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Abstract: We discuss the implementation of a suite of virtual diagnostics at the FACET-II facility
currently under commissioning at SLAC National Accelerator Laboratory. The diagnostics will
be used for prediction of the longitudinal phase space along the linac, spectral reconstruction of
the bunch profile and non-destructive inference of transverse beam quality (emittance) using edge
radiation at the injector dogleg and bunch compressor locations. These measurements will be folded
in to adaptive feedbacks and ML-based reinforcement learning controls to improve the stability and
optimize the performance of the machine for different experimental configurations. In this paper we
describe each of these diagnostics with expected measurement results based on simulation data and
discuss progress towards implementation in regular operations.
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1. Introduction

Experiments at the forefront of e-beam accelerator R&D require increasingly finer measurement
and control of the beam properties during acceleration, transport and delivery to users. For example,
research planned at the Facility for Advanced Accelerator Experimental Tests II (FACET-II) [1] under
commissioning at SLAC National Accelerator Laboratory aims to demonstrate ultra-high gradient
plasma acceleration with preservation of beam quality as well as study the physics of extreme beams
with ultra-short bunch lengths (sub ym) and ultra-high peak currents (> 100 kA). These kinds of
applications pose a challenge for state-of-the-art diagnostics as the high intensity and very short pulse
duration limits the applicability, effectiveness and accuracy of traditional measurement techniques.
This requires a re-thinking of the existing suite of diagnostics which will be used to characterize and
control the e-beam properties and facilitate the success of the experimental program.

In this paper we discuss the application of Machine Learning (ML) methods for developing
a suite of virtual diagnostics to be used for electron beam prediction and control at the FACET-II
facility. These virtual diagnostics will provide a shot-to-shot non-destructive measurement of the
electron beam longitudinal and transverse properties along the accelerator and serve as input for
conventional feedbacks and optimization algorithms based on reinforcement learning that can tailor
the beam properties for specific experimental applications (see Fig. 1 for schematic). These diagnostics
will work in tandem with traditional measurement techniques to provide otherwise unavailable
information to experimenters which will aid in both the machine setup, optimization and interpretation
of experimental results during offline data analysis. We will discuss a number of examples of
ML-applications of FACET-II in this work: reconstruction of e-beam Longitudinal Phase Space (LPS)
along the accelerator, spectral virtual diagnostics for enhancing the accuracy and confidence of beam
profile and LPS predictions, ML-based image analysis for inferring e-beam emittance using edge
radiation, adaptive model-based 6D phase space predictions, and reinforcement learning controls. We
describe the ML methods applied in this work in the following section and summarize key results
each ML-driven diagnostic and control method in sections 3.1-3.5.

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.


https://orcid.org/0000-0000-000-000X
https://doi.org/10.20944/preprints202101.0115.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 January 2021 doi:10.20944/preprints202101.0115.v1

2 of 11
Virtual non-invasive
diagnostics at FACET-II
ML analysis of edge radiation ML-based ML enhanced THz diagnostics Adaptive model energy spectrum
for emittance measurements LPS predictions for bunch length measurements based 6D phase space predictions

ML driven control

Model independent ML-assisted Model dependent
adaptive feedback controls reinforcement learning controls

Edge radiation diagnostic THz diagnostic

Lineout of Intensity at Y = 0

) Destructive TCAV-based \
LPS measurements

RF Gun
L0

% L]
Frequency [THz)

Final Focus and Experiments

ML-based
LPS predictions

Adaptive model-based 6D
phase space predictions

Figure 1. Schematic of the planned virtual diagnostic suite and ML driven controls at FACET-II

2. Materials and Methods

One of the main running configurations for PWFA experiments at FACET-II will involve
accelerating two bunches from the photocathode to the interaction point (IP) at the plasma entrance
with specific longitudinal profile properties and drive-witness bunch separation. For a full description
of PWFA experiments at FACET-II see Ref. [2]. The major goals for the PWFA experiments will be
to demonstrate pump depletion of the 10 GeV drive beam and acceleration of the witness beam to
approximately 18 GeV while preserving good beam quality. The figures of merit for the beam quality
will be preservation of energy spread and emittance of the witness bunch, and these will need to
be measured on a shot-to-shot basis for both the incoming distribution and the accelerated witness
beam. To this end, accurate measurements of the bunch profile entering the plasma are essential for the
success of the experimental campaign. Using ML based virtual diagnostics to non-destructively predict
the LPS distribution at the entrance of the plasma will provide previously unavailable information
which can be used to both understand experimental results from PWFA and tune the beam parameters
to facilitate the PWFA interaction.

2.1. ML-enhanced diagnostics

Previous work has demonstrated the feasibility of using Machine Learning (ML) models as virtual
diagnostics to non-destructively predict the LPS distribution of FACET-II single bunch operation (in
simulation) and at LCLS (in experiment) [3]. These studies used neural networks to create a mapping
between non-destructive diagnostic inputs (e.g. linac and e-beam diagnostics available on a single
shot basis) and destructive diagnostic output which measures the beam LPS. What was previously
not included the simulation study of Ref. [3] is the impact of LPS measurement resolution on the
ML-based LPS reconstruction. At FACET-II the LPS distribution of the electron bunch can be measured
destructively at the entrance of the plasma with an X-band TCAV operating at a peak voltage of
20 MV with a longitudinal resolution of a few ym RMS. This introduces a challenge for accurately
characterizing the longitudinal bunch profile, as the accelerator is expected to produce very short
bunches (0; < 1 pm) beyond the TCAYV resolution. In section 3.1 of this work we examine the effect
of the TCAV measurement on the performance of the ML-based virtual diagnostic and discuss its
application in the FACET-II two-bunch operation mode. We present results from 3,125 particle tracking
simulations [4] of the FACET-II linac from the exit of the injector to the end of the linac with induced
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jitter of key accelerator and beam parameters described in Table 1. The simulation data is used to
train a ML-based virtual diagnostic for the two-bunch LPS and results show very good agreement
between the simulated LPS distribution as measured by the TCAV and the LPS distribution predicted
by the ML model. Due to TCAYV resolution limits there is some discrepancy when we use the projection
of the measured LPS distribution to infer the current profile at the entrance of the plasma. This
discrepancy affects the accuracy of the ML-based virtual diagnostic for high current shots with short
bunch length. In order to flag these shots and increase the confidence and accuracy of the virtual
diagnostic predictions we discuss the incorporation of spectral signals in a spectral virtual diagnostic
in section 3.2.

In addition to longitudinal diagnostics, transverse diagnostics of the beam emittance are of
critical importance for FACET-II's aim of achieving acceleration in PWFA while preserving beam
quality. To address this need we will be implementing a series of single-shot non-destructive emittance
measurement based on the interference of edge radiation at the location of bunch compressors (BC11,
BC14 and BC20) as well as at the exit of the photoinjector before the first linac section (see Fig. 1).
These diagnostics will provide a snapshot of the emittance at each point along the linac allowing
experimenters to outline critical sources of emittance growth improving understanding of the beam
dynamics in the transport, acceleration and compression from the photoinjector to the experimental
area. The diagnostics will require advanced image analysis in order to obtain a real-time estimate of
the beam emittance from the edge radiation interference pattern. This analysis will be conducted using
Convolutional Neural Networks (CNNs) trained on image data from simulations of the edge radiation
inteference pattern with beams of different emittance at different points along the linac. An example
of this kind of simulation is give in section 3.3. We will incorporate signals from the ML-enhanced
suite of diagnostics into control methods to improve the quality and stability of the electron beams as
described in the following paragraphs.

2.2. ML-enhanced control

While powerful ML methods are able to learn complex input-output relationships in large many
parameter systems directly from data, their accuracy will degrade if the system for which they have
been trained changes with time. One way to compensate for time variation is to repeatedly re-train
several layers of an ML tool such as a CNN, but this may be problematic for particle accelerator
applications such as FACET-II where, for example, acquiring new LPS training data requires re-tuning
a beam line in order to transport the beam to a TCAV-based diagnostic rather than to the interaction
point.

Another approach to dealing with time-varying systems is the use of model-independent adaptive
feedback. Adaptive feedback is by design applicable to unknown and changing systems. Recently an
adaptive tuning method known as extremum seeking (ES) has been developed for the ptimization
and stablization of unknown, time-varying, nonlinear dynamic systems which is able to tune many
parameters simultaneously based only on noisy measurement data [5]. This ES method has been
implemented for various particle accelerator applications including virtual diagnostics and beam
optimization. In [6] an adaptive ES feedback-based virtual LPS diagnostic was developed which
was able to non-invasively predict TCAV LPS measurements and track changing beam parameters
over a wide range of bunch lengths and bunch-to-bunch separation at FACET. ES was also recently
demonstrated for online multi-objective optimization for simultaneous trajectory control and transverse
emittance growth minimization at the electron beam line of the AWAKE plasma wakefield accelerator
at CERN by adaptively simultaneously tuning 15 parameters: 2 solenoids, 3 quadrupole magnets,
and 10 stearing magnets [7]. One possible limitation of adaptive feedback is that it is usually based
on local iterative methods whose convergence speed may be lengthy or which may become stuck
at local extrema in very large parameter spaces. Recently, a first of its kind adaptive ML approach
was demonstrated for the automatic control of the LPS of the electron beam in the LCLS FEL [8]. In
[8] a neural network was trained to map TCAV-based LPS measurements directly to the accelerator
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parameters required for those beam properties, the NN’s predictions were able to find the correct
neighborhood of parameter space, after which ES was able to adaptively tune all of the parameters to
zoom in on and track their optimal settings despite noise and time-variation of both the beam and
accelerator parameters.

In contrast to doing adaptive feedback and system modeling separately, a Reinforcement Learning
(RL) approach can be used which combines both model learning and control. In RL an “agent" (i.e.
the controller) learns how to interact with an environment over time in order to achieve the highest
long-term reward. In the context of accelerator tuning, the “environment" is the accelerator and the
reward could be, for example, specific beam shapes one wants to achieve. Critically, RL takes the
present system state (e.g. system control settings and observable outputs) into account when choosing
the next action to take. Over the course of many interactions with the environment the RL algorithm
learns to improve its overall control strategy while retaining information about previously-visited
environmental states. Some RL algorithms directly learn a map from system states to actions (a learned
policy). Others use a learned model that estimates the likely future reward that will be obtained when
specific actions are taken in various observed system states. These predictions can then be combined
with simple policies to determine actions to take. RL has been applied to the problem FEL tuning at
LCLS [9] and FERMI@Elettra [10], and it is at present being developed for a variety of other online
optimization and control tasks in accelerators (for example, round-to-flat beam transforms at UCLA
[11], beam size control at AWAKE).

Deep RL leveraging neural networks is appealing for the task of LPS tuning in part because it can
directly learn policies from images. Deep RL has been used for end-to-end visuomotor control tasks in
robotics cite and game-playing tasks where the state of the system is given as an image. In the case of
FACET-I], both LPS image and upstream diagnostics, such as the virtual cathode camera (VCC) could
be used to inform the present system state. By directly using images, features that otherwise would
not be captured by bulk scalar metrics derived from the images may be learned from and exploited in
tuning, potentially leading to finer control over the LPS. In section 3.4 we discuss the use of combined
adaptive feedback and ML for virtual 6D diagnostics of the FACET-II beam’s phase space and for
active feedback control of the beam properties.

3. Results

3.1. Longitudinal Phase space reconstruction

We present three examples of the simulated LPS profiles at the FACET-II experimental area as
measured by the TCAV in Fig. 2 with corresponding current profiles and prediction from the ML-based
virtual diagnostic. This ML tool is a NN that takes scalar inputs from accelerator and electron beam
diagnostics and outputs a prediction of the 2D LPS image. The diagnostic inputs can be measured

Simulation Parameter Scanned Range
L1 & L2 phase [deg] +0.25
L1 & L2 voltage [%] +0.1
Bunch Charge [%] +1
Input to ML model Accuracy
L1 & L2 phase [deg] +0.25
L1 & L2 voltage [%] +0.05
L at BC (11,14,20) [kA] +(0.25,1,5)
Beam centroid BC (11,14) [m] N/A

Table 1. Linac and e-beam parameters scanned in the 5° simulations of the FACET-II accelerator. The
ranges are chosen closely based on the jitter parameters from the FACET-II TDR [12]. The diagnostics
fed to the ML model include random errors introduced artificially to approximate the measurement
accuracy present in the accelerator.
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Figure 2. Example shots from numerical simulation of the FACET-II two-bunch operation mode with
nominal jitter values given in Table 1. The ML model accurately predicts the LPS distribution including
chirp, time separation and bunch charge ratio. The current profile matches well with what is measured
on the TCAV. As shown in Fig. 3 this may deviate from the true current profile at the IP due to
resolution limits of the TCAV for some high current shots.

non-destructively on a single shot basis and include random offsets to the readings to simulate expected
measurement accuracy (see Table 1). The three distributions shown represent an under-compressed,
over-compressed and nearly fully-compressed (nominal) beam respectively. Note that the head of
the bunch is on the left of the images. The ML model we used was a three-layer fully-connected
neural network with (500,200,100) neurons in each successive hidden layer and a rectified linear unit
activation function for each neuron. The network was trained using the open source ML library
Tensorflow, and two separate models with the same architecture were trained for the 2D LPS prediction
and the 1d current profile prediction. As evidenced Fig. 1, we see very good agreement between
the LPS profiles measured by the TCAV and those predicted by the ML model. There is also good
agreement between the ML-predicted current profiles and those extracted from the TCAV image. The
variety of LPS images input to the ML model for training result from the expected shot-to-shot-jitter of
linac and e-beam parameters outlined in the FACET-II Technical Design Report (TDR, see Table 1) [12].
The nominal settings produce a ~ 150 ym bunch spacing, a 2:1 ratio between the peak currents and
a 3:1 ratio in the bunch charge between the drive and witness beam. The variation in bunch profile
from shot-to-shot jitter results in a 9 % RMS variation in the drive-witness charge ratio, a 30 pum RMS
variation in the bunch separation and a 36 % RMS variation in the ratio of the peak current from the
nominal settings. These parameter variations are well predicted by the ML model.

As discussed above, the FACET-II two-bunch configuration operates at near full compression and
will generate very short bunches with RMS sizes of a few pum putting them at the limit of the TCAV
resolution. This means the values measured for the peak current on the TCAV sometimes differ from
the values at the IP and therefore so will the prediction from the ML model, which is trained using
TCAV measurements as inputs. We examine this discrepancy in detail in Fig. 2 where we show the
same current profiles from the three example shots in Fig. 1 as measured on the TCAV and compare
this with the current profile we calculate from the distribution at the IP binned at 0.25uym per pixel.
There are a few observation we can make by looking at Fig.2 (a)-(c). The first is that the peak current
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Figure 3. (a)-(e) Single shot comparisons of the current profiles measured by the TCAV and calculated
from the macroparticle distribution in simulation dumped at the IP. The shots match those displayed
in Fig. 1. (d)-(f) Comparison of the peak current measured by the TCAV vs. at the IP for the drive and
witness beam. The plots show that the TCAV measurement underestimates the peak current value and

smears out some details of the current distribution for the very short bunches which will be produced
at FACET-IL

values measured by the TCAV under-estimate the true value for shots with peak current greater than
~ 35kA. We note that these high peak currents are greater than those which we plan to deliver for the
two-bunch pump depletion experiments outlined in Ref. [2]. Nonetheless, close to the nominal settings
(as shown in Fig. 2,c) the correct value of the ratio of the peak currents may be under-estimated if
the witness bunch current profile is poorly resolved by the TCAV measurement. To quantitatively
understand the limits imposed by the TCAV measurement we can estimate the longitudinal resolution

as follows:
E, \/ 03 + Bse )
eVrfkrf|sinA1/)| \/M M
where E, is the electron beam energy V, r k, s the TCAV voltage and wavenumber, Ay is the
phase advance between the TCAV and the measurement screen, os is the resolution of the screen
(we assume 4um for a transition radiation target), Bs is the beta function at the screen € is the beam
emittance and Br is the beta function at the TCAV. The ~ 35 kA max resolvable peak current come
from the constrained optimization of the beta function at the screen and at the TCAV while meeting the
beam stay-clear constraints in the experimental area and mitigating loss of resolution from chromatic
errors and emittance growth in the transport. For a 10um normalized emittance at 10 GeV with a phase
advance of 37t/2 between TCAV and screen, the optimized values of S and Bg are 107 and 6.5 m give
a resolution of o, ,,;, = 4.58 um. Given a Gaussian drive bunch at 1.5 nC charge this corresponds to
Iinax = 39.2 kA which is in reasonable agreement with the trend shown in the scatter plot in Fig. 2 (d).
For shots that are not beyond the TCAV resolution we can see from Fig. 2 (d)-(e) that we can
correlate the TCAV measured peak current with the peak current at the IP. These shots are mostly in
the region defined by Ik grive < 30KA and I ir < 16 kA as measured on the TCAV. Some shots in this
region still show large discrepancy between the TCAV current profile and that measured at the IP and
these represent the spiky ‘double-horn’ type distributions in the drive and witness beam exemplified
in Fig. 2 (a). One of the challenges this particular virtual diagnostic faces is to flag wether or not a
single shot falls within the ‘high-current’ region beyond the TCAV resolution. Accurately determining
this on a shot-to-shot basis will provide added assurance that the current profiles predicted by the ML
model map to the electron beam current profile at the IP and we discuss efforts to address this issue in
the following section.

0z
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3.2. Spectral virtual diagnostics

One potential method to address the current profile resolution limits of virtual diagnostics trained
on TCAV data would be to use a secondary non-destructive diagnostic in tandem with the ML
prediction that is sensitive to changes in the peak current beyond the TCAV resolution [13]. This
would help identify the region in which a given shot falls. The secondary diagnostic may be a mid-IR
and/or Thz spectrometer similar to those described in Ref. [14,15] and could use diffraction or bend
radiation as a non-destructive radiation source. It may also be possible to implement a simple upgrade
(adding an appropriate set of spectral filters) to the existing radiation-based bunch length monitor
at the exit of the final bunch compressor (see Ref. [16]) to mimic a more complicated spectroscopic
measurement. This would allow us to measure the integrated radiation signal over a given frequency
band proportional to the bunch length for the high peak current shots. Figure 4(a) shows example of
high peak current shot (blue) that would be smeared out on the TCAYV, thus appearing similar to a
lower current shot (red) on the TCAV. However, the corresponding shots’ spectrum is clearly different
- see 4(b). We use this spectrum in two ways: to train a spectral virtual diagnostic and to flag high
current (bad) shots. First, we train a VD using the spectrum as an input to a NN rather than scalars as
described in subsection 3.1. As shown in Ref. [13], the spectral VD predicts the current profile more
accurately than the scalar VD. We can quantify the discrepancy between the predictions of the two VDs
on a single shot basis and if this is greater than some pre-determined threshold, we may supplement
the prediction of that shot with a low-confidence label.

Second, we use an integrated spectrum signal in some frequency band (shown by grey interval in
4(b) to veto suspect shots beyond the TCAV peak current resolution. We optimize the boundaries of
this band pass filter by maximizing the difference between low and high peak current shots. Higher
peak current shots would have more spectral content at higher frequencies. Figure 4(c) shows the
fraction of shots that could be trusted with high reliability to be within the TCAV resolution. The
measured TCAV current should be correlated with the current at the IP for shots that are within the
TCAV resolution - as shown in Figure 4(d) for the optimized frequency band. Shots with spectral
intensity smaller than the a pre-defined threshold (shown in black line) will be flagged. Determining
on a shot-to-shot basis if the predicted TCAV current profile is valid will be complementary to the
spectral VD, increasing the confidence in that prediction.
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Figure 4. (a) Single shot current profile at the interaction point (IP) of high and low peak current profile
that would be appear similar on the TCAV and (b) their matching spectrum. (c) Fraction of shots that
are within the TCAV resolution for various frequency bands. (d) Maximum predicted TCAV current vs
integrated spectral intensity that was optimized to maximize the fraction of shots in (c). Corresponding
maximum IP current is shown in the colorbar.

Using the spectrum, we obtain increased confidence in the overall VD prediction, especially in
the cases of high current shots. In addition, spectral VD is able to resolve shot-to-shot features of the
electron beam (such as microbunching in the LPS) in cases wherein scalar VD isn’t applicable at all
since integrated scalar beam diagnostics cannot capture them.

3.3. Emittance reconstruction using edge radiation

Non-destructive single-shot monitoring of beam emittance with ML-based image analysis will
be carried out at FACET-II by training CNNs to predict the beam emittance given a 2D interference
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pattern of edge radiation emitted by the electron beam. This technique was previously studied in
applications for the Siberia-1 electron storage ring [17] and the FERMI free electron laser [18]. We
have carried out simulations of the edge radiation interference process at FACET-II using the code
Synchrotron Radiation Workshop (SRW) [19]. Simulation results for two different emittance beams are
shown in Fig. 5. The blurring of the interference fringes at the larger emittance value of 1.2 um is visible
to the naked eye and is also evidenced in the lineouts displayed in Fig. 5 c. We will plan on training
CNNs in a supervised learning paradigm using multiple simulations of the edge radiation for different
electron beams and train the ML-based image analysis software with simulation and experimental
data. This will be accomplished starting from the photoinjector and progressively moving down the
accelerator where the alignment tolerances for the radiation pattern generated at the magnet edges
becomes tighter as the electron beam energy increases.
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Figure 5. Examples of edge radiation interference patterns for beams of different emittance at FACET-II
with corresponding lineouts. The interference pattern will be used as input to a CNN based image
analysis which will determine the beam emittance from the 2D images in real-time.

3.4. Adaptive feedback with ML for virtual 6D diagnostics and control

A proof of principle adaptive model-based virtual diagnostic was demonstrated at FACET [6]
and shown to track the TCAV measurement-based LPS non-invasively based only on accelerator
readouts and an energy spread spectrum of the beam. In [6] the focus was on tracking time-varying
accelerator parameters and predicting 1D current profiles. Recently, this approach was studied in
simulation for FACET-II in which the 2D LPS was predicted and tracked based on energy spread
spectrum measurements alone [20]. Figure 6 shows one simulation-based example of adaptive tuning
that adjusts parameters to match two initially different energy spread spectra, such as those that will
be measured non-invasively at FACET-II, and the result is a match of the LPS and its projections.
The method works by repeatedly comparing the measured and simulated energy spread spectra and
adjusting multiple components of the model in order to get a close match. Once the spectra are in
agreement the physics model’s constraints result in a unique reconstruction of the electron bunch’s
LPS.

Such an adaptive model tuning-base approach in which an online model is adjusted in real time
based on beam and accelerator component measurements in order to give more accurate predictions of
the beam’s 6D phase space and to track both beam and accelerator parameters as they drift with time.

Once such an adaptive model-based diagnostic is running, it not only provides a prediction of the
2D LPS, but of the entire 6D phase space of the beam since it is adjusting the 6D LUCRETIA tracking
code [4]. Figure 7 shows one example of a simulation of one section of bunch compression in FACET-II
for a 2 nC beam using 2e5 macroparticles. If this model had been tuned online to match all possible
real time diagnostics from FACET-II, then based on previous results [6,20], it is expected to provide
a virtual diagnostic of the actual beam’s 6D phase space. Furthermore, such an adaptively tuned
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Figure 6. Simulation-based demonstration of adaptive tuning-based phase space diagnostic.
Adaptively tuning the model to match a measured energy spread spectrum (A). Once the spectrum
matches the LPS is uniquely reconstructed (B). Projection onto the z-axis gives an accurate diagnostic of
the current profile (C). Projection onto the E-axis gives an accurate diagnostic of the energy profile (D).
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Figure 7. Simulation results showing the 6D phase space evolution of electron bunch compression in
FACET-II. Axes are shown with arbitrary units with the same ranges before and after compression to
show the difference.

model-based diagnostic approach will utilize all of the non-invasive diagnostics described in this paper
as inputs to help more accurately match model predictions with the actual beam. Finally, the real time
beam data provided by an adaptive diagnostic can be used to perform real time feedback control such
as maintaining a desired phase space or to tune the beam to achieve desired custom current profiles
and phase space distributions, as demonstrated in simulation in [20].

3.5. Reinforcement learning controls

For FACET-II, we plan to implement and test deep RL for the injector and linac. The RL algorithm
takes present images of the LPS, external state information like the present settings and virtual cathode
camera images, and a target LPS image to decide what the next setting changes should be. This is then
repeated until the target phase space is achieved. Initial studies of this RL approach, and comparisons
with approaches outlined above, will be conducted during the commissioning stage of the FACET-II
accelerator which is currently underway and results will be reported on in future publications.

4. Discussion

In this paper we have described the approach for implementing a suite of ML-based virtual
diagnostics and ML based controls to be used in regular operations at the FACET-II accelerator
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facility. These ML based tools will be used to aid machine setup, optimize beam delivery for
different experiments, on-the-fly data analysis to rapidly extract beam parameters, and offline data
analysis/interpretation of experimental results. Moving from proof-of-concept demonstrations of to
regular deployment of these diagnostics in accelerator operations will require addressing the major
challenge of how to obtain a reliable and accurate measures of the uncertainty associated with ML
model predictions. To this end we are planning on employing redundancy in our ML-based predictions
of beam properties e.g. using spectral data and scalar linac parameters to independently predict the
beam current profile. Part of the challenge of transitioning these methods to operation will also require
understanding how to effectively re-train ML models in the presence of machine drifts. Progress in
this area will begin by quantifying the ML-model accuracy over time and retraining the model as the
observed prediction error increases beyond some acceptable threshold.
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