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1. Introduction

In [1], [2], B.-Y. Chen introduced a string of Riemannian invariants,
known as Chen invariants, which are different in nature from the classi-
cal Riemannian invariants. He established sharp relationships between
these invariants and the squared mean curvature for submanifolds in
Riemannian space forms, known as Chen inequalities (see [2]).

The proof uses an algebraic inequality, discovered by B.-Y. Chen in
[1].

In the present paper, we obtain a different algebraic inequality which
allows us to give simple proofs of certain Chen inequalities.

2. Preliminaries

The theory of Chen invariants and Chen inequalities was initiated
by B.-Y. Chen [1], [2].

Let (M, g) be an n-dimensional (n ≥ 2) Riemannian manifold and ∇
its Levi-Civita connection. One denotes by R the Riemannian curva-
ture tensor field on M . For any p ∈ M and π ⊂ TpM a plane section,
the sectional curvature K(π) of π is defined by K(π) = R(e1, e2, e1, e2),
where we use the convention R(e1, e2, e1, e2) = g(R(e1, e2)e2, e1), with
{e1, e2} an orthonormal basis of π. Let {e1, ..., en} be an orthonormal
basis of TpM . The scalar curvature τ at p is given by

τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej),
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where K(ei∧ej) is the sectional curvature of the plane section spanned
by ei and ej (other authors consider τ(p) =

∑
1≤i6=j≤n K(ei ∧ ej)).

The Chen first invariant δM is defined by

δM(p) = τ(p)− inf{K(π)|π ⊂ TpM plane section}.
The Chen invariant δ(2, 2), given by

δ(2, 2)(p) = τ(p)−inf{K(π1)+K(π2)|π1, π2 ⊂ TpM orthogonal plane sections},
was studied in [3].

We shall consider the Chen invariant δ(2, ..., 2)︸ ︷︷ ︸
k terms

, denoted by δk(2, ..., 2),

which is given by

δk(2, ..., 2)(p) = τ(p)− inf{K(π1) + ... + K(πk)},
where π1, ..., πk are mutually orthogonal plane sections at p.

Obviously, δ1(2) = δM .
In the next section, we shall prove an algebraic inequality and study

its equality case. As application we shall give a simple proof of the
Chen inequality for the invariant δk(2, ..., 2).

3. An algebraic inequality

Proposition 3.1. Let k, n ∈ N∗, n ≥ 2k, and a1, a2, ..., an ∈ R. Then∑
1≤i<j≤n

aiaj −
k∑

i=1

a2i−1a2i ≤
n− k − 1

2(n− k)

(
n∑

i=1

ai

)2

.

Moreover, the equality holds if and only if a2i−1 + a2i = aj, 1 ≤ i ≤
k, 2k + 1 ≤ j ≤ n.

Proof. We shall prove the above Proposition by mathematical induc-
tion.

Let

P (n) :
∑

1≤i<j≤n

aiaj −
k∑

i=1

a2i−1a2i ≤
n− k − 1

2(n− k)

(
n∑

i=1

ai

)2

,

with equality holding if and only if a2i−1 +a2i = aj, 1 ≤ i ≤ k, 2k+1 ≤
j ≤ n.

First we show that P (2k) is true. Indeed∑
1≤i<j≤2k

aiaj −
k∑

i=1

a2i−1a2i ≤
k − 1

2k

(
2k∑
i=1

ai

)2

⇔
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(k−1)(a2
1+a2

2+...+a2
2k)−2

∑
1≤i<j≤2k

aiaj+2k(a1a2+a3a4+...+a2k−1a2k) ≥ 0 ⇔

(a1+a2−a3−a4)
2+...+(a1+a2−a2k−1−a2k)

2+...+(a2k−3+a2k−2−a2k−1−a2k)
2 ≥ 0.

Clearly the equality holds if and only if a1 + a2 = .. = a2k−1 + a2k.
Next, assume P (n) and prove P (n + 1).

P (n + 1) :
∑

1≤i<j≤n+1

aiaj −
k∑

i=1

a2i−1a2i ≤
n− k

2(n− k + 1)

(
n+1∑
i=1

ai

)2

,

with equality holding if and only if a2i−1 + a2i = aj, 1 ≤ i ≤ k,
2k + 1 ≤ j ≤ n + 1.

By using P (n), one has∑
1≤i<j≤n+1

aiaj −
k∑

i=1

a2i−1a2i =

=
∑

1≤i<j≤n

aiaj + an+1

(
n∑

i=1

ai

)
−

k∑
i=1

a2i−1a2i ≤

≤ n− k − 1

2(n− k)

(
n∑

i=1

ai

)2

+ an+1

(
n∑

i=1

ai

)
≤

≤ n− k

2(n− k + 1)

(
n+1∑
i=1

ai

)2

.

The last inequality is equivalent to[
(n− k)an+1 −

(
n∑

i=1

ai

)]2

≥ 0.

The equality holds if and only if

a2i−1 + a2i = aj, 1 ≤ i ≤ k, 2k + 1 ≤ j ≤ n + 1.

�

4. A Chen inequality

As an application of Proposition 1, we give a simple proof of the
Chen inequality for the Chen invariant δk(2, ..., 2) of submanifolds in
Riemannian space forms.

Let M̃(c) be an m-dimensional Riemannian space form of constant
sectional curvature c. The standard examples are the Euclidean space
Em, the sphere Sm and the hyperbolic space Hm.
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Let M be an n-dimensional submanifold of M̃(c) and denote by h
the second fundamental form of M in M̃(c). Recall that the mean
curvature vector H(p) at p ∈ M is given by

H(p) =
1

n

n∑
i=1

h(ei, ei),

where {e1, ..., en} is an orthonormal basis of TpM .
The submanifold M is said to be minimal if H(p) = 0,∀p ∈ M .
The Gauss equation is (see [4])

R(X, Y, Z, W ) = c + g(h(X, Z), h(Y,W ))− g(h(X, W ), h(Y, Z)),

for any vector fields X, Y, Z, W tangent to M .

Theorem 4.1. Let M̃(c) be an m-dimensional Riemannian space form
of constant sectional curvature c and M an n-dimensional submanifold
of M̃(c). Then one has the following Chen inequality:

δk(2, ..., 2) ≤ n2(n− k − 1)

2(n− k)
||H||2 +

[
n(n− 1)

2
− k

]
c.

Moreover, the equality holds at a point p ∈ M if and only if there exist
suitable orthonormal bases {e1, ..., en} ⊂ TpM and {en+1, ..., em} ⊂
T⊥p M such that the shape operators take the forms

Aen+1 =



a1 0 0 ... 0 0 ... 0
0 a2 0 ... 0 0 ... 0
...

...
...

. . .
...

...
...

0 0 0 ... a2k−1 0 0 ... 0
0 0 0 ... 0 a2k 0 ... 0
0 0 0 ... 0 µ ... 0
...

...
...

...
...

. . .
...

0 0 0 ... 0 0 ... µ


, a2i−1+a2i = µ, 1 ≤ i ≤ k,

Aer =



Ar
1 0 0 ... 0 0 0

0 Ar
2 0 ... 0 0 0

...
...

. . .
...

...
...

0 0 0 Ar
k 0 0 0

0 0 0 ... 0 0 0
...

...
...

...
. . .

...
0 0 0 ... 0 0 0


, r = n + 2, ...,m,

where Ar
j are symmetric 2×2 matrices with trace Ar

j = 0, ∀j = 1, ..., k.
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Proof. Let p ∈ M , π1, ..., πk ⊂ TpM mutually orthogonal plane sec-
tions and {e1, e2} ⊂ π1, ..., {e2k−1, e2k} ⊂ πk orthonormal bases. We
construct {e1, ..., e2k, e2k+1, ..., en} ⊂ TpM and {en+1, ..., em} ⊂ T⊥p M
orthonormal bases, respectively.

Denote by hr
ij = g(h(ei, ej), er), i, j = 1, ..., n, r ∈ {n + 1, ...,m}, the

components of the second fundamental form.
By the Gauss equation, we have

τ =
∑

1≤i<j≤n

K(ei ∧ ej) =
∑

1≤i<j≤n

R(ei, ej, ei, ej) =

=
n(n− 1)

2
c +

m∑
r=n+1

∑
1≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2].

Also the Gauss equation implies

K(πi) = K(e2i−1 ∧ e2i) = R(e2i−1, e2i, e2i−1, e2i) =

= c +
m∑

r=n+1

[hr
2i−1,2i−1h

r
2i,2i − (hr

2i−1,2i)
2], ∀i = 1, ..., k.

Then we get

τ −
k∑

i=1

K(πi) =

=

[
n(n− 1)

2
− k

]
c +

m∑
r=n+1

[ ∑
1≤i<j≤n

hr
iih

r
jj −

k∑
i=1

hr
2i−1,2i−1h

r
2i,2i

]
−

−
m∑

r=n+1

∑
1 ≤ i < j ≤ n,

(i, j) 6= (1, 2), ..., (2k − 1, 2k)

(hr
ij)

2.

By using the algebraic inequality from the previous section, we obtain

τ −
k∑

i=1

K(πi) ≤
n− k − 1

2(n− k)

m∑
r=n+1

(
n∑

i=1

hr
ii

)2

+

[
n(n− 1)

2
− k

]
c =

=
n2(n− k − 1)

2(n− k)
||H||2 +

[
n(n− 1)

2
− k

]
c,

which implies the desired inequality.
If the equality case holds at a point p ∈ M , then we have equalities

in all the inequalities in the proof, i.e.,{
hr

2i−1,2i−1 + hr
2i,2i = hr

jj, 1 ≤ i ≤ k, 2k + 1 ≤ j ≤ n,

hr
ij = 0, ∀1 ≤ i < j ≤ n, (i, j) 6= (1, 2), ..., (2k − 1, 2k),
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for any r ∈ {n + 1, ...,m}.
We choose en+1 parallel to H(p). Then the shape operators take the

above forms. �

Corollary 4.1. Let M̃(c) be an m-dimensional Riemannian space form
of constant sectional curvature c and M an n-dimensional submanifold
of M̃(c). If there exists a point p ∈ M such that δk(2, ..., 2)(p) >[

n(n−1)
2

− k
]
c, then M is not minimal.

For k = 1, one derives Chen first inequality (see [1]).

Corollary 4.2. Let M̃(c) be an m-dimensional Riemannian space form
of constant sectional curvature c and M an n-dimensional submanifold
of M̃(c). Then one has

inf K ≥ τ − n− 2

2

[
n2

n− 1
||H||2 + (n + 1)c

]
.

Equality holds if and only if, with respect to suitable frame fields {e1, ..., en,
en+1, ..., em}, the shape operators take the following forms:

Aen+1 =


a 0 0 ... 0
0 µ− a 0 ... 0
0 0 µ ... 0
...

...
...

. . .
...

0 0 0 ... µ

 ,

Aer =


hr

11 hr
12 0 ... 0

hr
12 −hr

11 0 ... 0
0 0 0 ... 0
...

...
...

. . .
...

0 0 0 ... 0

 , r = n + 2, ...,m.

Example. The generalized Clifford torus.
Let T = Sk( 1√

2
)× Sk( 1√

2
) ⊂ S2k+1 ⊂ E2k+2.

It is known that T is a minimal hypersurface of S2k+1, but a non-
minimal submanifold of E2k+2.

Obviously δk(2, ..., 2) = τ = 2k(k − 1).
Then T ⊂ S2k+1 does not satisfy the equality case of Theorem 4.1.
If we consider T ⊂ E2k+2, then it satisfies the equality case of Theo-

rem 4.1.

Remark. By using the inequality from Proposition 1, we can ob-
tain Chen inequalities for the invariant δk(2, ..., 2) on submanifolds
in other ambient spaces, for instance, complex space forms, Sasakian
space forms, Hessian manifolds of constant Hessian curvature, etc.
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