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Abstract: The calculation of the vapour pressure of organic molecules at 298.15K is
presented using a commonly applicable computer algorithm based on the group-additivity
method. The basic principle of this method rests on the complete breakdown of the
molecules into their constituting atoms, further characterized by their immediate neighbour
atoms. The group contributions are calculated by means of a fast Gauss-Seidel fitting
algorithm using the experimental data of 2036 molecules from literature. A ten-fold cross-
validation procedure has been carried out to test the applicability of this method, which
confirmed excellent quality for the prediction of the vapour pressure, expressed in log(pa),
with a cross-validated correlation coefficient Q% of 0.9938 and a standard deviation o of
0.26. Based on these data, the molecules' standard Gibbs free energy AG°vap has been
calculated. Furthermore, using their enthalpies of vaporization, predicted by an analogous
group-additivity approach published earlier, the standard entropy of vaporization AS°vap
has been determined and compared with experimental data of 1129 molecules, exhibiting
excellent conformance with a correlation coefficient R? of 0.9598, a standard error o of
8.14 J/mol/K and a medium absolute deviation of 4.68%.

Keywords: group-additivity method; vapour pressure; Gibbs free energy of vaporization;
entropy of vaporization

1. Introduction

In recent years, knowledge of the vapour pressure of organic molecules has gained increasing
interest in view of the environmental, in particular radiation absorption, effects in the context of global
warming, but also in view of their toxicology [1,2] as well as their quality as refrigerants [3]. At the
same time, new and highly sophisticated experimental methods, e.g. using a Knudsen effusion
apparatus, coupled with a quartz crystal microbalance [4], have been developed for the measurement
of molecules exhibiting extremely low vapour pressures. In most cases, these measurements involved
the temperature dependence of the vapour pressure over a certain temperature range, the corresponding
sequence then being approximated by one of various non-linear functions, mostly by the Antoine
equation [5]. In order to enable a comparison of the vapour pressures between molecules at identical
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conditions, the non-linear functions have been used to interpolate the vapour pressures to a standard
temperature, usually 298.15K. This interpolation method produces reliable results on condition that the
experimental temperature range encompassed the standard temperature. However, the comprehensive
handbook of Mackay et al. [6], collecting the experimental data from various authors for more than
1000 compounds, revealed that in many cases the standard vapour-pressure data varied by a wide
range, depending on the experimental methods. Therefore, many attempts, critically reviewed by
O'Meara et al. [7] and Dearden [8], have been undertaken to calculate the vapour pressure based on
quantitative structure-property relationships. Some of these attempts require the knowledge of an
experimentally determined descriptor, which limits the scope of applicability for vapour-pressure
prediction. E.g. A. Vetere [9] suggested a non-linear equation relating the vapour pressure to the
temperature, based on the reduced temperature T (i.e. the critical temperature), which was tested
successfully on less than 50 liquids. A neural network approach was presented by R. Kihne et al. [10],
whereby the network was trained by 1200 and tested by 638 hydrocarbons and halogenated
hydrocarbons, requiring - among further molecular structure data - the melting point of the
compounds, achieving an overall error of 0.08 and 0.13 log(Pa) for the training and test set. The
authors stressed that neural networks cannot extrapolate reliably outside the given descriptor and target
values of the training set. A group-contribution method with the inclusion of group interactions was
presented by B. Moller et al. [11], which produced the group parameters, but required the knowledge
of one experimental vapour pressure point. The relative error for a training set of 2332 compounds was
given as 5%. Several other prediction methods are based on a set of purely structural descriptors and/or
on atom groups of the molecules. For the calculation the vapour pressure of a large scope of molecules,
these latter methods are entirely dependent on the number and structural variability of molecules with
known vapour pressure. In 1994, Ch.-H. Tu [12] presented a group-contribution method based on 5359
experimental vapour pressure data of 342 compounds over a varying temperature range between 90
and 643K, whereby each atom group was defined by four constants, enabling the prediction at various
temperatures using a second order equation derived from the Clausius-Clapeyron equation. The
medium absolute percentage deviation between experimental and predicted values for 336 compounds
was reported as 5%. The reliability of these predictions however are said to be limited to molecules
carrying at most one functional group. A neural network model was used by E. S. Goll and P. C. Jurs
[13] for the vapour-pressure prediction of hydrocarbons and halohydrocarbons, having been trained by
the experimental vapour pressures as log(VP) at 25°C of 352 compounds. The molecules were
presented to the neural network by topological, geometric, electronic and hybrid descriptors. The root-
mean-square (rms) deviations for the training, cross-validation and prediction sets were given as 0.163,
0.163 and 0.209 log units, respectively. An analogous model, this time based on 420 diverse
molecules, was presented by H. E. McClelland and P. C. Jurs [14], yielded an rms error of 0.33 log
units. Cohesive energies and solubility parameters derived from molecular dynamics simulations based
on forcefield calculations of 22 molecules have been used by P. K. C. Paul [15]. He demonstrated that
a single cross term consisting of either the molecular volume or molecular weight and the square of the
compound's solubility parameter - which latter is the square root of the cohesive energy - determined
to more than 90% the equation for the vapour pressure, expressed as log(\VP). The Abraham
descriptors method has been used for the vapour-pressure prediction as log(VP) of liquid and solid
organic and organometallic molecules by M. H. Abraham and W. E. Acree [16], the six descriptors
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being E the excess molar refraction, S the solute polarity/polarizability, A the solute H-bond acidity, B
the solute H-bond basicity, V the McGowan's characteristic molecular volume and L the logarithm of
the hexadecane partition coefficient at 298.15K, all of which, except for L, either being available from
commercial databases for more than 8000 compounds or obtainable by calculation procedures. The
best standard deviation value has been calculated to 0.28 units for 1016 compounds. These few
examples (except for the last one) demonstrate that the studies on the prediction of the vapour pressure
published up to now usually either deal with a specific set or a limited number of molecules
forestalling an extension beyond them.

The present paper provides a way to predict the vapour pressure at 298.15K of a very large scope of
organic molecules, applying the same basic computer algorithm based on the atom-group additivity
method outlined in [17], which has already proven its versatility in the reliable prediction of the 16
molecular descriptors enthalpy of combustion, formation, vaporization, sublimation and solvation,
entropy of fusion, logPow, 10gS, logyins, refractivity, polarizability, toxicity (against the protozoan
Tetrahymena pyriformis), viscosity and surface tension of liquids, and heat capacity of solids and
liquids [17-21], and which only required a few further peripheral control lines of code to meet the
present purpose. In addition, by the inclusion of the experimental and calculated enthalpy of
vaporization of the molecules under consideration, (their calculated enthalpy having been received by
the same method as the present one but published earlier [18],) their experimental and predicted
entropies of vaporization have been made accessible and will thus be compared.

2. Method

The present study rests on a regularly updated object-oriented knowledge database of currently
32697 compounds encompassing the entire spectrum of organic molecules, including pharmaceuticals,
herbicides, pesticides, fungicides, textile dyes, ionic liquids, liquid crystals, metal-organics, lab
intermediates, and more, each of them stored in a separate datafile containing the 3D-geometry-
optimized structure and - as far as available - their experimental and routinely calculated descriptors,
including their vapour pressures. The latter is defined in this work as the logarithm to the basis 10 in
pascal, termed as logVP.

The atom-group additivity principle and its translation into a computer algorithm for the calculation
of their parameters has been outlined in detail in [17]. Accordingly, the definitions and namings of the
atom and special groups are identical to the ones given in Tables 1 and 2 of [17]. The first preliminary
logVP calculations however, with tentative replacement of certain atom groups by more detailed ones
and addition or omission of certain special groups, revealed a significant improvement of the statistical
data upon the addition of the groups explained in Table 1.

Table 1. Refined Atom and Special Groups and their Meaning

Atom Type Neighbours Meaning
O(prim) HC Primary alcohol
O(sec) HC Secondary alcohol
O(tert) HC Tertiary alcohol
(COH)n n>1 Molecule contains more than 1 saturated OH group

(COOH)n n>1 Molecule contains more than 1 carboxylic acid group

d0i:10.20944/preprints202101.0233.v1
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Endocyclic bonds No of single bonds ~ Number of single bonds in cyclic ring
Bridgehead atoms No of bonds Number of bridgehead C or N (e.g. camphor, DABCO)

The separation of the hydroxy group on saturated carbon into primary, secondary and tertiary OH
groups as defined in Table 1 (henceforth called "saturated hydroxy group™) has successfully been
introduced into the present atom-group additivity approach for the calculation of the heat capacities of
molecules [21]. This modification required an additional procedure in the group-additivity algorithm
described in [17]. In contrast to this, the group definition of hydroxy groups attached to unsaturated
carbon atoms remained unaltered. The tentative first calculations also confirmed an assumption which
had already been proven in the calculation of the surface tension of liquids [20]: additional saturated
hydroxy groups in a molecule exhibit more than just a linearly additive effect on the descriptor. This
non-linear effect has been considered by the special group "(COH)n" for molecules carrying more than
1 saturated hydroxy group. Similarly, the first attempts for the prediction of the logVVP for dicarboxylic
acids indicated that a second carboxylic acid function also showed a nonlinearly increasing impact on
the result. Therefore, the special group "(COOH)n" was added for compounds with with n>1 to take
account of this apparent nonlinearity. A further strong deviation between predicted and experimental
data, observed with compounds containing cyclic saturated segments, was remedied by adding a
correction value for each single bond that is a part of the ring moiety, defined by the special group
"Endocyclic bonds™, yielding a drastic improvement of the prediction statistics data (summed up at the
bottom of Table 2). This special group has already found successful use in the prediction of the
entropy of fusion [18] and the heat capacities [21] of molecules. Despite this additional special group,
the predicted vapour pressures for various bicyclic compounds such as adamantane or camphor have
shown to be systematically much lower than their experimental data. Therefore, the special group
"Bridgehead atoms™ has been introduced. Further details about these special groups will be discussed
in the results section.

The calculation of the parameter values of the atom and special groups of Table 2 is carried out in a
step-by-step process as explained in [17]: in a first step, a temporary list of compounds for which the
experimental vapour pressure is known, is extracted from the database. In a second step, for each of
the "backbone" atoms (i.e. atoms bound to at least two other direct neighbour atoms) in the molecules
the atom type and its neighbourhood is defined by two character strings according to the rules defined
in [17], corresponding to the atom type and neighbours terms listed in Table 2, and then its occurrence
in the molecule is counted. Thirdly, an M x (N + 1) matrix is generated where M is the number of
molecules and N + 1 the molecules’ number of atom and special groups plus their experimental value
and where each matrix element (i,j) receives the number of occurrences of the jth atomic or special
group in the ith molecule. In the final steps, normalization of this matrix into an Ax = B matrix and its
subsequent balancing using a fast Gauss-Seidel calculus, as e.g. described by E. Hardtwig [22], yield
the group contributions, which are then stored in Table 2.

Following the philosophy of the group-additivity approach, these group contributions can now be
used to calculate the descriptor, in this case the vapour pressure as logVP at 298.15K, by simply
summing up the contributions for each of the molecule's atom and special group, according to
Equation (1), wherein ai and b; are the respective atom and special group contributions, Ai is the
number of occurrences of the ith atom group, B;j is the number of occurrences of the jth special group
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and C is a constant. However, an important restriction has to be observed when using Table 2 in
connection with Equation (1): the group contributions are only reliable enough for use - i.e. "valid" - if
they are supported by at least three independent molecules, i.e. if the number in the rightmost column
of Table 2 exceeds 2.

logVP:Zaf*Ai-l-ij*Bj‘f'C (1)
i J

The plausibility of the descriptor results is immediately tested in the present method by means of a
10-fold cross-validation algorithm wherein in each of the 10 re-calculations another 10% of the
complete set of compounds is used as a test set, ensuring that each compound has been entered
alternatively as a training and a test sample. The respective statistics data of the training and
accumulated test calculations are finally collected at the bottom of Table 2. Due to the restriction
mentioned above, the number of molecules for the evaluation of the training correlation coefficient,
average and standard deviations (lines B, C and D) and for the corresponding test data from cross-
validation (lines F, G and H) are smaller than the number of compounds shown on line A, upon which
the complete list of atom-group parameters is based. The number of "valid" groups (line A) is
significantly lower than the total of atom and special groups listed in Table 2, leaving a substantial
number of "invalid" groups. Although not applicable for vapour-pressure predictions at present, they
have deliberately been left in Table 2 for future use in this continuous project (and may motivate
interested scientists to focus on measuring the vapour pressure of molecules carrying the under-
represented atom groups). At present, the elements list for vapour-pressure predictions is limited to H,
B, C, N, O, P, S, Si, and/or halogen.

A simple example may help to understand the application of the data of Table 2 in Equation (1):
trans-2-methylcyclohexanol consists of the following atom and special groups (n x "atom
type/neighbours™: contribution): 1 x "C sp3/H3C": 0.6; 1 x "C sp3/HC3™": -1.28; 1 x "C sp3/HC20": -
2.65; 4 x"C sp3/H2C2": -0.47; 1 x "O(sec)/HC": 0.72; 6 x "Endocyclic bonds/No of single bonds":
0.31. The sum of these group contributions is added to the value of the constant "Const" (4.71): 0.6 -
1.28 - 2.65- (4 x 0.47) + 0.72 + (6 x 0.31) + 4.71 = 2.08. The experimental logVP was published in
[16] as 2.216.

3. Sources of Vapor-Pressure Data

An overview of the literature concerning the vapour-pressure data of molecules revealed that
generally their measurements were either carried out at 298.15K or over a certain temperature range
encompassing this standard temperature. In the latter case, the authors mostly provided a set of
constants to be used in a non-linear equation, usually the Antoine-equation [6], allowing to calculate
the vapour pressure at the standard temperature by interpolation. However, in several publications the
authors chose a temperature range which remained above this standard, particularly with compounds
having a high melting point. On condition that the lowest experimental temperature was not higher
than 5K above the standard, the extrapolated vapour-pressure data have been included in the present
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study, well aware of the uncertainty of these values. Some authors overcame the problem of the high
melting point by supercooling the melt prior to measuring the vapour pressure, examples of which are
cited in [6]. While past publications usually expressed the vapour pressure in older units such as Torr,
mm(Hg) or atm, newer ones generally used Pa, kPa, MPa or mPa, often converted to their natural
logarithm. In the present paper, these various units have been translated throughout to the logarithm to
the basis 10 of the unit Pa, expressed as logVP.

Several comprehensive papers provided the majority of the vapour-pressure data: D. Mackay's
Handbook [6] is a compilation of over 1000 compounds, collecting - among several further physico-
chemical data - the results of the vapour-pressure measurements of various authors for each compound,
revealing the general extent of the experimental uncertainty, depending on the method of
measurement. Another rich source was the comprehensive collection of M. H. Abraham and W. E.
Acree Jr [16], contributing the vapour-pressure data of additional more than 1000 compounds. Further
collective sources have been used to complement - and compare - the experimental data [8, 14, 23-31].
In addition, vapour-pressure data have been published specifically for various saturated and
unsaturated hydrocarbons [32-53], alcohols [54-59], phenols [60,61], alkyl- and arylethers [62-65],
acetals [66,67], carboxylic acids [68-72], carboxylic halides [73], carboxylic esters and lactones [74-
87], carbonates [88-92], ketones [93-95], peroxides [96,97], amines [98-107], amides [108-111],
azides [112,113], hydrazines [114-116], isocyanates and isothiocyanates [117-120], nitriles [121,122],
nitro-substituted compounds [123-127], nitrites [128], nitrates [129], nitrosamines [130], ureas
[131,132], alkyl- and arylsulfides [133], sulfoxides [134-137], thiophenes [138-140], phosphines and
phosphoranes [141-145], phosphonates, phosphates and thiophosphates [146-153], boranes and borates
[154-162], silanes, siloxanes and silthianes [163-177] and hetarenes [178-181]. A particularly large
number of publications studied the vapour-pressure data of halogen-substituted compounds, which in
many cases belonged to one of the aforementioned groups, hereinafter subdivided in haloalkanes [182-
192], haloalkenes [193-204], haloaromatics [205-213], haloalkyl-amines, -aminoxides and -
alkoxyamines [214-219], haloalkylethers [220-225], haloarylethers [226], haloalkylsulfides, -
sulfoxides, -sulfones and -sulfates [227-233], haloalkylsilanes [234,235], haloalkylcarboxylic acids, -
esters, and peresters [236,237]. Finally, a number of authors published the vapour pressures of some
individual compounds, as there were the terpenes and their derivatives carvone, 2-hydroxy-3-pinanone,
iso-pinocampheol, myrtanol, pinocarveol, eugenol, camphor, menthone, damascenone and (-)-methyl
jasmonate [238-240], several hydroxycarbonyl- and formyl-derivatives of naphthalene, fluorene,
anthracene and pyrene with exceptionally low vapour pressure [241], 2-aminoethanol and its N-methyl
derivatives [242], 2-dialkylaminoethanethiols [243], derivatives of 2- and 3-amino-1-propanols [244],
phthalan [245], the aroma compounds d-linalool, 2-nonanone, d-limonene and isoamy!l acetate [246],
hydroxyacetaldehyde and hydroxyacetone [247], L-deprenyl, benzphetamine and alverine [248], 2-
adamantanone and 1-acetyl-adamantane [249], fenpropidin and phencyclidine [250], ambroxide and
galaxolide [251], the lignin fragments trans-anethole, estragole, eugenol as well as hydroxy- and
methoxy-substituted benzaldehydes [252-255], benzocaine [256] and bicifadine [257].

4. Results

4.1. Vapour Pressure
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The contributions of the atom groups in Table 2 for the prediction of the vapour pressure as logVP
in pascal are the final result of a series of direct and cross-validation calculations according to the
method outlined in [17], whereby in preceding step-by-step calculations any outliers, defined by the
deviation of their experimental from their predicted value exceeding three times the current cross-
validated standard error Q?, have been removed from further calculations. At the end, they made up ca.
11% of the total number of molecules for which experimental vapour pressures were given, which
have been collected in an outliers list accessible in the Supplemental Material. The statistical data are
collected at the bottom of Table 2 in rows A to H. As is shown in row A, of the 314 atom and special
groups required to cover all remaining 2036 compounds, only 171 groups have been found to be valid
for predictions. Accordingly, the number of compounds, for which a prediction was possible, has been
reduced to 1908 in the complete training set and to 1842 in the cross-validation test sets. The high
compliance of the direct and the cross-validation correlation coefficients R? and Q? (lines B and F),
also evident in the low scatter of both the respective data points about the correlation line in the
corresponding diagram (Figure 1) and confirmed by the narrow symmetrical Gaussian bell curve of the
histogram (Figure 2), confirms the excellent reliability of the present atom-groups approach for
vapour-pressure predictions. Its low cross-validation standard deviation of only 0.26 units compares
very favourably with the best values of other prediction methods such as that of McClelland and Jurs
[14] or that of Abraham and Acree [16], although it is based on a much larger number of molecular
structures. The large range of experimental vapour pressures of between ca. 10*" Pa for
tetrafluoroethylene and 107'° Pa for hexapentacontane and the broad structural variety of molecules,
upon which these calculations are based, enabled the trustworthy prediction of the vapour pressure of
more than 57% of the compounds listed in the database which can well be considered as representative
for the entire realm of chemical structures. A list of the molecules with their experimental and
predicted vapour pressure data is accessible in the Supplemental Material.

Table 2. Atom Groups and their Contributions for logVVP Calculations

Entry Atom Type Neighbours | Contribution | Occurrences | Molecules
1 Const 4.71 2036 2036
2 B HN2 -1.17 6 2
3 B BN2 -1.6 2 1
4 B BO2 -1.71 4 2
5 B C2N -0.35 1 1
6 B C20 -0.44 1 1
7 B C2S -0.44 1 1
8 B CO2 -1.56 1 1
9 B 03 -1.57 6 6
10 B S3 -3.17 1 1
11 C sp3 H3B 0 7 4
12 C sp3 H3C 0.6 2211 1077
13 C sp3 H3N -1.07 113 62
14 C sp3 H3N(+) -1.64 1 1

d0i:10.20944/preprints202101.0233.v1
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15 C sp3 H30 -0.95 152 116
16 C sp3 H3S -0.52 23 17
17 C sp3 H3P -1.22 8 7
18 C sp3 H3Si -0.42 87 16
19 C sp3 H2C2 -0.47 4196 831
20 C sp3 H2CN -2.07 240 138
21 C sp3 H2CN(+) -2.01 5 5
22 C sp3 H2CO -1.82 460 314
23 C sp3 H2CP -2.3 5 3
24 C sp3 H2CS -1.6 79 54
25 C sp3 H2CF 0.39 15 15
26 C sp3 H2CCI -0.48 59 48
27 C sp3 H2CBr -0.76 22 20
28 C sp3 H2CJ -1.23 11 11
29 C sp3 H2CSi -1.58 11 6
30 C sp3 H2N2 -11.73 1 1
31 C sp3 H2NO -3.82 2 2
32 C sp3 H2NS -1.24 3 3
33 C sp3 H202 -3.81 6 6
34 C sp3 H20F -1.22 3 3
35 C sp3 H20OCI -2.1 2 2
36 Csp3 H2S2 -2.59 3 3
37 Csp3 HC3 -1.28 342 231
38 Csp3 HC2N -2.87 35 28
39 C sp3 HC2N(+) -2.87 3 3
40 C sp3 HC20 -2.65 115 95
41 C sp3 HC2S -2.36 11 8
42 C sp3 HC2F -0.6 10 9
43 C sp3 HC2ClI -1.22 31 15
44 C sp3 HC2Br -1.59 16 12
45 C sp3 HC2J -1.96 1 1
46 C sp3 HCN2 -2.07 2 1
47 C sp3 HCNO -5.99 1 1
48 C sp3 HCNS -2.48 1 1
49 C sp3 HCO2 -3.65 7 7
50 C sp3 HCOBr -4.78 1 1
51 C sp3 HCF2 0.37 31 27
52 C sp3 HCFCI -0.01 7 7
53 C sp3 HCCI2 -0.94 12 11
54 C sp3 HCCIBr -0.76 1 1
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55 C sp3 HCBr2 -1.93 3 2
56 C sp3 HOF2 -1.09 6 6
57 C sp3 C4 -2.19 98 87
58 C sp3 C3N -3.6 11 11
59 C sp3 C3N(+) -3.57 2 2
60 C sp3 C30 -3.46 36 35
61 C sp3 C3s -3.21 6 6
62 C sp3 C3si -3.37 3 2
63 C sp3 C3Cl -2.84 6 3
64 C sp3 C3Br -2.2 2 2
65 C sp3 C3F -1.39 13 10
66 C sp3 C202 -5.46 4 2
67 C sp3 C20F -2.8 5 5
68 C sp3 C2F2 -0.37 184 71
69 C sp3 C2FCI -0.8 1 1
70 C sp3 C2CI2 0 3 3
71 C sp3 CNF2 -2.03 12 5
72 C sp3 CNF2(+) -0.37 1 1
73 C sp3 CNCI2 -0.4 1
74 C sp3 COF2 -1.69 49 39
75 C sp3 CSF2 -1.15 24 12
76 C sp3 CF3 0.67 152 107
77 C sp3 CF2Cl 0.3 8 7
78 C sp3 CF2Br -0.07 5 4
79 C sp3 CFCI2 -0.37
80 Csp3 CFCIBr -0.73 1 1
81 C sp3 CCI3 -0.98 15 14
82 C sp3 CCI2Br 0 1 1
83 C sp3 NF3 -1.09
84 C sp3 OF3 -0.36 13 10
85 C sp3 02F2 -2.67 1 1
86 C sp3 S2F2 -1.83 2
87 C sp3 SF3 -0.01 10 7
88 C sp3 SCI3 -7.92 1 1
89 C sp3 PF3 -0.08 20 8
90 C sp2 H2=C 0.67 127 113
91 C sp2 HC=C -0.38 272 175
92 C sp2 HC=N -1.49 7 7
93 C sp2 HC=0 -0.47 27 27
94 C sp2 H=CN -1.84 19 12
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95 C sp2 H=CO -0.79 5 5
96 C sp2 H=CS -0.79 8 6
97 C sp2 H=CP -1.03 3 1
98 C sp2 H=CF 0.68 3 3
99 C sp2 H=CCI -0.15 13 11
100 C sp2 H=CBr -0.56 5 3
101 C sp2 H=CJ -1.2 2 1
102 C sp2 HN=N -1.89 11 9
103 Csp2 HN=0 -2.47 9 8
104 C sp2 HO=0 -1.25 8 8
105 C sp2 C2=C -1.25 79 67
106 C sp2 C2=N -3.09 2 2
107 C sp2 C=CN -2.26 2 2
108 C sp2 C2=0 -1.27 56 53
109 C sp2 C=CO -1.5 6 6
110 C sp2 C=CP -3.09 1 1
111 C sp2 C=CS -1.78 6 5
112 C sp2 C=CF -0.25 3 3
113 C sp2 C=CcClI -1.24 18 13
114 C sp2 CN=N -4.13 2 2
115 C sp2 CN=0 -3.17 35 32
116 C sp2 C=NS -1.47 2 1
117 C sp2 Co=0 -2.33 222 184
118 Csp2 C=0ClI -0.54 4 4
119 C sp2 C=0Br -1.1 1 1
120 Csp2 C=0J -1.67 1 1
121 C sp2 =CF2 0.95 7 6
122 C sp2 =CFClI 0.14 1 1
123 C sp2 =CFBr -0.25 1 1
124 C sp2 =CCI2 -0.53 10 8
125 C sp2 =CBr2 0.65 1 1
126 C sp2 N2=N -4.7 1 1
127 C sp2 N2=0 -5.19 5 5
128 C sp2 N=NS -1.58 1 1
129 C sp2 N2=S 0.14 2 1
130 C sp2 NO=0 -4.55 15 13
131 C sp2 N=0S -0.64 7 7
132 C sp2 =NOS -0.26 1 1
133 C sp2 NS=S 1.24 1 1
134 C sp2 02=0 -3.59 4 4
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135 C aromatic H:C2 -0.2 3662 751
136 C aromatic H:C:N -0.41 34 21
137 C aromatic H:N2 0.48 2 2
138 C aromatic :C3 -1.06 260 85
139 C aromatic C:.C2 -1.06 929 508
140 C aromatic C:.C:N -1.21 15 13
141 C aromatic :C2N -2.3 40 38
142 C aromatic :C2N(+) -2.59 33 29
143 C aromatic :C2:N -1.42 4 3
144 C aromatic :C20 -2 381 195
145 C aromatic :C2P -4.07 1 1
146 C aromatic :C2S -1.69 8 6
147 C aromatic :C2F -0.1 63 26
148 C aromatic :C2Cl -0.84 1630 386
149 C aromatic :C2Br -1.13 166 58
150 C aromatic :C2J -1.57 10 9
151 C aromatic :C2Si 0.89 1 1
152 C aromatic C:N2 -1.39 2 2
153 C aromatic :C:NO -1.85 6 6
154 C aromatic :C:NCI -1.33 5 5
155 C aromatic N:N2 -2.172 17 10
156 C aromatic :N20 -0.96 2 2
157 C aromatic ‘N2S 1.89 3 3
158 C aromatic ‘N2ClI -1.38 3 3
159 Csp H#C 0.81 14 13
160 Csp C#C -0.49 22 17
161 Csp =C2 -0.51 3 3
162 Csp C#N -0.61 34 27
163 Csp =N=0 0.75 3 3
164 Csp =N=S 1.19 1 1
165 N sp3 HB2 0.45 3 2
166 N sp3 H2C 1.45 62 47
167 N sp3 H2C(pi) 0.15 18 18
168 N sp3 H2N -0.52 3 3
169 N sp3 HC2 2.36 26 26
170 N sp3 HC2(pi) 0.56 35 26
171 N sp3 HC2(2pi) 0.44 14 10
172 N sp3 HCN 0.7 3 2
173 N sp3 HCN(pi) -0.36 1 1
174 N sp3 HCN(2pi) 0.38 1 1

11
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175 N sp3 HCP(pi) -4.25 1 1
176 N sp3 HCS(pi) 5.56 1 1
177 N sp3 B2C 1.1 3 2
178 N sp3 BC2 2.13 5 2
179 N sp3 C3 3.52 49 45
180 N sp3 C3(pi) 2.95 27 26
181 N sp3 C3(2pi) 3.52 11 11
182 N sp3 C3(3pi) 3.4 3 3
183 N sp3 C2N(pi) 0.11 4 4
184 N sp3 C2N(2pi) 3.37 8 8
185 N sp3 C2N(3pi) 2.89 1 1
186 N sp3 C20 3.47 1 1
187 N sp3 C2s 2.57 3 3
188 N sp3 C2S(pi) 3.96 3 2
189 N sp3 C2S(2pi) 7.1 1 1
190 N sp3 C2P 2.07 7 4
191 N sp3 C2F(pi) 4.38 1 1
192 N sp3 CF2 0.61 1 1
193 N sp3 CSi2 1.18 2 2
194 N sp3 SF2 0.07 1 1
195 N sp2 C=C 0.39 16 15
196 N sp2 C=N -3.19 1 1
197 N sp2 C=N(+) 0.96 7
198 N sp2 =CN -0.04 10 9
199 N sp2 =CO 0.68 4 3
200 N sp2 =CS -0.39 1 1
201 N sp2 N=N 0 1 1
202 N sp2 N=0 0 4 4
203 N sp2 =NP(+) -0.39 1 1
204 N sp2 0=0 1.58 6 6
205 N aromatic :C2 -0.06 61 39
206 N(+) sp2 CO=0(-) 0.34 45 41
207 N(+) sp2 02=0(-) 0.54 50 26
208 N(+) sp =N2(-) 0 8 8
209 O(prim) HC 0.44 95 78
210 O(sec) HC 0.72 48 47
211 O(tert) HC 0.74 11 11
212 @) HC(pi) 0.04 102 90
213 ) HN(pi) -1.29 1 1
214 ) HO -1.16 4 3
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215 ) BC 1.39 26 8
216 0 BP 0.16 3 2
217 @) C2 2.38 150 132
218 0 C2(pi) 2.3 228 191
219 0 C2(2pi) 1.49 151 130
220 @) CN 0 1 1
221 @) CN(pi) 0 6 6
222 0 CN(2pi) 0.26 3 2
223 @) CN(+)(pi) 0 50 26
224 0 CO 1.03 8 3
225 @) CO(pi) 1.59 3 2
226 0 CS 1.25 6 4
227 0 CS(pi) 1.44 2 2
228 @) CP 0.06 95 44
229 ) CP(pi) -0.29 14 12
230 ) CSi 0.65 7 2
231 ) 0S -0.67 3 2
232 ) S2 -1.14 5 3
233 ) Si2 -0.3 22 7
234 P3 C3 0 1 1
235 P3 HC2 2.57 1 1
236 P3 C2N 1.59 2 2
237 P3 C20 0 3 2
238 P3 C2s -0.09 5 4
239 P3 CN2 -0.35 1 1
240 P3 CS2 -0.94 1 1
241 P4 HO2=0 -0.55 1 1
242 P4 C3=S 0.19 1 1
243 P4 C02=0 0.62 4 4
244 P4 C0O2=S 3.03 1 1
245 P4 CO=0S 0.38 2 2
246 P4 COS=S -0.5 1 1
247 P4 N3=0 -0.83 1 1
248 P4 NO=0S -0.06 1 1
249 P4 N=0OF2 0 1 1
250 P4 03=0 0.23 9 9
251 P4 03=S 0.22 13 13
252 P4 02=0S -0.36 1 1
253 P4 0=0S2 -1.76 1 1
254 P4 02S=S -0.58 12 11

13
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255 S2 HC 0.83 29 23
256 S2 HC(pi) 0.28 1 1
257 S2 HS -0.26
258 S2 HP 0.06 1 1
259 S2 BC 0.52 4 2
260 S2 C2 1.07 30 28
261 S2 C2(pi) -1.97 14 13
262 S2 C2(2pi) 1.52 9 9
263 S2 CN 0 1
264 S2 CN(2pi) 2.3 1
265 S2 CS 0.05 8
266 S2 CP -0.07 22 19
267 S2 CP(pi) 0 1 1
268 S2 N2 -1.45 2 2
269 S2 NCI -0.43 1 1
270 S2 P2 -0.7 1 1
271 S2 Si2 0.33 3 3
272 S4 C2=0 -0.96 4 4
273 S4 C2=02 1.6 2 2
274 S4 C202 -2.15 1 1
275 S4 C2F2 0.41 5 5
276 S4 C0=02 2.16 1 1
277 S4 CN=02 -2.13 1 1
278 S4 NO=02 -2.51 1 1
279 S4 N=02ClI 0 1 1
280 S4 02=0 -0.56 1 1
281 S4 02=02 -0.94 1 1
282 S4 0=02F 0.12 4 4
283 S6 C2F4 0.72 5 3
284 S6 O2F4 -0.78 1 1
285 S6 OF5 1.08 7 5
286 Si H3C 1.72 4 4
287 Si H3N 0 4 2
288 Si H3S -0.3 2 1
289 Si H3Si -0.53 2 1
290 Si H2C2 1.78 2 2
291 Si H2Si2 0 2 1
292 Si HC20 0.78 2 1
293 Si HC2S 0.11 2 1
294 Si HC2J 0.23 1 1
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295 Si HCCI2 0.47 1 1
296 Si HO3 0.21 1 1
297 Si C4 1.97 2 2
298 Si C30 1.08 6 3
299 Si C3s 0.19 2 1
300 Si C3cCl 1.05 1 1
301 Si C3si -0.79 2 1
302 Si C202 -0.18 18 5
303 Si C2F2 1.69 1 1
304 Si C2CI2 0.41 1 1
305 Si CF3 0 1 1
306 Si CCI3 0.06 1 1
307 Si 04 -0.16 1 1
308 (COH)Nn n>1 -0.74 23 22
309 (COOH)Nn n>1 -1.73 12 12
310 | Endocyclic bonds | No of single bds 0.31 1072 193
311 | Bridgehead atoms | No of atoms 0.23 80 27
312 Angle60 0.19 42 14
313 Angle90 0.17 72 21
314 Anglel02 0.11 323 110

A Based on Valid groups 171 2036
B Goodness of fit R? 0.9946 1908
C Deviation Average 0.18 1908
D Deviation Standard 0.24 1908
E K-fold cv K 10 1842
F Goodness of fit Q? 0.9938 1842
G Deviation Average (cv) 0.2 1842
H Deviation Standard (cv) 0.26 1842
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Figure 1. Correlation Diagram of the logVVP data at 298.15K. Cross-validation data are added as
red circles. (N =1907; R? = 0.9945 ; Q2 = 0.9938; regression line: intercept = -0.0001; slope =
0.9924)
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Figure 2. Histogram of the logVP data at 298.15K. Cross-validation data are superpositioned as red
bars. (o = 0.24; S = 0.26; experimental values range: -19.36 - +6.591)

A few observations concerning certain atom and special groups are worth being highlighted:
separation of the hydroxy group at a saturated carbon atom into primary, secondary and tertiary OH
groups (group numbers 209-211 in Table 2) led to an appreciable improvement of the statistics data. A
comparison of their individual parameter values reveals that primary hydroxy groups generally cause
noticeably lower vapour pressures than secondary or tertiary analogues. This pattern matches with the
observation made in their influence on the heat capacities of molecules [21,257]. It may be explained
by an effect which was discussed in studies by Huelsekopf and Ludwig [259] which, based on the
quantum cluster equilibrium theory (QCE), demonstrated that primary alcohols principally form cyclic
tetramers and pentamers in the liquid phase, whereas tertiary alcohols only form mono- and dimers.
(Secondary alcohols have not been considered.) This clustering of primary alcohols could also prevail
in the gas phase, consequently leading to a lower saturated vapour pressure.

Another peculiarity was found with di- and trihydroxyalkyl compounds in that the negative impact
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of any additional OH group on the vapour pressure was clearly larger than just cumulative. This effect
was taken account of by the special group "(COH)n"™ which was invoked for n>1. Similarly, and even
more drastically, the second carboxylic function in dicarboxylic acids lowered the vapour pressure in
more than a cumulative way, which required the additional special group "(COOH)n", again called up
for n>1. Both these nonlinearities have already been reported by Compernolle et al. [260] and have
been considered by additional parameters in their development of EVAPORATION, a group-additivity
model for vapour-pressure prediction especially designed for secondary organic aerosols (SOA)
comprising alkyl and alkenyl compounds optionally carrying various functional groups but ignoring
aromatic systems. They did not provide a reason for the nonlinearities of the additional OH and COOH
groups on the vapour pressure; the seemingly obvious argument pointing to intermolecular hydrogen-
bridge effects is questionable in view of their observation of a similar nonlinearity with polynitrates. It
should be mentioned however, that the present method did not require an additional parameter for the
vapour-pressure prediction of polynitrates.

Linear and cyclic, unbranched alkanes having the same number of carbon atoms exhibit comparable
experimental vapour pressures (in logVP), e.g. butane vs. cyclobutane: 5.38 vs. 5.195, pentane vs.
cyclopentane: 4.84 vs. 4.62, hexane vs. cyclohexane: 4.3 vs. 4.11, heptane vs. cycloheptane: 3.78 vs.
3.45, or octane vs. cyclooctane: 3.27 vs. 2.876 (cited from [26]). For the prediction of logVP of the
linear alkanes, the present method simply sums up the contributions of the n-2 methylene groups (i.e.
n-2 x -0.47) and adds twice the contribution of the end methyl groups (i.e. 2 x +0.6) to the constant
(4.71). In cyclic alkanes however, the two end methyl groups with their large positive contributions are
replaced by two methylene groups contributing with large negative values. Therefore, in order to still
achieve the goal of vapour pressures comparable to their linear counterparts, the methyl-methylene
replacement effect had to be compensated. This was achieved by the introduction of special group
"Endocyclic bonds", whereby its parameter value of +0.31 represents the additional contribution of
each single bond of the cyclic moieties of the molecule. For 3-, 4- and 5-membered saturated rings the
special groups "Angle60", "Angle90" and "Angle102" (successfully used for the calculation of the
heats of combustion [17]) have been added to Table 2 to take account of their further increasing effect
on the vapour pressure. Yet, it turned out that for bicyclic molecules, e.g. camphor or adamantane and
its derivatives, the combined contributions of these special groups are still too small to compensate for
the even larger negative atom-group contributions of the three- or four-bonded atoms at their bridge
heads, (defined by e.g. "C sp3 / HC3": -1.28, "C sp3 / C4™: -2.19, or "C sp3 / C30": -3.46). As a
consequence, the special group "Bridgehead atoms” had to be introduced, successfully lifting this
deficiency by the additional parameter value of +0.23 units for each bridgehead atom.

4.2. Gibbs Free Energy of Vaporization

Some authors [29,30] derived the experimental vapour pressure of molecules from the experimental
data of their enthalpy and entropy of vaporization or sublimation at standard conditions, applying
Equation (2), wherein AG® is the Gibbs free energy, AH° the enthalpy and AS° the entropy of
vaporization/sublimation, and ©® the reference temperature of 298.15K. By insertion of AG® into the
integrated Clausius-Clapeyron Equation (3), wherein p° is the standard pressure of 101325 Pascal and
R the gas constant, and assuming ideal gas-phase conditions and neglecting the volume of the
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condensed phases, they received the vapour pressure p at 298.15K in Pascal.

AGOvap,sub(®) = AHovap,sub(®) - ®Asovap,sub(®) (2)

p(®) = p°exp[-AG vap,sub(®)/(RO)] (3)

In a logical inversion of the mathematical approach, the vapour pressures, calculated by the present
group-additivity method, have been used to predict the Gibbs free energy in kd/mol by simply using
the rearranged form of Equation (3), i.e. Equation (4), and focusing on vaporization.

AG°yap(®) = -ROIN(p(0)/p°) = -ROIN(10°9VP/101325) 4)

Applying Equation (4) on the experimental and predicted vapour pressures yielded the correlation
diagram of the Gibbs free energies in Figure 3. Evidently, since both AG°vqp are simple translations
according to Equation (4), their correlation coefficient is identical with that in Figure 1 for the vapour
pressures. A list of the molecules with their experimental and predicted free energies is available in the
Supplemental Material.
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Figure 3. Correlation Diagram of the AG°yp data in kJ/mol at 298.15K. (N =1907; R? = 0.9945;
o = 1.38 kJ/mol; MAPD = 14.2%; regression line: intercept = 0.2167; slope = 0.9924)

4.3. Standard Entropy of Vaporization

The standard entropy of vaporization AS°vap(®) of a molecule can be calculated from the Gibbs free
energy AG°vap(®) using Equation (5), which is the rearranged form of Equation (2), provided that the
standard enthalpy of vaporization AH®p(®) is known. The present database of currently 32697
molecules has the advantage of encompassing - besides the experimental vapour pressures for 2036
samples - the experimental heat-of-vaporization data for 4029 compounds and, based on these, the
predicted heats of vaporization for 24309 compounds, calculated by means of the same group-
additivity method as the present one, described in [18]. Hence, it was exciting to compare the results of
Equation (5), if in the first case both input data have been experimental values and in the second case
both originate from predicted data.


https://doi.org/10.20944/preprints202101.0233.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 January 2021 doi:10.20944/preprints202101.0233.v1

Molecules 2015, 20 21

AS°vap(0) = [AHvap(©) - AG®vap(©)]/O (5)

Accordingly, the correlation diagram in Figure 4 compares the entropies of vaporization received
from both the experimental enthalpies and energies of vaporization with those calculated from both the
predicted enthalpies and energies, revealing a surprisingly small medium absolute percentage deviation
(MAPD) of less than 5%. The corresponding histogram in Figure 5 confirms the narrow scatter about
the correlation line. The limited number of only 1129 samples in this diagram is owed to the fact that
only for these both experimental enthalpies and free energies (or more precisely: vapour pressures)
have been available, whereas the large number of calculated enthalpies and free energies (>20800) in
the database enabled the reliable prediction of the entropies of vaporization for 20232 (i.e. ca. 62%)
compounds of the database. A list of the compounds with their experimental and predicted entropies of
vaporization as well as their experimental and predicted enthalpies of vaporization have been added to
the Supplementary Material.
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Figure 4. Correlation Diagram of the AS°ysp data in J/mol/K at 298.15K. (N =1129; R? = 0.9598;
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MAPD = 4.68%; regression line: intercept = 4.0448; slope = 0.9660)
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Figure 5. Histogram of the AS°yvap data in J/mol/K at 298.15K. (c = 8.14 J/mol/K; values range: 64.26
- 463.16 J/mol/K)

5. Conclusions

The present paper is the result of an extension of a common group-additivity approach applied in an
ongoing software project enabling the direct and indirect calculation of 16 physical, thermodynamic,
solubility-, optics-, charge- and environment-related descriptors, which led to a series of earlier
publications [17-21]. The present project extension, enabling the trustworthy prediction of the vapour
pressure and subsequent Gibbs free energy of vaporization at 295.15K of molecules, also immediately
allowed the reliable calculation of the molecules' standard entropy of vaporization due to the project's
direct access to their predicted heat of vaporization as outlined in [18]. The big advantage of the
present group-additivity approach, encoded in the common computer algorithm outlined in [17], not
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only rests on its simple extensibility by the addition of just a few further lines of control code to fulfil
the present task, but also in its simple applicability, basically even allowing accurate prediction of any
of the mentioned molecular descriptors by means of paper and pencil and usage of their corresponding
group-parameters table. A further advantage is the easy extensibility of the group-parameters lists (if
required) to take account of molecules with known descriptor values newly added to the database,
usually followed by a recalculation of the group parameters. The disadvantage of the large number of
group parameters due to the radical breakdown of the molecules and its subsequent limitation of the
calculations to molecules only, for which all the group parameters are found in the respective tables, is
well compensated by the high accuracy of the predicted values.

The mentioned software project is called ChemBrain IXL, available from Neuronix Software
(www.neuronix.ch, Rudolf Naef, Lupsingen, Switzerland).

Supplementary Materials

The list of compounds used in the present studies, their experimental and calculated data and 3D
structures is available online as standard SDF files, accessible for external chemistry software, under
the name of "S01. Compounds List for logVP Calculations.sdf" In addition, compounds lists used for
the correlation diagrams containing the compound names and their experimental and calculated values
are available under the names of "S02. Experimental vs. calculated logVP Data Table.doc", "S03.
Experimental vs. calculated deltaG°(vap) Data Table.doc" and "SO04. Experimental vs. calculated
deltaS°(vap) Data Table.doc". Furthermore, a compounds list of the logVP calculation outliers has
been added under the name of "S05. Outliers of logVP.xlIs". Finally, the experimental and calculated
enthalpies of vaporization AH°(vap) used in this study, extracted from [18], have been collected in
"S06. Exp. and calc. deltaH°(vap) Data Table.xlIs". The figures are available as tif files and the tables
as doc files under the names given in the text.
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