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Abstract: The Eliezer and Gray physical interpretation of the Ermakov-Lewis invariant is applied as
a guiding principle for the derivation of the special relativistic analog of the Ermakov-Milne-Pinney
equation and associated first integral. The special relativistic extension of the Ray-Reid system and
invariant is obtained. General properties of the relativistic Ermakov-Milne-Pinney are analyzed.
The conservative case of the relativistic Ermakov-Milne-Pinney equation is described in terms of a
pseudo-potential, reducing the problem to an effective Newtonian form. The non-relativistic limit
is considered as well. A relativistic nonlinear superposition law for relativistic Ermakov systems is
identified. The generalized Ermakov-Milne-Pinney equation has additional nonlinearities, due to the
relativistic effects.
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1. Introduction

The Ermakov-Milne-Pinney (EMP) equation [1–3]

ẍ + κ2(t)x = C/x3 , (1)

where C is a real constant usually taken as positive, is a notorious nonlinear non-autonomous ordinary
differential equation with many applications, in particular in problems related to the time-dependent
harmonic oscillator or in connection with exact solutions of the one-dimensional time-independent
Schrödinger equation. In more generality, applications of the EMP equation appear in cosmological
models [4–6], Bose-Einstein condensates [7,8], photonic lattices [9], accelerator dynamics [10,11],
gravitational wave propagation [12], higher order spin models [13], quantum plasmas [14], limit cycles
[15], dynamical symmetries [16], magneto-gasdynamics [17] etc. Historical notes can be found e.g.
in [18,19]. We note that the name of the EMP equation is not yet a consensus in the literature. For
instance, sometimes it can be referred just as Pinney equation.

Diverse generalizations of the EMP equation have been proposed, as for instance allowing C(t) to
have a dependence on time [8,19], the inclusion of dissipation [20,21], unbalanced systems of EMP
equations with different frequency functions [22], modified nonlinearities [23], stochastic differential
equations with additive noise [24]. Following the generalization trend, it would be relevant to extend
the EMP equation into the special relativity domain, with potential applications for the dynamics of
charged particles in high energy density fields [25]. To date only few results weakly related to special
relativistic EMP equations are available, in connection with the Dirac equation [26] and the relativistic
isotropic two-dimensional time-dependent harmonic oscillator [27]. Naturally, the relativistic extension
is not straightforward due to the intrinsic extra nonlinearity imposed by the presence of the Lorentz
factor. Moreover, the intimate connection between the EMP equation and the time-dependent harmonic
oscillator raises the question of what defines the relativistic harmonic oscillator. In this regard, the
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relativistic motion immediately induces anharmonicities even in the case of a quadratic potential with
a frequency-amplitude dependence [28,29]. Here we follow the approach of many authors [30–39],
adopting the spinless Salpeter equation [40] with a quadratic external potential as our definition of
relativistic harmonic oscillator. The choice is due to its simplicity, where just the Newtonian kinetic
energy is replaced by its special relativistic counterpart. This version of the relativistic harmonic
oscillator model has been recently experimentally probed [41].

The present work proposes a systematic approach towards the relativistic EMP equation and
beyond, using as a simple guiding principle the Eliezer and Gray [42] physical interpretation of the
Ermakov-Lewis associated first integral for the isotropic two-dimensional time-dependent harmonic
oscillator. The reason is that the Eliezer and Gray method based on the conservation of the angular
momentum of an auxiliary planar motion provides the standard physical reasoning behind the
conservation of the Ermakov invariant [43,44]. Moreover, the extension of the Ray-Reid Ermakov
systems [43] to the relativistic domain will be also obtained. In brief, a relativistic extension of the
celebrated EMP equation and extensions is proposed (which obviously has no direct relation to special
solutions of Klein-Gordon, Dirac or similar relativistic partial differential equations).

This work is organized as follows. In Section II, we review the Eliezer and Gray interpretation. In
Section III, we consider the relativistic isotropic two-dimensional time-dependent harmonic oscillator
and follow the Eliezer and Gray method, in order to identify a relativistic EMP equation together
with the associated conservation law. From the structure of the dynamical equations, the appropriate
relativistic Ray-Reid system will be also derived, as well as with the corresponding first integral. Section
IV provides an alternative derivation based on a dynamical rescaling of time parameter. Sections V
and VI deal with basic properties of the relativistic EMP equation, mainly in the autonomous case.
Section VII is dedicated to a nonlinear superposition law relating the solutions of the relativistic EMP
system. Finally, Section VIII is reserved to the conclusions and extra remarks.

2. The Eliezer and Gray physical interpretation

We briefly reproduce the Eliezer and Gray physical interpretation [42] of the Ermakov-Lewis
invariant, which will serve us as a guidance for a relativistic generalization of the EMP system.
Consider the Lagrangian

L =
1
2
(ẋ2 + ẏ2)−V(x, y, t) , V(x, y, t) =

κ2(t)(x2 + y2)

2
(2)

the corresponding auxiliary plane motion

r̈ + κ2(t)r = 0 , (3)

where r has the Cartesian components (x, y), and the EMP equation

ρ̈ + κ2(t)ρ =
J2

ρ3 , (4)

where J is a real constant. In terms of polar coordinates (ρ, θ), where ρ = |r|, x = ρ cos θ, y = ρ sin θ,
the equations of motion become

ρ̈− ρθ̇2 + κ2ρ = 0 , (5)
1
ρ

d
dt
(ρ2θ̇) = 0 . (6)

Equation (6) implies the constancy of the angular momentum

J = ρ2θ̇ = const. (7)
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assuming for simplicity an unit mass. Combining Eqs. (5) and (7) we derive Eq. (4). Considering
the equation for the x−component of the auxiliary motion together with Eq. (4), the constancy of the
Ermakov-Lewis invariant I given by

I =
1
2

[
(ρẋ− xρ̇)2 +

J2x2

ρ2

]
(8)

is directly verified, dI/dt = 0 along trajectories. Expressing in terms of polar coordinates, one has

I =
1
2
(J2 sin2 θ + J2 cos2 θ) =

J2

2
. (9)

Therefore, the invariance of I is equivalent to the invariance of the angular momentum of the auxiliary
plane motion.

For reference, it is worth to consider the Ray-Reid (RR) generalization [43] of the EMP system and
invariant, namely

ẍ + κ2x =
f (y/x)

yx2 , (10)

ÿ + κ2y =
g(x/y)

xy2 , (11)

where f , g are arbitrary functions of the indicated arguments. The RR first integral for Eqs. (10) and
(11) is

IRR =
1
2
(xẏ− yẋ)2 +

∫ y/x
f (s)ds +

∫ x/y
g(s)ds . (12)

One can directly verify that dIRR/dt = 0 along trajectories.

3. A relativistic Ermakov-Milne-Pinney system

Proceeding in strict analogy with the NR case, consider the equations of motion for the 2D
relativistic unit rest mass time-dependent harmonic oscillator, which can be derived [45] from the
Lagrangian

L = − c2

γ
−V(x, y, t) , V(x, y, t) =

κ2(t)(x2 + y2)

2
, (13)

where c is the speed of light and γ = [1− (ẋ2 + ẏ2)/c2]−1/2. The Euler-Lagrange equations are(
1− ẏ2

c2

)
ẍ +

ẋẏ
c2 ÿ = −κ2x

γ3 , (14)(
1− ẋ2

c2

)
ÿ +

ẋẏ
c2 ẍ = −κ2y

γ3 , (15)

which can be disentangled as

ẍ +
κ2

γ

x
γ2

x
=

κ2

γ

ẋẏ
c2 y , (16)

ÿ +
κ2

γ

y
γ2

y
=

κ2

γ

ẋẏ
c2 x , (17)
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where γx = (1− ẋ2/c2)−1/2, γy = (1− ẏ2/c2)−1/2. The equations of motion are in agreement with
[27]. Similarly to the NR case, employing cylindrical coordinates x = ρ cos θ, y = ρ sin θ, we have the
conserved angular momentum expressed as

J =
∂L
∂θ̇

= γρ2θ̇ . (18)

Moreover, we get the Lorentz factor expressible in terms of ρ, ρ̇ as

γ =

(
1 + J2/c2ρ2

1− ρ̇2/c2

)1/2

. (19)

The NR formal limit c→ ∞ yields γ = 1 also from Eq. (19). Using the angular momentum to eliminate
the angular velocity, we obtain

ẍ +
κ2

γ

(
x− ρρ̇ẋ

c2

)
= 0 , (20)

ρ̈ +
κ2

γ

(
1− ρ̇2

c2

)
ρ =

J2

γ2ρ3 . (21)

From the identity γ2(ρẋ− xρ̇)2 = J2 sin2 θ, it becomes self-evident that the quantity

IR =
1
2

[
γ2(ρẋ− xρ̇)2 +

J2x2

ρ2

]
(22)

is a first integral, since

IR =
1
2
(J2 sin2 θ + J2 cos2 θ) =

J2

2
, (23)

in complete analogy with the Ermakov-Lewis invariant for the NR problem. It can be also directly
verified that dIR/dt = 0 along the trajectories of the system (20)-(21). The invariant has the same
physical interpretation of the NR Ermakov invariant in terms of the conservation of the angular motion
of the associated auxiliary 2D motion. In this context, it is justified to interpret Eqs. (20) and (21) as
the (special) relativistic EMP system. Equation (21) is a relativistic EMP equation (REMP), and the
first integral in Eq. (22) is the relativistic Ermakov-Lewis invariant of the problem. Obviously, in the
formal limit c → ∞ one recovers the NR case. Understanding the Lorentz factor in the sense of Eq.
(19), the relativistic EMP system is a pair of nonlinear second-order ordinary differential equations for
x, ρ. Unlike the NR case, the equation for x is not uncoupled.

From the structure of Eqs. (20) and (21) and after some trial and error, it is possible to identify a
relativistic Ray-Reid (RRR) system, namely

ẍ +
κ2

γ

(
x− ρρ̇ẋ

c2

)
=

(
1− ẋ2

c2

)
f (y/x)
γ2yx2 −

ẋẏ
γ2c2

g(x/y)
xy2 , (24)

ÿ +
κ2

γ

(
y− ρρ̇ẏ

c2

)
= − ẋẏ

γ2c2
f (y/x)

yx2 +

(
1− ẏ2

c2

)
g(x/y)
γ2xy2 , (25)

where ρρ̇ = xẋ + yẏ and the Lorentz factor is understood as a function of ẋ, ẏ. The invariant for Eqs.
(24) and (25) is

IRRR =
γ2

2
(xẏ− yẋ)2 +

∫ y/x
f (s)ds +

∫ x/y
g(s)ds . (26)

It can be verified that dIRRR/dt = 0 along trajectories. It is apparent that Eqs. (24), (25) and (26) define
a RRR system and its invariant, showing a complete symmetry between the x and y variables and
recovering the RR system and invariant in the formal NR limit c→ ∞, as shown by comparison with
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Eqs. (10)-(12). A derivation provided by a dynamical rescaling of time will be described in the next
Section.

Although our treatment has as motivation the relativistic time-dependent harmonic oscillator, it is
clear that the invariants shown in Eqs. (22) and (26) do not depend on κ. Therefore, one is authorized
to allow for more general functional dependencies of κ, e.g. κ = κ(t, x, y, ẋ, ẏ, . . . ) in Eqs. (24) and (25),
maintaining the constancy of the RRR invariant. Similar remarks apply to the NR case [46–48].

4. Derivation from a dynamical rescaling of time

Start from the dynamical system

x′′ + ω2x =
f (y/x)

yx2 , y′′ + ω2y =
g(x/y)

xy2 , (27)

where a prime denotes derivative with respect to the independent variable τ, or x′ = dx/dτ, y′ =
dy/dτ, and where ω can be anything in the same spirit of the last Section. In the same way as for the
RR system, it is obvious that (27) possess the invariant

I =
1
2
(xy′ − yx′)2 +

∫ y/x
f (s)ds +

∫ x/y
g(s)ds ,

dI
dτ

= 0 . (28)

If we now move to a new independent variable t defined by

dt
dτ

= γ , γ =

(
1− ẋ2 + ẏ2

c2

)−1/2

, ẋ =
dx
dt

, ẏ =
dy
dt

, (29)

then it can be checked after some algebra that the RRR system (24) and (25) is recovered, with
κ2 = ω2/γ, and that the invariant (28) transforms into (26). The procedure gives a more transparent
derivation of the RRR system from a dynamical rescaling of time starting from the RR system.

5. The J = 0 case

For a vanishing angular momentum, one has θ̇ = 0 so that it can be chosen θ = 0, without loss of
generality. In this case, y = 0 and Eq. (20) becomes

d
dt
(γẋ) = −κ2x , γ =

(
1− ẋ2

c2

)−1/2

, (30)

which is [49] the equation for an one-dimensional (1D) relativistic time-dependent harmonic oscillator.
In the case of a constant frequency κ, obviously the energy is conserved. In terms of rescaled

variables x̄ = κx/c, t̄ = κt, v̄ = dx̄/dt̄, the corresponding first integral H1D ≥ 1 is

H1D = (1− v̄2)−1/2 +
x̄2

2
, (31)

with phase-space contour plots shown in Fig. 1. Clearly, only bounded trajectories are admissible, as
expected. The return points are located at x̄ = ±

√
2(H1D − 1)1/2. In rescaled coordinates, the NR limit

H1D ' 1 corresponds to circular trajectories in phase space. For larger values of H1D, the return points
are also larger, implying more relativistic effects and increasing anharmonicity, as seen in Fig. 1.

It is instructive to rewrite the conservation law in a Newtonian form,

v̄2

2
+ V1D(x̄) = 0 , (32)
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Figure 1. Phase-space contour plots of the energy first integral (31) for the 1D conservative relativistic
harmonic oscillator described by Eq. (30) with constant κ, for x̄ = κx/c, v̄ = ẋ/c and different values
of H1D, as indicated.

where the pseudo-potential V1D(x̄) is defined by

V1D(x̄) = − 1
2
+

1
2(H1D − x̄2/2)2 , (33)

shown in Fig. 2. In the NR limit, the variable x̄ is limited to small values, so that V1D = cte. +
x̄2/(2H3

1D) + . . . with H1D ' 1, while larger values of H1D correspond to enhanced relativistic effects
and anharmonicity.

Figure 2. Pseudo-potential V1D(x̄) from Eq. (33) and different values of H1D, as indicated.

The conserved energy can be used for the quadrature of the motion in terms of elliptic functions,
but the analytic solution is too cumbersome to be of much interest. Some exact periodic solutions for
the 1D conservative relativistic harmonic oscillator can be found in [50].
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6. Relativistic conservative Ermakov-Milne-Pinney equation

The REMP defined in Eq. (21) with J 6= 0 does not have collapsing (ρ→ 0) solutions due to the
inverse cubic term. For instance, suppose κ = cte. and the rescaling ρ̄ = κρ/c, t̄ = κt, v̄ = dρ̄/dt̄, J̄ =
κ J/c2, so that

dv̄
dt̄

+
1
γ
(1− v̄2)ρ̄ =

J̄2

γ2ρ̄3 . (34)

The energy first integral is

H = γ +
ρ̄2

2
≥ 1 , γ =

(
1 + J̄2/ρ̄2

1− v̄2

)1/2

. (35)

It is immediate to conclude that 0 < ρ̄ <
√

2H, otherwise H would be not conserved.
Rewriting in a Newtonian form yields

v̄2/2 + V(ρ̄) = 0 , (36)

with a pseudo-potential defined by

V(ρ̄) = −1
2
+

1 + J̄2/ρ̄2

2(H − ρ̄2/2)2 , (37)

shown in Fig. 3. It is possible to show that V(ρ̄∗) < 0, where 0 < ρ̄∗ < 2H is the equilibrium point of
V, viz.

ρ̄∗ =
1
2

(
−3 J̄2 +

√
9 J̄4 + 16 J̄2H

)1/2
. (38)

Figure 3. Pseudo-potential V from Eq. (37).

The return points correspond to V = 0, similarly to Fig. 2, with stable oscillations around ρ̄∗.
Elementary algebra shows that the condition for periodic motions (V(ρ̄∗) < 0) is equivalent to

J̄2 < F(H) =
4
27

(
−9H + H3 + (3 + H2)3/2

)
, (39)

or, sufficiently small angular momentum. In the NR limit one has J̄2 < (H − 1)2 disregarding
O(H − 1)3 terms, so that the periodicity condition can be shown to be automatically satisfied. The
characteristic function F is shown in Fig. 4. A numerical investigation shows that the periodicity
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condition is always meet, for meaningful initial conditions 0 < ρ̄(0) <
√

2H, −1 < v̄(0) < 1, as
expected.

Figure 4. Characteristic function F(H) from Eq. (39) for H ≥ 1.

The quadrature of Eq. (36) can be made in terms of elliptic functions, after determining the
return points corresponding to the potential well from Eq. (37). However, the result is exceedingly
complicated.

7. Nonlinear superposition law

Suppose ρ = ρ(t) a particular solution of the REMP equation (21). Introducing the new variables

Q =
x
ρ

, T =
∫ dt

γρ2 , (40)

where γ = γ(t) is given by Eq. (19) converts the relativistic Ermakov-Lewis invariant (22) into

IR =
1
2

(
dQ
dT

)2
+

J2Q2

2
, (41)

formally the same as the energy first integral for a 1D conservative NR harmonic oscillator. A
quadrature yields

Q =

√
2IR
|J| sin(JT + δ) , (42)

or

x = ρ sin
(

J
∫ dt

γρ2 + δ

)
, (43)

since IR = J2/2, adopting J > 0 and where δ is a constant phase. The nonlinear superposition law (43)
generalizes the Newtonian result [46] to the relativistic context. In concrete applications, typically the
particular solution ρ should be numerically found.

8. Conclusion

In this work, considerable progress was achieved, in the generalization of Ermakov systems
towards the special relativity domain. The Eliezer and Gray physical interpretation of the
Ermakov-Lewis invariant, was used as a guide for the derivation of the relativistic analog of the
EMP equation, together with the corresponding first integral for the relativistic planar time-dependent
harmonic oscillator. General aspects of the relativistic EMP equation have been addressed, and a
nonlinear superposition law was derived. In spite of the successful results, it is still possible to derive
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other classes of relativistic Ermakov systems, not arising from the correspondence with the Eliezer and
Gray physical interpretation. For instance, symmetry principles can be a guiding principle, although
the SL(2,<) group structure of non-relativistic Ermakov systems obviously tends to be broken in the
relativistic domain. In the same footing, to carry to the relativistic domain the linearization of standard
Ermakov systems would be a probably unfeasible task. Finally, an intriguing question remains about
the RRR system defined by Eqs. (24) and (25). If one starts from the Lagrangian (13) adding an
Ermakov term U(y/x)/(x2 + y2) to the potential V, we find precisely the system (24)-(25), where f , g
are suitable related to U, but with a factor 1/γ instead of 1/γ2 on all terms of the right-hand side. In
this case, the quantity IRRR in Eq. (26) would be not conserved, and no other first integral in direct
correspondence with the non-relativistic Ray and Reid invariant would be available. In other words,
the Hamiltonian structure from (non-relativistic) RR systems [47] is almost immediately translated to
the relativistic context, except for an ad hoc modification of the γ−factor power, as long as one prefers
to keep the existence of a Ray and Reid invariant.
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