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Abstract: This paper presents a method to determine material constants of a standard basketball 
shell together with the development of a virtual numerical model of a basketball. Material constants 
were used as the basis for the hyperelastic material model in the strain energy function (SEF). Material 
properties were determined experimentally by strength testing in uniaxial tensile tests. Additionally, 
the digital image correlation technique (DIC) was applied to measure strain in axial planar specimens, 
thus providing input stress-strain data for the Autodesk software. Analysis of testing results 
facilitated the construction of a hyperelastic material model. The optimal Ogden material model was 
selected. Two computer programmes by Autodesk were used to construct the geometry of the 
virtual basketball model and to conduct simulation experiments. Geometry was designed using 
Autodesk Inventor Professional 2017, while Autodesk Simulation Mechanical 2017  was applied 
in simulation experiments. Simulation calculations of the model basketball bounce values were 
verified according to the FIBA recommendations. These recommendations refer to the conditions and 
parameters which should be met by an actual basketball. A comparison of experimental testing and 
digital calculation results provided insight into the application of numerical calculations, designing 
of structural and material solutions for sports floors.  
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1. Introduction 

In the production of sports balls, particularly basketballs, the shelling is typically manufactured 
from rubber and rubber-based materials reinforced with synthetic fibres. Such materials exhibit 
properties of a hyperelastic material. Constitutive compounds for such materials, which from the 
very beginning under loading show elastic properties, have been searched for since the 1940s [1,2]. 
The need for the mathematical description of behaviour for a hyperelastic material under strain is 
reflected in many contemporary constitutive material models. One of such solutions is provided by 
phenomenological models. They treat this problem from the point of view of continuum mechanics, 
as the stress-strain behaviour with no reference to the microscopic structure. Other solutions include 
physically motivated models, considering the reaction of the material from the point of view of 
microstructure. Characteristics of material model properties may be described using specific 
mathematical equations. The most commonly used solutions include e.g. the Mooney-Rivlin, neo-
Hookean, Yeoh, Gent, Ogden, Arruda–Boyce, Zahorski or Blatz-Ko models [3-9]. All these theories 
are based on the empirical form of the strain energy function (SEF) of the material. Hyperelastic 
materials are characterised by the capacity to undergo considerable elastic strains under load while 
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at the same time retaining their original properties. As a rule they maintain a non-linear relationship 
between load and deformation, which is not linearly proportional. For this reason rubber-based 
materials are modelled as non-compressible materials, in the function of strain energy dependent on 
material constants and invariants of the deformation tensor. Their behaviour under load in the stress-
strain function is highly non-linear and a simple modulus of elasticity is no longer sufficient to 
describe material characteristics. For this reason, it is of great importance to characterize elastic 
behaviour of highly extensible, nonlinear materials. 

Assuming material isotropy and non-compressibility (σ2= σ3=0) [10-11], the strain energy 
function (W) considering the invariants of the Cauchy-Green deformation tensor (𝐼ଵ, 𝐼ଶ, 𝐼ଷ) may be 
presented as:  

𝑊௜௦௢௧௥௢௣௜௖ = 𝑓(𝐼ଵ, 𝐼ଶ, 𝐼ଷ)         (1,0) 
The phenomenological model of strain energy for a hyperelastic non-compressible material 

as a rule takes the form of an nth-degree polynomial. According to the Mooney-Rivlin equation 
originating from the continuum mechanics it may be presented as: 

𝑊൫𝐼ଵ,𝐼ଶ ,𝐼ଷ,൯ =  ∑ 𝐶௜௝௞
ே
௜,௝,௞ୀ଴ (𝐼ଵ − 3)௜(𝐼ଶ − 3)௝(𝐼ଷ − 3)௞    (2.0) 

 here: Cijk coefficients - are determined experimentally 
In the case of a uniaxial tension the invariants take the form: 

𝐼ଵ = 𝜆ଶ +
ଶ

ఒ
;   𝐼ଶ = 2𝜆 +

ଵ

ఒమ;   𝐼ଷ = 1- since there is no change in volume   

𝜆 = 1 + 𝜀;   𝜆ଵ = 𝜆 ;  𝜆ଶ = 𝜆ଷ =
ଵ

√ఒ
      (3.0) 

In the general situation the invariants defined by strains 1, 2, 3 along the three directions of the 
Cartesian coordinate system are denoted as: 

𝐼ଵ = 𝜆ଵ
ଶ + 𝜆ଶ

ଶ + 𝜆ଷ
ଶ ;          𝐼ଶ = 𝜆ଵ

ଶ𝜆ଶ
ଶ + 𝜆ଶ

ଶ𝜆ଷ
ଶ + 𝜆ଷ

ଶ𝜆ଵ
ଶ ;             𝐼ଷ = 𝜆ଵ

ଶ𝜆ଶ
ଶ𝜆ଷ

ଶ   (4.0) 
Generally, hyperelastic materials are considered incompressible, i.e. I3 = 1; hence only two 
independent strain measures, namely I1 and I2, remain. This implies that W is a function of I1 and I2 
only: 

𝑊 = 𝑊(𝐼ଵ − 3, 𝐼ଶ − 3)         (5.0) 
The selection of an appropriate model depends in the range, within which it is planned to simulate 
strain. If a limited range of strain is considered, e.g. max. 10%, then the best reflection of the material 
properties is provided by the neo-Hookean model as a particular case of the model proposed by 
Rivlin: 

𝑊 = 𝐶ଵ଴ (𝐼ଵ − 3)ଵ         (6.0) 
At greater ranges of strain at 10-300%, a better approximation is given by the model developed by 
Mooney and Rivlin: 

𝑊 = 𝐶ଵ଴ (𝐼ଵ − 3)ଵ + 𝐶଴ଵ(𝐼ଶ − 3)ଵ        (7.0) 

The Mooney-Rivlin form can be viewed as an extension of the neo-Hookean form in that it adds a 
term that depends on the second invariant of the left Cauchy-Green tensor. In some cases, this form 
will give a more accurate fit to the experimental data than the neo-Hookean form. In general, 
however, both models give similar accuracy since they use only linear functions of the invariants.  
At very high strains reaching 700% a good fit may be obtained using the model proposed by Yeoh: 

𝑊 = 𝐶ଵ଴ (𝐼ଵ − 3)ଵ + 𝐶ଶ଴(𝐼ଶ − 3)ଶ + 𝐶ଷ଴(𝐼ଷ − 3)ଷ      (8.0) 
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 The selection of a material model does not provide a close representation of hyperelastic strains, 
as material constants of the polynomials still need to be accurately defined. They are dependent e.g. 
on physical measures such as Young’s modulus or scleroscope (Shore’s) hardness number as well as 
the chemical composition of the material. A reliable method to determine the indexes is to conduct 
experimental tests. These may include uniaxial tensile tests of the material samples, while in the case 
of compressive materials hydrostatic compression tests are also performed. 
 The aim of this study, among other things, is to investigate material properties of the ball shelling 
including an appropriate hyperelastic model. Adoption of such a material model will facilitate 
designing and performance of simulation tests for a numerical model of a basketball using the FEM 
approach. A novelty in this study is connected with the comparative tests for bounce from a rigid 
floor conducted for an actual ball and the model. The results will contribute insight into the 
evaluation of behaviour of various flooring structures and used materials under loading.  

2. Materials and Methods  

2.1. Materials Hyperelastic models in Autodesk 
Within the Autodesk Simulation Mechanical programme six types of hyperelastic material 

models are available, such as e.g. the Mooney-Rivlin, Ogden, neo-Hookean and Yeoh models, as 
presented in Figure 1. Each model defines the strain energy function in a different manner. 

  

Figure 1. The Selection Window of material models in Autodesk 
A brief overview of hyperelastic models available in Autodesk  and used in the study is given 
below. These procedures calculate material constants based on experimentally measured stress-strain 
data. 

2.1.1. Mooney-Rivlin model 
The Mooney-Rivlin material model is a hyperelastic material model and is available for 

brick, tetrahedral, membrane and shell elements. It is a two-parameter phenomenological model 
that works well for moderately large strains in uniaxial elongation and shear deformation. For a 
compressible rubber, the model takes and following form and the potential function of the material 
for different orders is as follows:  
2-constant standard:  
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    (9) 

5-constant high-order:  

   (10) 

9-constant high order:  

    (11) 

Regardless of the order, the initial shear modulus, μ0, and the bulk modulus, k0, depend only on the 
polynomial coefficient of order N=1:  

μ0 = 2(C10 + C01) , k0 = K1         (12) 
The Mooney-Rivlin form can be viewed as an extension of the Neo-Hookean form in that it adds a 
term that depends on the second invariant of the left Cauchy-Green tensor. In some cases, this form 
will give a more accurate fit to the experimental data than the neo-Hookean form. In general, 
however, both models give similar accuracy since they use only linear functions of the invariants. 
These functions do not allow representation of the "upturn" at higher strain levels in the stress-strain 
curve.  

2.1.2. Neo-Hookean model 
The neo-Hookean material model is a hyperelastic material model available for 2D, brick and 

tetrahedral elements. This routine calculates the material constants using measured stress-strain data. 
This model is a special case of the Mooney-Rivlin form with C01= 0 and can be used when material 
data is insufficient. It is simple to use and can make good approximation at relatively small strains. 
However, it too cannot capture the upturn of the stress strain curve. The potential function of the 
neo-Hookean material model is as follows: 

       (13) 

where:  
C10 and K are coefficients of the Neo-Hookean material model. 

2.1.3. Arruda-Boyce model  
This material model is available for 2D, brick and tetrahedral elements. The Arruda-Boyce 

material model is a hyperelastic material model used to model rubber materials. The implementation 
of this model follows the Ogden material behavior for volume-preserving deformation modes. Based 
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on the molecular chain network, it is also called the Arruda-Boyce 8-chain model because it was 
developed based on a representative volume (hexahedron) element, where 8 chains emanate from 
the centre to the corners of the volume. This is a two- parameter shear model based only on I1 and 
works well with limited test data. The potential function of the material is as follows: 

     (14) 

2.1.4. Ogden model 
Proposed in 1972 by Ogden, this is also a phenomenological model and is based on principal 

stretches instead of invariants. The model is able to capture upturn (stiffening) of the stress-strain 
curve and models rubber accurately for large ranges of deformation. This material model is available 
for 2D, brick, tetrahedral, membrane and shell elements. The Ogden material model is a hyperelastic 
material model that has three material constants.  The software supports up to a sixth-order variant. 
The potential function of the Ogden material is as follows: 

     (15) 

If N=2, α1=2, and α2=-2, the Mooney-Rivlin material model is obtained. If N=1 and α1=2, 
Ogden's model degenerates to the Neo-Hookean material model. In the Ogden form the initial 
shear modulus, μ0, depends on all the coefficients:  

         (16) 

2.2. Experimental details  

The method applied in this study consisted in the analysis of selected equations of the 
hyperelastic material models in terms of the material data for the ball shelling obtained from uniaxial 
tensile tests. The data collection process followed the requirements of the PN-ISO 34-1:2007 standard, 
which specifies the testing conditions. Empirical tests on ball shelling samples were performed using 
an INSTRON-5840 strength testing machine equipped with software recording testing data, 
additionally using an extensometer Figure 2. In order to eliminate the potential effect of the direction 
of basketball shelling sampling on the recorded results the direction of sample circumferential 
collection was varied. Tests were conducted on 10 dumbbell specimens. 
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Figure 2. An uniaxial tensile specimen mounted on the testing machine.  

Specimens were subjected to tension tests at 100 mm/min. The testing procedure was 
recorded using a video camera with the originally developed DIC system [12-14]. The recorded 
parameters included the increment in tensile force F[N], the increment in length l=[mm] and strain 𝜀 
[-]. Geometrical dimensions of the tested specimens are presented in Figure 3. 

 

Figure 3. Dimensions of specimens 

Optical methods to measure strains are best suited for such applications, since measurement is 
taken remotely, without interfering with the flexible geometry of specimens or any additional 
loading. Many researchers [15-19] have applied a similar technique to measure strains in hyperelastic 
rubber-like materials. Experimental results and analytical calculations were averaged and they are 
presented in the graph in Figure 4. Force was recorded in the function of specimen elongation until 
specimen failure. Points in the graph are experimental values, while the approximation line identifies 
the fitting function given in the equation form. Results cover the range of loads from the zero value 
of initial loading up to the tensile strength limits for ball shelling reinforced fibres. The averaged 
value of failure load was F=72.5 N, which corresponded to elongation strain  = 7.7%. In practice this 
reflects the ultimate rupture strength of ball shelling under the influence of internal pressure. 
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Figure 4. The curve of averaged stress-strain characteristics of the basketball shelling rubber-based 
material.  

Having the strain-stress strength characteristics of the ball shelling to determine calculation 
factors of the equation the so-called curve fitting method was applied by trial and error. This 
approach is based on the intuitive introduction of coefficient values of a given phenomenological 
model. Another solution is to use an appropriate computational tool such as e.g. an open-source 
Hyperfit  programme [20] Figure 5.  

     
Figure 5.  The Selection window of the Hyperfit  computer programme.  

After the introduction of experimental data and the selection of an appropriate model for 
hyperelastic materials the programme automatically fits the regression curve and determines the 
computational coefficients of the polynomial. The programme also makes it possible to compare 
several different hyperelastic models, thus facilitating the selection of an optimal model for a given 
set of experimental data.  

In the case of modelling in the FEM numerical environment the experimental data may be 
directly implemented to the computer programme, in which simulation analyses are conducted [21]. 
For this purpose, the first step was to use a specific programme facilitating the construction of virtual 
geometry for the ball shelling specimen. The Inventor Professional ver. 2017 was used and a 3-D 
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geometrical model was constructed. This model was supplemented with data on the material and 
further strength analysis could be conducted in the simplified version of this programme. It was 
decided to perform analyses in a more advanced environment and the Autodesk Simulation 
Mechanical programme was used Figure 6. 

       

Figure 6. The Selection Window of the Autodesk Simulation Mechanical 2017 programme.  

Depending on the used material models in the finite element method (FEM) curves more or 
less convergent with experimental data are obtained. In reality in no case the model curve in a given 
hyperelastic material model overlapped ideally with the experimental curve. In practice it is 
attempted to minimise them and to select an optimal material model. The best method to verify the 
selection of an accurate material model is to conduct a comparative analysis of results provided by 
the FEM numerical simulation with experimental data at an identical loading level. It is generally 
assumed that the results obtained from simulation are correct if the error does not exceed 5% in 
relation to the data from the conducted experiment. 

2.2.1. Experimental results and curve fitting for FEM self selection 

In the first stage of numerical calculations the task was to select appropriate hyperelastic 
material models offered in the FEM calculations. Four material models were selected from the 
Autodesk Simulation Mechanical ver. 2017 programme. The best method verifying the selection of 
an accurate material model is to perform a comparative analysis of results from FEM numerical 
simulation and experimental data, assuming the same loading level. Virtual models were loaded 
similarly as specimens in experimental tests with the tensile force F = 72.5 N, being a mean value of 
actual load. The virtual numerical model of the dumbbell specimen consisted of 900 Brick type finite 
elements comprising 4869 nodes. Results of the numerical calculations in selected material models 
are presented in the form of displacements in Figure 7, and the degree of goodness of fit for the 
regression curve with material constants in Figure 8. 
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a)  

b)  
 

c)  
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d)  

Figure 7. Calculated displacements in the computer simulation for: a) Ogden, b) neo-Hookean, c) 
Arruda-Boyce, d) Mooney-Rivlin models. 
 

a)  

b)   
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c)   

d)   

Figure 8. Selection windows for regression curves and calculated values of material constants for 
selected simulation models: a) the Ogden model, b) the Mooney-Rivlin model, c) the Arruda-Boyce 
model, d) neo-Hookean model. 

Table 1. Experimental and simulation data from the Autodesk Simulation Mechanical 
2017 (Load F= 72,5N) 

 Type of analysis 
 Experimental FEM models 

Parameter  neo-Hookean Mooney-Rivlin Ogden model Arruda-Boyce 
∆𝑙[𝑚𝑚] 4.404 4.673     

(5.7%) 
5.511   (20%) 4.256  (3.36%) 4.669   (5.7%) 

𝜀 0,077 0.085     
(9.4%) 

0.030  (61%) 0.079  (2.59%) 0.083   (7.2%) 

𝜎[MPa] 4.728 6.503      
(27%) 

4.923  (4.0%) 4.862  (2.8%) 6.996   (3.2%) 

Experimental and numerical results are given in Table 1. Based on the analysis of these 
results an appropriate hyperelastic material model was selected for the ball shelling. The Ogden 
material model was selected as that showing goodness of fit for the regression curve Figure 8a. At 
the same time this model has the lowest deviation values of the comparison error (presented as 
percentages in parentheses) in Table 1. This model seems to be the correct choice among the available 
material models in view of its ability to match fit the experimental stress-strain results at low strain 
levels. Results of the other numerical calculations in the stress-strain function in the form of bitmaps 
for the selected Ogden model are shown in Figure 9.  
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Figure 9. The image of unit strains and reduced stresses in the Ogden material model.  

 

2.3. A Basketball and its Modelling Using the Finite Element Method (FEM) 

Most indoor sports disciplines are practiced on the floor using a ball (shown in Figure 10). 
For this reason, an important parameter defining suitability of a given floor for these sports is 
provided by the value of ball rebound. 
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Basketball parameters 
    (mean values) 
Size 7 
diameter - D =  240 [mm]   
circumference  - L = 754 [mm]  
mass        - 0,597 [kg] 
density      - 1.47 [g/cm3]  
shell thickness  - 2.4 [mm] 
mass damping coefficient - 0,1 

 

Figure 10. A photo of a standard basketball Kipsta  and its parameters  
 

Equipment used to test the vertical behaviour of the ball was designed according to the PN-
EN 12235 standard requirements. When determining this value in practice a gauging apparatus 
measures the velocity of an acoustic wave propagation in the air are shown in Figure 11. The 
measurement is based on the time passing between successive acoustic impulses, i.e. between the 
first and second impact during ball rebound from the floor. The equipment releasing the ball was 
mounted at an initial height from the floor H (1.80 ±0.01 𝑚).   

  
Figure 11. Equipment used for testing the vertical behaviour of the basketball 

The testing stand is composed of a device to which a ball is attached, a microphone and a 
measuring apparatus recording the course of the process. The vertical fall of a ball from a specific 
height in the potential field is described by uniformly accelerated motion. When neglecting the effect 
of air resistance this motion may be described by a formula: 

𝐻௜ =
௚௧మ

ଶ
            (17) 

H

RS

Sensor’s holder

i

microphone

recording system
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where: t - time [s], g = 9.81 m/s2 

Substituting t = 0.5T we obtain:   
𝑅௦ = 1.23 ∙ 𝑇ଶ         (18) 

Applying the phenomenon of propagation of the acoustic wave in the air and after modification 
based on the PN-EN 12235 standard to formula (17) we may determine the height of vertical rebound 
of a ball from the floor: 

𝑅௦ = 1.23 ∙ (𝑇 − 𝐾)ଶ[m]       (19) 
where: K – correction factor in accordance with the above-mentioned standard is 0.025s for UEFA or 
without K for EN 12235. 
Knowing the time measured by the apparatus we may estimate averaged values of ball rebound from 
the floor. Empirical tests were conducted under constant climatic conditions and at a constant 
temperature of internal pressure of gas (the air) in the ball p = 0.06 MPa. The actual basketball should 
meet the requirements specified by FIBA. According to the official FIBA basketball rules [22], 
basketballs have to be inflated to an air pressure such that, when they are dropped onto the playing 
floor from a height of approximately 1800 mm measured from the bottom of the ball, they will 
rebound to a height of between 1200 and 1400 mm, measured to the top of the ball. The vertical ball 
behavior for these types of floor has to fulfill the requirements of EN 12235. According to this 
technical requirement, a standard basketball, which drops from a height of 1800 mm, has to have a 
relative rebound height of at least 90% of the rebound height on concrete. The basketball rebound 
height(R) on the tested floors is calculated in % by Equation: 

𝑅 =
ோೞ

ோ೎
 ∙ 100%         (20) 

Where: Rs is the rebound height from the sports surface, in metres, 
Rc is the rebound height from concrete, in metres.  

The reference value height (Rc) corresponding to the bounce height measured on concrete floor was 
1.2 m R% - the value has to be at least 90% of the reference value height according to EN 12235, 
corresponds to the target height of 1.083 m. In the case of collision of a ball with a rigid surface of the 
floor, the ball will deform during the impact. Ball deformation affects the height of the rebound. It is 
dependent e.g. on such factors as the type of ball and flooring materials and internal pressure of the 
ball, while it is indirectly influenced by the free fall height, temperature, etc. These dependencies have 
a significant effect on dissipation of energy, defined by the coefficient of restitution (COR) [23-26] 
expressed by the equation:     

𝑒 =
௩మ

௩భ
= ට

ோೞ

ு
          (21) 

where : 𝑣ଵand 𝑣ଶ are the inbound and rebound speeds, respectively 
In order to provide an accurate prediction of behaviour for the rubber sheathing of a 

basketball used in the testing system (e.g. bounce from a stiff floor) using the finite element 
simulation, the ball should be tested under the same loading conditions as those applied in the 
original basketball-floor system. The performed validation of the numerical hyperelastic models 
using experimental data made it possible to select an optimal model material for the construction of 
an appropriate virtual model of a basketball in the computer programme, as shown in Figure 12. 
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Figure 12. The FEM model of the ball and surface. 

Simulation analyses were conducted in the Autodesk Simulation Mechanical programme in 
the non-linear calculation environment. The model of the basketball shell material was modelled to 
exhibit hyperelastic properties corresponding to the Ogden model. Thus 8-node Shell-type finite 
elements were used to model the ball shell. The rigid floor was modelled as a material of Concrete 
High Strength from the library of the computational programme. The geometric model of the rigid 
floor was digitised using 8-node Brick-type finite elements. The FEM simulation was performed by 
assuming a free fall of the ball model with the internal pressure of 0.6 bar onto a floor from a similar 
height as that of the actual ball as shown in Figure 13. In simulation analyses the Rayleigh damping 
coefficient of 0.45 was assumed. Geometrical and material data of the concrete floor model are 
presented in Table 2. 

 

Table 2. Data concrete 

Floor parameters 
(concrete) 
width       - 500 mm 
length      -  500 mm 
thickness  -  40 mm 
density –    2.35[g/cm3] 
modulus of elasticity  
 E =20684[MPa] 
Poisson’s ratio -  ν = 0.15 
damping ratio -  0.3 

 

Figure 13. The image of applied internal pressure in the ball model 

3. Results and discussion 

Numerical simulations for the rebound of a ball model from the rigid surface were performed for two 

selected materials. The free fall of the ball onto the surface was executed from different heights. The surface 

for the rebound was made from concrete and beech wood. Averaged rebound results from different free fall 

heights (Hi) under constant climatic conditions and constant internal pressure of gas (air) in the ball p = 0.06 

MPa are presented in a graph in Figure 14. The rebound value was measured at the top of the ball.   
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Figure 14. Results of numerical calculations and experimental data for ball rebound height 

Based on the analyses of the study results the coefficient of restitution COR was calculated according to formula 

(21) as approx. 0.7. It is a rebound amounting to 70% height of the ball free fall or its model onto a hard rigid 

surface. The COR value defines dissipation of energy when the ball hits the floor. Energy is dissipated into heat 

energy, sound and the friction force resulting from the contact of the ball surface and the floor. Its value is 

dependent on the type of flooring material and decreases with an increase in the fall height. At the moment of 

contact of the ball with a rigid surface the ball is subjected to impact and the centre of inertia attempts to move 

while the floor surface attempts to stop it. This leads both to an elastic deformation of the ball and the floor 

surface, as well as the generation of slight friction forces inside the ball. Thus a small portion of the energy is 

dissipated as friction energy. The amount of friction energy depends both on compression of air inside the ball 

and the size of the contact surface between the ball and the floor. Although there is no lateral travel of the ball 

on the floor, theoretically small friction forces are generated as a result of the ball deformation and its contact 

with the floor surface. As a result of deformation the contact itself shifts from the point contact to surface contact 

depending on the character of the material. The contact surface of the ball with the floor is smaller in the case 

of rigid materials compared to viscoelastic materials. The graph of rebound is a linear function and data from 

numerical calculations are consistent with the experimental results. This indicates accuracy of the modelling 

process and adoption of an appropriate ball model in the computer programme. Simulation results for the 

rebound of the ball model are presented in Figure 15, while the rebound graph is given in Figure 16.  
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Figure 15. The image of numerical simulation of the first rebound of the ball model 

 

 

Figure 16.  A graph of the ball model rebound calculations  

 

The maximum value of the first rebound at the free fall of the ball model from a height of 1800 mm 

onto a model of a rigid floor (concrete) was Rc= 1230 mm. It is the total displacement of the ball model in the 

non-linear analysis from the initial position to time point of 1.08 s, when the model reaches the maximum height 

in the first rebound.  The height of the first rebound is calculated according to the formula: 

Rc = H-h'+D =1800 mm - (810+240) mm = 1230 mm 

where:   H – height of fall measured from the bottom of the ball model,  

h' – height of rebound measured from the bottom of the ball model to a rigid floor,  

D – diameter of the ball model = 240 mm 

 

3. Conclusions 

R c =1230mm 

h'=810mm 
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The mathematical description of behaviour of hyperelastic materials provides significant information 

concerning prediction of the response of the material at specific strain values, which characterise rubber-based 

materials. For this reason, the aim of this study was to determine non-linear hyperelastic mechanical properties 

of the basketball shell material as well as behaviour of the FEM ball model during simulation analyses in the 

process of ball rebound from a rigid floor. In order to specify these material data, it was necessary to conduct 

laboratory tests. The performed analysis of applicability of hyperelastic material models to describe the 

behaviour of a rubber-based basketball shell material under uniaxial tension gave positive results.  

1. Based on data from these tests the Ogden material model was selected, which precisely matched 

the regression curve from the results obtained from experimental tests.  

2. The positively verified material model was next used to model material properties of the ball shell 

model in the simulation FEM programme. The simulation programme included the defined ball 

shell material model as well as initial conditions in the form of internal pressure, values of free 

fall identical to that under actual conditions and neglected the effect of air resistance (drag).  

3. As a result of FEM calculations the characteristics of ball model rebound were obtained and they 

were consistent with experimental data. The data from these calculations did not diverge from the 

values recommended by FIBA guidelines.  

4. Compared ball rebound results and those obtained from the FE model simulation in the form of 

the coefficient of restitution COR were reflected in the experimental results. The COR value 

decreased with an increase in the free fall height, similarly as an increase in velocity. For a hard 

rigid concrete floor this coefficient was highest in comparison to that of the wood surface. 

5.  Thus the less hard a given floor is at the behaviour of constant kinematic values and ball pressure, 

the lower the COR value is also going to be. As a consequence, more energy will be dissipated 

upon impact.  

Frequently the selection of an appropriate test determines accuracy of the obtained results. It needs to be 

stressed that the FEM method is an approximate method burdened with a certain error. Nevertheless, the 

results provided by this method give a very good approximation to reality, while fine-tuning the model may 

reduce the number of extensive experimental tests. The obtained results of numerical modelling applying 

the finite element method may be used in future simulation studies on the behaviour of structural elements 

of sports floors. 
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