying the number of stages d. Thus, the performance of our modular
adder/subtractor can be adjusted depending on the requirement and available hardware
resources. We refer to our architecture as the pipelined modular adder/subtractor
(PMAS).

Let d be number of pipeline stages and m be the radix size, each stage pipeline
takes m-bit input operand, as shown in 15. An m-bit ripple-carry adder/subtractor is
implemented on each stage as the building block of pMAS.

n
m= |- 15
B )

Our pMAS is performed in constant time. As shown in Figure 7, both computation
of a £ band a £ b & p is performed simultaneously whenever arbitrary input is received
so that the secret values cannot be retrieved using power and timing analysis.
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3.3. Modular Inversion Implementation

In order to be a fully constant-time ECPM, we use the modular inversion based
on Fermat’s little theorem rather than the binary extended Euclidean algorithm. In
summary, the theorem states that if p is a prime number and a is any number not
divisible by p, then it satisfies the Equation 16 [33].

aP~1 = 1(mod p) (16)

By multiplying both sides with a‘l, we obtain Equation 17, which infers that an
inversion can be accomplished by utilizing exponentiation.

a~! = aP~2(mod p) (17)

The inversion can be easily performed by using Montgomery ladder for exponenti-
ation [27], which is also SCA-resistant due to its characteristic of constant-time operation.
However, many proposals refrain from leveraging Fermat’s little theorem for modular
inversion due to the extensive use of multiplications (i.e., 2n multiplications to achieve
an exponentiation). Nevertheless, in our case, the hardware implementation of Fermat's
little theorem still give a competitive advantage by incorporating pMMM, yielding a
relatively fast implementation via concurrent execution of two modular multiplications
(i.e., a1ap and a% or a% in Algorithm 4). Furthermore, no additional module for inversion
is required, which directly reduces the slice overhead.

Algorithm 4 Constant-time Field Inversion algorithm

Input: 2 and prime modulus p of n-bits, 0 < a < p
Output: a=' mod p

1: procedure FIELDINVERSE(4, p)
2 e=p—2

3 ay = a,ap = a>

4 fori=n—2to0do

5: if e; = 0 then

6: ap =aqap, a1 = a%

7 else

8 a1 =aqap, ap ZIZ%

9 return a;

3.4. Montgomery Ladder Scheduling

The improved Montgomery ladder formula by [22], as depicted in Algorithm
2, incurs eleven multiplications and eight additions, and allows parallelization up to
four multiplications and three additions per bit scalar. To date, this latest algorithm is
considered the fastest for the Weierstrass curve. We adopt and optimize the scheduling
of this algorithm by incorporating p MMM and pMAS in the ladder update (Algorithm 2),
as well as the ladder setup (Equation 4-7) and ladder final (Equation 8-10), as presented
in Figure 8. Up to four modular multiplications and the modular adder/subtractor can
be pipelined, making a compact scheduling process. Moreover, our proposed scheduling
does not require any additional registers, as opposed to the original approach in [22],
which requires a temporary register.

Note that a complete ECPM algorithm, as illustrated in Algorithm 1, includes ladder
setup and ladder finish. Ladder update is the part that severely contributes to the latency
of the circuit since it is executed iteratively per bit scalar.

3.5. Generic ECC Architecture

The main building blocks of ECC processors are p MMM and pMAS, which play
a significant role in improving the speed of ECPM. The use of pMMM eliminates the


https://doi.org/10.20944/preprints202101.0250.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2021 d0i:10.20944/preprints202101.0250.v1

I
ﬁ I
= h :
5 =
o Sk L
& B
: i
> — o) U
: T
= e
< | ]
S | o =x| |
A |5
= & 4 > G j 1
\L I »TT
; =
! I 7‘ - - %L
= > ;5 0! ) — 5
o 2 = Il
e =< é i =
I = -
= = = —
= N s Il =
B ><“ I > = s =1 S = FieldInverse(R)
lHiE S -
8 ET = s ©
L s — D
o E% [ N
ﬁ <8 1y
~ >-/>t.4
£ 5
o) 1 = = 1
. AR ¥
> o u IS
o [}
>'<z IS
ﬁ ! f N
RS
= > ~
L &
I
g N
= (b) -
L
(@) o
I
2
(c)
Figure 8. Proposed Scheduling for Montgomery (a) Ladder Setup, (b) Ladder Update, and (c)
Ladder Final

restriction of modulus to the special prime form, making our ECC architecture generic
for arbitrary prime modulus. The modular inversion uses Fermat’s Little Theorem
which also exploits the use of p MMM, making the algorithm fast even with an extensive
number of multiplications. pMMM enables the modular inversion implementation
without any additional modules.

The proposed generic ECC architecture is shown in Figure 9. In addition to the
pPMMM and pMAS module, True Dual Port (TDP) RAM is implemented using BRAMs,
which reduces the slice overhead. All operands and constants are stored in the TDP
RAM.

The Montgomery ladder, as illustrated in Algorithm 1, requires conditional swap
for Xgp <> Xgp and Yg <> Yg depending on the scalar bit, which may pose a security
risk of a side-channel leakage. However, the benefit of using BRAM indirectly preserves
side-channel resistance since an actual swap is applied to the operand address instead
of the operand values, which is a few bits length. Thus, the ECPM with our proposed
architecture is performed in constant time and does not have any scalar dependent
branches.

Since both pMMM and pMAS use registers to hold the output value, the intermedi-
ate result can be fed back to its input instead of being stored in TDP RAM, making the
execution faster and allowing efficient utilization of the BRAM. Additionally, the multi-
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plexer is connected to each input operand so that it can provide the input depending on
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Figure 9. Proposed ECC Architecture

3.5.1. Unified Architecture

Our architecture also supports multi-curve parameters in a single ECC processor.
The architecture in Figure 9 can be transformed into unified architecture since pMMM
and pMAS do not restrict any modulus value or form. However, a few modifications
are required in the pMMM modules. In particular, the input and output of third mul-
tiplication in Algorithm 3 requires to be sliced, depending on the modulus size. This
can be done by implementing a multiplexer to both input and output pMMM at Step
3. Nevertheless, other components in the architecture remain the same. Additionally,
since the curve domain parameters are stored in the BRAM, extending the support to
different curve parameters will only increase the BRAM depth without affecting other
modules (e.g., pMMMs, pMASs). The address map is shown in Figure 10.

M
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Curve Param2 | . RFU
........ - Py

Curve Param 1 Px
0x08 T4
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0x0C
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n-bit

Figure 10. Address Map

4. Hardware Implementation Result and Discussion

Our proposed design has been described by SystemVerilog HDL. Synthesizing,
mapping, placing, and routing was carried out using Xilinx Vivado 2020, targeting
three modern devices: Xilinx Virtex-7 (XC7VX690T), Kintex-7 (XC7K325T), and Zynq
(XC72020) FPGA, for a more comprehensive evaluation and a thorough comparison
with other recent works that use the 7-series FPGA.
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4.1. Result and Analysis of Generic Implementation on Weierstrass Curve

The result of our generic ECC implementation as well as several related papers on
Weierstrass curve are presented in Table 2. In our case, we achieve the fastest speed
among other proposals for 256-bit modulus size, with 0.139, 0.138, and 0.206 ms on
Virtex-7, Kintex-7, and Zyngq, respectively. Our fastest implementation (Virtex-7) requires
6909 slices, while Kintex-7 and Zynq utilizes a slightly higher number of slices (7115
and 7077). On all of the three platforms, we utilize 136 DSPs and 15 BRAMs. As can
be inferred from the table, our architecture yields the highest performance in terms of
execution time compared to other existing techniques.

Table 1: Performance analysis of proposed generic ECC processor (256-bit) on Kintex-7

Operation Clock Cycles Latency @204.2 MHz(ns)
1 x Input Modular Addition 5 21.52
3 x Input Modular Addition 7 30.13
1 x Modular Multiplication 26 111.92
4 x Modular Multiplication 29 124.84
Modular Inverse 6911 29750.32
Ladder Setup 131 563.93
One Step Ladder Update 97 417.56
Ladder Finish 7050 30348.69
One ECC Scalar Multiplication 32272 138923.81

Table 2: Performance comparison of the proposed generic ECC processor for Weierstrass
curve up to 256-bit modulus size

Max.
Designs Platform Slices DSP BRAM freq. Time (ms)
(MHz)
Virtex-7 6909 136 15 204.2 0.139
This work Kintex-7 7115 136 15 234.1 0.138
XC77020 7077 136 15 156.8 0.206
Roy et al. [11] XC77020 2223 40 9 208.3 0.459
Bajard et al. [15] Kintex-7 1630 46 16 281.5 0.612
Asif et al. [14] Virtex-7 18.8k (LUT) 86.6 0.73
Ma et al. [16] Virtex-5 1725 37 291 0.38
Lai et al. [18] Virtex-5 3657 10 10 263 0.86
Shah et al. [17] Virtex-6 44 .3k (LUT) 221 0.65
Vliegen et al. [19]  Virtex-II Pro 1947 7 9 68.17 15.76
Hu et al. [20] Virtex-4 9370 20.44 29.84

Prior to our work, the implementation with the fastest speed is the proposal by Ma et
al. [16] in 2014, which gives the execution time of 0.380 ms. It also achieves a considerably
high maximum frequency of 291 MHz and consumes a relatively low resource of 1725
slices and 37 DSPs. The speed mainly comes from their quotient pipelined Montgomery
multiplier combined with a parallel array design. However, since they run on an older
platform (i.e., Virtex-5), it is not comparable to our result.

To the best of our knowledge, the state-of-the-art generic ECC processors for high-
speed implementation in the 7-series FPGA is the technique by Roy et al. [11]. Their
technique is primarily intended for the Montgomery curve, but since their proposed
method focuses on implementing the Montgomery multiplier, they also extend their
implementation to short Weierstrass curves and provide the performance analysis of
their approach. In particular, they require eight dual multiplications and three single
additions to perform one Montgomery ladder iteration.


https://doi.org/10.20944/preprints202101.0250.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 January 2021 d0i:10.20944/preprints202101.0250.v1

In comparison to the method in [11] for the same target device (i.e., XC7Z020 FPGA),
our approach yields an execution time of 0.139 ms whereas [11] requires 0.459 ms for a
single ECPM execution. In other words, our method is approximately three times faster.
However, readers may notice from Table 2 that in terms of the maximum frequency,
the implementation in [11] reaches a higher value of 208.3 MHz while ours is 156.8
MHz. Nevertheless, since our method employs fewer clock cycles, our overall speed
outperforms their proposed approach.

In terms of the area overhead, our implementation indeed requires a relatively
larger space compared to the existing proposed methods. Nevertheless, modern devices
available in the market (i.e., Virtex-7, Kintex-7) are generally equipped with a relatively
large resource. In fact, from the hardware utilization perspective as presented in Table 3,
the overall architecture only utilizes below seven percent of the total area in the FPGA.
Hence, our high-speed architecture would still be greatly suited for services requiring
low latency (speed-critical applications), such as for runtime authentication in automated
vehicles, web server certification, etc [11].

Table 3: Resource consumption of proposed generic ECC architecture on Virtex-7 FPGA

Resource Used Available Utilization %

LUT 22736 433200 525
FF 12511 866400 1.44
Slice 6909 108300 6.38
DSP48E1 136 3600 3.78
BRAM 15 1470 1.02

Regarding other proposals in the 7-series FPGA implementation, Bajard et al. [15]
proposed a residue number system (RNS)-based ECC processor that utilizes Cox-Rower
architecture for fast parallel Montgomery multiplication, which was initially introduced
by [34]. They introduce a new ALU design utilizing the second level of Montgomery
reduction within each RNS unit, increasing the maximum working frequency compared
to the original one. On Kintex-7, they consume 1630 slices, 46 DSP cores, and 16 BRAMs,
operating at 281.5 MHz maximum frequency, with a latency of 0.612 ms for a 256-bit
ECPM.

Asif et al. [14] proposed a residue number system (RNS)-based ECC processor
that utilizes a serial-parallel approach for its modular reduction to balance its time and
area performance. With the hardware utilization of 18.8k LUTs, their method achieves
86.6 MHz maximum frequency and a relatively larger latency compared to other recent
approaches.

On the earlier platform, Shah et al. [17] proposed a redundant-signed-digit (RSD)-
based ECC processor leveraging Montgomery multiplier that uses parallel computation
technique operating in (X,Y)-only co-Z arithmetic. They also provide a relatively compre-
hensive comparative analysis with other methods, in which they evaluate their proposed
method in Virtex-2 up to Virtex-6, without using any DSPs and BRAMs. In their most re-
cent platform (i.e., Virtex-6), they consume 44.3k LUTs, operating at 221 MHz maximum
frequency, and acquire 0.650 ms execution time.

Previously, Lai et al. [18] in 2012 also utilized a pipelined Montgomery multiplier
and performed their ECPM using addition-and-subtraction method. They also proposed
three different types of operation scheduling, in which their fastest approach (namely
with their Type-III scheduling) was then compared to other works for Virtex-2, Virtex-4,
and Virtex-5 platform. The implementation on their latest platform utilizes 3657 slices,
10 DSPs, and 10 BRAMs, which yields 0.860 ms execution time and 263 MHz maximum
frequency. Their result is largely surpassed by Ma et al., whose latency is nearly half of
that of [18]. Additionally, Vliegen et al. [19] and Hu et al. focused on developing low-area
implementation, in which [19] uses 1947 slices, 7 DSPs and 9 BRAMs (Virtex-II Pro) for
achieving 68.17 MHz maximum frequency and 15.760 ms execution time while [20] only
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uses slices without any other components, topping at 9370 for a maximum frequency
and latency of 20.44 MHz and 29.840 ms, respectively.

4.2. Result and Analysis of Unified ECC Architecture

Besides high-speed, our method also supports multi-curve domain parameters.
For instance, different standards (e.g., P-256 from NIST [8], secp256k1 from SECG [35],
SCA-256 from SM2 [36], and Brainpool256 from the German Brainpool standard [37])
would be able to be implemented with just a single ECC processor. Moreover, our
processor does not incur any additional costs besides BRAMs when adding support for
different curves.

Currently, our implementation supports up to 256-bit modulus size. Nevertheless,
it can be easily extended to the larger modulus size since our proposed pipelined
multiplier-accumulator, constructed based on Equation 14, is scalable due to the divide-
and-conquer characteristics of the employed algorithm. Table 4 presents the comparison
of our method to the other two proposals on unified architecture. As shown, it can be
inferred that our approach is notably faster than other similar works of [38,39].

In [38], Amiet et al. focused on building a flexible ECC processor that accommodates
arbitrary curves in short Weierstrass form. Their design mainly improves the Mont-
gomery modular multiplier previously proposed by [40] to support pipeline and utilizes
different mechanism for treating carry result. They leverage DSP cores to parallelize
point addition and point doubling operations. Realized on Virtex-7 FPGA, their fastest
implementation which uses word size of 64, requires 6816 LUTs and 20 DSPs to yield in
the maximum frequency of 225 MHz and runtime speed of 0.69, 1.49, 4.08, and 9.7 ms
for 192, 256, 384, and 512-bit modulus, respectively.

In [39], Wu et al. [39] proposed a word-based modular division and utilized parallel
point additions and doublings as well as pipelined scalable multiplications and modular
reductions to achieve a fast and unified ECC implementation for five NIST primes. To
support those primes, the authors employ a scalable multiplication algorithm to deal
with integer of different lengths. Employing 8411 slices and 32 DSPs, this approach
works in the frequency up to 310 MHz, achieving 0.296, 0.389, 0.526, 1.07, and 1.86 on
NIST-192, 224, 256, 384, and 521-bit modulus size, respectively.

Table 4: Performance comparison of the proposed unified ECC processor for Weierstrass
curve up to 256-bit modulus size on Virtex-7 FPGA

Modulus Max.
Designs Curve size Slices DSP BRAM freq. Time (ms)
(bits) (MHz)
192 0.119
This work Any 224 7281 136 15* 204.2 0.138
256 0.158
192 0.296
224 0.389
Wu et al. [39] NIST 256 8411 32 310 0.526
384 1.07
521 1.86
192 0.69
Amiet et al. [38] Any 256 6816 (LUT) 20 225 1.49
384 4.08
521 9.7

5. Conclusions

In this paper, we have proposed a high-speed and unified ECC processor that
works for generic Weierstrass curves over GF(p) on FPGA. The speed is obtained by
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utilizing our fast pipelined Montgomery Modular multiplier (pMMM) for performing
ECPM, constructed from our n-bit pipelined multiplier-accumulator which combines
schoolbook long and Karatsuba-Ofman multiplication, allowing the multiplication to be
performed in parallel while maintaining a low complexity. Furthermore, digit multipliers
are handled by DSPs, resulting in an even more faster execution time. Additionally, we
also propose to modify certain components to maximize the speed gain and the overall
performance: employing our unified and pipelined Modular Adder/Subtractor (pMAS)
for the underlying field arithmetic based on the work of [11], as well as implementing
a more efficient yet compact scheduling of Montgomery ladder algorithm previously
proposed in [22]. Moreover, the generic architecture employed by our pMMM module
enables a unified ECC architecture that supports multi-curve parameters. The implemen-
tation in the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020, shows that our technique
executes in 0.139, 0.138, and 0.206 ms, respectively, which is the fastest in literature for
generic curves as far as we know. It is worth to mention that our current approach is
extensible to support more curve parameters for up to 256-bit modulus size, by only
incorporating additional BRAMs. Lastly, our method is also resistant to side-channel
attacks, making it suitable for applications requiring high speed and SCA-resistant
characteristics, such as for the use in autonomous vehicles.
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