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Abstract: Shiga toxigenic E. coli (STEC) are an important cause of foodborne 

disease globally with many outbreaks linked to the consumption of contami-

nated foods such as leafy greens. Existing methods for STEC detection and iso-

lation are time-consuming. Rapid methods may assist in preventing contami-

nated products from reaching consumers. This proof-of-concept study aimed 

to determine if a metabolomics approach could be used to detect STEC contam-

ination in spinach. Using untargeted metabolic profiling, the bacterial pellets 

and supernatants arising from bacterial and inoculated spinach enrichments 

were investigated for the presence of unique metabolites that enabled categori-

zation of three E. coli risk groups. A total of 109 and 471 metabolite features 

were identified in bacterial and inoculated spinach enrichments, respectively. 

Supervised OPLS-DA analysis demonstrated clear discrimination between bac-

terial enrichments containing different risk groups. Further analysis of the spin-

ach enrichments determined that pathogen risk groups 1 and 2 could be easily 

discriminated from the other groups, though some clustering of risk groups 1 

and 2 was observed, likely representing their genomic similarity. Biomarker 

discovery identified metabolites that were significantly associated with risk 

groups and may be appropriate targets for potential biosensor development. 

This study has confirmed that metabolomics can be used to identify the pres-

ence of pathogenic E. coli likely to be implicated in human disease. 

Keywords: leafy greens; spinach; metabolomics; metabolic profiling; food 

pathogens; biomarker discovery. 
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1. Introduction 

The World Health Organization has identified foodborne diseases 

as a major concern for public health and the world economy [1]. An 

estimated 600 million people fall ill every year from consuming con-

taminated foods. Amongst the leading causes of disease are bacterial 

pathogens such as pathogenic Escherichia coli.  

E. coli are Gram-negative bacteria that are found in a wide variety 

of habitats including the gastrointestinal tract of animals and humans. 

Most E. coli are considered important microbiota members; however, 

some strains are known to be pathogenic and can cause diarrheal or 

systemic diseases in the host. The diarrhoeagenic E. coli consists of five 

pathotypes: enteropathogenic E. coli (EPEC), Shiga toxigenic E. coli 

(STEC) which also constitute the enterohaemorrhagic (EHEC) strains, 

enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC) and en-

teroinvasive E. coli (EIEC) [2]. 

Over the years, STEC strains have been associated with many in-

cidences of foodborne diseases [3]. Whilst in most people STEC infec-

tion results in mild, watery diarrhea, it can cause bloody diarrhea, and 

in vulnerable populations (such as the elderly, young, and immuno-

suppressed), can lead to more serious consequences such as hemolytic 

uremic syndrome (HUS), which can cause kidney failure [4]. STEC in-

fections first rose to prominence in 1982 and again in 1993 with food-

borne disease resulting from the ingestion of beef burgers contami-

nated with the strain E. coli O157:H7. Since then more than 470 STEC 

strains have been isolated from humans but not all of them are patho-

genic. Since 2011, O157 and six other serogroups O26, O45, O103, O111, 

O121, and O145 (also referred to as the ‘big 6’) have gained regulatory 

significance by the U.S. Department of Agriculture’s (USDA) Food 

Safety and Inspection Service (FSIS) [3]. 

Although contaminated meat has been frequently linked to STEC 

outbreaks, leafy greens, vegetables, and dairy products have also been 

linked to similar outbreaks [4]. According to the Centre for Disease 

Control (CDC), between 1973 and 2012, 46% of the total leafy-vegetable 

outbreaks were caused by STEC strains [5]. In March 2020, the U.S. 

Food and Drug Administration (USFDA) released the 2020 Leafy 

Greens STEC Action Plan to reduce the number of STEC associated in-

fections linked with leafy greens [6]. Since the infectious dose of STEC 

is very low (between 10-100 CFU) and because there is a higher chance 

of consuming fresh produce in the raw state, it is very important to get 

a rapid and timely detection for such pathogens to ensure consumer 

confidence and safety [7]. 

According to the current USFDA’s Bacteriological Analytical Man-

ual (BAM), the detection of STEC’s from leafy greens involves enrich-

ing the produce in an enrichment broth for about 24 hours followed by 

screening for virulence genes and other markers using molecular tech-

niques such as real-time PCR [5]. As opposed to other pathogens, the 

mere detection of E. coli is not enough. The characterization of the strain 

and its differentiation from other pathogenic and non-pathogenic E. coli 

is required. This is often a time-consuming process. The most recent 

advancement for the detection and characterization of pathogens has 

been whole-genome sequencing, however, in its current form it also 

faces problems around the requirement of sophisticated bioinformatics, 

specialized laboratory equipment, data handling, and data ownership 

issues [2].  
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Metabolomics offers an approach from which rapid methods may 

be developed for screening potential food pathogens in complex food 

matrices via the discovery of novel biomarkers. In the last decade, this 

approach has shown promising progress in food traceability, composi-

tion, and safety [8]. Limited studies have explored the use of metabo-

lomics to facilitate the rapid detection of pathogens [9-13]. It should be 

noted, that most of these studies focused on pathogen detection at the 

species level from protein-rich matrices such as dairy and meat. The 

current study aims to investigate the application of metabolomics to 

detect STEC strains from fresh produce with ‘spinach’ used as the 

model food. First, the metabolite profile of various STEC and non-STEC 

strains cultured in non-selective enrichment media (buffered peptone 

water; (BPW) was undertaken, investigating the metabolic differences 

amongst each strain in the supernatant and harvested pellet. This was 

expanded to incorporate artificially inoculated, commercially packaged 

(bagged) spinach with a cocktail of STEC and non-STEC to investigate 

the approach applied to a complex food matrix. The metabolite profile 

from the spiked spinach was then analyzed and compared with a suit-

able control (uninoculated) spinach sample using an untargeted metab-

olomics approach via gas-chromatography coupled with mass spec-

trometry. This proof-of-concept study aims to determine if a metabo-

lomics approach can be used to detect STEC contamination in fresh pro-

duce. Post validation, the potential biomarkers identified from this 

study can enable the development of a novel and rapid metabolomics-

based diagnostic assay for detecting STECs from complex food matri-

ces such as fresh produce. 

2. Results and Discussion 

Globally, the consumption of fresh produce has increased over the 

years with a change in dietary habits and lifestyle choices. Concurrently 

the number of foodborne outbreaks associated with fresh produce has 

also increased, with STEC being major contributors [4, 7, 14]. The cur-

rent study aimed to use an untargeted metabolomics approach to iden-

tify potential biomarkers specific to STEC contamination of fresh pro-

duce.  

Here, the supernatant and pellet samples from the bacterial and 

spinach enrichments were investigated for the presence of unique me-

tabolites. As illustrated in Figure 1, a total of 109 metabolite features 

were detected across the bacterial enrichment samples, of which 31 

were identified based on mass spectra fragmentation features and re-

tention times. For the inoculated spinach, a total of 471 metabolite fea-

tures were detected, out of which 127 were identified. The major me-

tabolite classes identified across all samples, based on ChemRICH-class 

classification enrichment were amino acids, saturated fatty acids (FA), 

carboxylic acids, sugars, and sugar alcohols.    
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Figure 1. A global overview of the metabolic profiling outputs from the pathogenic E. coli experiments in 

buffered peptone water (BPW) cultures (n=36) and inoculated spinach experiments (n=58).  

2.1. Bacterial enrichments 

Principal component analysis (PCA) and partial least square- dis-

criminant analysis (PLS-DA) of the bacterial enrichments comprising 

the three risk groups (RG1, RG2, and RG3) with the ‘Negative’ group 

did not show clear discrimination between the groups for the pellet 

(Figure S1, Supplementary Section) or the supernatant (Figure S2, 

Supplementary Section) samples. One of the reasons for this could be 

the higher metabolomic similarity between the different E. coli isolates. 

Hence a supervised orthogonal PLS-DA (OPLS-DA) analysis was per-

formed. The pellet samples (Figure S3, Supplementary Section) and 

supernatant (Figure S4, Supplementary Section) samples showed 

clear discrimination between the different risk groups. As anticipated, 

RG1 isolates which include serogroups of regulatory significance were 

found to be more closely clustered with RG2 isolates. Isolates in both 

groups typically harbor eae and stx or possess additional genetic mark-

ers (e.g. pathogenicity islands or stx-associated O-antigen SNPs) con-

sistent with isolates most likely to cause human disease. Whilst RG3 

samples could be separated from negative samples when bacterial pel-

lets were analyzed, the same differentiation was not observed when the 

supernatants were analyzed. The lack of separation between RG3 and 
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the negative groups likely confirms the absence of additional genetic 

markers in these samples and most likely reflects shared core biochem-

istry. As there is always a risk with overfitting data in supervised mod-

els such as OPLS-DA, and the percentage variation explained in the 

models being coupled with a predictability quotient (Q2), cross-valida-

tion of the OPLS models was undertaken (Tables S1-2 and Figures S5-

6, Supplementary Section). While the bacterial pellet model was found 

to be significant (p-value of 0.008), the data points were found to devi-

ate from the axis origin which is indicative of a model with a high mis-

classification potential. As such, an additional model was generated 

that grouped RG1 and RG2 (as being of regulatory importance and sim-

ilar virulence grouping) against the combined negative and RG3 

groups of the pellet (Figure 2) and supernatant samples (Figure 3). This 

grouping resulted in the generation of a significantly improved model 

that was cross-validated (Figure 4) and were both found to be signifi-

cant.     

 

Figure 2. Orthogonal Partial Least Square-Discriminant Analysis (A) scatter plot and (B) loading plot of bacterial 

pellet samples collected from BPW cultures (n=36; note, the negative group includes Salmonella). R2X (cum) = 

0.698, R2Y (cum) = 0.989, Q2 = 0.879. Note, the ellipse presented in Figure 2A represents Hotelling's T2 confidence 

limit (95%). Note: The colored circles in panel “A” represent each analyzed sample, while the yellow-colored stars in panel 

“B” indicate the average group position for each sample cluster, with the white circles representing the distribution of 

metabolite features between these groups.  
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Figure 3. Orthogonal Partial Least Square-Discriminant Analysis (A) scatter plot and (B) loading plot of bacterial 

supernatant samples collected from BPW cultures (n=36; note, the negative group includes Salmonella). R2X 

(cum) = 0.744, R2Y (cum) = 0.987, Q2 = 0.751. Note, the ellipse presented in Figure 3A represents Hotelling's T2 

confidence limit (95%). Note: The colored circles in panel “A” represent each analyzed sample, while the yellow-colored 

stars in panel “B” indicate the average group position for each sample cluster, with the white circles representing the 

distribution of metabolite features between these groups. 

 

Figure 4. OPLS-DA Cross-Validation Scores plots for (A) bacterial pellet and (B) bacterial supernatant samples 

collected from BPW cultures (n=36; note, the negative group includes Salmonella). The F-test statistic and p-

Value based on a CV-ANOVA were 18.12 and <0.0001 for the pellet samples, and 5.78 and <0.0002 for the 

supernatant samples, respectively. Note: The colored circles in each panel represent each analyzed sample, and any 

overlap of the deviation of the samples from point 0,0 indicates the potential of the model to misclassify sample groupings. 

A volcano plot was generated of these groupings to identify the 

metabolites that were significantly altered for the pellet (Figure 5A) and 

supernatant samples (Figure 5B). A detailed summary of significant 

metabolites is provided in the Supplementary Section (Tables S3-4). 

The statistically significant metabolites (p ≤ 0.05 and fold-change (FC) ≥ 

2 or ≤ 0.5) that increased in the combined RG1 and RG2 pellet samples 

(as compared to the combined RG3 and negative) were 2-amino-2-me-

thyl-1,3-propanediol, D-sphingosine, behenic acid, 2,3-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2021                   doi:10.20944/preprints202101.0209.v1

https://doi.org/10.20944/preprints202101.0209.v1


 

 

dihydroxybiphenyl, acetohydroxamic acid, 3-hydroxyanthranilic acid, 

pelargonic acid, 4-aminophenol, DL-2-amino-3-phosphonopropionic 

acid, glycolic acid, halostachine, lauric acid, 2,6-dihydroxy-4-methoxy-

toluene, and 1-hexadecanol. The metabolites that decreased in pellet 

samples were pipecolic acid, trimethyllysine, L-methionine, cytidine, 

and N-acetyl-ornithine. On the other hand, the metabolites that signif-

icantly increased in the RG1 and RG2 supernatant samples were 2-

amino-2-methyl-1,3-propanediol, 2,3-dihydroxybiphenyl, behenic 

acid, 2,3-butanediol, pelargonic acid, 4-aminophenol, acetohydroxamic 

acid, glycolic acid, 3-hydroxyanthranilic acid, halostachine, DL-2-

amino-3-phosphonopropionic acid, and D-sphingosine. Epsilon-capro-

lactam and N-acetyl-ornithine were found to decrease in the superna-

tant samples. Further ANOVA analysis was done to compare various 

risk groupings (Table S5-6, Supplementary Section). 

 

Figure 5. Volcano plots for (A) bacterial pellet and (B) bacterial supernatant samples collected from BPW cultures 

(n=36; note, the negative group includes Salmonella). Note: The colored circles in each panel represent each detected 

significant metabolite. The open black circles represent statistical non-significant (p value > 0.05) metabolites. 

2.2. Spinach enrichments  

In the spinach experiments, attempts were made to differentiate 

samples spiked with RG1 or RG2 isolates from samples spiked with 

isolates from the negative group (which contained Salmonella) or unin-

oculated spinach (control group). Like the bacterial enrichment sam-

ples, both the pellet and the supernatant samples were used for per-

forming the untargeted metabolomic profiling. PCA and PLS-DA anal-

ysis of the two risk groups (RG1, RG2) with the Negative and the Con-

trol groups did not show clear discrimination between the groups for 

the pellet (Figure S7, Supplementary Section) or the supernatant (Fig-

ure S8, Supplementary Section) samples. Hence a supervised OPLS-

DA analysis was performed. Figures S9 and S10 (Supplementary Sec-

tion) represent the OPLS-DA plots for pellet and supernatant samples, 

respectively. The control samples (spinach only) were clearly separated 

from the spiked samples in both the pellet (R2X = 0.722, R2Y = 0.914, Q2 

= 0.417) and supernatant samples (R2X = 0.635, R2Y = 0.945, Q2 = 0.429). 

More importantly, samples spiked with RG1 or RG2 isolates could be 

differentiated from both the negative and the control groups, however, 
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the ability to distinguish between RG1 and RG2-spiked samples was 

more problematic with only marginal separation which was more pro-

nounced in supernatant than pellet samples. However, like the bacte-

rial OPLS-DA plots, cross-validation of these models indicated a high 

degree of misclassification potential (Tables S7-8, Figures S11-12, Sup-

plementary Section). As such, an additional model was generated that 

grouped RG1 and RG2 (as being of regulatory importance and similar 

virulence grouping) against the negative and control groups of the pel-

let (Figure 6) and supernatant samples (Figure 7).  

 

Figure 6. Orthogonal Partial Least Square-Discriminant Analysis (A) scatter plot and (B) loading plot of bacterial 

pellet samples collected from inoculated spinach samples (n=58). R2X (cum) = 0.597, R2Y (cum) = 0.697, Q2 = 0.503. 

Note, the ellipse presented in Figure 6A represents Hotelling's T2 confidence limit (95%). Note: The colored circles 

in panel “A” represent each analyzed sample, while the purple-colored stars in panel “B” indicate the average group position 

for each sample cluster, with the white circles representing the distribution of metabolite features between these groups. 

 

Figure 7. Orthogonal Partial Least Square-Discriminant Analysis (A) scatter plot and (B) loading plot of bacterial 

supernatant samples collected from inoculated spinach samples (n=58). R2X (cum) = 0.512, R2Y (cum) = 0.882, Q2 

= 0.481. Note, the ellipse presented in Figure 7A represents Hotelling's confidence limit (95%). Note: The colored 

circles in panel “A” represent each analyzed sample, while the yellow-colored stars in panel “B” indicate the average group 
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position for each sample cluster, with the white circles representing the distribution of metabolite features between these 

groups. 

Figure 8 illustrates the cross-validated score plots of these OPLS-

DA models. As the focus herein was to putatively identify biomarkers 

that can distinguish these RG pathogens from the negative group and 

the control, this seemed appropriate. As illustrated in Figure 8, some of 

the negative group samples were misclassified as belonging to RG1 and 

RG2. Noting that these samples were the negative E. coli cohort. 

 

Figure 8. OPLS-DA Cross-Validation Scores plots for (A) bacterial pellet and (B) bacterial supernatant samples 

collected from inoculated spinach  (n=58; note, the negative group includes Salmonella). The F-test statistic and 

p-value based on a CV-ANOVA were 7.13 and <0.0001 for the pellet samples, and 3.9 and <0.0001 for the 

supernatant samples, respectively. Note: The colored circles in each panel represent each analyzed sample, and any 

overlap of the deviation of the samples from point 0,0 indicates the potential of the model to misclassify sample groupings. 

The following sections provide some deeper analyses of the differ-

entially expressed metabolites relating to the various RG analyzed from 

inoculated spinach. Also, as the key focus here is to explore putatively 

identified biomarkers for the identification of RG1 and RG2 pathogens 

in spinach, a biomarker analysis was completed.  
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2.3. Interaction between spinach and pathogenic E. coli metabolomes for 

pathway mapping 

Volcano plots (Figure 9) were generated to identify the statistically 

significant (p ≤ 0.05 and FC ≥ 2 or ≤ 0.5) metabolites from RG1 and RG2 

pellet samples. From the identified metabolites in the spinach enrich-

ments, a Venn Diagram was constructed to identify the unique metab-

olites between the two groups (Figure 9).   

 

Figure 9. Volcano plots for bacterial pellet samples collected from (A) RG1-inoculated and (B) RG2-inoculated 

spinach samples (note, the negative group includes Salmonella) and (C) Venn diagram showing the statistically 

significant and identified ‘unique’ metabolites. Note: The colored circles in panels A and B represent each detected 

significant metabolite. The open black circles represent non-significant metabolites. 

To identify the metabolic pathways that are most likely induced 

during enrichment, pathway mapping analysis was performed using 

these significant metabolites. The 47 metabolites from RG1 (Table S9, 

Supplementary Section) and 59 metabolites from RG2 (Table S10, 

Supplementary Section) were then used to perform a pathway impact 

analysis in MetaboAnalyst (version 4.0). Figure 10 indicates the 

statistically significant pathways (p ≤ 0.05) that were impacted in RG1 

and RG2 strains growing in spinach enrichments. Amino acid tRNA 

biosynthesis, arginine biosynthesis, and arginine and proline metabo-

lism were significantly affected in both the risk groups whereas valine, 

isoleucine, and leucine biosynthesis, glutathione metabolism, and pu-

rine metabolism were mainly impacted in the RG1 group. The figure 

indicates that in both risk groups amino acid metabolism was most 

affected. 
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Figure 10. Pathway impact analysis of inoculated spinach. Statistically significant (p ≤ 0.05) pathways that were 

impacted by RG1 strains (blue dot points) and pathways impacted by RG2 strains (green dot points) have been 

indicated with black arrows.   

To get a more holistic understanding of the amino acid pathways 

impacted, the identified metabolites (from significantly impacted 

metabolic pathways) from the pellet samples were mapped using the 

KEGG Mapper tool. Figure 11 highlights the metabolites mapped onto 

the ‘amino acid metabolism’ pathway of E. coli. 

As observed in Figure 11, several common and some unique 

amino acids were identified in both the risk groups; in comparison with 

the spinach only sample a significant increase in fold change was ob-

served for the amino acid methionine (RG1-FC = 2.4, RG2-FC = 3.1) 

whereas a significant decrease was observed for threonine (RG1-FC = 

0.48, RG2-FC = 0.37), lysine (RG1-FC = 0.21, RG2-FC = 0.14), aspartate 

(RG1-FC = 0.26, RG2-FC = 0.14), glutamate (RG1-FC = 0.45, RG2-FC = 

0.33), proline (RG1-FC = 0.34, RG2-FC = 0.18), ornithine (RG1-FC = 0.23, 

RG2-F = -0.12), spermidine (RG1-FC = 0.41, RG2-FC = 0.42), valine (RG1-

FC = 0.23, RG2-FC = 0.35), tyrosine (RG1-FC = 0.16, RG2-FC = 0.13), tryp-

tophan (RG1-FC = 0.09, RG2-FC = 0.06), serine (RG2-FC = 0.42), and 2-

methylmaleate (RG1-FC = 0.24).  

Previous studies by Cevallos-Cevallos et al. and Li and Xu [11, 12] 

have also identified changing amino acid levels during the metabo-

lomic analyses of pathogenic E. coli strains. For instance, similar to the 

current study, Cevallos-Cevallos et al. [11] also observed a low level of 

the amino acid serine in the E. coli containing samples when compared 

to the control samples. The same study did not detect a significant 

amount of serine in the E. coli O157:H7 containing samples which were 

consistent with the findings in the current study as RG1 samples which 

included the E. coli O157:H7 serovar did not show the presence of ser-

ine. In the study by Li and Xu [12], a short enrichment period (4 – 8 h) 
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was used before performing a targeted metabolomics study of patho-

genic and non-pathogenic E. coli samples. In this study, lower levels of 

the amino acids N-acetyl-DL-glutamic acid and N-acetyl putrescine 

was observed in the pathogenic E. coli containing samples. Interest-

ingly, the current study which involved a longer enrichment period (18 

h) also detected a lower fold change of glutamate which is a precursor 

of N-acetyl-DL-glutamic acid, and L-ornithine which via decarboxyla-

tion produces putrescine [15]. Putrescine is a precursor of spermidine 

which was also identified in both the risk groups. Putrescine along with 

other polyamines such as spermine and spermidine can be found nat-

urally in various foods or can also be produced by bacteria belonging 

to the Enterobacteriaceae family such as E. coli [15]. Detection of L-or-

nithine or other polyamines such as putrescine/spermidine could serve 

as an early indication of microbial spoilage in foods.
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Figure 11. Pathway mapping of statistically significant ((p ≤ 0.05 and FC ≥ 2 or ≤ 0.5) metabolites of RG1 and RG2 identified in the inoculated spinach experiments. Significant 

metabolites common to both risk groups are highlighted in red, those belonging to RG1 only are highlighted in blue and those belonging to RG2 only are highlighted in green. All 

other identified metabolites (but non-significant) are highlighted in orange. Unidentified metabolites are in black. L-methionine is the only amino acid that was upregulated, all other 

amino acids were downregulated.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2021                   doi:10.20944/preprints202101.0209.v1

https://doi.org/10.20944/preprints202101.0209.v1


 

 
 

 

2.4. Pathogenic E. coli biomarker analysis in spinach  

The biomarker analysis was intentionally applied to the inoculated spinach, with spe-

cific focus given to the pelleted samples. This was done to account for the complexity of 

the spinach-pathogen-microbiome interaction and variation in the number of measured 

metabolites between the bacterial enrichment samples and the spinach samples. The bi-

omarker analysis was performed using the SIMCA 16.1 Omix skin toolbox and the Bi-

omarker analysis toolbox of MetaboAnalyst 4.0. The receiver operating characteristic 

(ROC) curve based on the area under the curve (AUC) was applied to the OPLS-DA da-

taset. A higher area under the curve (within a 95% confidence interval) is defined by the 

ratio between sensitivity (true positive rate) and specificity (false positive rate). A higher 

sensitivity/specificity ratio indicates greater model predictability. Figure 12 illustrates the 

multivariate ROC analysis for the pellet and supernatant samples obtained from the inoc-

ulated spinach experiments.  

 

Figure 12. The plots represent multivariate ROC under the curve exploratory analysis of (A) pellet and (B) supernatant samples, for 

the metabolic profiling of bacterial risk groups (n(RG) = 32 and, n(Negative) = 12) inoculated into spinach enrichments. The outputs 

indicate the probability of biomarker predictability to the control (non-inoculated samples, n = 12), with a high sensitivity reflecting 

increased predictability of biomarkers. Note: for the biomarker analysis, the RG group comprises RG1 and RG2 combined.  

However, the multivariate ROC analysis provided only the overall behavior of the 

groups. Therefore, to understand the contribution of individual metabolites as potential 

biomarkers, univariate ROC analysis was also performed using the ‘Biomarker analysis’ 

toolbox of MetaboAnalyst 4.0. It was observed that the predictability of biomarkers was 

higher in the pellet (Q2(cum) = 52.1%) with respect to the supernatant (Cumulative 

Q2(cum) = 39.7%).  

Metabolites such as lysine (AUC = 0.93, Log2FC = -7.27), tyrosine (AUC = 0.95, Log2FC 

= -6.59), adenosine (AUC = 0.88, Log2FC = -4.8) cellotetraose (AUC = 0.96, Log2FC = -2.63), 

norleucine (AUC = 0.97, Log2FC = -3.82) and serine (AUC = 0.72, Log2FC = --1.04) showed 

depletion in the risk groups. Conversely, metabolites such as L-methionine (AUC = 0.79, 

Log2FC = 2.21) and 4-hydroxycinnamate (AUC = 0.68, Log2FC = 2.0) were observed to in-

crease in pellet samples containing risk groups (RG) (Figure S13A, Supplementary Sec-

tion). 

Similarly, when compared to the negative controls, metabolites such as linoleate 

(AUC = 1, Log2FC = 5.81), 4-isopropylbenzoate (AUC = 0.99, Log2FC = 8.48), , 3,4-dihy-

droxymandelate (AUC = 0.92, Log2FC = 5.09) and stearate (AUC = 0.94, Log2FC = 5.15) 

showed elevation in the RG pellet samples. On the other hand, tryptophan (AUC = 0.9, 

Log2FC = -3.36) and 3-aminoisobutyrate (AUC = 0.81, Log2FC = -1.62) were predominantly 

depleted metabolites in the RG pellet samples (Figure S13B, Supplementary Section).  
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A few statistically significant metabolites (p ≤ 0.05) were identified in both RG1 and 

RG2, and therefore, we compared the two groups to determine the differences in their 

output. Unlike the observations earlier (when compared to the control samples), this com-

parison yielded fewer metabolites with high AUC (> 0.9). The major metabolites were 4-

2-hydroxyethylphenol (AUC = 0.94, Log2FC = 2.08) 4-hydroxyphenylacetate (AUC = 0.78, 

Log2FC = 1.27), inosine (AUC = 0.75, Log2FC = 1.19) and serine (AUC = 0.72, Log2FC = 1.34) 

showing increased levels in RG 1 (Figure S13C, Supplementary Section). 

4-hydroxyphenylacetic acid is primarily a plant-based metabolite and is generated as 

the downstream product of phenylalanine and tyrosine metabolism. Some E. coli strains 

have the gene functions for translation of tyrosine aminotransferase, aspartate ami-

notransferase, histidinol-phosphate aminotransferase, and 4-hydroxyphenylacetate 3-

monooxygenase enzymes, which facilitate this metabolism [16]. The depletion of tyrosine 

and tryptophan in the RG samples in our study indicated this activity. Inosine is one of 

the important intermediates of nucleotide metabolism. In a recent study [17], the effect of 

E. coli O157:H7 infection in Caenorhabditis elegans (nematode) indicated the role of in-

creased inosine levels in pathways related to nucleotide salvaging and, to some extent, 

lipid oxidation. This increase was observed to alleviate the cellular damage in the nema-

tode caused by E. coli O157:H7. The importance of inosine was also shown in a recent 

study which indicated inosine-containing alleles in the E. coli O157:H7 genes which code 

for heat-stable enterotoxin type I [18] The increased levels of serine and methionine in C. 

elegans infected with E. coli O157:H7 has been indicative of increased toxicity, caused by 

upregulated methionine and homocysteine pathways [17, 19]. Our observations align well 

with these studies. However, a proteomics-based approach will further establish the out-

puts of this study, and the metabolic behavior and virulence expressions of various E. coli 

strains. 

3. Materials and Methods  

3.1. Bacterial Strains and Culture media 

A total of 20 E. coli isolates from the CSIRO STEC culture collection, harboring vari-

ous combinations of genes encoding Shiga toxin (stx) and intimin (eae) and belonging to a 

range of serogroups, were selected for inclusion in the study. The isolates were assigned 

to risk groupings 1 to 3 which were based on their regulatory importance or pathogenic 

potential. Risk Group 1 (RG1) contains STEC of regulatory importance known as Top7 

STEC which includes O157 and the Big6 serogroups (O26, O45, O103, O111, O121, and 

O145). Risk Group 2 (RG2) contains non-Top7 STEC, potential enterohaemorrhagic E. coli 

(pEHEC) and atypical enteropathogenic E. coli (aEPEC), and risk group 3 (RG3) is com-

prised of eae-negative STEC. A fourth grouping, designated as ‘negative’, included five 

generic E. coli and five Salmonella enterica isolates. A summary of the isolate information 

is shown in Table 1. All isolates were recovered from freezer stocks (-80°C) using tryptic 

soya agar (Oxoid, UK) incubated overnight at 37°C. The resulting cultures were sub-cul-

tured to confirm purity and were subsequently tested for stx and eae by conventional mul-

tiplex PCR [20]. 
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Table 1. Category, serogroup, virulence profile, and risk groupings of isolates included in the study. Note: The column ‘Isolates’ refer 

to ID of individual strains from CSIRO the CSIRO STEC culture collection. 

Category Isolates Serogroups Virulence profiles Risk grouping 

(RG) 

Top7 STEC 

EC 1543, 2941, 2996a, 2997a, 4399a, 

4400a, 4412a, 4419a, 4433a, and 

5054a 

O157, O26, O45, 

O103, O111, O121, 

and O145 

stx1, stx2 and eae; 

stx1 and eae; stx2 

and eae 

1 

Non-Top7 STEC EC 3633a, 3639a, and 3683a 
O84, O177, and 

O182 

stx1, stx2 and eae; 

stx1 and eae 
2 

pEHEC/aEPEC EC 801, 1646a, 3989a, and 4560a 
O26, O103 and 

O145 
Eae only 2 

Eae-negative STEC EC 4742a, 4819c, and 4852b Unknown 
stx1 and stx2; stx1 

only 
3 

Generic E. coli Five cattle isolates Unknown NA Negative 

Salmonella Five cattle isolates Unknown NA Negative 

 

3.2. Sample preparation  

3.2.1. Bacterial enrichments 

Bacterial enrichments were prepared by first enriching each isolate (Table 1) in 10 

mL of buffered peptone water (BPW; Oxoid, UK) overnight at 37°C. The resulting enrich-

ments were then diluted 1 in 1000 using BPW and a 30 µl aliquot was subsequently used 

to inoculate 30 mL of BPW which was then incubated at 37°C for 18±2 h. A minimum of 

four replicates was prepared for each risk grouping with a maximum of five isolates in-

cluded in any one enrichment. As risk grouping 1 comprised 10 isolates, enrichments were 

prepared such that they contained a maximum of two serogroups (e.g. O26 and O111). 

Sterile, uninoculated BPW was enriched and used as negative growth control. 

3.2.2. Spinach enrichments 

Spinach samples were acquired from three separate supermarkets located in South 

East Queensland, Australia. Spinach samples were prepared by combining 25 g of spinach 

with 250 mL of BPW. All spinach samples were stomached for 60 s at four strokes per 

second (Interscience, France) before the addition of a bacterial inoculum. Bacterial inocu-

lums were prepared for each risk grouping using the following approach. Each isolate 

was initially enriched in BPW overnight at 37°C before being diluted 1 in 1000 using BPW. 

A cocktail inoculum for each risk grouping was then prepared by combining equal vol-

umes of the isolates and subsequently diluting it 1 in 10 in BPW. A 1 mL aliquot of the 

resulting cocktail was then added to each sample, as required, to obtain an overall inocu-

lum of between 100 and 1000 CFU/g. Samples were incubated overnight at 37°C for 18 ± 

2 h before being processed further. Four replicates were prepared for all spinach/risk 

grouping combinations and uninoculated spinach samples were included as controls. 

3.3. Metabolomic analysis 

3.3.1. Preparation of cell pellet for metabolomic analysis 

Following enrichment, a sample aliquot (1 mL) was transferred to a 10 mL centrifuge 

tube for quenching of metabolism. Quenching solution (4 mL) comprising of 60:40 (v/v) 

methanol: water containing ammonium hydrogen carbonate to a final concentration of 

0.85% (w/v) was added to the aliquot. The cellular mass was pelleted in a centrifuge (Sigma 

4K-15; Sigma, UK) for 10 min at 4,800 g and -8°C. The cell pellet was stored at -80°C until 

further analysis. 
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3.3.2. Preparation of cell media for metabolomic analysis 

A small volume of sample (1 mL) was transferred to a microcentrifuge and subjected 

to centrifugation at 13,500 g for 5 min to remove any cell debris and suspended cells. The 

supernatant (1.5 mL) was then transferred into fresh microfuge tubes, lyophilized at a low 

temperature, and stored at -80°C until further analysis.   

3.3.3. Metabolite extraction  

The lyophilized samples were reconstituted in 1 mL methanol consisting of 100 L 

internal standard (IS1) solution (20 mg mL-1 each of glycine-d5, and L-alanine-d4 in meth-

anol) was added to each labeled 2 mL centrifuge tubes. The mixture was thoroughly vor-

texed for 2 min followed by centrifugation at 573 g at 4°C for 15 min. A 50 μL aliquot of 

the supernatant was then transferred into 2 mL vials and evaporated to dryness in a vac-

uum concentrator (CentriVap Concentrator, Missouri, USA) at 40°C. Myristic acid-d27 

was added (0.2 mg mL-1; 10 µg after drying) as a secondary internal standard (IS2) and, 

the samples were re-dried.  

3.3.4. GC-MS analysis 

The dried extracts were derivatized ‘in-time’, followed by a 1-hour holding time, be-

fore injection into a GC-MS as per previously reported [21], with some modifications. 

Briefly, trimethylsilyl (TMS) derivatives were formed by adding 20 L of methoxyamine 

hydrochloride (MOX, 20 mg mL-1 in pyridine) and 40 μL of N, O-bis(trimethylsilyl)tri-

fluoroacetamide (BSTFA) containing 1% trimethylchlorosilane (TMCS) following a two-

step derivatization protocol implemented in-time using a Gerstel MPS autosampler (Ger-

stel GmbH & Co. KG, Deutschland, Germany). The derivatized samples were then ana-

lyzed using an Agilent 6890B GC oven coupled with a 5973A MS detector (Agilent Tech-

nologies, Mulgrave, VIC, Australia). The GC-MS system was equipped with a 30m DB-

5MS column (0.25 mm ID, 0.25 µm film thickness). The splitless method was used with 1 

µL volume; the oven was held at an initial temperature of 70°C for 2 min before increasing 

to 325°C at 7.5°C min-1; the final temperature was held for 4.5 min. Data acquisition and 

spectral analysis were performed using MassHunter. Qualitative identification of the 

compounds was performed according to the Metabolomics Standard Initiative Chemical 

Analysis Workgroup using the Agilent Fiehn Metabolomics Library (G166766A, Agilent 

Technologies, Santa Clara, CA, USA). For peak integration, a 5-point detection filtering 

(default settings) was set with a start threshold of 0.2 and a stop threshold of 0.0 for 10 

scans per sample.   

3.4. Data analysis 

The data were imported, and log-transformed using SIMCA 16 (MKS Data Analytics 

Solutions, Uméa, Sweden). Partial Least Square-Discriminant Analysis (PLS-DA) was per-

formed by finding successive orthogonal components from the two or more datasets with 

maximum squared covariance and was subsequently used to identify the common rela-

tionships among the multiple datasets. All supervised models were cross-validated using 

a default 7-fold cross-validation method and CV-ANOVA statistic as indicated previously 

[22]. 

MetaboAnalyst 4.0 [23] (Xia Lab, McGill University, Quebec, Canada) and KEGG 

Mapper [24] was used for metabolic pathway analysis [25] and metabolites with Benja-

mini–Hochberg adjusted p-value of ≤ 0.05 and, Fold Changes (FC) of < 0.5 (downward 

regulation) or > 2.0 (upward regulation), were considered to be statistically significant. 

Biochemical pathway enrichment analysis was performed using ChemRICH 

(http://chemrich.fiehnlab.ucdavis.edu/), a novel statistical approach based on chemical 

similarity [26]. Enrichment p-values and FC were obtained using SIMCA. A Venn dia-

gram was drawn using an online web tool (http://bioinformat-

ics.psb.ugent.be/webtools/Venn/). Sankey diagrams were created using the San-

keyMATIC online web tool (http://sankeymatic.com/), respectively.  
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4. Conclusions 

STEC are an important cause of foodborne disease globally, with many outbreaks 

linked to the consumption of contaminated foods such as leafy greens and red meat. STEC 

is considered an adulterant in raw, non-intact beef products in the USA. Consideration is 

being given to microbiological surveys and enhanced sampling protocols for STEC in 

leafy greens, however, methods remain laborious and provide little opportunity for sup-

ply chains to assess and mitigate food safety risks, with the emphasis remaining on end-

product testing. The use of untargeted metabolomics may yield alternative pathogen de-

tection tools that overcome these limitations and lead to the development of in-line risk 

mitigation strategies. This proof-of-concept study has shown that the use of such an ap-

proach does enable STEC, of human and regulatory significance, to be differentiated from 

other STEC and Enterobacteriaceae. Furthermore, it enabled the identification of specific 

biomarkers which rapid detection tools and biosensors can be subsequently developed 

that facilitate potentially cheaper and quicker detection systems that may be utilized in a 

biosensor-based risk mitigation approach to food production and processing and suggests 

that it could be extended to other pathogens/food combinations (i.e., red meat). 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure 

S1: Principal component analysis and partial least square-discriminant analysis of bacterial pellet 

samples collected from buffered peptone water cultures. Figure S2: Principal component analysis 

and partial least square-discriminant analysis of bacterial supernatant samples collected from buff-

ered peptone water cultures. Figure S3: Orthogonal partial least square-discriminant analysis of 

bacterial pellet samples collected from buffered peptone water cultures. Figure S4: Orthogonal 

partial least square-discriminant analysis of bacterial supernatant samples collected from buffered 

peptone water cultures. Figure S5: Cross-validation scores plots of the OPLS-DA bacterial pellet 

model. Figure S6: Figure S6: Cross-Validation (CV) Scores plots of the OPLS-DA bacterial 

supernatant model. Figure S7: Principal component analysis and partial least square-discriminant 

analysis of bacterial pellet samples collected from inoculated spinach samples. Figure S8: Principal 

component analysis and partial least square-discriminant analysis of bacterial supernatant sam-

ples collected from inoculated spinach samples. Figure S9: Orthogonal partial least square-discri-

minant analysis of bacterial pellet samples collected from inoculated spinach samples. Figure S10: 

Orthogonal partial least square-discriminant analysis of bacterial supernatant samples collected 

from inoculated spinach samples. Figure S11: Cross-Validation (CV) Scores plots of the OPLS-DA 

bacterial supernatant model. Figure S12: Cross-Validation (CV) Scores plots of the OPLS-DA inoc-

ulated spinach supernatant model.  Figure S13: The plots indicate the top 15 validated bi-

omarkers, as analyzed by PLS-DA classification and feature ranking through a Monte-Carlo cross-

validation method. Table S1: Cross-validation (CV)-ANOVA of the OPLS-DA bacterial pellet 

model (Figure S3). Table S2: Cross-validation (CV)-ANOVA of the OPLS-DA bacterial supernatant 

model (Figure S4). Table S3: Significant metabolites in bacterial pellet samples collected from buff-

ered peptone water cultures. Table S4: Significant metabolites in bacterial supernatant samples 

collected from buffered peptone water cultures. Table S5: ANOVA analysis of bacterial pellet sam-

ples collected from buffered peptone water cultures. Table S6: ANOVA analysis of bacterial super-

natant samples collected from buffered peptone water cultures. Table S7: Cross-validation (CV)-

ANOVA of the OPLS-DA inoculated spinach pellet model. Table S8: Cross-validation (CV)-

ANOVA of the OPLS-DA inoculated spinach supernatant model. Table S9: Significant metabolites 

identified in bacterial pellet from RG1-inoculated spinach samples. Table S10: Significant metabo-

lites identified in bacterial pellet from RG2-inoculated spinach samples. 

Author Contributions: Conceptualization, D.J.B., M.LC. and R.S.B.; methodology, D.J.B. and R.S.B.; 

conducting experiments K.E.M.; data analysis S.R.J., R.M.S, and A.V.K.; writing—original draft 

preparation, S.R.J. and R.M.S.; writing—review and editing, D.J.B, A.V.K., R.S.B.; visualization, 

D.J.B. and R.M.S.; supervision, R.S.B., M.L.C. and D.J.B. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2021                   doi:10.20944/preprints202101.0209.v1

https://doi.org/10.20944/preprints202101.0209.v1


 

 

References 

1. WHO. Food Safety. 2020 30-04-2020 [cited 2020 20/08/2020]; Available from: https://www.who.int/news-

room/fact-sheets/detail/food-safety. 

2. Newell, D.G. and R.M. La Ragione, Enterohaemorrhagic and other Shiga toxin-producing Escherichia coli (STEC): 

Where are we now regarding diagnostics and control strategies? Transbound Emerg Dis, 2018. 65 Suppl 1: p. 49-71. 

3. Mellor G. E; Fegan, N.D.L., L., McMillan K. E; Jordan D; Barlow R. S., National Survey of Shiga Toxin-Producing 

Escherichia coli Serotypes O26, O45, O103, O111, O121, O145, and O157 in Australian Beef Cattle Feces. Journal of 

Food Protection, 2016. 79(11): p. 1868-1874. 

4. Kintz, E., L. Byrne, C. Jenkins, C.N. Mc, R. Vivancos, and P. Hunter, Outbreaks of Shiga Toxin-Producing 

Escherichia coli Linked to Sprouted Seeds, Salad, and Leafy Greens: A Systematic Review. J Food Prot, 2019. 82(11): p. 

1950-1958. 

5. Leonard, S.R., M.K. Mammel, D.W. Lacher, and C.A. Elkins, Application of metagenomic sequencing to food safety: 

detection of Shiga Toxin-producing Escherichia coli on fresh bagged spinach. Appl Environ Microbiol, 2015. 81(23): p. 

8183-91. 

6. U.S.FDA. 2020 Leafy Greens STEC Action Plan. 2020  [cited 2020 15-07-2020]; Available from: 

https://www.fda.gov/food/foodborne-pathogens/2020-leafy-greens-stec-action-plan. 

7. Leonard, S.R., M.K. Mammel, D.W. Lacher, and C.A. Elkins, Strain-Level Discrimination of Shiga Toxin-

Producing Escherichia coli in Spinach Using Metagenomic Sequencing. PLoS One, 2016. 11(12): p. e0167870. 

8. Pinu, F.R., Early detection of food pathogens and food spoilage microorganisms: Application of metabolomics. Trends in 

Food Science & Technology, 2016. 54: p. 213-215. 

9. Singh, A.K., A.V. Ulanov, Z. Li, R.K. Jayaswal, and B.J. Wilkinson, Metabolomes of the psychrotolerant bacterium 

Listeria monocytogenes 10403S grown at 37 °C and 8 °C. Int J Food Microbiol, 2011. 148(2): p. 107-14. 

10. Beale, D.J., P.D. Morrison, and E.A. Palombo, Detection of Listeria in milk using non-targeted metabolic profiling of 

Listeria monocytogenes: A proof-of-concept application. Food Control, 2014. 42: p. 343-346. 

11. Cevallos-Cevallos, J.M., M.D. Danyluk, and J.I. Reyes-De-Corcuera, GC-MS Based Metabolomics for Rapid 

Simultaneous Detection of Escherichia coliO157:H7,SalmonellaTyphimurium,SalmonellaMuenchen, 

andSalmonellaHartford in Ground Beef and Chicken. Journal of Food Science, 2011. 76(4): p. M238-M246. 

12. Li, H. and J. Zhu, Targeted metabolic profiling rapidly differentiates Escherichia coli and Staphylococcus aureus at 

species and strain level. Rapid Communications in Mass Spectrometry, 2017. 31(19): p. 1669-1676. 

13. Jadhav, S.R., R.M. Shah, A.V. Karpe, P.D. Morrison, K. Kouremenos, D.J. Beale, and E.A. Palombo, Detection of 

Foodborne Pathogens Using Proteomics and Metabolomics-Based Approaches. Frontiers in Microbiology, 2018. 

9(3132). 

14. Carstens, C.K., J.K. Salazar, and C. Darkoh, Multistate Outbreaks of Foodborne Illness in the United States 

Associated With Fresh Produce From 2010 to 2017. Frontiers in microbiology, 2019. 10: p. 2667-2667. 

15. Wunderlichová, L., L. Buňková, M. Koutný, P. Jančová, and F. Buňka, Formation, Degradation, and 

Detoxification of Putrescine by Foodborne Bacteria: A Review. Comprehensive Reviews in Food Science and Food 

Safety, 2014. 13(5): p. 1012-1030. 

16. Shen, Y.-P., L.S. Fong, Z.-B. Yan, and J.-Z. Liu, Combining directed evolution of pathway enzymes and dynamic 

pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in 

Escherichia coli. Biotechnology for Biofuels, 2019. 12(1): p. 94. 

17. Yun, E.J., S.H. Lee, S. Kim, S.H. Kim, and K.H. Kim, Global profiling of metabolic response of Caenorhabditis elegans 

against Escherichia coli O157:H7. Process Biochemistry, 2017. 53: p. 36-43. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2021                   doi:10.20944/preprints202101.0209.v1

https://www.who.int/news-room/fact-sheets/detail/food-safety
https://www.who.int/news-room/fact-sheets/detail/food-safety
https://www.fda.gov/food/foodborne-pathogens/2020-leafy-greens-stec-action-plan
https://doi.org/10.20944/preprints202101.0209.v1


 

 

18. Candrian, U., B. Furrer, C. Höfelein, and J. Lüthy, Use of inosine-containing oligonucleotide primers for enzymatic 

amplification of different alleles of the gene coding for heat-stable toxin type I of enterotoxigenic Escherichia coli. 

Applied and Environmental Microbiology, 1991. 57(4): p. 955-961. 

19. Menni, F., S. Testa, S. Guez, G. Chiarelli, L. Alberti, and S. Esposito, Neonatal atypical hemolytic uremic syndrome 

due to methylmalonic aciduria and homocystinuria. Pediatric Nephrology, 2012. 27(8): p. 1401-1405. 

20. Paton, A.W. and J.C. Paton, Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex 

PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol, 1998. 36(2): 

p. 598-602. 

21. Beale, D.J., D.Y. Oh, A.V. Karpe, C. Tai, M.S. Dunn, D. Tilmanis, E.A. Palombo, and A.C. Hurt, Untargeted 

metabolomics analysis of the upper respiratory tract of ferrets following influenza A virus infection and oseltamivir 

treatment. Metabolomics, 2019. 15(3): p. 33. 

22. Triba, M.N., L. Le Moyec, R. Amathieu, C. Goossens, N. Bouchemal, P. Nahon, D.N. Rutledge, and P. Savarin, 

PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality 

parameters. Molecular BioSystems, 2015. 11(1): p. 13-19. 

23. Chong, J., D.S. Wishart, and J. Xia, Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data 

Analysis. Current Protocols in Bioinformatics, 2019. 68(1): p. e86. 

24. Kanehisa, M. and Y. Sato, KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci, 2020. 

29(1): p. 28-35. 

25. Chong, J., O. Soufan, C. Li, I. Caraus, S. Li, G. Bourque, D.S. Wishart, and J. Xia, MetaboAnalyst 4.0: towards 

more transparent and integrative metabolomics analysis. Nucleic Acids Research, 2018. 46(W1): p. W486-W494. 

26. Barupal, D.K. and O. Fiehn, Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical 

pathway mapping for metabolomic datasets. Scientific Reports, 2017. 7(1): p. 14567. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2021                   doi:10.20944/preprints202101.0209.v1

https://doi.org/10.20944/preprints202101.0209.v1

