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Simple Summary: Plasma activated liquids (PAL) can have anticancer effects and act selectively 

between cancer and normal cells. They represent a possible new anticancer therapy with a relatively 

easy clinical application. The objective of this study was to activate cell growth media and phosphate 

buffered saline by streamer corona discharge in ambient air, which enriched them with reactive 

oxygen and nitrogen species, here in optimum ratio of hydrogen peroxide and nitrites. Both PAL 

decreased the cell viability and induced apoptosis in three human cancer cell lines (melanoma, 

glioblastoma and pancreatic cancer), while no apoptosis was observed in normal primary human 

dermal fibroblasts upon sensitive plasma activation. Moreover, the first 30 minutes of cancer cell 

incubation in PAL were enough to start processes leading to the cell death. The observed selectivity 

of PAL effects was dependent on correctly chosen plasma activation time and PAL concentration.  

Abstract: Plasma medicine is a new field focusing on biomedical and clinical applications of cold 

physical plasmas, including their anticancer effects. Cold plasmas can be applied directly or 

indirectly as plasma activated liquids (PAL). The effect of plasma activated cell growth medium 

(PAM) and plasma activated phosphate buffered saline (PAPBS) were tested using a plasma pen 

generating streamer corona discharge in ambient air, on different cancer cell lines (melanoma A375, 

glioblastoma LN229 and pancreatic cancer MiaPaCa-2) and normal cells (human dermal fibroblasts 

HDFa). The viability reduction and apoptosis induction were detected in all cancer cells after 

incubation in PAL. In melanoma cells we focused on detailed insights to the apoptotic pathways. 

The anticancer effects depend on the plasma treatment time or PAL concentration. The first 30 

minutes of incubation in PAL were enough to start processes leading to the cell death. In fibroblasts, 

no apoptosis induction was observed, only PAPBS, activated for longer time, slightly decreased 

their viability. Anticancer effects of PAM and PAPBS on cancer cells showed selectivity compared 

to normal fibroblasts, depended on correctly chosen activation time and PAL concentration. This 

selectivity, supported by optimum ratio of hydrogen peroxide and nitrites in PAL, is very promising 

for potential clinical applications. 
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1. Introduction 

Plasma medicine is relatively new interdisciplinary field of medicine with the goal of therapeutic 

applications of cold atmospheric plasmas on human organism. Cold plasma is already used in some 

countries to sterilise medical equipment [1] or to enhance wound healing [2] and more clinical 

applications are being developed including cancer therapy [3,4]. 

Plasma is an ionized gas formed by electrons, positively and negatively charged ions, photons 

and neutral atoms and molecules including radicals [5]. Cold atmospheric plasma can be generated 

in strong electric field and its overall macroscopic (gas) temperature can be kept as low as at room 

temperature while keeping high energy electrons. Therefore, it is suitable for applications on 

thermosensitive materials, as well as living cells and tissues [6]. All biological effects of cold plasma 
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are induced by physical factors (electromagnetic field, radiation) or chemical factors, mostly reactive 

oxygen and nitrogen species (RONS) generated by the plasma. In this work we focus on indirect 

plasma treatment with so called plasma activated (stimulated) liquids (PAL) – liquids that were 

treated with plasma and subsequently added to cells. Upon PAL application, the only factor affecting 

the cells are RONS [7], which are considered as key agents in plasma therapy [8]. RONS naturally 

play an important role in many physiological processes, but it is difficult to exactly isolate their 

function. Although RONS also contribute in cell proliferation, it has been shown that plasma can 

increase their intracellular concentration and can activate different signalling pathways in cells. Low 

concentration increase of RONS is well tolerated because they are neutralized by the action of 

protective enzymes, such as superoxide dismutase or catalase. The effect of higher concentration of 

reactive oxygen species is already used in different cancer therapies, for example in radiotherapy, 

photodynamic therapy or some types chemotherapy [9], but the action of plasma generated RONS in 

PAL is milder, because they are present only in extracellular environment. It has been shown that 

there is a therapeutical window, when plasma do not harm healthy cells, but induce apoptosis in 

cancer cells [10,11]. However, it is needed to find the right plasma treatment for each plasma source 

and geometry [3, 12]. In most studies, plasma is generated by plasma jets using noble gases (He, Ar), 

which contribute to different RONS production and composition than discharges in ambient air. 

Dynamics of chemical species evolution in plasma discharge is very complex, therefore the exact 

types of RONS or their chemical reactions have to be studied in more details [13] as well as their 

interaction with liquids and living cells or tissues. As the most important RONS generated in PAL 

are considered H2O2, .OH, HO2., O, 1O2, O2.-, O3, .NO, .NO2, NO2-, NO3-, ONOO- and chlorine reactive 

species, if the liquid environment contains Cl [10,14–16]. H2O2 alone in higher concentrations acts 

cytotoxically, but when the more specific and selective effect is required, other mechanisms must be 

applied. The synergistic effect of H2O2 and NO2- was shown when killing cancer cells [9,17–19] while 

the role of NO3- is not clearly established. Typically, no additional effect of NO3- was observed [15,19], 

although in some studies a different cell viability was achieved by varying NO3- concentration [12]. 

Short-lived peroxynitrite ONOO- and singlet delta oxygen 1O2 also play important roles in 

contribution to anticancer effects [17,20].  

PAL have potential in clinical anticancer applications and are safer for a patient than a direct 

plasma treatment, who needs not a direct contact with high voltage. PAL can be injected into the 

tissues, even where the direct plasma treatment is not possible, for example in peritoneal treatment 

or treatment of micrometastases. PAL keep their anticancer properties for a longer time, so they can 

be prepared in advance and stored [21], [22]. In this work we focus on two PAL – plasma activated 

cell growth medium (PAM) and plasma activated phosphate buffered saline (PAPBS). The anticancer 

effects of plasma activated water or plasma activated Ringer lactate solution have been also 

investigated [23].  

The studies on PAM conducted only in last decade [24], showed that PAM can reduce cell 

viability in different cancer cell lines – glioblastoma [24–26], breast cancer [22], [25], bladder cancer 

[27], lung cancer [22], hepatic cancer [22], colorectal [28] or ovarian cancer [29] cells including 

chemoresistant ovarian carcinoma cells [30]. Plasma application does not seem cause so many side 

effects as the current cancer therapies and the in vitro and first in vivo animal experiments propose its 

universal use on different cancer types. Recent studies revealed that plasma can induce 

immunogenetic cell death by expressing damage-associated molecular patterns (for example 

calreticulin) in the cancer cells after plasma treatment [31]. It means that the clinical application of 

plasma (and PAL) could lead to better results than those observed in vitro or in vivo on 

immunosuppressed mice, because the patient’s own immune system could contribute in fighting 

against the cancer.  

Although the anticancer effects of PAM are very promising, detailed insight into their chemical 

changes are difficult, because of their complex composition and many possible reactions between 

RONS and medium compounds. Therefore, other, more simple liquids, such as phosphate buffer 

saline (PBS), are being studied, although there are still not as many studies on PAPBS than on PAM 

[15,23]. Another advantages of PBS in in vitro experiments is that it is not cell line specific as cell 

growth media, and if the plasma treatment is accurate, the pH of this buffered solution remains 
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physiological (plasma activated water or other non-buffered solutions typically become acidic after 

plasma treatment [20]). PAPBS was shown capable of decreasing viability in glioblastoma cells [15,23] 

or pancreatic cancer cells [23]. 

Systematic studies with PAM and PAPBS on normal cells are still lacking, but selective effect on 

cancer cells was observed in study comparing PAM application on glioblastoma cells and astrocytes 

[24], although the same activated PAM decreased fibroblasts proliferation by 40% [26]. PAM also 

decreased viability of breast cells [5].  

In this work we studied both PAM and PAPBS activated by streamer corona discharge in 

ambient air, unlike most of studies that typically use plasma jets operating with noble gases. Ambient 

air used as a plasma generating gas is cheaper, broadly available, and is good precursor of RONS. 

This makes our portable plasma pen unique and easily applicable in future clinical practise 

worldwide. The same plasma source and PAM have been successfully tested in vitro to induce 

apoptosis in several cancer cell lines and the key possible mechanisms responsible for the plasma and 

PAM selectivity have been identified, especially the role of secondary 1O2 inactivating the protective 

catalase on the membranes of cancer cells [14,32].  

Here, the focus is set primarily on the effect of plasma activated liquids on human melanoma 

cells A375. Melanoma is one of the most aggressive types of cancer and the deadliest skin cancer with 

around 200 000 new cases detected annually [33]. The occurrence of melanoma on the human skin 

makes it an easy target for plasma treatment with no surgical need. However, after metastases spread, 

PAL injections could be applicable.  

Except the cell viability change upon exposure to PAM and PAPBS, the apoptosis induction was 

also investigated. Apoptosis, or programmed cell death, is an important and active regulatory 

pathway of cell growth and proliferation in healthy tissues. After plasma treatment, it is a desirable 

cell death type of cancer cells, because it does not cause significant inflammatory response in an 

organism [34]. In most studies that investigated plasma or PAL induced cell death type, apoptosis 

was confirmed [35], but necrosis also occurred [36]. Another still unclarified question is the exact 

mechanisms or cell signalling pathways, which are activated by plasma to induce the cell death. Two 

main points in intracellular signalling are caspases and mitochondria, therefore the activity of caspase 

3 and 7 and a change in mitochondrial membrane potential were studied here. Caspases are cysteine 

proteases with important roles in apoptosis propagating process in response to proapoptotic signals. 

The effector caspases, such as caspase 3 and 7, act further downstream and direct cellular breakdown 

through cleavage of structural proteins. Activation of these caspases is thus a hallmark of apoptosis. 

Mitochondria are crucial cell organelles and contain key regulators of cell death processes. 

Mitochondrial membrane potential changes have been implicated in apoptosis, necrotic cell death, 

and caspase-independent cell death processes. Depolarization of the inner mitochondrial membrane 

potential is thus an indicator of the mitochondrial dysfunction and cellular health, which has become 

increasingly important in the study of apoptosis, drug toxicity and multiple disease states.  

PAL in this article was also applied on normal dermal fibroblasts to study the potential selective 

effect of PAL treatment, and on two other epithelial cancer cell lines (pancreatic cancer and 

glioblastoma cells) to examine a more general plasma use in cancer therapy. 

2. Materials and Methods  

2.1. Cell culture and cultivation 

Four adherent human cell lines were used to study the effect of plasma activated liquids - 

melanoma cells A375, pancreatic cancer cells MiaPaCa-2, glioblastoma cells LN229; and non-

cancerous primary fibroblasts HDFa. A375 and MiaPaCa-2 were cultivated in Dulbecco`s modified 

Eagle medium (DMEM, Sigma-Aldrich) supplemented with 10% fetal bovine serum (Sigma-Aldrich), 

LN229 in DMEM (Gibco) supplemented with 10% fetal bovine serum and 2 mM glutamine (Sigma-

Aldrich) and HDFa cells in fibroblasts growth medium (Cell Applications). The cells were cultivated 

in 95 % humidified atmosphere with 5% CO2 at 37°C.  
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The cells were seeded in 96-well or 6-well plates according the type of cell analysis, 24 hours 

before the application of plasma activated liquids.  

Morphological changes of cells were observed, and pictures were taken by microscope Zeiss 

Axio Verte.A1 with CCD camera Axiocam ICC 1 with Axio Vision 4.8 software. 

2.2. Plasma source and plasma liquid activation 

The portable plasma pen was used for plasma treatment of liquids to create PAL (Figure 1a and 

1b). A DC positive streamer corona was generated in ambient atmospheric air between the tip of the 

needle electrode and the surface of the liquid. To keep the geometry of the system during the liquid 

activation constant, the liquid was placed in a glass bowl, the gap between the needle tip and surface 

of the liquid was 1 cm, and the volume of the liquid was 5 ml. The grounded stainless-steel wire was 

dipped in the liquid onto the bowl bottom and the current was measured with by a current probe 

(Pearson 2878) and a digital oscilloscope (Tektronix TDS2024). The applied DC voltage was set at 12.8 

kV. The streamer corona in our setup and is a self-pulsing discharge with a maximum amplitude of 

one pulse 20-30 mA (Figure 1c), an average frequency 10 kHz and a typical power 0.4 W. Because of 

the low temperature, power and current, it is possible to directly treat live cells or tissues and the 

direct treatment of human skin is not painful when applied carefully. 

Two different liquids were activated and applied to the cells – a phosphate buffered saline (PBS, 

Dulbecco A, OXOID) and a cell growth medium (the same as used for the cell cultivation, 

supplemented as described in part 2.1). Plasma activated liquids (5ml) were treated for 2.5, 5, 10 or 

15 minutes. The pH, temperature and conductivity of the treated liquids did not change after plasma 

activation.  

To treat cells with plasma activated PBS (PAPBS) or plasma activated medium (PAM), various 

combinations of treatment times, added volumes or incubation times were used. 

 

2.3. Chemical analysis of RONS in PAPBS 

Four different reactive species in PAPBS - H2O2, NO2-, NO3- and ozone – were measured by using 

spectrophotometric analysis. The absorption of samples was measured with UV-VIS 

spectrophotometer UV-1800 Shimadzu.  

H2O2 analysis was performed by the titanium oxysulfate assay. The concentration of hydrogen 

peroxide was calculated from the absorption (at 407 nm) of the yellow product formed in reaction 

between TiOSO4 and H2O2. To prevent H2O2 decomposition by its reaction with NO2-, sodium azide 

(NaN3, 60 mM) was added to the sample immediately after plasma treatment. 

Nitrite (NO2-) concentration was evaluated with Griess reagents (Cayman Chemicals 

Nitrate/Nitrite Colorimetric Assay Kit #780001). NO2- with Griess reagents forms a purple complex 

Figure 1. Streamer corona portable plasma pen and plasma activation of liquids, a) general setup of the plasma 

pen in liquid activation, b) photo of the PBS activation with streamer corona, c) example of one current pulse of 

the streamer corona discharge in the described geometry and voltage 12.8 kV. 
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with the absorption maximum at 540 nm. To analyse nitrate (NO3-) concentration, nitrate reductase 

was added first to the sample to reduce NO3- to NO2-, then analysed with Griess reagents as described 

before and NO3- concentration was calculated by the subtraction of previously measured NO2- 

concentration. 

Ozone dissolved in PAPBS was detected by using the indigo blue assay. The O3 decolorizes the 

indigo potassium trisulfonate dye and the concentration of ozone was calculated from the decrease 

of the absorbance at 600 nm.  

RONS in PAM have not been analysed due to its original pink colour and complex composition, 

which had interacted with chemical reagents that are standardized to measure RONS in liquids. 

2.4. Analysis of cell viability 

The effect of PAL on cells viability was evaluated by using the colorimetric metabolic MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The assay is based on a change of 

the yellow MTT into the purple formazan in viable cells, which can be dissolved in dimethyl sulfoxide 

and spectrophotometrically analysed at 490 nm. 

For inoculation 10 000 cells (A375, LN229 and MiaPaCa-2) or 6 000 cells (HDFa) in 100 µl 

medium per well of 96-well plates were used. The PAL were applied to the cells 24 hours after their 

seeding. Cell medium was either completely replaced with 100 µl PAL or PAL was added to the cells 

in a ratio 1:1 with already present medium, so the final concentration of PAPBS or PAM was 100%, 

or 50% respectively. The cells were incubated with PAPBS/PAM for additional 24 hours or only 30 

minutes and then replaced with an untreated medium for the rest of the time until the 24 h incubation 

(we called this treatment “washing"). The control cells were treated in the same way with untreated 

PBS and medium.  

The viability of the samples was normalized to the control cell sample incubated in the medium. 

2.5. Analysis of apoptotic cell death with annexin V 

The percentage of apoptotic cells was determined with Muse Annexin V & Dead Cell Kit and a 

flow cytometer Muse Cell analyser. The assay contains two fluorescent cell dyes - annexin V, which 

dyes phosphatidylserine located on the outer surface of cell membranes during apoptosis, and 7-

AAD as an indicator of the cell membrane integrity, which marks late apoptotic and dead cells. The 

method enables to distinguish live cells, early and late apoptotic cells and dead cells (which died in 

a non-apoptotic pathway).  

Cells were seeded in 6-well plates in amount of 250 000 (A375, LN229 and MiaPaCa-2) or 150 000 

(HDFa) cells per well in 2.5 ml of liquid. The confluence and volume were kept proportional with the 

viability experiment. The cells were treated with PAL in the same way as described in section 2.4 24 

hours after seeding, which means that the medium was either replaced with 2.5 ml PAL, or PAL was 

just added to the wells in a ratio 1:1 to the present medium. The cells were incubated with PAL either 

for 24 hours or for 30 minutes, after which PAL was removed and cells were incubated in untreated 

medium until 24-hour incubation (“washing”).  

After additional 24 hours all the liquid from the well and cells released from the bottom by using 

trypsin were centrifuged and cells prepared for the analysis according to the Muse kit protocol and 

analysed with Muse flow cytometer. 

2.6. Analysis of caspase 3/7 activity 

The apoptosis status was evaluated based on effector caspases activation - caspase-3 and 

caspase-7, which are considered as specific hallmarks of apoptosis. The caspase activity was 

measured with the Muse Caspase-3/7 Kit and the Muse Cell analyser. The kit contains 7-ADD dye to 

distinguish live and dead cells, and a Muse Caspase-3/7 reagent NucView to detect caspases activity. 

According to the fluorescent signal, the live cells, live with activated caspase-3/7 (apoptotic), dead 

with activated caspase-3/7 and dead cells (which died in non-apoptotic pathway) can be 

distinguished.  
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The cells were seeded, treated and processed in the same way as described in section 2.5 and 

dyed according to the kit protocol. 

2.7. Analysis of mitochondrial potential changes 

The change in mitochondrial membrane potential – depolarisation, which is also considered as 

an early hallmark of apoptosis and cellular stress, was evaluated by using MitoPotential Kit 

containing fluorescent MitPotential and 7-ADD dye.  

The cells were seeded, treated, processed in the same way as described in section 2.5 and dyed 

according to the kit protocol. 

2.8. Statistical analysis 

Statistical analysis was performed in Microsoft Excel and StatsDirect. The normality of data was 

tested, and data are presented as the average and the standard deviation of the mean. At least three 

independent repeated experiments were performed. The significance of plasma activated liquids 

effect was tested with two-sided t-test and the result was considered as significant if the p < 0.05. The 

significant results are marked with * in the graphs.  

3. Results 

3.1. RONS concentration 

Four long-lived RONS in plasma activated phosphate buffered solution were measured: 

hydrogen peroxide H2O2, nitrites NO2-, nitrates NO3- and dissolved ozone O3, with 

spectrophotometric colorimetric methods (Figure 2). 5 ml of PBS was treated for 2.5, 5 and 10 minutes 

with the streamer corona discharge in ambient air under the same conditions as the cell growth media 

and RONS were measured immediately after the plasma activation. The streamer corona discharge 

in ambient air was applied at low power (P ≈ 0.4 W), therefore even 15 minutes treatment of the liquid 

did not increase its temperature. The buffer also kept the pH of PBS unchanged after the treatment. 

 

Figure 2. Hydrogen peroxide, nitrite, nitrate and ozone concentration in plasma activated PBS (PAPBS). 

3.2. Cells viability 

We evaluated the indirect effect of plasma activated liquids on the cells by measuring the cell 

viability. Viability was measured 24 hours from adding PAL. Analysis at 6, 48 or 72 hours after PAL 

application was performed too. However after 6 hours the effect just started to be observable and 

time periods longer than 24 hours of cell incubation ware too long for apoptosis tests, as after this 

time the most of the cells were in the late apoptosis state (as present in section 3.3) and started to 

disintegrate. Therefore, all presented data are from the analysis 24 hours after PAL application. To 

compare the treatment with 100% PAPBS, we added control treatment with cells incubated in 

untreated 100% PBS (PBS(100%)). When the cells were incubated in 50% diluted PBS (PBS diluted 
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with medium) or in the 100% PBS for 30 minutes only and then in a medium, there was no difference 

between these samples and control cells samples. 

The main focus of our work was on melanoma A375 cells. The “dose” effect of the PAL can be 

clearly seen – with the increasing PAL concentration and with the increasing activation time, the 

decrease of cell viability was more significant (Figure 3). We observed this trend even in 25% and 

12.5% PAL dilution, although these data are not presented in the graphs to keep it well readable. In 

most samples, the effects of PAM and PAPBS are comparable. However, the effect of 100% PAPBS 

compared to 100% PAM differs. 100% PAPBS decreased cell viability almost to 0% in all samples with 

no differences between activation times. To be able to test and compare these results, the cell viability 

of the sample incubated in 100% PBS is shown, as an additive control, too. Although these cells in 

100% PBS have significantly lower viability than the control cells in the medium, the difference 

between 100% PBS and 100% PAPBS is obvious. Furthermore, only 30-minute incubation in PAM or 

PAPBS was enough to start processes leading to the decreased viability in cells.  

 The morphological change of the cells after 24-hour incubation with PAL was also notable 

(Figure 5). In PAL samples the significant amount of the cells was rounded, detached from the 

bottom, and a nuclear condensation was observed. 

 
Figure 3. Effect of PAL on cell viability of human melanoma cells A375 24 hours after PAL application. Plasma 

activated medium (PAM) or plasma activated PBS (PAPBS) activated for 1.5, 2.5, 5, 10 or 15 minutes in 100% or 

50 % concentration were used. Time of PAL action was 24 hours (without blue frames) or 30 minutes, after which 

PAL were replaced with untreated medium (W, blue frames). Significance of 100% PAPBS was tested compared 

to cells in 100 % PBS, significance of other samples was tested compared to control. Viability was normalized to 

the control cells incubated in the medium. 

PAM and PAPBS were applied on healthy skin cells (human dermal fibroblasts HDFa) to 

compare with their effects on melanoma cells (Figure 4). PAL activated for 2.5 minutes did not 

significantly affect the cell viability. We did not observe a significant viability change either after 

application of PAM activated for a longer time. Only PAPBS activated for 5 minutes lead to the 

viability decrease, when it was incubated with cells for 24 hours. In the case of 100% PAPBS, the 30- 

minute incubation was enough to induce the viability change. On the other hand, in some samples, 

we also detected the opposite effect, i.e. a slight cell viability enhancement (mostly in 50% of 5 

minutes treated PAM), but this effect was not statistically significant. 
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Figure 4. Effect of PAL on cell viability of human dermal fibroblasts HDFa 24 hours after PAL application. 

Plasma activated medium (PAM) or plasma activated PBS (PAPBS) activated for 2.5 or 5 minutes in 100% or 50% 

concentration were used. Time of PAL action was 24 hours (without blue frames) or 30 minutes, after which PAL 

were replaced with untreated medium (W, blue frames). Significance of 100% PAPBS was tested compared to 

cells in 100 % PBS, significance of other samples was tested compared to control. Viability was normalized to the 

control cells incubated in the medium. 

 

Figure 5. Effect of PAL on morphology of melanoma cells A375 and dermal fibroblasts HDFa 24 hours after PAL 

application. PAL were activated for 5 minutes. Two PAL treatments are showed - 100% plasma activated 

medium (PAM) or 100% plasma activated PBS (PAPBS) incubated with cells for 30 minutes (W) and then 

replaced with the untreated medium. (Zeiss Axio Verte.A1 optical microscope) 

The effect of PAL on A375 and HDFa was compared with other epithelial cancer cell lines:  

pancreatic cancer cells MiaPaCa-2 and glioblastoma cells (Figure 6). The advantage of MiaPaCa-2 

cells is that they must be cultivated in exactly the same medium as melanoma A375 cells, so the 

possible difference in the effect would be only due to different properties of the cells and not due to 

the different medium composition. But in terms of viability, the effect of PAL on MiaPaCa-2 cells was 

mostly comparable with the effect on A375 cells. For LN229 cell cultivation a different brand of 
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medium was used, although it is still the same type of high-glucose DMEM. The most sensitive cells 

to antiproliferative effect of PAL were LN229, in which even the PAL treated for 2.5 minutes reduced 

the cell viability to 20% or less. 

 

Figure 6. Effect of PAL on cell viability of pancreatic cancer cells (a) and glioblastoma cells (b) 24 hours after PAL 

application. Plasma activated medium (PAM) or plasma activated PBS (PAPBS) activated for 1.5, 2.5, 5, 10 or 15 

minutes in 100% or 50% concentration were used. Time of PAL action was 24 hours (without blue frames) or 30 

minutes, after which PAL were replaced with untreated medium (W, blue frames). Significance of 100% PAPBS 

was tested compared to cells in 100% PBS, significance of other samples was tested compared to control. Viability 

was normalized to the control cells incubated in the medium. 

3.2. Apoptosis detection 

To further analyse the effect of plasma activated liquids on the induction of cell apoptosis we 

used annexin V and 7-AAD staining. By combination of these dyes it is possible to distinguish live, 

early apoptotic, late apoptotic (dead) cells and non-apoptotic dead cells. We focused only on 5 

minutes plasma activation time in most of the cell lines, because it showed the most promising results 

in cell viability. 2.5 minutes activation time was also studied in case of melanoma A375. To be able to 

compare treatment with 100% PAPBS, an additional control sample with cells incubated in untreated 

100% PBS (PBS(100%)) was added. When the cells were incubated in 50% PBS (PBS diluted with 
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medium) or in PBS for 30 minutes only, there was no observed difference between the samples and 

control cells. 

PAM and PAPBS activated for 2.5 and 5 minutes induced apoptosis in A375 cells (Figure 7), both 

in 100% and 50% concentration and even when PAL were replaced with the untreated medium after 

30 minutes (W), the “dose” effect is observable. Almost all apoptotic cells were already considered as 

dead 24 hours after PAL application. Very low amount of the cells in non-apoptotic death (around 

8%) was observed, when 100% PBS or PAPBS for 24 hours was applied, whereas the effects of PAPBS 

and PBS were comparable. This indicated that the effect it is most likely caused by non-physiological 

conditions of the pure PBS, because there is no additional increase in dead non-apoptotic cells due to 

the plasma treatment in PAPBS.  

 
Figure 7. The effect of PAL on apoptosis induction in human melanoma cells A375, measured 24 hours after PAL 

application. Plasma activated medium - PAM (a) or plasma activated PBS - PAPBS (b) activated for 2.5 or 5 

minutes in 100% or 50% concentration were used. Time of PAL action was 24 hours (without blue frames) or 30 

minutes, after which PAL were replaced with untreated medium (W, blue frames). Significance of 100% PAPBS 

was tested compared to cells in 100 % PBS, significance of other samples was tested compared to control.  

The apoptosis or necrosis in HDFa cells was not detected in our experiments (Figure 8). We 

decided to analyse 100% PAPBS only when it was applied for 30 minutes, then replaced with 

untreated medium (W) since the primary cells were not capable survive in the 100% PBS for 24 hours. 

Although in viability experiment the cell viability after applying PAPBS treated for 5 minutes (50% 

or 100%_W) decreased, stronger PAPBS could suppress proliferation of HDFa cells without leading 

to cell death. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2021                   doi:10.20944/preprints202101.0068.v1

https://doi.org/10.20944/preprints202101.0068.v1


 

 
Figure 8. The effect of PAL on apoptosis induction in human dermal fibroblasts HDFa, measured 24 hours after 

PAL application. Plasma activated medium (PAM) or plasma activated PBS (PAPBS) activated for 5 minutes in 

100% or 50% concentration were used. Time of PAL action was 24 hours (without blue frames) or 30 minutes, 

after which PAL were replaced with untreated medium (W, blue frames). 

The apoptosis induction in MiaPaCa-2 and LN229 cells after PAM and PAPBS treatment was 

tested (Figure 9 and Figure 10). Although in MiaPaCa-2, there is high percentage of apoptotic cells 

even in control samples, enhancement in apoptotic cells after PAL application was significant. PAL 

successfully induced apoptosis also in LN229 cells, but according to the debris amount in the sample, 

many cells were already disintegrated, therefore the percentage of apoptotic cells in the time of 

analysis was lower than in the other cancer cell lines. The LN229 cells seem to be very sensitive to 

PAL and we can see around 10% probably necrotic cells after incubation in 100% PAPBS activated 

for 5 minutes. 
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Figure 9. The effect of PAL on apoptosis induction in pancreatic cancer cells MiaPaCa-2, measured 24 hours after 

PAL application. Plasma activated medium - PAM (a) or plasma activated PBS - PAPBS (b) activated for 2.5 or 5 

minutes in 100% or 50% concentration were used. Time of PAL action was 24 hours (without blue frames) or 30 

minutes, after which PAL were replaced with untreated medium (W, blue frames). Significance of 100% PAPBS 

was tested compared to cells in 100% PBS, significance of other samples was tested compared to control. 
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Figure 10. The effect of PAL on apoptosis induction in glioblastoma cells LN229, measured 24 hours after PAL 

application. Plasma activated medium - PAM (a) or plasma activated PBS - PAPBS (b) activated for 2.5 or 5 

minutes in 100% or 50% concentration were used. Time of PAL action was 24 hours (without blue frames) or 30 

minutes, after which PAL were replaced with untreated medium (W, blue frames). Significance of 100% PAPBS 

was tested compared to cells in 100 % PBS, significance of other samples was tested compared to control. 

3.3. Caspase 3 and caspase 7 activity  

To better understand the apoptotic induction and its pathway which is activated in cancer cells 

after application of PAL, the activity of caspases 3 and 7 in melanoma A375 cells was studied (Figure 

11). Plasma activated liquids (both PAM and PAPBS) were activated for 5 minutes and applied in 

100% or 50% concentration. When the cells were incubated in 50% PBS (PBS diluted with medium) 

or in PBS only for 30 minutes, there was not observed difference between the samples and control 

cells. 

A significant number of cells with caspase activity, mostly already dead, was detected. As was 

observed in apoptosis analysis with annexin V, a significant increase in cells in early apoptosis state 
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were detected, when the diluted PAL was applied or the incubation with PAL was only 30 minutes. 

 
Figure 11. The effect of PAL on caspases 3/7 activity in human melanoma cells A375, measured 24 hours after 

PAL application. Plasma activated medium - PAM (a) or plasma activated PBS - PAPBS (b) activated for 2.5 or 5 

minutes in 100% or 50% concentration were used. Time of PAL action was 24 hours or 30 minutes, after which 

PAL were replaced with untreated medium (W, blue frames). Significance of 100% PAPBS was tested compared 

to cells in 100% PBS. 

3.4. Mitochondrial membrane depolarisation 

To provide more information about the PAL effect on cancer and with focus on the cell death 

pathway, we measured the loss of mitochondrial membrane potential (depolarisation). This event is 

often coincident with apoptosis induction but can also occur in necrosis or caspase-independent cell 

death pathways. We focused on mitochondrial membrane potential change in melanoma A375 cells 

after treating with PAL activated for 5 seconds (Figure 13). The results are in good agreement with 

the previous apoptosis test. The most significant difference is in the higher percentage of live cells 

with depolarised mitochondrial membrane after PAPBS application. 
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Figure 12. The effect of PAL on mitochondrial membrane depolarisation in human melanoma cells A375, 

measured 24 hours after PAL application. Plasma activated medium - PAM (a) or plasma activated PBS - PAPBS 

(b) activated for 2.5 or 5 minutes in 100% or 50% concentration were used. Time of PAL action was 24 hours 

(without blue frames) or 30 minutes, after which PAL were replaced with untreated medium (W, blue frames). 

Significance of 100% PAPBS was tested compared to cells in 100% PBS. 

4. Discussion 

The main objective of this study was testing the effects of plasma activated liquids – plasma 

activated medium and PBS, on human melanoma cells A375 and compare these results with other 

epithelial cancer cell lines (glioblastoma cells LN229, pancreatic cancer cells MiaPaCa-2) and normal 

fibroblasts (HDFa). For cell growth medium and PBS activation with plasma, a streamer corona 

discharge or a portable plasma pen operating in ambient air was used. We measured around 65 µM 

of generated H2O2 and NO2- in PAPBS after 5 minutes treatment of 5 ml in 1 cm gap, while in the 

study with kINPen plasma jet generating the plasma discharge in argon, the same treatment time and 

gap lead to the generation of 800 µM H2O2 and 300 µM NO2- in 2 ml PAPBS [15]. Significantly higher 

concentration of H2O2 than NO2- was measured also in PAM after activating by helium plasma jet [37]. 

We obtained comparable concentrations of both H2O2 and NO2- also for other treatment times, which 

represents an advantage if the reaction between these two specific species is the main point of the 

plasma effects induced in cancer cells and their selectivity, in line with the previous successful 

selective anticancer effect obtained by this plasma source [14]. More detailed physical processes and 
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chemical reactions leading to the formation of these RONS in the streamer corona discharge in 

ambient air were described in our previous work [16]. 

Our results show that both PAM and PAPBS were able to decrease the cell viability in all studied 

cancer cell lines. Since we focused mostly on melanoma cells, we studied a larger interval of plasma 

activation times in these cells (from 1.25 to 15 minutes per 5 ml). Even the shortest activation time 

significantly lowered the cancer cell viability and we observed the “dose” dependency. With the 

increasing time and PAL concentration, the cell viability was progressively more reduced, and the 

15-minute treatment time reduced the viability to almost 0%, when the cells were incubated in 100% 

PAL. A lower but still significant decrease was observed after incubation in 50% PAL (i.e. PAL added 

to the growth medium already present in the well in a ratio 1:1). This approach better simulates 

physiological conditions, when it is not possible to incubate cells only in plasma activated liquids in 

real tissues, because of the present interstitial liquids.  

It has been previously shown that the composition of the growth media can affect the result on 

the cell viability [22]. We used two cells lines required the identical cell growth medium (A375, 

MiaPaCa-2), one cell line with a different brand of a very similar medium and glutamine addition 

(LN229), and healthy primary fibroblasts with a completely different medium. The viability decrease 

of melanoma and pancreatic cells were comparable. The viability of LN229 cells was lowered more 

significantly, and we assume that it is rather due to their higher sensitivity to PAM than due to the 

slightly different composition of medium.  

The cell incubation in 100% PAPBS could lead to the conditions comparable with PAM, but 

unfortunately 24-hour incubation in PBS is not optimal for the cell growth and their viability was 

decreased because of the lack of nutrition. Some part of the cells was able to survive 24-hour 

incubation in pure PBS, however all cells died in 100% PAPBS (including fibroblasts). Therefore, we 

decided to perform experiments when the cells were incubated in 100% PAPBS for 30 minutes only 

and then we returned the untreated medium in the well. With this approach 30-minute incubation in 

either PAM or PAPBS was enough to start cell processes which lead to their lower viability and 

apoptosis. The first few incubation hours are considered as key for anticancer treatments [23], 

however probably much shorter time is needed, as we also showed in our work [14]. 

We did not observe any viability reduction of normal fibroblasts after PAM application. This 

indicates a certain level of the desired selectivity of PAL application to cancer cells, although in some 

of the studies, viability decrease was observed also in healthy cells. Different types of human 

fibroblasts were used in studies and it was shown that the treatment with PAM was better tolerated 

than the direct plasma treatment [38]. PAM activated by He plasma jet decreased the Nuff fibroblasts 

viability by 20% [39] and 3T3 fibroblasts, if PAM was activated for more than 30 seconds [40]. PAM 

activated by Ar plasma reduced the viability of WI-38 by 40% [26], however, it had no effect on 

mammary epithelium cells [41] or human astrocytes [24]. This difference may be due to the different 

sensitivity of cells to H2O2. [42]. 

The viability of HDFa fibroblasts slightly decreased when they were incubated in PBS activated 

for 5 minutes for all types of application – 100% and 50% of PAPBS or in 100% PAPBS for 30 minutes 

only, but we did not observe any morphological changes or apoptosis induction, except in 100% 

PAPBS. In the study with 1-hour incubation of fibroblasts in PAPBS, the viability of fibroblasts was 
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decreased more significantly than the viability of melanoma cells [19], therefore much shorter time 

of incubation when using PAPBS is needed.  

In PAM, the RONS react with medium components which in turn reduces the RONS interacting 

directly with cells including the hydrogen peroxide concentration [25]. Therefore, it is possible that 

PAPBS affects healthy cells more sensitive to higher H2O2 concentrations. And, it was shown, that 

normal cells are more sensitive to induction of apoptosis with H2O2, because they are not protected 

with membrane-associated catalase as cancer cells [43]. Although on the other hand, some studies 

observed a stronger effect on cancer cells when PAM was added to the cells compared to PAPBS 

addition [23]. In our work, 50% PAL in the well induced comparable results in cancer cell lines for 

both PAM and PAPBS, fibroblasts were slightly more sensitive to PAPBS and less sensitive to PAM. 

With 7-ADD and annexin V staining the apoptosis induction in all studied cancer cell lines was 

confirmed after all types of PAL treatments with almost no cells in non-apoptotic pathway. We 

detected no apoptosis in fibroblasts. Furthermore, we studied the caspase 3/7 activity and 

mitochondrial membrane depolarisation in A375 cells after PAL treatment. A significantly higher 

caspase 3/7 activity was detected after PAM or PAPBS application. An increased expression of 

caspase 3 and 8 after PAM and direct plasma treatment of HeLa cells was also observed in [38] and 

an expression of caspases 3, 7 and 9 after PAM treatment was shown in ovarian cancer cells [29]. Low 

H2O2 concentration leads to the caspase-dependent apoptosis and mitochondrial membrane potential 

change [44]. In a different study on gastric cancer cells, the inhibition of caspase 3 lead to stopping 

apoptosis induction after the plasma treatment [14]. We detected the depolarization of mitochondrial 

membrane after PAL application, which suggests that mitochondrial pathway is included in plasma 

action. It is in good consent with the studies of lipid peroxidation of cell membranes, which are 

observed in plasma treatments too [45]. 

There are several differences between direct and indirect plasma cancer cell treatments. The 

direct plasma treatment affects the cells with UV radiation, electrons, short-lived RONS species and 

electric field, and depends on the plasma source geometry, gas flows and other parameters. In 

indirect plasma treatment of liquids, only the RONS created in PAL are responsible for the effects 

induced in the cells. Although the short-lived species generated in PAL by plasma are already not 

present when the PAL are applied on cells, the secondary short-lived reactive species can be formed 

in the PAL from the long-lived RONS and their reactions with medium components. Our plasma 

source was used in the previous study to induce apoptosis in gastric cells (by using direct treatment 

and PAM), cervix cancer cells and Ewig sarcoma cells (only direct treatment) – 30 seconds of direct 

treatment of cells in a medium or the treatment of 1 ml medium was enough to induce apoptosis. On 

the contrary, the apoptosis was not induced in human diploid fibroblasts (Alpha-1) after direct 

treatment for less than 1 minute [14]. 

To explain the cancer vs. normal cell selectivity effect, several possible models were developed. 

One of the first suggestions is that cancer cells have already a higher ROS level, so their threshold, 

when more exogenous RONS are added, is lower and therefore lower RONS concentration is needed 

for the apoptosis induction [46]. This model is mostly not considered as valid. Another suggestion is 

that cancer cells have less cholesterol in their membranes, which increases the ROS influx into the cell 

[47]. Or, cancer cells have more aquaporins in their membranes, so more H2O2 can enter the cell [48], 

but H2O2 must be kept in low concentration, when it does not harm healthy cells. Although it is not 

confirmed, if aquaporins were the reason for the selectivity, it is certain that H2O2 plays an important 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2021                   doi:10.20944/preprints202101.0068.v1

https://doi.org/10.20944/preprints202101.0068.v1


 

role in the anticancer effect of PAM. Another recently published explanation of plasma action 

towards the cancer cells, which also includes its selectivity, is the action of extracellular singlet delta 

oxygen (1O2), which is either generated directly by the plasma discharge [49] or is formed in PAL by 

the reaction between the two main generated RONS – hydrogen peroxide and nitrites [10,14] that 

were in fact formed in our plasma activated PBS in approximately 1:1 ratio. 1O2 formation proceeds 

through several steps involving peroxynitrite [50,51]. Singlet oxygen can inhibit membrane-

associated protective catalase on the cancer cells membranes. Subsequently it leads to the reactivation 

of HOCl signalling, which is RONS driven intercellular signalling, H2O2 influx through aquaporins, 

activation of mitochondrial apoptotic pathway driven by caspase 3 and caspase 9 [17] and a 

subsequent cell death through apoptosis [52]. With keeping low H2O2 concentration, this would lead 

to significant apoptotic induction in cancer cells without causing any harm to healthy cells. Moreover, 

the inactivation of membrane-associated catalase could lead to generation of more secondary singlet 

oxygen, which would inactivate the membrane-associated catalases on the neighbouring cells and 

result in auto-amplificatory process spreading in the tumour [32,50]. 

5. Conclusions 

Many recent studies showed that cold plasma can be successfully used against cancer cells, both 

in direct action, as well as plasma activated liquids. These liquids act through plasma generated 

RONS and if the plasma treatment process is well tuned, they can induce apoptosis in cancer cells 

and do not damage healthy cells. 

In this study, a portable plasma pen operating with streamer corona in ambient air was applied 

to activate two types of liquids suitable for the application on human cells – the cell growth medium 

and PBS. We measured H2O2, NO2- and NO3- concentration in PAPBS. The ratio of generated H2O2 

and NO2- , the species considered to have the key roles in initiating plasma effects on cells and its 

possible selectivity between cancer and normal cells, was approximately 1:1. This makes the main 

difference between PAL activated by our ambient air plasma pen and frequently used plasma jets 

operating with noble gases.  

Both PAM and PAPBS decreased the viability and induced apoptosis in three cancer cell lines – 

melanoma cells A375, pancreatic cells MiaPaCa-2 and glioblastoma cells LN229. The effect was 

confirmed for various plasma treatment times and PAL concentrations. We showed that even 30-

minute cell incubation in 50% diluted in medium PAL is sufficient to start cell processes leading to 

cancer cell apoptosis. Glioblastoma cells appeared to be the most sensitive to PAL. Besides apoptosis 

detection by standard annexin V staining, we also focused on more detailed insight on the apoptosis 

pathways by investigating the action of caspase 3/7 enzymes and mitochondrial membrane 

depolarization in melanoma cells. The effect of PAL on normal dermal fibroblasts was minimal, with 

only a little viability decrease for longer time treated PAPBS and with no detected apoptosis (or 

necrosis) induction. This indicates a generally desired selectivity of plasma and PAL dependent on 

correctly chosen plasma activation time and PAL concentration. This selectivity, supported by the 

optimum ratio of hydrogen peroxide and nitrites in PAL, gives a good potential for the following in 

vivo studies and eventual clinical application in cancer treatment. 
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