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Abstract: In this paper, we present a high-speed, unified elliptic curve cryptography (ECC) proces-1

sor for arbitrary Weierstrass curves over GF(p), which to the best of our knowledge, outperforms2

other similar works in terms of execution time. Our approach employs the combination of the3

schoolbook long and Karatsuba multiplication algorithm for the elliptic curve point multiplica-4

tion (ECPM) to achieve better parallelization while retaining low complexity. In the hardware5

implementation, the substantial gain in speed is also contributed by our n-bit pipelined Mont-6

gomery Modular Multiplier (pMMM), which is constructed from our n-bit pipelined multiplier-7

accumulators that utilizes DSP primitives as digit multipliers. Additionally, we also introduce8

our unified, pipelined modular adder/subtractor (pMAS) for the underlying field arithmetic,9

and leverage a more efficient yet compact scheduling of the Montgomery ladder algorithm. The10

implementation on the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020, yields 0.139, 0.138, and11

0.206 ms of execution time, respectively. Furthermore, since our pMMM module is generic for12

any curve in Weierstrass form, we support multi-curve parameters, resulting in a unified ECC13

architecture. Lastly, our method also works in constant time, making it suitable for applications14

requiring high speed and SCA-resistant characteristics.15

Keywords: elliptic curves cryptography (ECC); high speed implementation; unified; Montgomery16

multiplication; field-programmable gate array (FPGA)17

1. Introduction18

The advances in technology have resulted in the emergence of various applications,19

such as 5G and blockchain-based services [1,2]. In most cases, acquiring high speed and20

low latency without compromising security aspects has become of great importance.21

Hence, elliptic curve-based cryptography (ECC) have become prominent in modern22

cryptography compared to the Rivest-Shamir-Adleman (RSA) due to its smaller key23

size for an equivalent security level [3]. Several protocols based on ECC are the Elliptic24

Curve Diffie-Hellman (ECDH) for the key agreement, as well as Elliptic Curve Digital25

Signature Algorithm (ECDSA), which is used extensively in the current digital signature26

schemes.27

Among the existing ECC protocols, the use of the Weierstrass curve remains preva-28

lent. In fact, this curve has still been widely adopted in the current implementations,29

ranging from the blockchain-based applications to the 5G services. For instance, Bitcoin,30

Ethereum, and Zcash employ secp256k1 curve for their signature verification [4] while31

public-key schemes based on SM2 remains the standard for use in electronic authen-32

tication systems, key management, and e-commercial applications within China [5,6].33

Additionally, Transport Layer Security (TLS) as the favored protocol for securing 5G34

communications, employs ECDH in its handshake process [7].35

Since improving the performance of ECC is essential, several methods have been36

proposed to speed up the computation of the protocol. One of the techniques is by37

utilizing special primes (a.k.a. generalized Mersenne primes), as recommended by the38
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National Institute of Standards and Technology (NIST) [8], which greatly simplifies the39

modular reduction operation. Another approach is by employing efficiently-computable40

endomorphisms [9] to accelerate elliptic curve point multiplication (ECPM) in the curves41

with special properties (e.g., secp256k1), such as by using the Gallant-Lambert-Vanstone42

(GLV) method [10].43

However, these schemes are specific to each modulus and curve’s domain param-44

eters. Even though a very fast computation can be achieved, it comes with a huge45

trade-off in flexibility for the hardware implementation. This drawback is undesirable46

because in the real-life use, we may need to employ more than one curve to facilitate47

different purposes. For instance, a web server may require multiple curves to comply48

with different security requirements among various platforms. Furthermore, recent49

applications of ECC have explored a nonstandard prime field that does not make use of50

a specific prime structure [11], such as the post-quantum supersingular isogeny-based51

key exchange (SIKE) algorithm [12] and bilinear pairing [13].52

To maintain hardware implementation flexibility, several methods in literature have53

proposed to accelerate ECC computation for generic curves rather than special curve,54

including [11,14–20]. In 2013, Ma et al. [16] proposed a generic ECC processor which55

leverages the combination of a quotient pipelining Montgomery multiplication with a56

parallel array design. Their technique, implemented on Virtex-5, yields a speed of 0.38057

ms, which can be considered the fastest among other proposals. Other works on a more58

recent platforms (e.g., Xilinx 7-series) can be found in [11,14,15]. Specifically, Asif et al.59

[14] utilized a residue number system (RNS) based ECC processor whereas Bajard et al.60

[15] leveraged a Montgomery Cox-Rower architecture, which gives a relatively lower61

speed of 0.730 and 0.612, respectively.62

Recently, Roy et al. [11] proposed a fast implementation of ECC multiplication that63

works for arbitrary Montgomery curves using DSP cores on modern FPGA. Their pro-64

posed modular multiplier gives a competitive result: around 0.343 ms for the low area,65

and 0.39 ms for the single-core implementation, making their paper the state-of-the-art66

ECC processor for generic Montgomery curves. Additionally, the authors also provide67

the extension to generic Weierstrass curve, which yields a slightly lower speed of 0.45968

ms. However, their technique has dependent iterative variables, making further opti-69

mizations (e.g., pipelining method) infeasible. Using their approach, multiple cores will70

need to be used when dealing with simultaneous execution of several multiplications.71

Since the performance of an ECC processor mostly depends on the underlying72

modular multiplication operation, especially when the point operation is optimized73

using Jacobian coordinate to avoid modular inversion during ladder operation, an74

efficient multiplication technique will significantly increase the speed of the processor.75

The support for pipelining and parallelization, for example, may give a considerable76

speed increase in the hardware implementation. To date, one of the most favorable77

methods for multiplication is the Karatsuba-Ofman multiplication [21] since it offers a78

relatively low complexity. However, it would be very difficult to employ parallelization79

due to its recursive approach when dealing with higher bit length. On the other hand,80

the naïve way to perform multiplication is the schoolbook long multiplication, which81

scales quadratically in terms of complexity. Nevertheless, all digit multiplications can82

be executed in parallel, which can be efficiently implemented in the high-performance83

hardware by adopting a divide-and-conquer method.84

In our study, we find that combining these two methods for our multiplication85

enables us to perform better parallelization, which in turn brings a substantial gain in86

speed for the FPGA implementation. Furthermore, we design our ECC architecture to87

support pipelining for achieving an even higher speed. In particular, the speed-up is88

mainly contributed by our n-bit pipelined Montgomery Modular Multiplier (referred to89

as pMMM), which is built upon n-bit pipelined multiplier-accumulators utilizing DSP90

primitives as digit multipliers. To support the high-speed use, we modify the modular91

adder/subtractor in [11] to support pipelining, which here is referred to as pipelined92
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Modular Adder/Subtractor (pMAS). Additionally, we adapt the Montgomery ladder93

algorithm recently presented by Hamburg [22], which to date, provides the most efficient94

computation. Moreover, we managed to employ a more efficient scheduling compared95

to the original approach, which we eliminate the use of an additional temporary register.96

Tested in the 7-series FPGA (i.e., Virtex-7, Kintex-7, and XC7Z020), our method yields the97

latency of 0.139, 0.138, and 0.206 ms, respectively, which to the best of our knowledge, is98

the fastest in literature for generic curves. In fact, even when compared to the methods99

that use special prime forms (e.g., [23–26] which takes 0.054, 0.101, 0.400, and 0.620 ms,100

respectively), our approach is still considerably competitive.101

Apart from speed, another advantage of our approach is that it can work for102

arbitrary prime modulus. Hence, multi-curve parameters can be provided in a single,103

unified ECC processor. This will be very beneficial in the real-life cases, as previously104

discussed. Lastly, we also aim to minimize the risk of side-channel attacks (SCA) by105

making our algorithm works in constant time. This includes the field inversion operation,106

in which we utilize Fermat’s little theorem as opposed to the more commonly used107

algorithm, namely the extended Euclidean algorithm.108

The contributions of this paper can be summarized as follows:109

1. We propose a high-speed, unified ECC processor that is generic for arbitrary prime110

modulus on Weierstrass curves. To the best of our knowledge, in terms of generic111

implementation, it is the fastest among the existing literature.112

2. For the underlying architecture, we propose a novel and fast pipelined Mont-113

gomery Modular Multiplier (pMMM), which is constructed from n-bit pipelined114

multiplier-accumulator. The speed-up comes from combining two existing mul-115

tiplication algorithms: schoolbook long and Karatsuba-Ofman multiplications,116

enabling parallelization of digit multiplications while preserving low complexity.117

Moreover, to further optimize the process, we utilize DSP cores as digit multipliers,118

resulting in a higher speed multiplier compared to other existing methods.119

3. To balance the speed of our fast pMMM, we also propose a unified and pipelined120

Modular Adder/Subtractor (pMAS) for the underlying field arithmetic operations.121

In particular, we modify the modular adder/subtractor in [11] to support pipelining,122

and employ an adjustable radix. The proposed design offers better flexibility in123

adjusting the performance of the ECC processor.124

4. Additionally, we propose a more efficient and compact scheduling of Montgomery125

ladder for algorithm for ECPM in [22], in which our implementation does not126

require any additional temporary register as opposed to one additional register in127

the original algorithm. As a result, it only needs 97 clock cycles to perform ladder128

operation per bit scalar (for 256-bit size).129

5. Since our ECC processor and the underlying field multiplier (i.e., pMMM) are130

generic for arbitrary prime modulus, we can support multi-curve parameters in a131

single ECC processor, forming a unified ECC architecture.132

6. Lastly, our architecture performs the ECPM in constant time by employing a time-133

invariant algorithm for each module, including using Fermat’s little theorem to134

carry out field inversion, making the algorithm secure against side-channel attacks.135

The remainder of this paper is organized as follows. We provide several prelim-136

inaries in Section 2 before moving on to the detail of our proposed ECC architecture137

in Section 3. In Section 4, we present our result of hardware implementation and the138

discussions regarding its comparison to the existing methods. Lastly, Section 5 concludes139

the paper.140
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2. Preliminaries141

2.1. Hamburg’s Formula for ECPM with Montgomery Ladder142

An elliptic curve over a prime field GF(p) is defined by the coordinates (x, y) that
satisfies the short Weierstrass equation as follows:

y2 = x3 + ax2 + b mod p (1)

where a and b satisfy 4a3 + 27b2 6= 0 to avoid singularity on the curve.143

The Montgomery ladder [27] is a general algorithm for computing the power or
scalar multiple of points, which is considered resistant against side-channel attacks
due to its constant-time operation. Let k be a scalar and P = (xP, yP) be a point in
an elliptic curve E. An elliptic curve point multiplication (ECPM) Q = [k]P can be
performed using the Montgomery ladder, which generally consists of point addition and
point doubling operation. In 2020, Hamburg [22] proposed an improved Montgomery
ladder formula for ECPM that reduces the number of arithmetic operation in the ladder
algorithm to as low as eleven multiplications and eight additions. This formula allows
four multiplications and three additions to be performed in parallel. To date, this
algorithm is considered as the state-of-the-art for the Weierstrass curve. = Let Equation 2
be the initial state of the Montgomery ladder for an elliptic curve in the short Weierstrass
equation as previously shown in Equation 1.

P = (xP, yP), Q := (xQ, yQ), R := P + Q := (xR, yR) (2)

A single step of the ladder operation calculates:

P = (xP, yP), S := Q + R = (xS, yS), T := 2R = (xT , yT) (3)

The ladder operation from Equation 2 to Equation 3 can be calculated using Algorithm 2.144

Before performing ladder operation, the input P = (xP, yP) is encoded into Hamburg’s145

ladder state (XQP, XRP, G, YQ, YR), here referred to as the ladder setup. Accordingly, at146

the final step, the ladder state is decoded back to Q = (xQ, yQ), which is the ECPM result147

in the affine coordinate. Consequently, the complete Montgomery ladder algorithm for148

ECPM with Hamburg’s formula is given in Algorithm 1. Note that since the initial state149

of the ladder calculates (Q, R)← (P0, 2P0) which requires the most significant bit (MSB)150

of input scalar k to be 1, the input scalar is rewritten by adding a multiple of q.151

Algorithm 1 Montgomery Ladder
Input: k, q ≤ 2n, P ∈ E(Fp)
Rewrite k← 2n + (k− 2n mod q)
Output: Q = kP

1: (XQP, XRP, YQ, YR, G)← LADDER_SETUP(xP, yP)
2: for i = n− 1 to 0 do
3: if ki then
4: (XQP, XRP, YQ, YR, G)← LADDER_UPDATE(XQP, XRP, YQ, YR, G)
5: else
6: (XRP, XQP, YR, YQ, G)← LADDER_UPDATE(XRP, XQP, YR, YQ, G)

7: (xQ, yQ)← LADDER_FINISH(XRP, XQP, YR, YQ, G)
8: return (xQ, yQ)

2.1.1. Ladder Setup152

Essentially, the ladder setup calculates R = 2P0, which is the point doubling153

operation. To eliminate the cost field inversions in ladder operation, Jacobian projective154

coordinates is generally used; In our case, we use Z = 2yP, giving the ladder setup155

formulas as in Equation 4 to Equation 7.156
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Algorithm 2 Hamburg’s Montgomery Ladder Formula [22]
Input: (XQP, XRP, YQ, YR, G)
Output: (XSP, XTP, YS, YT , G′)

1: X′QP = XQP.G
2: X′RP = XRP.G
3: L = YQ.YR
4: H = Y2

R
5: J = X′RP − L
6: M = J + X′RP − H

7: XSP = H.L
8: V = H.(X′QP − L)
9: XTS = X′RP.J + V

10: YS = (J.L + V).H
11: YT = M.XTS + YS
12: G′ = X2

TS

M =
3x2

P + a
2yP

Z = 3x2
P + a (4)

XRP = (xR − xP)Z2 = M2 − 3xPZ2 (5)

YR = 2MXRP + YP (6)

G = (xR − xQ)
2Z4 = X2

RP (7)

Note that since Q = P, then XQP = (xQ − xP)Z2 = 0 and YQ = YP = 2yPZ3 = Z4.157

2.1.2. Ladder Final158

In order to complete the ladder operation, the final xQ and yQ must be recovered
from the ladder state, as presented in Equation 8-10.

YP = YR −MXRP (8)

1
Z

=
2yP(M2 − XQP − XRP)

3xPYP
(9)

By calculating 1/Z from Equation 9, we obtain Equation 10.159

(xQ, yQ) =

(
XQP

Z2 + xP,
YQ

2Z3

)
(10)

2.2. Montgomery Modular Multiplication160

Montgomery modular multiplication [28] is an efficient method for modular multi-161

plication proposed by Peter L. Montgomery in 1985, which operates without any trial162

divisions by transforming the number into a special form such that the dividend is163

always a multiple of the divisor. Let R > P with gcd(R, P) = 1. The Montgomery164

multiplication calculates ABR−1 mod P with 0 ≤ AB < RP. Algorithm 3 shows a165

constant-time implementation of the Montgomery modular multiplication. Since n-bit P166

is an odd modulus, we can take R = 2n, which results in an easy division by shifting.167

Montgomery multiplication requires the number to be transformed into the Montgomery168

domain. However, the transformation are performed only once when used with many169

intermediate multiplications in the algorithm (e.g., ECPM).170

3. Proposed Architecture171

This section presents the proposed generic hardware architecture for high-speed172

ECC processors over GF(p). Since the performance of ECC processors mostly depends173

on the underlying modular multiplication, our proposed architecture focuses on opti-174

mizing the modular multiplier module, mainly to reduce the latency of multiplication as175

well as the number of multiplication for each Montgomery ladder step. Moreover, for176
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Algorithm 3 Montgomery Multiplication
Input: an odd modulus p of n-bits, R = 2n, gcd(R, p) = 1

M = − mod R,
A, B : A, B < p < R

Output: ABR−1 mod p
1: x ← AB . 1st multiplication
2: s← (x mod R)M mod R . 2nd multiplication
3: t← (x + sp)/R . 3rd multiplication
4: u← t− p . subtraction
5: if u < 0 then . MSB of u
6: return t
7: else
8: return u

further optimization, we adopt the modular adder/subtractor first introduced in [11],177

then modify it to support pipelining, which yields even higher speed performance.178

First, to realize a generic ECC architecture, we employ Montgomery modular multi-179

plier, which does not require any special prime form. Although this approach tends to180

be slower, it offers much greater flexibility when dealing with various curve parameters.181

Montgomery multiplication does require the input operands to be transformed into182

the Montgomery form. The conversions are performed twice: at the beginning (i.e.,183

before the multiplication), and at the end to convert the number back to its original184

form. Nevertheless, the cost of conversion is negligible compared to the advantage of185

the execution in the Montgomery domain.186

Furthermore, to achieve a high-performance ECC processor, we propose a n-bit187

pipelined Montgomery Modular Multiplier (pMMM), which is essentially constructed188

from n-bit pipelined multipliers and the corresponding Montgomery reduction circuit.189

The calculation for Montgomery reduction is presented in Algorithm 3, whereas the mod-190

ular multiplication is performed via three multiplications and one subtraction, executed191

in sequence while interleaved with other pMMM thread. In our FPGA implementation,192

the n-bit pipelined multiplier-accumulator is mainly constructed from DSP primitives as193

digit multipliers.194

Consequently, to match the speed of pMMM when performing the point multiplica-195

tion (i.e., ECPM), we also propose a fully pipelined Modular Adder/Subtractor (pMAS),196

which offers better flexibility in adjusting the performance of the ECC processor (e.g.,197

maximum frequency and latency).198

We also implement the Montgomery ladder algorithm for ECPM by Hamburg [22],199

which is complete (i.e., works on any input point and scalar), and thus, can work on200

generic Weierstrass curve over GF(p). Furthermore, to date, [22] offers the most efficient201

computation than other existing algorithms. By utilizing this algorithm, we can unify202

the construction for multiple curves into a single-core ECC processor.203

Furthermore, we managed to yield a slight improvement from [22] in our implemen-204

tation. Instead of utilizing six registers as presented in [22], our compact and efficient205

scheduling reduces the need to only five, without any additional temporary registers.206

This is achieved by interleaving four modular multiplications using pMMM and d-stages207

pMAS.208

In terms of the field inversion, we employ Fermat’s little theorem to preserve the209

SCA-resistant property by performing the inversion in constant time. This approach also210

does not require a separate module because the inversion computation, which essentially211

is exponentiation, is also carried out by pMMM.212
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3.1. Pipelined Montgomery Modular Multiplication (pMMM)213

3.1.1. Overview of pMMM214

Modular multiplication is the most extensive arithmetic operation in an ECC pro-215

cessor, which heavily affects the performance and the occupied area of the processor.216

Our proposed approach, namely the pipelined Montgomery Modular Multiplication217

(pMMM), can process multiple input operands. The pipelined architecture of pMMM218

enables the sequence of multiplications to be executed concurrently, hence sharing the219

same resources. Additionally, the heart of pMMM is a multiplier that supports pipelining220

as well, enabling an even more speed-up in the computation. In the following subsection,221

we will first go into the detail of our proposed pipelined multiplier-accumulator before222

discussing the general architecture of the pMMM.223

3.1.2. Proposed Pipelined Multiplier-Accumulator224

Our pipelined multiplier-accumulator is essentially a combination of schoolbook225

long multiplication and Karatsuba-Ofman multiplication algorithm [21]. Schoolbook226

long multiplication is a naïve way to perform multiplication with n2 complexity, where227

n is the number of digits. Even though it has a relatively high complexity, all the digit228

multiplications can be executed in parallel. Furthermore, it supports high-performance229

hardware implementation by adopting the divide-and-conquer method. On the other230

hand, Karatsuba-Ofman multiplication offers lower complexity but with the trade-off231

that it is difficult for parallelization due to its recursive approach when dealing with232

higher bit length. We have managed to find a better approach by combining both233

algorithms to support multiplication in parallel while retaining the small complexity.234

The mathematical formulation for our algorithm is as presented in Equation 11-14.235

Let a and b be the two n-bit numbers to be multiplied, α be the chosen radix, whereas236

i, j, and k be the indices. A general schoolbook long multiplication (Equation 11) can237

be split into two terms: by certain index k, that is when j = i; and when j 6= i, as238

shown in Equation 12. The derivation to Equation 14 shows that the second term is,239

in fact, a Karatsuba-Ofman multiplication method while the first term remains the240

schoolbook long multiplication formula. Utilizing the property of schoolbook long241

multiplication which can be run in parallel since there is no dependency to the previous242

nor the succeeding computation, while also reducing the length of multiplication by243

employing Karatsuba-Ofman method, a significant gain in speed can be acquired. To be244

exact, the time complexity is reduced to 1
2
(
n2 + n

)
from n2 in the original schoolbook245

case. Compared to Karatsuba-Ofman, our algorithm indeed is higher in complexity, but246

with the significant advantage of parallelization for the hardware implementation.247

ab =
m−1

∑
i=0

m−1

∑
j=0

aibjα
(i+j) (11)

=
m−1

∑
k=0

akbkα2k +
m−1

∑
i=0

m−1

∑
j=0,j 6=i

aibjα
(i+j) (12)

=
m−1

∑
k=0

akbkα2k +
m−1

∑
i=0

m−1

∑
j=i+1

[
aibj + ajbi

]
α(i+j) (13)

=
m−1

∑
k=0

akbkα2k +
m−1

∑
i=0

m−1

∑
j=i+1

[
(ai + aj)(bi + bj)− aibi − ajbj

]
α(i+j) (14)

In terms of the hardware implementation, the speed increase in our approach is248

mainly contributed by the digital signal processor (DSP) cores in the modern FPGA that249

function as digit multipliers. The proposed multiplier is fully pipelined, in which new250

input can be processed for each cycle. The divide-and-conquer method employed in the251

schoolbook long multiplication is adopted, but each digit is optimized with Karatsuba-252
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Figure 1. Proposed Pipelined Multiplier-Accumulator

Ofman multiplication, which is later assembled with the compression module, the Carry253

Save Adder Tree (CSAT). All ripple-carry adders (RCAs) used in the multiplier module254

is implemented using a fast carry chain in modern FPGA. This primitive works in255

conjunction with Lookup Tables (LUTs) to construct the adders [29].256

Equation 14 is implemented as an 8-stages pipeline, as described below.257

• Stage-1: Two inputs A and B are split based on the radix (digit size), which is into258

16 bit in our design. Afterward, a parallel 16-bit RCA is used to compute ai + aj and259

bj + bi. At the same time, parallel DSP cores are utilized as 16-bit digit multipliers260

to compute akbk. As shown in Figure 2a, we employ two-stages pipeline for the261

DSP cores to achieve better performance, as recommended in [30].262

(a) (b)
Figure 2. DSP utilization setup: (a) 16-bit multiplier, (b) 17-bit multiply-accumulate

• Stage-2: We again utilize the DSP cores as a 17-bit Multiply-Accumulate (MAC)263

function to compute the Karatsuba-Ofman multiplication, (ai + aj)(bi + bj)− aibi.264

(ai + aj) and (bi + bj) are obtained from the output of RCAs at the first stage, as265

shown in Figure 2b.266

• Stage-3: The outputs of 16-bit multipliers akbk are routed to the input accumulator267

in the MAC modules as aibi.268

• Stage-4: The final accumulation for Karatsuba-Ofman is computed by a 34-bit RCA.269

The equation (ai + aj)(bi + bj)− aibi − ajbj results in 33-bit length. At this stage,270

mul_ocrdy is set when the CTL value is 3. It means that the input mul_ic is ready to271

be included in the CSAT at Stage 5 as the final accumulation of the Montgomery272

reduction algorithm. The algorithm itself is as presented in Algorithm 3.273

• Stage-5: Before being processed by the CSAT, all intermediate values are aligned to274

reduce the number of inputs in CSAT as well as the depth of the tree. This is due to275

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 January 2021                   doi:10.20944/preprints202101.0250.v1

https://doi.org/10.20944/preprints202101.0250.v1


Version January 12, 2021 submitted to Sensors 9 of 19

the additional bit length on each intermediate value, 33-bit instead of 32-bit length.276

Figure 3 shows the example of alignment process for four-input CSAT.277

All aligned intermediate values, including the input mul_ic, are assembled by CSAT278

where the compressor components in the CSA use LUT6_2, a similar 3:2 compressor279

circuit proposed by [11]. However, while they use multiple compressor circuits (e.g.,280

a 4:2 compressor in [11]) to construct the multiplier, we employ the homogeneous281

3:2 compressor to achieve a balanced performance.282

Figure 3. Example of alignment for intermediate values in 64-bit multiplier

Figure 4. Carry Save Adder Tree (CSAT)

• Stage-6&7: The sum and carry as the outputs of CSAT are then fed to the carry-select283

adder to obtain the final product. Note that we use the carry-select adder proposed284

by Nguyen et al. [31] due to its relatively short delay propagation. In the carry-select285

adder by [31], both options for the carry are computed. Subsequently, the carry is286

solved similar to that of the carry-lookahead adder (CLA). Lastly, the sum output is287

then generated with the final carry for each bit [32].288

• Stage-8: The register is used to hold the output register mul_or. The output o_val289

and o_ctl are given with respect to the input value i_val and i_ctl, respectively,290

which are shifted through the stages via a shift register.291

3.1.3. Montgomery Modular Multiplication using pMMM292

In our pMMM architecture, a single execution of Montgomery modular multiplier293

consists of three steps of multiplications and one step of subtraction, divided into four294

steps as follows:295

1. The pMMM starts by multiplying the input n-bit pmmm_ia and pmmm_ib, resulting296

in a 2n-bit product which is then stored in the first-in, first-out (FIFO) buffer. This297
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product will be used later in the third multiplication. Note that our FIFO buffer uses298

block RAM (BRAM) to reduce the required number of registers, where the depth of299

the FIFO buffer depends on the number of possible multiplication processes that300

can be executed concurrently.301

2. The n-bit LSB product of Step 1 is multiplied with the precalculated constant302

PARAM_M.303

3. Accordingly, the n-bit LSB product of Step 2 is multiplied by the modulus PARAM_P.304

In this multiplier, the product which was previously stored in the FIFO at Stage 1305

is used as the input mul_ic to be included in CSAT in the multiplier module. This306

gives the benefit that we do not need to make additional 2n-bit adders. Instead, we307

include it in the CSAT.308

4. The n-bit MSB of the third multiplication product is then evaluated and corrected309

using the carry-select subtractor, so that the output of pMMM is within the range310

[0, P].311

Figure 5. Proposed Pipelined Montgomery Modular Multiplier (pMMM)

Since the multiplier can be pipelined, the input operand for pMMM can as well312

be pipelined. In particular, we support up to 8 pipelined multiplications, in accordance313

with the number of pipeline stages of our multiplier. Each execution in a single pMMM314

operation is controlled by CTL, which is propagated during pMMM execution and incre-315

mented for each step. However, in our case, Hamburg’s formula for Montgomery ladder,316

as previously discussed in Algorithm 2, can only be performed up to 4 multiplication317

concurrently. Therefore, we adjust the FIFO depth to four, with a data width of 2n.318

Each pMMM operation does not need to be executed in sequence next to each other in319

one cycle, yet it can be performed even if there is a delay step between input operand.320

However, all sequences must fit in 8 clock cycles and can be used again after the first321

pMMM output is received. This is done to ensure that no internal steps of pMMMs are322

in conflict. The full sequence of multiple inputs of pMMMs are illustrated in Figure 6.323

Figure 6. Example of scheduling for pipelined four pMMM processes
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3.2. Pipelined Modular Adder/Subtractor (pMAS)324

Modular addition and subtraction operation also plays a significant role in an ECC325

architecture, which also affect the processor’s performance. The authors of [11] propose326

a unified 64-bit modular adder/subtractor that is designed to work with redundant327

numbers. However, their design can not be pipelined and uses a shift register to compute328

modular adder for higher bit length. In this paper, in order to match the speed of our329

multiplier, we introduce the pipelined version of modular adder/subtractor in [11],330

which is also able to operate as a modular adder or subtractor by specifying input i_op.331

Furthermore, instead of fixing the radix to a 64-bit operand, the radix in our design can332

be adjusted by specifying the number of stages d. Thus, the performance of our modular333

adder/subtractor can be adjusted depending on the requirement and available hardware334

resources. We refer to our architecture as the pipelined modular adder/subtractor335

(pMAS).336

Let d be number of pipeline stages and m be the radix size, each stage pipeline337

takes m-bit input operand, as shown in 15. An m-bit ripple-carry adder/subtractor is338

implemented on each stage as the building block of pMAS.339

m =

⌊
n
d

⌋
(15)

Our pMAS is performed in constant time. As shown in Figure 7, both computation340

of a± b and a± b± p is performed simultaneously whenever arbitrary input is received341

so that the secret values cannot be retrieved using power and timing analysis.342

Figure 7. Proposed Modular adder/subtractor (pMAS)
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3.3. Modular Inversion Implementation343

In order to be a fully constant-time ECPM, we use the modular inversion based344

on Fermat’s little theorem rather than the binary extended Euclidean algorithm. In345

summary, the theorem states that if p is a prime number and a is any number not346

divisible by p, then it satisfies the Equation 16 [33].347

ap−1 ≡ 1(mod p) (16)

By multiplying both sides with a−1, we obtain Equation 17, which infers that an348

inversion can be accomplished by utilizing exponentiation.349

a−1 ≡ ap−2(mod p) (17)

The inversion can be easily performed by using Montgomery ladder for exponenti-350

ation [27], which is also SCA-resistant due to its characteristic of constant-time operation.351

However, many proposals refrain from leveraging Fermat’s little theorem for modular352

inversion due to the extensive use of multiplications (i.e., 2n multiplications to achieve353

an exponentiation). Nevertheless, in our case, the hardware implementation of Fermat’s354

little theorem still give a competitive advantage by incorporating pMMM, yielding a355

relatively fast implementation via concurrent execution of two modular multiplications356

(i.e., a1a2 and a2
1 or a2

2 in Algorithm 4). Furthermore, no additional module for inversion357

is required, which directly reduces the slice overhead.

Algorithm 4 Constant-time Field Inversion algorithm
Input: a and prime modulus p of n-bits, 0 ≤ a < p
Output: a−1 mod p

1: procedure FIELDINVERSE(a, p)
2: e = p− 2
3: a1 = a, a2 = a2

4: for i = n− 2 to 0 do
5: if ei = 0 then
6: a2 = a1a2, a1 = a2

1
7: else
8: a1 = a1a2, a2 = a2

2

9: return a1

358

3.4. Montgomery Ladder Scheduling359

The improved Montgomery ladder formula by [22], as depicted in Algorithm360

2, incurs eleven multiplications and eight additions, and allows parallelization up to361

four multiplications and three additions per bit scalar. To date, this latest algorithm is362

considered the fastest for the Weierstrass curve. We adopt and optimize the scheduling363

of this algorithm by incorporating pMMM and pMAS in the ladder update (Algorithm 2),364

as well as the ladder setup (Equation 4-7) and ladder final (Equation 8-10), as presented365

in Figure 8. Up to four modular multiplications and the modular adder/subtractor can366

be pipelined, making a compact scheduling process. Moreover, our proposed scheduling367

does not require any additional registers, as opposed to the original approach in [22],368

which requires a temporary register.369

Note that a complete ECPM algorithm, as illustrated in Algorithm 1, includes ladder370

setup and ladder finish. Ladder update is the part that severely contributes to the latency371

of the circuit since it is executed iteratively per bit scalar.372

3.5. Generic ECC Architecture373

The main building blocks of ECC processors are pMMM and pMAS, which play374

a significant role in improving the speed of ECPM. The use of pMMM eliminates the375
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Figure 8. Proposed Scheduling for Montgomery (a) Ladder Setup, (b) Ladder Update, and (c)
Ladder Final

restriction of modulus to the special prime form, making our ECC architecture generic376

for arbitrary prime modulus. The modular inversion uses Fermat’s Little Theorem377

which also exploits the use of pMMM, making the algorithm fast even with an extensive378

number of multiplications. pMMM enables the modular inversion implementation379

without any additional modules.380

The proposed generic ECC architecture is shown in Figure 9. In addition to the381

pMMM and pMAS module, True Dual Port (TDP) RAM is implemented using BRAMs,382

which reduces the slice overhead. All operands and constants are stored in the TDP383

RAM.384

The Montgomery ladder, as illustrated in Algorithm 1, requires conditional swap385

for XQP ↔ XRP and YQ ↔ YR depending on the scalar bit, which may pose a security386

risk of a side-channel leakage. However, the benefit of using BRAM indirectly preserves387

side-channel resistance since an actual swap is applied to the operand address instead388

of the operand values, which is a few bits length. Thus, the ECPM with our proposed389

architecture is performed in constant time and does not have any scalar dependent390

branches.391

Since both pMMM and pMAS use registers to hold the output value, the intermedi-392

ate result can be fed back to its input instead of being stored in TDP RAM, making the393

execution faster and allowing efficient utilization of the BRAM. Additionally, the multi-394
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plexer is connected to each input operand so that it can provide the input depending on395

the ladder scheduling.396

Figure 9. Proposed ECC Architecture

3.5.1. Unified Architecture397

Our architecture also supports multi-curve parameters in a single ECC processor.398

The architecture in Figure 9 can be transformed into unified architecture since pMMM399

and pMAS do not restrict any modulus value or form. However, a few modifications400

are required in the pMMM modules. In particular, the input and output of third mul-401

tiplication in Algorithm 3 requires to be sliced, depending on the modulus size. This402

can be done by implementing a multiplexer to both input and output pMMM at Step403

3. Nevertheless, other components in the architecture remain the same. Additionally,404

since the curve domain parameters are stored in the BRAM, extending the support to405

different curve parameters will only increase the BRAM depth without affecting other406

modules (e.g., pMMMs, pMASs). The address map is shown in Figure 10.407

Memory address

Variables

0x00

Curve Param d

Curve Param 2

Curve Param 1
0x08

0x0C

0x10

8 + 4*d

T0
T1
T2
T3
T4
Px
Py

RFU

𝑃
𝑎𝑅𝑚𝑜𝑑 𝑝
𝑅!𝑚𝑜𝑑 𝑝

𝑀

n-bit

Figure 10. Address Map

4. Hardware Implementation Result and Discussion408

Our proposed design has been described by SystemVerilog HDL. Synthesizing,409

mapping, placing, and routing was carried out using Xilinx Vivado 2020, targeting410

three modern devices: Xilinx Virtex-7 (XC7VX690T), Kintex-7 (XC7K325T), and Zynq411

(XC7Z020) FPGA, for a more comprehensive evaluation and a thorough comparison412

with other recent works that use the 7-series FPGA.413
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4.1. Result and Analysis of Generic Implementation on Weierstrass Curve414

The result of our generic ECC implementation as well as several related papers on415

Weierstrass curve are presented in Table 2. In our case, we achieve the fastest speed416

among other proposals for 256-bit modulus size, with 0.139, 0.138, and 0.206 ms on417

Virtex-7, Kintex-7, and Zynq, respectively. Our fastest implementation (Virtex-7) requires418

6909 slices, while Kintex-7 and Zynq utilizes a slightly higher number of slices (7115419

and 7077). On all of the three platforms, we utilize 136 DSPs and 15 BRAMs. As can420

be inferred from the table, our architecture yields the highest performance in terms of421

execution time compared to other existing techniques.422

Table 1: Performance analysis of proposed generic ECC processor (256-bit) on Kintex-7

Operation Clock Cycles Latency @204.2 MHz(ns)

1 x Input Modular Addition 5 21.52
3 x Input Modular Addition 7 30.13
1 x Modular Multiplication 26 111.92
4 x Modular Multiplication 29 124.84
Modular Inverse 6911 29750.32

Ladder Setup 131 563.93
One Step Ladder Update 97 417.56
Ladder Finish 7050 30348.69

One ECC Scalar Multiplication 32272 138923.81

Table 2: Performance comparison of the proposed generic ECC processor for Weierstrass
curve up to 256-bit modulus size

Designs Platform Slices DSP BRAM
Max.
freq.
(MHz)

Time (ms)

Virtex-7 6909 136 15 204.2 0.139
This work Kintex-7 7115 136 15 234.1 0.138

XC7Z020 7077 136 15 156.8 0.206
Roy et al. [11] XC7Z020 2223 40 9 208.3 0.459
Bajard et al. [15] Kintex-7 1630 46 16 281.5 0.612
Asif et al. [14] Virtex-7 18.8k (LUT) 86.6 0.73
Ma et al. [16] Virtex-5 1725 37 291 0.38
Lai et al. [18] Virtex-5 3657 10 10 263 0.86
Shah et al. [17] Virtex-6 44.3k (LUT) 221 0.65
Vliegen et al. [19] Virtex-II Pro 1947 7 9 68.17 15.76
Hu et al. [20] Virtex-4 9370 20.44 29.84

Prior to our work, the implementation with the fastest speed is the proposal by Ma et423

al. [16] in 2014, which gives the execution time of 0.380 ms. It also achieves a considerably424

high maximum frequency of 291 MHz and consumes a relatively low resource of 1725425

slices and 37 DSPs. The speed mainly comes from their quotient pipelined Montgomery426

multiplier combined with a parallel array design. However, since they run on an older427

platform (i.e., Virtex-5), it is not comparable to our result.428

To the best of our knowledge, the state-of-the-art generic ECC processors for high-429

speed implementation in the 7-series FPGA is the technique by Roy et al. [11]. Their430

technique is primarily intended for the Montgomery curve, but since their proposed431

method focuses on implementing the Montgomery multiplier, they also extend their432

implementation to short Weierstrass curves and provide the performance analysis of433

their approach. In particular, they require eight dual multiplications and three single434

additions to perform one Montgomery ladder iteration.435
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In comparison to the method in [11] for the same target device (i.e., XC7Z020 FPGA),436

our approach yields an execution time of 0.139 ms whereas [11] requires 0.459 ms for a437

single ECPM execution. In other words, our method is approximately three times faster.438

However, readers may notice from Table 2 that in terms of the maximum frequency,439

the implementation in [11] reaches a higher value of 208.3 MHz while ours is 156.8440

MHz. Nevertheless, since our method employs fewer clock cycles, our overall speed441

outperforms their proposed approach.442

In terms of the area overhead, our implementation indeed requires a relatively443

larger space compared to the existing proposed methods. Nevertheless, modern devices444

available in the market (i.e., Virtex-7, Kintex-7) are generally equipped with a relatively445

large resource. In fact, from the hardware utilization perspective as presented in Table 3,446

the overall architecture only utilizes below seven percent of the total area in the FPGA.447

Hence, our high-speed architecture would still be greatly suited for services requiring448

low latency (speed-critical applications), such as for runtime authentication in automated449

vehicles, web server certification, etc [11].450

Table 3: Resource consumption of proposed generic ECC architecture on Virtex-7 FPGA

Resource Used Available Utilization %

LUT 22736 433200 5.25
FF 12511 866400 1.44

Slice 6909 108300 6.38
DSP48E1 136 3600 3.78

BRAM 15 1470 1.02

Regarding other proposals in the 7-series FPGA implementation, Bajard et al. [15]451

proposed a residue number system (RNS)-based ECC processor that utilizes Cox-Rower452

architecture for fast parallel Montgomery multiplication, which was initially introduced453

by [34]. They introduce a new ALU design utilizing the second level of Montgomery454

reduction within each RNS unit, increasing the maximum working frequency compared455

to the original one. On Kintex-7, they consume 1630 slices, 46 DSP cores, and 16 BRAMs,456

operating at 281.5 MHz maximum frequency, with a latency of 0.612 ms for a 256-bit457

ECPM.458

Asif et al. [14] proposed a residue number system (RNS)-based ECC processor459

that utilizes a serial-parallel approach for its modular reduction to balance its time and460

area performance. With the hardware utilization of 18.8k LUTs, their method achieves461

86.6 MHz maximum frequency and a relatively larger latency compared to other recent462

approaches.463

On the earlier platform, Shah et al. [17] proposed a redundant-signed-digit (RSD)-464

based ECC processor leveraging Montgomery multiplier that uses parallel computation465

technique operating in (X,Y)-only co-Z arithmetic. They also provide a relatively compre-466

hensive comparative analysis with other methods, in which they evaluate their proposed467

method in Virtex-2 up to Virtex-6, without using any DSPs and BRAMs. In their most re-468

cent platform (i.e., Virtex-6), they consume 44.3k LUTs, operating at 221 MHz maximum469

frequency, and acquire 0.650 ms execution time.470

Previously, Lai et al. [18] in 2012 also utilized a pipelined Montgomery multiplier471

and performed their ECPM using addition-and-subtraction method. They also proposed472

three different types of operation scheduling, in which their fastest approach (namely473

with their Type-III scheduling) was then compared to other works for Virtex-2, Virtex-4,474

and Virtex-5 platform. The implementation on their latest platform utilizes 3657 slices,475

10 DSPs, and 10 BRAMs, which yields 0.860 ms execution time and 263 MHz maximum476

frequency. Their result is largely surpassed by Ma et al., whose latency is nearly half of477

that of [18]. Additionally, Vliegen et al. [19] and Hu et al. focused on developing low-area478

implementation, in which [19] uses 1947 slices, 7 DSPs and 9 BRAMs (Virtex-II Pro) for479

achieving 68.17 MHz maximum frequency and 15.760 ms execution time while [20] only480
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uses slices without any other components, topping at 9370 for a maximum frequency481

and latency of 20.44 MHz and 29.840 ms, respectively.482

4.2. Result and Analysis of Unified ECC Architecture483

Besides high-speed, our method also supports multi-curve domain parameters.484

For instance, different standards (e.g., P-256 from NIST [8], secp256k1 from SECG [35],485

SCA-256 from SM2 [36], and Brainpool256 from the German Brainpool standard [37])486

would be able to be implemented with just a single ECC processor. Moreover, our487

processor does not incur any additional costs besides BRAMs when adding support for488

different curves.489

Currently, our implementation supports up to 256-bit modulus size. Nevertheless,490

it can be easily extended to the larger modulus size since our proposed pipelined491

multiplier-accumulator, constructed based on Equation 14, is scalable due to the divide-492

and-conquer characteristics of the employed algorithm. Table 4 presents the comparison493

of our method to the other two proposals on unified architecture. As shown, it can be494

inferred that our approach is notably faster than other similar works of [38,39].495

In [38], Amiet et al. focused on building a flexible ECC processor that accommodates496

arbitrary curves in short Weierstrass form. Their design mainly improves the Mont-497

gomery modular multiplier previously proposed by [40] to support pipeline and utilizes498

different mechanism for treating carry result. They leverage DSP cores to parallelize499

point addition and point doubling operations. Realized on Virtex-7 FPGA, their fastest500

implementation which uses word size of 64, requires 6816 LUTs and 20 DSPs to yield in501

the maximum frequency of 225 MHz and runtime speed of 0.69, 1.49, 4.08, and 9.7 ms502

for 192, 256, 384, and 512-bit modulus, respectively.503

In [39], Wu et al. [39] proposed a word-based modular division and utilized parallel504

point additions and doublings as well as pipelined scalable multiplications and modular505

reductions to achieve a fast and unified ECC implementation for five NIST primes. To506

support those primes, the authors employ a scalable multiplication algorithm to deal507

with integer of different lengths. Employing 8411 slices and 32 DSPs, this approach508

works in the frequency up to 310 MHz, achieving 0.296, 0.389, 0.526, 1.07, and 1.86 on509

NIST-192, 224, 256, 384, and 521-bit modulus size, respectively.510

Table 4: Performance comparison of the proposed unified ECC processor for Weierstrass
curve up to 256-bit modulus size on Virtex-7 FPGA

Designs Curve
Modulus
size
(bits)

Slices DSP BRAM
Max.
freq.
(MHz)

Time (ms)

192 0.119
This work Any 224 7281 136 15* 204.2 0.138

256 0.158

192 0.296
224 0.389

Wu et al. [39] NIST 256 8411 32 310 0.526
384 1.07
521 1.86

192 0.69
Amiet et al. [38] Any 256 6816 (LUT) 20 225 1.49

384 4.08
521 9.7

5. Conclusions511

In this paper, we have proposed a high-speed and unified ECC processor that512

works for generic Weierstrass curves over GF(p) on FPGA. The speed is obtained by513

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 January 2021                   doi:10.20944/preprints202101.0250.v1

https://doi.org/10.20944/preprints202101.0250.v1


Version January 12, 2021 submitted to Sensors 18 of 19

utilizing our fast pipelined Montgomery Modular multiplier (pMMM) for performing514

ECPM, constructed from our n-bit pipelined multiplier-accumulator which combines515

schoolbook long and Karatsuba-Ofman multiplication, allowing the multiplication to be516

performed in parallel while maintaining a low complexity. Furthermore, digit multipliers517

are handled by DSPs, resulting in an even more faster execution time. Additionally, we518

also propose to modify certain components to maximize the speed gain and the overall519

performance: employing our unified and pipelined Modular Adder/Subtractor (pMAS)520

for the underlying field arithmetic based on the work of [11], as well as implementing521

a more efficient yet compact scheduling of Montgomery ladder algorithm previously522

proposed in [22]. Moreover, the generic architecture employed by our pMMM module523

enables a unified ECC architecture that supports multi-curve parameters. The implemen-524

tation in the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020, shows that our technique525

executes in 0.139, 0.138, and 0.206 ms, respectively, which is the fastest in literature for526

generic curves as far as we know. It is worth to mention that our current approach is527

extensible to support more curve parameters for up to 256-bit modulus size, by only528

incorporating additional BRAMs. Lastly, our method is also resistant to side-channel529

attacks, making it suitable for applications requiring high speed and SCA-resistant530

characteristics, such as for the use in autonomous vehicles.531
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