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Abstract 19 

 20 

The lack of reliable rainfall projection records remains a major challenge to Uganda. In the 21 

advent of extreme wetness or drought events, reliable rainfall estimates for local planning and 22 

adaptation are essential. The present study used two main datasets to conduct a historical 23 

analysis from 1981 to 2019, coupled with future projections under representative concentration 24 

pathway (RCP 8.5) for the period 2020-2050. Historical analysis revealed bimodal annual 25 

rainfall pattern for March-May (MAM) and September-November (SON) gradients 26 

representing heavier to lighter rainfall events respectively over the study area. Investigation of 27 

recent trends in rainfall patterns revealed an upward trend from 2010 onwards in annual and 28 

seasonal rainfall. Moreover, results for future projections show wet conditions are projected to 29 

occur over the study area between the months of April/May and October. Contrarily, March is 30 

likely to experience a reduction in wet conditions. Mann-Kendall test employed to make future 31 

projections of rainfall depicted decreasing patterns during MAM season whilst increasing 32 

tendencies with strong shift was highlighted for SON season over the study region. Meanwhile, 33 

annual projections indicate huge variations with linear trends showing a marginal increase as 34 

compared to historical trends. Findings would serve as baseline print to propel further studies 35 
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that could delve into impact analysis of drought extreme events which pose significant threats 36 

to the agricultural sector which is heavily reliant on rainfall.  37 

Keywords: Rainfall, Trends analysis, Mann-Kendall test, CHIRPS, Rossby Centre regional 38 

Atmospheric model (RCA4), Uganda. 39 

1. Introduction 40 

Many African nations rely heavily on rainfall for agricultural activities, hydroelectric 41 

production and water supply for their day-to-day activities.  A variability in rainfall occurrence 42 

(i.e., below normal leading to drought or above normal resulting to flood incidences) has far-43 

reaching consequences on the economic stability of many regions. Thus, an accurate rainfall 44 

quantification remains a paramount process for sustainable development. Meanwhile, recent 45 

decades have been characterized by the emergence of extreme climatic events over many 46 

countries in both hemispheres, mainly due to global warming (Alexander et al. 2006; 47 

Seneviratne et al. 2013; Sillmann et al. 2013). Unprecedented changes in global climatic 48 

conditions have been induced by anthropogenic activities, resulting from an increase in the 49 

concentration of greenhouse gases (GHGs) in the atmosphere (IPCC 2013).  50 

Presently, the outcome of several studies has shown developing countries would bear 51 

the unfortunate impacts of extreme weather events such as drought, floods, heatwaves, tropical 52 

cyclones, and wildfires as compared to mid-latitude and northern hemispheric nations 53 

(Seneviratne et al. 2012; Niang et al. 2014; Reliefweb 2020; Eckstein et al. 2020). Climate 54 

hazards would influence agricultural productivity (food security) in the sub-Saharan region 55 

(Parry et al. 2005; Schlenker and Lobell 2010). This threat could be further exacerbated by the 56 

increasing population, which is estimated to increase at approximately 4.8% per annum (FAO 57 

2013). A recent report by FAO (2017) states about one-third of the human population is at risk 58 

of undernourishment in the East African region compared to other areas. This may be partly 59 

down to the declining tendency of ‘long rains’ which occurs between March and May (MAM) 60 

(Williams and Funk 2011; Lyon and Dewitt 2012; Liebmann et al. 2014). The situation is 61 

worsened by the uncertainties in future projections that continue to exhibit a ‘paradox’ scenario 62 

(Rowell et al. 2015). For instance, Tierney et al. (2015) shows future projection of MAM 63 

rainfall is likely to continue exhibiting observed negative trends while other studies (Rowell et 64 

al. 2015; Ongoma et al. 2018) reported increasing trends of precipitation towards the end of 65 

the twenty-first century. Such situations continue to pose confusion to all relevant stakeholders, 66 

thereby inhibiting progress planning and development policy. 67 
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Attributions to the uncertainties in the projections studies points a number of factors 68 

such as the systematic and unsystematic biases in model datasets or methods accounting for 69 

natural climate variability such as El Nino-Southern Oscillation or warming of tropical Oceans 70 

(Giannini et al. 2005; Eyring 2019). Other studies e.g. Christensen et al. (2008), Teutschbein 71 

and Seibert (2010) and Giorgi and Gutowski (2015), show that discrepancies in rainfall 72 

evaluation is sourced from the parameterization schemes in the global climate models (GCMs), 73 

such as those used in the fifth Coupling Modelling Inter-comparison Project (CMIP5) 74 

(Teutschbein and Seibert 2013). Thus, a number of recent studies (Nikulin et al. 2012; Endris 75 

et al. 2013) points to the need for consideration of employing dynamically downscaled regional 76 

climate models (RCMs), such as those from Coordinated Regional Climate Downscaling 77 

Experiment Program (CORDEX) for future climate projections. Recent studies have proven 78 

the better performance of RCMs in simulating the East African climate with the prospect of 79 

improvement in impact analysis (Endris et al. 2013; Osima et al. 2018; Ayugi et al. 2020a).  80 

In Uganda, existing studies show average rainfall in the country has decreased by 12% 81 

(Ssentongo et al. 2018; Alex et al. 2019). The occurrence of single large-scale events like; 82 

droughts, floods, variable onset and offset of rainfall, long dry spells, are notable and is 83 

consistent with the prediction of IPCC (2014). An average annual rainfall range of 500.0 mm 84 

- 2500.0 mm is recorded in Uganda, whereas spatial variability in this range is large (Basalirwa 85 

1995; McSweeney et al. 2010), as noted in other parts of East Africa (Hession and Moore 86 

2011). With such changes in rainfall amount and trends, information on spatiotemporal changes 87 

would be valuable in developing preparedness measures as well as provision of early warning 88 

systems (Omondi et al. 2014). This is of particular importance as crop food production by local 89 

communities are directly affected leading to a reduction in the income of approximately 69% 90 

of Ugandan subsistence population (Gollin et al. 2016). Interestingly, despite the notable 91 

observations of changes in climate patterns over the study area, the existing ground-based 92 

datasets are sparsely distributed, hence, could not capture local changes in far remote regions 93 

with limited or no gauge stations (Kizza et al. 2009; Diem et al. 2014). 94 

To improve prognosis and foster accurate forecast of climatic events, recent studies 95 

have gravitated towards RCMs and satellite-derived precipitation estimate (SPE) products as a 96 

way of detecting and projecting changes in climate incidences (Tian et al. 2010; Kidd et al. 97 

2012; Nikulin et al. 2012). In addition, applications of SPE products in understanding extreme 98 

weather occurrences and analysis such as flooding or drought events have gained tremendous 99 

weight across the globe (Toté et al. 2015; Gebrechorkos et al. 2017).  The present study sought 100 

to conduct an in-depth historical analysis of rainfall patterns over the study area using datasets 101 
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from Climate Hazard Group Infrared Precipitation with Station (CHIRPS) while future 102 

projection was evaluated using regional climate model obtained from multi-model ensemble 103 

from the Rossby Centre regional Atmospheric model (RCA4). We characterized recent 104 

changes in rainfall patterns and examined future projections using model datasets with fine 105 

spatial resolution. Subsequent sections of the present study constitute: Section 2 which entails 106 

description of the study area, datasets and methods. Section 3 presents the main results while 107 

section 4 elucidates summary, conclusion, and recommendations based on the findings. 108 

 109 

2. Study Area, Data and Methods 110 

2.1 Study Area 111 

Uganda is located in East Africa. The geographical coordinates are within longitude 29° E to 112 

35.2° E and latitude 4.5⁰N to 1.5° S (Figure 1).  Neighboring countries include Kenya, South 113 

Sudan, Democratic Republic of Congo, Tanzania and Rwanda. Complex topography and 114 

numerous physical features ranging from high mountainous ranges, large lakes and rivers, rich 115 

highlands to plain lands, characterize the study domain. For instance, Mount Elgon and Mount 116 

Rwenzori with approximately 4321m and 5109 m in height respectively are situated within the 117 

borders of the study area (Bowden and Semazzi 2007). Other geomorphological features within 118 

the study area are large water bodies such as Lake Victoria and river Nile which generate meso-119 

scale circulation within the region (Indeje et al. 2001; Ogwang et al. 2014). The rainfall 120 

climatology is mostly influenced by the seasonal oscillation of Inter-Tropical Convergence 121 

Zone (ITCZ) (Nicholson 2018), monsoon winds and sub tropical anticyclones (Basalirwa 1995, 122 

Nicholson et al. 2017). Thus, most parts of the study area receive bimodal rainfall patterns with 123 

‘long rains’ occurring in MAM whilst ‘short rains’ witnessed in September to November 124 

(SON) (Nsubuga et al. 2014; Ojara et al. 2020). This, however, results in a uni-modal pattern 125 

as the distance from the equator increases steadily. There is also another rainfall band mostly 126 

in the northern parts of the country occurring  between June and August. This condition is often 127 

attributed to the influx of moist westerlies from Congo basin (Basalirwa 1995).  On the other 128 

hand, the temperature climatology is mostly warm temperate during the year with peaks of 129 

highs, experienced during December-February (DJF) period and lows during June-August 130 

(JJA) period (Omondi et al. 2014). More details regarding the circulation patterns are well 131 

described in studies conducted by Nicholson et al. (2018) and Camberlin (2018).  132 
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 133 

Figure 1. Location of Uganda along longitude 29° E – 35.2° E and latitude 1.5° S – 4.5° N in 134 

Africa (enclosed) (a).  In addition, the figure shows the topography [m] of the study region, 135 

physical features and meteorological stations used (b).  136 

2.2 Data 137 

This study utilized monthly precipitation datasets obtained from Climate Hazard Group 138 

Infrared Precipitation with Station (CHIRPS.v2) (Funk et al. 2015), as well as Multi-model 139 

ensemble mean (MME) of five selected regional climate models (RCMs). The models were as 140 

follows: Model for Interdisciplinary Research on Climate (MIROC5), Commonwealth 141 

Scientific and Industrial Research Organization (CSIRO), Institute Pierre Simon Laplace 142 

Model CM5A-MR (IPSL-CM5A-MR), Max Planck Institute Earth System Model at base 143 

resolution (MPI-ESM-LR) and European community Earth-System (EC-EARTH). The listed 144 

RCMs simulations outputs were derived from the dynamical downscaling of CMIP5 GCMs 145 

using Rossby Centre regional Atmospheric model (RCA4), originally developed by the 146 

Swedish Meteorological and Hydrological Institute (SMHI) under the CORDEX initiative 147 

(Samuelsson et al. 2012). The RCA4 is a product of major enhancement on RCA3 based on 148 

model experimental design. Unden et al. (2002) and (Strandberg et al. 2014) gave detailed 149 

account regarding the physics of RCA4 model. The RCA4 simulations outputs are available on 150 

CORDEX-Africa domain at spatial resolution of ~ 50 km X 50 km and temporal coverage 151 

ranging from 1951-2005 for historical runs and projections from 2006-2100.  152 
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Both CHIRPS and MME datasets of five better performing RCMs were recently evaluated 153 

by inferring their performance over the study domain (Ayugi et al. 2019; Ayugi et al. 2020a). 154 

These models were appraised over the broader Greater Horn of Africa (GHA) against observed 155 

datasets using various scalar accuracy measures to assess their capability in reproducing 156 

fundamental precipitation characteristics over the study domain. The aforementioned studies 157 

used mean seasonal, annual, and inter-annual variations as a way of assessing their skillful 158 

simulation of precipitation over the region. Besides, a detailed statistical evaluation was 159 

employed to compare the model’s performance. They included correlation coefficient (CC), 160 

mean bias error (MBE), and root mean square difference (RMSD), amongst the reanalysis and 161 

simulated precipitation cycle by the RCA4 models. Finally, the model’s skill to simulate 162 

observed precipitation was tested using skill score, thereby identifying the five out of ten 163 

models evaluated in that study. 164 

Consequently, the CHIRPS data covers the period 1981 to 2019. The CHIRPS datasets 165 

were validated against the available ground-based datasets to ascertain their performance on a 166 

monthly and annual time scale (Figure 2; Table 2). The MME of five RCMs was employed to 167 

delineate the future trends and variability of climatic features over the study domain. Historical 168 

analysis for validation on the performance over the study domain was performed during 1981-169 

2005, while projections for future climatic trend and variability was assessed under high 170 

emission scenario of Representative Concentration Pathways (RCP 8.5) for 2020-2050 period. 171 

A summary of all model datasets used was shown in Table 1, indicating the type, source and 172 

resolution. All datasets were re-gridded using the bilinear interpolation technique to 0.5° x 0.5° 173 

spatial resolution in the present study. This was aimed to achieve uniform grids for analysis 174 

since the gridded datasets were of varying resolutions. 175 

Table 1 the description of the Global Climate Models (GCMs) dynamically downscaled by RCA4 176 

CORDEX. 177 

Institute Native horizontal 

grid increment 

Abbreviated 

name 

        Reference 

1. Consortium of European 

research institution and 

researchers, Netherlands 

1.125°× 1.125° EC-EARTH Wazeleger et al. 

(2012) 

2. Institut Pierre-Simon Laplace, 

France 

3.75°×~ 1.895° 
 

IPSL-CM5A-MR Dufresne et al. 

(2012) 

3. National Institute for 

Environmental Studies, and 

Japan Agency for Marine-Earth 

Science and Technology 

(MIROC), Japan 

 

~1.4°×1.4° 

MIROC5 Watanabe et al. 

(2011) 

4. Commonwealth Scientific and 

Industrial Research 

Organization (Australia) 

 

~1.875°×1.875° 

CSIRO-Mk3.6.0 Rotstayn et al. 

(2009) 
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5. Max Planck Institute for 

Meteorology (Germany) 

~1.875°×1.875° MPI-ESM-LR Raddatz et al. 

(2007) 

 178 

2.3 Methods 179 

2.3.1 Validation of datasets 180 

Firstly, the present study validated the performance of both CHIRPS datasets and RCMs by 181 

calculating CC, RMSD and MBE. These metrics have been employed by so many studies in 182 

evaluating model simulation of climate variables (Wilks 2006; Chai and Draxler 2014;  Ayugi 183 

et al. 2020a). The mathematical formulas of the metrics employed are shown in Equations. 1 - 184 

3:  185 

               186 

𝐶𝐶 =
∑ (𝑂i−𝑂i̅̅ ̅)(𝑀i−𝑀i̅̅̅̅ )𝑛

𝑘=1

√∑ (𝑂𝑖−𝑂i̅̅ ̅)2 ∑ (𝑀i−𝑀i̅̅̅̅ )2𝑛
𝑘=1

𝑛
𝑘=1

             (1) 187 

 188 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ (𝑀i − 𝑂i)2𝑁

𝑘=1                 (2) 189 

 190 

                                                    𝑀𝐵𝐸 =
1

𝑁
∑ (𝑀i − 𝑂i)

𝑁
𝑘=1                 (3) 191 

 192 

Where M and O are the model simulated and observed values, respectively. I refers to the 193 

simulated and observed pairs and N is the total number of such pairs being evaluated. 194 

Taylor diagram and empirical cumulative distribution function (ECDF) were used to show the 195 

comparison of the aforementioned datasets over the study area. Taylor diagram is a graphical 196 

illustration showing similarity of two patterns in terms of their CC, centered RMSD, and the 197 

amplitude of their variations (represented by the standard deviation) (Taylor 2001). All the 198 

three metrics were presented on one plot as illustrated mathematically in Equation 4. The plot 199 

was useful in evaluating multiple aspects of complex models or in gauging the relative skill of 200 

many different models (IPCC 2001). 201 

(𝐸)2 = 𝜎𝑚
2 + 𝜎𝑜

2 − 2𝜎𝑚𝜎𝑂𝑜𝐶                                               (4) 202 

Where E is centered RMSD 203 

C is Correlation coefficient 204 

𝜎𝑚  and 𝜎𝑜  are standard deviation for the model and reference or observed datasets respectively.  205 
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A cumulative distribution F(x) can be defined as the proportion of observations lying below a 206 

certain value x as employed by Akinsanola (2017). The cumulative distribution of CHIRPS 207 

was compared with that of ground stations. 208 

2.3.2 Spatiotemporal analysis 209 

The study computed seasonal mean monthly rainfall by averaging three months total during 210 

the rainy seasons (i.e., MAM and SON). In addition, mean annual rainfall was derived by 211 

computing the average of all the monthly rainfall values over the study area. The evaluation of 212 

spatiotemporal patterns of rainfall for historical and future projections were conducted using 213 

anomaly test, thus, probability density function (PDF). 214 

 Anomaly is calculated from the Equation 5; 215 

𝐴 = 𝑋 − 𝑋̅                                                                                          (5) 216 

2.3.3 Trend analysis 217 

Precipitation trends are computed by fitting a linear model, using nonparametric Mann-Kendall 218 

test. The magnitude of change is computed using Sen's slope technique. The two main 219 

approaches were used to examine past and projected tendencies of precipitation. Firstly, we 220 

employed the Theil-Sen Slope technique to appraise the long duration tendencies. This method 221 

was used to evaluate the magnitude of the slope of the linear trend for a given data (Sen 1968). 222 

The method was considered to be effective since it is not influenced by any extreme distribution 223 

and does not entail any normal distribution of the residuals. Numerous studies have utilized 224 

this approach to examine the linear tendencies of hydroclimatic variables across various 225 

domains (Wang et al. 2018; Mumo et al. 2019; Ongoma et al. 2020). Mathematical expression 226 

explaining this approach is presented as follows:  227 

SSE𝑖 =
Xk − X𝑙

k − l
 for i = 1, … , n,                                                     (6) 228 

 229 

where 𝑖  is the number of the time steps, 𝑋𝑘  and  𝑋𝑙  are the data points at point 𝑘  and  𝑙 230 

respectively. In this case, 𝑘 must be greater than 𝑙. In case of only one datum in each period, 231 

then 𝑛 can be expressed as;  𝑛 =
𝑛(𝑛−1)

2
. When there are multiple data in one or more-time 232 

periods, then  𝑛 <
𝑛(𝑛−1)

2
.  Where  𝑛  represents the time steps. The 𝑛  values of 𝑆𝑆𝐸  are 233 

arranged from smallest to largest. The Sen's slope estimator is calculated as; 234 

 235 

Qmed = {

SSE[(N+1) 2⁄ ]                             when  n is an odd number

SSE[N 2⁄ ] + SSE[(N+1) 2⁄ ]

2
             when n is  an even number

     (7) 236 
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The trend is indicated by the sign of the 𝑄𝑚𝑒𝑑 while its value portrays the degree of the slope. 237 

The confidence interval of the 𝑄𝑚𝑒𝑑 at certain probability is then obtained to check if the slope 238 

is statistically significant at zero. The confidence interval of the calculated gradient is shown 239 

in Equation (8) (Hollander et al. 2013): 240 

Cα = z1−a/2√𝑆𝑣                                                                                                                        (8)                                                                                                                   241 

 242 

where the variance of  𝑆𝑣  is illustrated in Equation 11.  𝑧1−𝑎/2 is the tabulated value obtained 243 

from the t-table. According to Gilbert (1987), the lower and upper limits levels of the 244 

significant bands, 𝑄𝑚𝑖𝑛, and 𝑄𝑚𝑎𝑥, are 𝑀1
th largest and the (𝑀2 + 1)th largest of the 𝑁 ordered 245 

slope estimates. In this case,  M1 =
N−Ca

2
  and  M2 =

N+Ca

2
 . In this study, the slope will be 246 

considered statistically significant at (𝛼 = 0.01)  and if the two limits (𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥) have 247 

same sign. 248 

 249 

Secondly, the study further employed Mann-Kendall (MK); (Mann 1945; Kendall 1975) and 250 

Sequential Mann-Kendall (SQMK; Sneyer 1990) to determine the significance of the trend and 251 

possible abrupt changes in the timeseries. The MK test is a rank-based non-parametric method 252 

that checks the existence of trend in a time series against the null hypothesis of no trend. Several 253 

existing literatures have applied the MK test (Ongoma and Chen 2017; Ayugi et al. 2018; Ayugi 254 

et al. 2020b). Standardized MK trend statistics is calculated using the mathematical expression 255 

shown in equation 9: 256 

𝑆 = ∑ ∑ sgn(𝑥𝑗 − 𝑥𝑖)           (9)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 258 

  257 

where ix  and jx  are sequential data for the thi  and thj  terms, n is the sample size and 259 

                                                𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {
1
0

−1
                  (10) 260 

A hypothesis is set as follows; H0 null hypothesis signifies no trend. Alternative hypothesis, H1   261 

indicates the presence of trend, either increasing or decreasing monotonic trend.  262 

The variance was calculated using the following equation 263 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18
            (11) 264 
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The probability associated with S and the sample size n is calculated to assess the significance 265 

of the trend. The scores of Z values also show the significance of the trend where the negative 266 

and positive scores of Z values denote downward and upward trends respectively. A two-tailed 267 

test, at a given α level of significance, H1 is accepted if |𝑍| > 𝑍1−𝛼/2where 𝑍1−𝛼/2 is calculated 268 

from the standard normal distribution tables. The probability associated with MK and sample 269 

size n is computed to statistically quantify the significance of the trend. The normalized test 270 

statistic; Z is calculated using Eqn. (8);  271 

                                       𝑍 =  
𝑆−1

√𝑉𝑎𝑟(𝑆)
  𝑖𝑓 𝑆 > 0                      (12)     272 

=0if S=0 273 

 =   
𝑆+1

√𝑉𝑎𝑟(𝑆)
      if S<0 274 

The trend is considered to be decreasing if Z is negative. For sequential Mann-Kendall (SQMK) 275 

test, forward sequential statistic: u (t) and backward sequential statistic u’(t) by Sneyers (1990) 276 

from the progressive analysis of MK test was used to investigate the change in trend of rainfall 277 

with time. In the computation, the test compared the relative magnitudes of data instead of the 278 

data values directly. In this case, u (t) is the standardized variable that has a unit standard 279 

deviation and a zero mean. The progressive MK values u (t) and u’(t), were calculated using 280 

the MK test for each data set, from the start to the end of the study period. In the plot of 281 

sequential MK, the confidence limits of the standard normal Z values are at α =5%. The upper 282 

and lower confidence limits therefore correspond to +1.96 and -1.96, respectively. A significant 283 

trend is noted if the progressive MK values cross either confidence limit lines at the 5% 284 

significance level. 285 

3.0 Results and Discussions 286 

3.1 Validation of datasets 287 

Figure 2 presents results obtained from the validation analysis of CHIRPS.v2 against in-situ 288 

datasets based on monthly distribution and annual cycle during the study period. These were 289 

derived from sixteen available ground-based datasets distributed across the country as shown 290 

in Figure 1. A summary of statistical metrics detailing the models' performance against 291 

observed datasets is shown in Table 2. Our results demonstrate that CHIRPS.v2 can reliably 292 

reproduce rainfall climatology over the study area. There is a strong agreement between 293 

CHIRPS datasets and ground-based on monthly distribution, with ECDF showing 294 

homogeneous patterns as observed along with the frequency distribution. Moreover, the 295 

CHIRPS products captured the annual cycle's bimodal patterns and seasonal peaks, as observed 296 
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using in-situ datasets (Figure 2b and Table 1). However, a slight overestimation was observed 297 

in April when the study region experienced the highest rainfall amount. Interestingly, the month 298 

of October and November depicted an underestimation of ground-based data by CHIRPS.v2.   299 

Despite the reliability of CHIRPS.v2 in reproducing rainfall information, contrary 300 

performance was noted at Kitgum station. The CHIRPS.v2 showed a weak correlation (CC = 301 

0.12) and high amplitude with RMSD = 179.11 mm/month and Bias = 39.58 (Table 2). This 302 

calls for further investigation of the observed outlier performance on this particular station. 303 

Overall, the CHIRPS datasets can be employed as an alternative to in-situ datasets in a region 304 

characterized by scarcity of ground-based datasets for a timely exploration of ever-increasing 305 

climate extremes.  306 

Table 2. Annual statistical parameters obtained from the validation of ground-based vs 307 

remotely sensed rainfall CHIRPS.v2 datasets over Uganda during 1981-2017 308 

Station                            Statistical metrics 

        Correlation      RMSD        Bias    

Arua                                 

Entebe 

Gulu 

Jinja 

Kabale 

Kampala 

Kasese 

Kiige 

Kitgum 

Lira 

Masindi 

Mbarara 

Namulonge 

Serere 

Soroti 

Tororo 

  

0.76 

0.67 

0.85 

0.74 

0.78 

0.59 

0.78 

0.69 

0.12 

0.82 

0.72 

0.77 

0.65 

0.49 

0.78 

0.75 
 

52.79 

78.49 

44.84 

45.26 

34.46 

65.42 

32.83 

57.64 

179.11 

46.86 

50.3 

34.91 

48 

73.39 

49.8 

50.69 
 

5.57 

30.51 

-0.45 

-1.67 

-0.96 

9.98 

-4.41 

4.34 

39.58 

2.22 

1.04 

4.46 

-11.56 

-3.2 

-3.69 

-4.58 
 

 309 

Furthermore, this study sought to validate the performance of the better performing 310 

RCA4 model as recommended in a recent study (Ayugi et al. 2020a) against the "observed" 311 

CHIRPS.v2 datasets over Uganda during 1981-2005. Models were evaluated using robust 312 

statistical metrics such as CC, SD, RMSD, and MBE. Figure 3 shows the results of the 313 

performance of RCA4 models against the CHIRPS.v2 datasets. It demonstrated previous 314 

assessment’s substantial similarity to few existing ground-based datasets over the study 315 

domain. The validation of the MME displays relatively better performance over the study 316 
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region. For instance, the correlation coefficient shows 0.9 with CHIRPS.v2, while RMSD 317 

depicts a low amplitude of < 50 %. Moreover, a relatively low standard deviation (about 0.65 318 

mm/month) is simulated against the observed value of 1.0 mm/month. Therefore, the analysis 319 

elucidates the multi-model ensemble application for rainfall projections and impact analysis 320 

over the study area.  321 

The results for CHIRPS and RCMs validation over the study region agree with 322 

many evaluative studies. For instance, the reliability of CHIRPS in reproducing regional 323 

rainfall information as compared to other satellite datasets across many regions in the sub-324 

Saharan equatorial region as affirmed in various studies (e.g., Diem et al. 2014 2019b; 325 

Gebrechorkos et al. 2017; Kimani et al. 2017; Nicholson et al. 2019; Ayugi et al. 2019). It 326 

should be noted that the study area experiences heavy rains for MAM, and short rains are 327 

received for SON (Kizza et al. 2009; Ogwang et al. 2014; Gamoyo et al. 2015). The bimodal 328 

pattern is mostly influenced by the oscillation of Intertropical Convergence Zone (ITCZ) 329 

(Nicholson 2018; Yang et al. 2015; Nicholson et al. 2018). 330 

Simultaneously, other studies have also substantiated that RCMs can generate high-331 

resolution projections of climate events in many parts of the world as compared to Global 332 

Climate Models (GCMs) (Kidd et al. 2012; Nikulin et al. 2012). Recent evaluative studies on 333 

the performance of RCMs over the Greater Horn of Africa (GHA) identified the robust 334 

performance of RCMs derived from the Rossby Centre regional Atmospheric Model (RCA4) 335 

(Endris et al. 2013; Kisembe et al. 2019; Ayugi et al. 2020a). The validation of model 336 

performance over the study area reaffirms the trustworthiness and reliability of the RCMs in 337 

projecting the possible future changes amid climate change and global warming. Thus, this 338 

study employs the MME of the five models in the projection of precipitation change using the 339 

representative concentration pathways, proposed by Riahi et al. (2007).  340 
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 341 

Figure 2. Comparison of CHIRPS.v2 against in-situ datasets based on (a) monthly 342 

distribution presented using the ECDF plots for the period 1981-2017 over Uganda. The 343 

second plot; (b) shows the annual cycle of precipitation products during the study period 344 

derived from sixteen available ground-based datasets distributed across the country as shown 345 

in Fig. 1 346 

 347 

Figure 3. Taylor diagram showing the validation of RCA4 model against the “observed” 348 

CHIRPS.v2 datasets over Uganda during 1981-2005. The statistical metrics computed entailed 349 

correlation coefficient, standard deviation, root mean square difference and bias. 350 

3.2 Spatiotemporal variability of annual and seasonal rainfall 351 
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This analysis aimed to show the spatial and temporal patterns of rainfall change over Uganda 352 

during the recent period 1981 – 2019. The results are depicted in Figures 4 and 5, 353 

respectively. Figure. 4 shows an overview of the annual precipitation cycle and the rate of 354 

change per year over Uganda based on CHIRPS.v2 datasets for 1981-2019. It is apparent from 355 

the figure that the study area experiences bimodal rainfall patterns with a strong gradient of 356 

rainfall experienced during MAM period over the years along with the second rainfall band 357 

occurring during SON. The mean rainfall for MAM (SON) is 139.20 mm/month (125.71 358 

mm/month). The results further illustrate that the study area received less rainfall of < 48 359 

mm/month during the DJF season, while a substantial amount of rainfall (107 mm/month) is 360 

noted during the JJA period. Remarkably, the yearly variation shows that the year 2012 361 

recorded the highest amount of rainfall, whereas the least amount was noted in the year 2009. 362 

The observed anomalies depict a period of dryness (wetness) over the study area. To understand 363 

the recent trends experienced over the given period, we employed Theil Sen Slope Estimator 364 

to compute the trends. Findings for the rate of change are presented in Figure 4b. As shown in 365 

the figure above, the results display a significant positive increase in October at 0.62 mm/year, 366 

while January and July depicted a negative insignificant decreasing pattern of -0.178 mm/year 367 

(-0.311) mm/year, respectively. 368 

For seasonal tendencies, the MAM season shows a decreasing pattern compared to 369 

SON, which is considered a 'short rainy' season over the study region. Further analysis of the 370 

spatial distribution of seasonal rainfall (mm) and their respective probability density function 371 

(PDF) distribution over Uganda based on CHIRPS.v2 datasets for the period 1981 – 2019 is 372 

shown in Figure 5. Figure 5a shows spatial patterns of MAM rainfall, while SON rains are 373 

presented in Figure 5b. MAM receives more rainfall distribution compared to SON. Moreover, 374 

southern and eastern parts of the region experience a higher magnitude of rainfall, while the 375 

northeast depicts less precipitation amount of ≤ 50 mm/month. The rainfall amounts over the 376 

northeastern zone are more pronounced during SON, with larger parts of the study area 377 

receiving fewer rainfall amounts than MAM season. Despite the higher rainfall amount 378 

experienced during MAM season, analysis of PDF that examines the relative likelihood in the 379 

distribution of variable from the mean shows that SON is likely to shift from negative to 380 

positive patterns. The results presented provide information on how the region's rainfall has 381 

varied both in time and space.  382 

Numerous existing studies have attempted to establish an explanation of monthly 383 

variations, the trends, and mechanisms regulating the observed patterns. For instance, the 384 

seasonal variability of rainfall is regulated mainly from the complex interaction of weather 385 
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systems such as; the bi-annual oscillation of ITCZ from North to South, the tropospheric 386 

systems of Quasi-biennial Oscillation (QBO), large-scale monsoon winds, and subtropical 387 

anticyclones (Mutai et al. 2000; Nsubuga et al. 2011). The ITCZ has a larger influence than the 388 

listed underlying mechanisms of seasonal rainfall patterns (Nicholson 2018). Meanwhile, the 389 

increasing amount of rainfall during the period of JJA, which was considered as the local dry 390 

season, is attributed to moist westerlies originating from the Congo basin resulting to enhanced 391 

rain during this season in the north and southwest when other parts of the country are cold and 392 

dry (Mchugh 2004; Kizza et al. 2009). On the other hand, Lake Victoria's lake/land breeze 393 

plays a significant role in driving the rainfall being experienced during the dry season of DJF 394 

(Nsubuga and Rautenbach 2017). The present study's findings correspond to past studies that 395 

noted the observed climatology of enhanced rainfall during JJA season (Nsubuga et al. 2014; 396 

Yang et al. 2015).  397 

On the linear trend analysis, other existing studies equally noted a declining trend in 398 

rainfall during the local wet season of MAM (Funk et al. 2005; Lyon and Dewitt 2012; 399 

Liebmann et al. 2014). The season mentioned above is considered as the main growing season 400 

for agricultural activities that support 70% of the local economy (McSweeney et al. 2010; Ojara 401 

et al. 2020). This decrease would influence food security and livelihoods of the people. In the 402 

meantime, the spatial patterns of rainfall that depicted a higher rainfall amount during MAM 403 

season over southern and eastern parts could be attributed to the presence of large water bodies, 404 

i.e., Lake Victoria and complex geomorphology situated over the regions that receive the 405 

highest amount of rainfall (Basalirwa 1995; Indeje et al. 2001; Ogwang et al. 2014). The 406 

presence of high elevation along the eastern region produces leeward rain shadows and block 407 

the passage of rain-bearing disturbances in other areas (Ogwang et al. 2014). On the other hand, 408 

the northeast locale is characterized by arid and semi-arid lands (ASALs) with scarce 409 

vegetation cover, low precipitation events, high evapotranspiration, strong radiation, and high 410 

wind patterns throughout the year. Such factors result to dry anomaly, which significantly 411 

impact on community livelihoods and other ecosystem processes. Overall, the MAM season is 412 

mainly regulated by a combination of mesospheric features and atmospheric circulation, 413 

thereby contributing to higher rainfall amount observed as compared to the SON season (Yin 414 

and Nicholson 2002).  The PDF analysis depicted changes in the shift for seasonal rainfall 415 

distribution has been attributed to the alteration of Walker circulation anomalies due to intense 416 

warming of Sea surface temperature (SST) along the western Indian Ocean (Lyon and Dewitt 417 

2012). The implication of the changes in the seasonal rains is likely to impact farmers' 418 
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uncertainties regarding crop growing seasons, which predominantly have been observed for 419 

MAM season (Matthew et al. 2015; Adhikari et al. 2015).   420 

 421 

Figure 4. Yearly/monthly evolution of annual precipitation cycle and the rate of change per 422 

year over Uganda based on CHIRPS.v2 datasets for the period 1981-2019. 423 

 424 
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Figure 5. Seasonal mean monthly rainfall (mm) and their respective probability density 425 

function (PDF) distribution over Uganda based on CHIRPS.v2 datasets for the period 1981-426 

2019; March-May (left), and September-November (right).   427 

3.3 Interannual variability of seasonal and annual rainfall  428 

Analysis of rainfall anomalies for seasons over the study region during the1981 – 2019 period 429 

based on CHIRPS.v2 datasets is presented in Figure 6. Examining the interannual variability 430 

of rainfall aids in the understanding of the main factors controlling the interannual variations. 431 

Typical wet and dry years were identified following Makkonen's (2006) recommendations on 432 

exceeding the standard deviation of +1/-1. The results show substantial variability on 433 

interannual rainfall patterns over the study domain. For instance, the local wet season for MAM 434 

highlights wet and dry patterns with 23 years experiencing wet anomalies while 15 years had 435 

incidences of dry anomalies. On the other hand, SON shows an equal number of years of wet 436 

and dry events although annual records depicted 55 % (21/38 years) of the total years with a 437 

positive standardized anomaly. Notable wet years during the rainy seasons and annually were 438 

as follows: 2011 and 2012, whereas dry years were observed during 2008 and 2009.  439 

Further analysis of rainfall decadal change is shown in Figures 7 and 8. A decadal study 440 

reveals low-frequency phenomena modulating climatic regimes and precipitation variability 441 

(White and Tourre 2003). In this study, we analyzed decadal to show spatial variations of 442 

rainfall and to identify the years associated with climatic phenomenon regulating the 443 

interannual and interdecadal variability. The spatial anomalies were calculated based on 444 

CHIRPS datasets over the last four decades, thus, 1981 - 1990; 1991 – 2000; 2001 – 2010; and 445 

2011 – 2019. The summary of the rate of change per decade is highlighted in Table 3. From 446 

the analysis based on rainfall decadal anomalies, it is apparent that varying tendencies were 447 

noted from one decade to another across various time scales. For instance, the study region 448 

witnessed a pronounced decreasing trend during MAM seasons through the last decade (2011 449 

– 2019) though SON showed a decreasing trend during the first two decades (1981 – 1990 and 450 

1991 – 2000) coupled with a recovery afterwards. Moreso, MAM depicted distinct wetting 451 

trends covering most parts of the study area during the first three decades (i.e., 1981 - 1990, 452 

1991 - 2000, and 2001– 2010) although dry trends were observed in 2011 – 2019 (Figure 7). 453 

The SON rains (Figure 8) exhibited a reduction trend in the first two decades (1981 – 1990 and 454 

1991 – 2000), followed by an increase in the last decades (2001 – 2010 and 2011 – 2019), 455 

probably reflecting an increased November rainfall over broader study locale (Spinage 2012). 456 

Overall, the observed patterns show a reversal in rainfall patterns over the study region with 457 
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enhanced rainfall occurrence during the short rain season whereas reduction was witnessed 458 

during the long rain season.  459 

The result from the inter-annual variation analysis shows high spatiotemporal 460 

variability, which coincides with the anomalies in remote forcing events. For example, the 461 

primary controlling mechanism influencing the observed interannual variations high/low 462 

rainfall events have been linked to the dipole reversal of atmospheric circulation and Indian 463 

Ocean sea surface temperatures (Saji et al. 1999). The rains are moderated by weather 464 

phenomena such as El Niño Southern Oscillation (ENSO) (Indeje et al. 2000; Ntale and Gan 465 

2003) and the Indian Ocean Dipole (IOD) (Behera et al. 2006). The El Niño Southern 466 

Oscillation (ENSO) phenomena are strongly associated with the inter-annual variability of 467 

rainfall in this region (Indeje et al. 2000). This is reflected in the present study as years with El 468 

Niño events such as 2010 and 2012 were recorded as wet years whereas La Nina events 469 

coincided with dry years such as 1984, 1992, and 2008. The inter-annual variability of SON 470 

rains is mostly attributed to ENSO and IOD influence.  471 

 472 

Figure 6. Precipitation anomalies for MAM, SON, and Annual occurrence over Uganda during 473 

1981-2019 based on CHIRPS.v2 datasets 474 
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The decadal anomalies revealed an increase in anomalous events that have been mostly 475 

associated with positive Indian Ocean Dipole instead of the teleconnection patterns across the 476 

Pacific Ocean (Behera et al. 2006; Muhati et al. 2007). The increasing positive IOD phase 477 

results from the heightened warming of the Western Indian Ocean, which alters the changes in 478 

Walker Circulation (Behera et al. 2006; Ogwang et al. 2015). Several studies have reported 479 

that SON rainfall is mostly influenced by the changes in ENSO and IOD (Saji and Yamagata 480 

2003; Manatsa et al. 2012). On the other hand, MAM rains occurred as a result of three main 481 

drivers, the Indian Ocean SST, the seasonal amplitude of the Madden Julian Oscillation (MJO), 482 

and the phase of the quasi-biennial oscillation (QBO) (Vellinga and Milton 2018; MacLeod 483 

2019). The observed decline in MAM rainfall in the region has been prominently analyzed and 484 

discussed (Funk et al. 2008; Rowell et al. 2015). Williams and Funk (2011) attributed the 485 

continuous drying over the EA region to an anthropogenic-forced relatively enhanced warming 486 

of Indian Ocean SSTs, which extends the warm pool and Walker circulation westward, leading 487 

to a subsidence anomaly causing the drying effects. The observed trends have already affected 488 

many communities that rely on rainfall for their socio-economic activities. (Funk et al. 2008). 489 

The local impact of the interannual variability observed had immense impact on the 490 

livelihoods of people. For example, the periods of negative anomalies have resulted in droughts 491 

that have been identified to align with ENSO-related anomalies. The impact of drought has 492 

remarkably altered water resources, ecosystem balance, and impacted on agricultural activities. 493 

Previous work by Apuuli et al. (2000) noted how people were displaced during drought years 494 

with exorbitant food prices across the study area. Climate anomalies resulting in dry conditions 495 

have impacted Uganda with average damage over the past decade of about $ 237 USD (GOU 496 

2015). Such impacts enhanced increasing calls for close monitoring of climate systems in order 497 

to design appropriate policies, aimed at preparing communities to cushion themselves against 498 

direct and indirect impacts.  499 

Table 3. Decadal change in precipitation over Uganda during 1981-2019 based on CHIRPS.v2 500 

datasets 501 

  1981-1990 1991-2000 2001-2010 2011-2019 

 

MAM Mean (mm) 138.33 136.61 136.12 146.45 

Rate (mm /year) -1.593 -0.701 -2.725 0.4337 

 

SON 

 

Mean (mm) 
 

      122.94 

 

123.07 

 

116.67 

 

139.58 

Rate (mm /year) -0.028 0.644 -1.8 -4.58 

Annual 

 
Mean (mm) 103.77 103.72 102.27 111.87 

Rate (mm/year) 0.3303 0.0084 -1.42 -0.1733 

 502 
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 503 

Figure 7. Spatial decadal precipitation anomalies (mm) for MAM over Uganda based on 504 

CHIRPS.v2 datasets for the period 1981-2019. 505 
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 506 

Figure 8. Spatial decadal precipitation anomalies (mm) for SON over Uganda based on 507 

CHIRPS.v2 datasets for the period 1981-2019. 508 

3.4 Historical monotonic trends analysis  509 

The present study utilized the Mann-Kendall trend test to detect the possible significant and 510 

abrupt changes in rainfall patterns over the study area for the given period (1981 – 2019). The 511 

results for MAM, annual, and SON time series show Z-score of 0.315, 0.629, and 0.677 (Table 512 

4), which is below the threshold value of 1.96, signifying slight positive tendencies. However, 513 

the variance (S) shows negative values for all the analysis, indicating a reduction in rainfall for 514 

the given period. Figure 8 demonstrates results for sequential Mann-Kendall statistic values of 515 

progressive u (t) (solid red line) and retrogressive u’ (t) (black dotted line), derived from 516 

CHIRPS.v2 precipitation datasets for (a) MAM, (b) SON, and (c) annual mean over Uganda 517 

during 1981 – 2019 period. Generally, the SQMK indicates an upward trend in annual and 518 
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seasonal rainfall over the study area which is indicated using progressive statistic. Essentially, 519 

the analysis demonstrates a positive insignificant trend even though the amplitude varies from 520 

one season to another. For instance, the MAM season (Figure 9a) showed a decreasing pattern 521 

at the start of the study period until 1984 when it experienced noteworthy decrease with a 522 

reversed upward trend, experienced thereafter which was eventually sustained until the end of 523 

the study period. During this period, change occurred in 2011 as evidenced by the intersection 524 

of u (t) and u’ (t). 525 

On the other hand, the SON season (Figure 9b) experienced several changes, with three 526 

major intersections encountered across the study duration. The annual rainfall record presented 527 

similar patterns as the MAM season with three changes occurring in 2010, 2013, and 2018 528 

where the forward and retrograde line crossed each other (Figure 9c). The results are in 529 

congruence with previous findings (Funk et al. 2008; Williams and Funk 2011; Lyon and 530 

Dewitt, 2012) that reported an abrupt shift in rainfall tendency from wet years to an almost 531 

continuous period well-below average rainfall over the study domain. This trend has been 532 

consistent in the three decades, following the early years of 1980s, as well as series of dry years 533 

in 2010. 534 

Fluctuations in water resources is evident based on the decline in water levels of Lake 535 

Victoria mainly as a result of the impact of rainfall variations (Kull 2006). The decreasing trend 536 

in MAM total rainfall impacted negatively through a reduction in the number of wet days, 537 

thereby affecting the cropping cycle and maturity of staple foods. In some regions, farmers had 538 

noticed seasonal rains delayed.  Again, they noticed rains received as well as rainfall duration 539 

during such periods were short, intensive and erratic. Such scenarios had immense impact on 540 

the overall output of food supply and water table. This in effect, calls for implementation of 541 

rapid growing crops and systems that required less water as an adaptive mechanism to cope 542 

with changes associated with rainfall. Farmers and all relevant stakeholders need to shift the 543 

planting season from MAM to SON which currently experiences much rainfall occurrence as 544 

compared to MAM.  545 
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 546 

Figure 9. Sequential Mann-Kendall statistic values of progressive u (t) (red solid line) and 547 

retrogressive u’ (t) (black dotted line), derived from CHIRPS.v2 precipitation datasets for 548 

MAM, SON, and Annual mean over Uganda during 1981-2019. 549 

Table 4. Summary of Mann-Kendall test statistics for annual, seasonal of MAM and OND rainfall over 550 

Uganda at 5% significant level. 551 

Trend Analysis   MK Rainfall (mm) 

 Annual_RF MAM SON 

S -27.00 -53.00 -57.00 

Z 0.315 0.629 0.677 

Kendall's tau 0.182 0.0364 0.0958 

P 0.753 0.529 0.498 

Alpha   0.05 0.05 0.05 

Significance Insignificant 

increasing trend 

Insignificant 

decreasing trend 

Insignificant 

decreasing trend 

 552 

3.5 Future Projections         553 

This study used the MME ensemble to depict the future projections under RCP8.5 in bid to 554 

demonstrate the near-term changes in rainfall over the study area. Figure 10 shows the monthly 555 
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changes of rainfall in the future for 2020 - 2050 period under RCP8.5, relative to the baseline 556 

data for 1981 - 2019 over Uganda. Results show that wet conditions are projected to occur over 557 

the study area between April-May and SON season. Contrarily, the month of March is likely 558 

to witness a reduction in wet conditions. Projected patterns show further reduction as compared 559 

to the baseline period in rainfall during the months of June-August (JJA) and December-560 

February (DJF). Further analysis of projected linear trends of seasonal and annual rainfall over 561 

Uganda for the given period (2020 – 2050), relative to 1981-2019 is shown in Figure 11 and 562 

Figure 12. The distribution and analysis were to explain projected linear patterns, relative to 563 

the baseline period, which highlights the expected changes and their respective magnitude over 564 

the study area. Linear trends (Figure 11) and PDF (Figure 12) for seasonal precipitation 565 

illustrate decreasing patterns during the long rainy season (Figure 11a & Figure 12a) whilst 566 

increasing tendencies with substantial shift is depicted during the SON season (Figure 11b & 567 

12b) over the study region. The resultant implication is an upsurge in rainfall amount received 568 

during SON over the study domain. Meanwhile, annual projections (Figure 11c & Figure 12c) 569 

indicated huge variations, with linear trends showing a marginal increase as compared to 570 

historical tendencies.  571 

 572 

Figure 10. Monthly projected precipitation climatology (mm) for the period 1981-2019 and for 573 

the projected period 2020-2050 (mm) over Uganda under RCP 8.5 scenario. 574 
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It should be noted that projections were derived from the multi-model ensemble of five 575 

better performing RCMs over the study region (Endris et al. 2013; Ayugi et al. 2020a). This 576 

was to enhance the confidence in projections due to reduced inter-model uncertainty and 577 

minimum biases. The results of the annual cycle (Figure 10) agree with existing studies on 578 

projected annual rainfall across the East African (EA) region. For instance, Ongoma et al. 579 

(2018) projected an increase in rainfall during the month of April and September while May to 580 

August was likely to witness a reduction in wet conditions. The observed and projected dry 581 

conditions during JJA could be attributed to changes in above-normal sea-level pressure over 582 

Bombay and Indian drought in July through to September, thereby contributing to dry 583 

conditions over Uganda, and other parts of EA region (Camberlin 1997; Patricola and Cook 584 

2011).  585 

Nevertheless, the projected wet conditions during the April/May period could be 586 

ascribed to strong Somali jet that is southerly over the Horn of Africa and turns westerly into 587 

the Arabian Sea, thereby transporting moisture over EA (Hastenrath et al. 2011). The analysis 588 

for linear trends as presented in Figure 11 and 12 which depicts negative trends for annual and 589 

MAM season could be attributed to reduced rainfall trends during the long rainy season which 590 

may account for the higher rainfall amount recorded as compared to the SON season. The 591 

projected decrease agrees with recent studies conducted by Rowell et al. (2015) and Tierney et 592 

al. (2015) that equally asserted that the projected long rains would continue to exhibit 593 

decreasing patterns until 2060 before it depicts recovery trends towards the end of the century. 594 

Apparently, other studies demonstrate correspondingly opposite trends over the EA region with 595 

increasing patterns being reported contrary to observed reduced trends recorded (Rowell et al. 596 

2015; Ongoma et al. 2018). This discrepancy in projected rainfall trends is termed as the East 597 

Africa “climate paradox”. This further calls for more evaluative studies to ascertain clarity in 598 

projected patterns (Rowell et al. 2015).    599 
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 600 

Figure 11. Precipitation anomaly for MAM, SON, and Annual over Uganda under RCP 8.5 for 601 

historical simulations based on CHIRPS.v2 during1981-2019 and projections in during 2020-602 

2050 based on five MME RCA4 models 603 

Conversely, the substantial increment in precipitation during SON rains could be 604 

attributed to changes in teleconnection patterns such as ENSO and IOD (Nicholson and Kim 605 

1997; Indeje et al. 2000; Endris et al. 2019). These studies illustrated a higher warming rates 606 

over the western Indian Ocean than the eastern Indian Ocean. This may lead to intensified 607 

positive IOD occurrences, leading to stronger spatial coherence in precipitation patterns. The 608 

decisive shift, indicating an increase in rainfall event, despite projected future warming, agrees 609 

with a study conducted by Kent et al. (2015) that revealed lack of correlation between 610 

uncertainty in global mean temperature and projected end-of-twenty-first-century change in 611 

precipitation. Moreover, the study further noted that uncertainty in regional precipitation over 612 

the study region is predominantly related to spatial shifts in convection and convergence, 613 

associated with processes such as SST patterns and land-sea thermal contrast change. The 614 

conclusion in various studies that attempts to elucidate shifts in rainfall projections highlights 615 
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the complexity of regional rainfall fluctuations, resulting to uncertainty about the magnitude of 616 

impacts, related to extremes weather events. Meanwhile, the projected reductions in rainfall 617 

amounts for MAM seasons and annual precipitations could be associated with the weakening 618 

of Walker Circulation over Indian and Pacific Ocean basins (Tierney et al. 2015).  619 

In summary, the projected increase in April/May rainfall may be a relief to farmers who 620 

entirely depend on rainfall for their agricultural activities. The increased wetness would 621 

enhance farm outputs, thereby improving the overall productivity at the national level. 622 

However, the projected reduction in JJA rainfall, attributed to Congo westerlies would 623 

adversely impact communities, mostly located in southwestern Uganda (Diem et al. 2019a). 624 

For instance, the crop regions along the western belt would be affected by the changes in 625 

climatic conditions. Further, rapid population growth and an expansion of farming and 626 

pastoralism under drier climate regimes would dramatically increase the number of vulnerable 627 

communities for the next 30 years. The changes projected could also heighten community 628 

conflicts in the use of limited natural resources. Continuous monitoring of rainfall and its 629 

related impacts remain a crucial task with short term policies being formulated to reflect the 630 

present changes from time to time.   631 
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 632 

Figure 12. PDF for MAM, SON, and Annual precipitation under RCP 8.5 during 2020-2050 633 

scenarios and baseline period 1981-2019. 634 

4. Conclusion and Recommendation 635 

Rainfall remains one of the most important climatic variables supporting the economies and 636 

livelihoods of many African countries. Slight variation or changes in its trends translate to 637 

massive impact on agriculture, energy, transportation and other climate sensitive sectors of the 638 

economy. This present study, thus, sought to examine recent trends and possible future 639 

projection of rainfall over Uganda. The study utilized rainfall datasets obtained from Climate 640 

Hazard Group Infrared Precipitation with Station (CHIRPS) and multi model ensemble (MME) 641 

of five regional climate (RCMs) datasets. The listed RCMs simulations outputs were derived 642 

from the dynamical downscaling of CMIP5 GCMs using Rossby Climate Modelling 643 

Atmospheric Centre (RCA4), originally developed by the Swedish Meteorological and 644 

Hydrological Institute (SMHI) under the CORDEX initiative. The CHIRPS dataset was 645 
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employed for historical analysis while MME was employed for future projections under 646 

RCP8.5 scenario.  647 

The results for multi-year monthly climatology show occurrence of bimodal rainfall 648 

patterns with strong gradient of rainfall experienced for March-May season (MAM). The 649 

second rainfall band on the other hand, occurred in September-November (SON). Results 650 

further revealed the study area received less rainfall of < 48 mm/month during December-651 

February season (DJF) while substantial amount of rainfall (107 mm/month) was recorded for 652 

the June-August season (JJA). An analysis of recent trends of rainfall revealed an upward trend 653 

in annual and seasonal rainfall over study area after 2010. Furthermore, results for future 654 

projections show wet conditions are projected to occur over study area between April-May and 655 

October. On the contrary, the month of March is likely to witness a reduction in wet conditions 656 

based on study findings. Linear trends for seasonal rainfall show decreasing patterns for MAM 657 

season whilst increasing tendencies with strong shift are depicted during SON over the study 658 

region. Meanwhile, annual projections indicated huge variations with linear trends, illustrating 659 

a marginal increase as compared to historical tendencies.   660 

The results of this study would contribute to the ever-present debate on projected 661 

expected changes in the region’s rainfall variation which continues to draw much attention due 662 

to the many conflicting projection patterns. The results can be utilized by relevant stakeholders, 663 

including policy makers and farmers who largely depends on rainfed climatic patterns in the 664 

wake of global warming. Decision and policy makers ought to design 665 

appropriate policies that reflect all possible outcomes as various studies are inconclusive on the 666 

exact direction of future climate in the wake of global warming and climate change. 667 
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Hazeleger W, Wang X, Severijns C, S ţefa˘nescu S, Bintanja R, Sterl A, Wyser  K, Semmler 800 

T, Yang S, van den Hurk B, van Noije T, van der Linden E, van der Wiel K (2012) EC-801 

Earth V2.2: description and validation of a new seamless earth 802 

system prediction model. Clim Dyn 39:2611–2629 DOI 10.1007/s00382-011-1228-5 803 

Hession S L,  Moore N (2011) A spatial regression analysis of the influence of topography on 804 

monthly rainfall in East Africa. Int. J. Climatol 31:1440–1456. 805 

https://doi.org/10.1002/joc.2174 806 

Hollander M, Wolfe DA, Chicken E (2013) Nonparametric Statistical Methods, vol. 807 

751. John Wiley & Sons 808 

Indeje M, Semazzi FHM, Xie L, Ogallo LJ (2001) Mechanistic model simulations of the East 809 

African climate using NCAR regional climate model: Influence of large-scale orography 810 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2021                   doi:10.20944/preprints202101.0037.v1

https://doi.org/10.1007/s10887-015-9121-4
https://doi.org/10.1002/joc.2174
https://doi.org/10.20944/preprints202101.0037.v1


33 

 

on the Turkana low-level jet. J. Climate 14:2710–2724. https://doi.org/10.1175/1520-811 

0442(2001)014<2710:MMSOTE>2.0.CO;2 812 

Indeje M, Semazzi FHM, Ogallo LJ (2000) ENSO signals in East African rainfall seasons. Int. 813 

J. Climatol 20:19–46. https://doi.org/10.1002/(SICI)1097-0088(200001)20:1<19::AID-814 

JOC449>3.0.CO;2-0 815 

IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II 816 

and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 817 

[Pachauri RK, Meyer LA (eds.)]. IPCC, Geneva, Switzerland, 151 pp. 818 

IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working 819 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 820 

[Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, 821 

Bex V, Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom 822 

and New York, NY, USA, 1535 pp. 823 

IPCC (2001) Climate Change 2001: The Scientific Basis, Contribution of Working Group I to 824 

the Third Assessment Report of the Intergovernmental Panel on Climate Change 825 

(Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, 826 

Johnson CA (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New 827 

York, NY, USA, 881 pp. (see http://www.grida.no/climate/ipcc_tar/wg1/317.htm#fig84) 828 

Kendall MG (1975) Rank correlation methods, 4th edn. Griffin, London, p 202 829 

Kent C, Chadwick R,  Rowell,DP (2015) Understanding uncertainties in future projections of 830 

seasonal tropical precipitation. J. Climate 28:4390–4413. https://doi.org/10.1175/JCLI-D-831 

14-00613.1 832 

Kidd C, Bauer P, Turk J, Huffman GJ, Joyce R, Hsu KL, Braithwaite D (2012) Intercomparison 833 

of high-resolution precipitation products over Northwest Europe. J. Hydrometeorol 834 

13:67–83. https://doi.org/10.1175/JHM-D-11-042.1 835 

Kimani MW, Hoedjes JCB,  Su Z (2017) An assessment of satellite-derived rainfall products 836 

relative to ground observations over East Africa. Remote Sens 9: 837 

https://doi.org/10.3390/rs9050430 838 

Kisembe J, Favre A, Dosio A, Lennard,C, Sabiiti G,  Nimusiima A (2019) Evaluation of rainfall 839 

simulations over Uganda in CORDEX regional climate models. Theor appl climatol 840 

137:1117–1134. https://doi.org/10.1007/s00704-018-2643-x 841 

Kizza M, Rodhe A, Xu CY, Ntale HK, Halldin S (2009) Temporal rainfall variability in the 842 

Lake Victoria Basin in East Africa during the twentieth century. Theor appl climatol 98: 843 

119–135. https://doi.org/10.1007/s00704-008-0093-6 844 

Kull D (2006) Connections between recent water level drops in Lake Victoria, dam operations 845 

and drought. available at: www.irn.org/programs/nile/pdf/060208vic.pdf (accessed 24 846 

March 2013). 847 

Liebmann B, Hoerling MP, Funk C, Bladé I, Dole RM, Allured D, Quan X, Pegion P, Eischeid 848 

JK (2014) Understanding recent eastern Horn of Africa rainfall variability and change. 849 

Int. J. Climatol 27: 8630–8645. https://doi.org/10.1175/JCLI-D-13-00714.1 850 

Lyon B, Dewitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys. 851 

Res. Lett 39:1–5. https://doi.org/10.1029/2011GL050337 852 

MacLeod D (2019) Seasonal forecasts of the East African long rains: insight from atmospheric 853 

relaxation experiments. Clim dynm 53:4505–4520. https://doi.org/10.1007/s00382-019-854 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2021                   doi:10.20944/preprints202101.0037.v1

https://doi.org/10.1007/s00704-008-0093-6
https://doi.org/10.20944/preprints202101.0037.v1


34 

 

04800-6 855 

Makkonen L  (2006) Plotting Positions in Extreme Value Analysis. J Clim Appl Meteorol 45: 856 

334–340. 857 

Manatsa D, Chipindu B, Behera SK (2012) Shifts in IOD and their impacts on association with 858 

East Africa rainfall. Theor appl climatol 110: 115–128. https://doi.org/10.1007/s00704-859 

012-0610-5 860 

Mann HB (1945) Nonparametric tests against trend. Econometrica 861 

13:245–259 862 

Matthew OJ, Abiodun BJ, Salami AT (2015) Modelling the impacts of climate variability on 863 

crop yields in Nigeria: Performance evaluation of RegCM3-GLAM system. Meteorol. 864 

Appl 22: 198–212. https://doi.org/10.1002/met.1443  865 

Mchugh MJ (2004) Near-Surface Zonal Flow and East African Precipitation Receipt during 866 

Austral Summer. J. Clim 17 4070–4079. https://doi.org/10.1175/1520-867 

0442(2004)017<4070:NZFAEA>2.0.CO;2 868 

McSweeney C, New M, Lizcano G, Lu X (2010) The UNDP climate change country profiles. 869 

Bull. Am. Meteorol. Soc 91:157–166. https://doi.org/10.1175/2009BAMS2826.1 870 

Mutai CC, Ward MN (2000) East African rainfall and the tropical circulation/convection on 871 

intraseasonal to interannual timescales. J. Climate 13: 3915–3939. 872 

https://doi.org/10.1175/1520-0442(2000)013<3915:EARATT>2.0.CO;2 873 

Muhati FD, Ininda JM, Opijah FJ (2007) Relationship between ENSO parameters and the 874 

trends and periodic flactuations in east African rainfall. J Kenya Meteorol Soc 1: 20–43. 875 

Mumo L, Yu J, Ayugi B (2019) Evaluation of spatiotemporal variability of rainfall over 876 

Kenya from 1979 to 2017. J. Atmos. Sol. Terr. Phys. 105097. 877 

Niang I, Ruppel OC, Abdrabo MA, Essel A, Lennard C, Padgham J, Urquhart P (2014) Africa. 878 

In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional 879 

Aspects. Contribution of Working Group II to the Fifth Assessment Report of the 880 

Intergovernmental Panel on Climate Change [Barros VR, Field CB, Dokken DJ, 881 

Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, 882 

Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds.)]. 883 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 884 

1199–1265 pp. 885 

Nicholson SE, Klotter D, Zhou L, Hua W (2019) Validation of satellite precipitation estimates 886 

over the Congo Basin. J. Hydrometeorol 20: 631–656. https://doi.org/10.1175/JHM-D-887 

18-0118.1 888 

Nicholson SE (2018) The ITCZ and the Seasonal Cycle over Equatorial Africa. Bull. Amer. 889 

Meteor. Soc. 99 (2): 337–348. https://doi.org/10.1175/BAMS-D-16-0287.1  890 

Nicholson SE, Funk C, Fink A H (2018) Rainfall over the African continent from the 19th 891 

through the 21st century. Global Planet. Change 165:114–127. 892 

https://doi.org/10.1016/j.gloplacha.2017.12.014 893 

Nicholson SE (2017) Climate and climatic variability of rainfall over eastern Africa. Rev. 894 

Geophys. 55, 590–635. doi:10.1002/2016RG000544. 895 

Nicholson SE,  Kim J (1997) The relationship of the El Niño–Southern Oscillation to African 896 

rainfall. Int. J. Climatol 17:117–135. https://doi.org/10.1002/(SICI)1097-897 

0088(199702)17:2<117::AID-JOC84>3.0.CO;2-O 898 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2021                   doi:10.20944/preprints202101.0037.v1

https://doi.org/10.1007/s00704-012-0610-5
https://doi.org/10.1007/s00704-012-0610-5
https://doi.org/10.1175/JHM-D-18-0118.1
https://doi.org/10.1175/JHM-D-18-0118.1
https://doi.org/10.1175/BAMS-D-16-0287.1
https://doi.org/10.1016/j.gloplacha.2017.12.014
https://doi.org/10.20944/preprints202101.0037.v1


35 

 

Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué 899 

M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) 900 

Precipitation climatology in an ensemble of CORDEX-Africa regional climate 901 

simulations. J. Climate 25:6057–6078. https://doi.org/10.1175/JCLI-D-11-00375.1 902 

Nsubuga FNW, Rautenbach H (2017) Climate change and variability: a review of what is 903 

known and ought to be known for Uganda. Int. J Clim Chang Str.  10(5): 752-771 DOI 904 

10.1108/IJCCSM-04-2017-0090 905 

Nsubuga FNW, Olwoch JM, de Rautenbach CJW, Botai OJ (2014) Analysis of mid-twentieth 906 

century rainfall trends and variability over southwestern Uganda. Theor appl climatol 907 

115:53–71. https://doi.org/10.1007/s00704-013-0864-6 908 

Nsubuga FWN, Olwoch JM, Rautenbach CJdeW (2011) Climatic trends at Namulonge in 909 

Uganda: 1947-2009. Journal of Geography and Geology, Vol. 3 No. 1, pp. 119-131. 910 

Ntale HK, Gan TY (2003) Drought indices and their application to East Africa. Int. J. Climatol 911 

23: 1335–1357. https://doi.org/10.1002/joc.931 912 

Ogwang BA, Chen H, Li X, Gao C (2014) The influence of topography on East African 913 

October to December climate: Sensitivity experiments with RegCM4. Adv. Meteorol  914 

https://doi.org/10.1155/2014/143917 915 

Ogwang BA, Ongoma V, Xing L, Ogou FK  (2015) Influence of mascarene high and Indian 916 

Ocean dipole on East African extreme weather events. Geogr. Pannonica 19:64–72. 917 

https://doi.org/10.5937/geopan1502064o 918 

Ojara MA, Lou Y, Aribo L, Namumbya S,  Uddin MJ  (2020) Dry spells and probability of 919 

rainfall occurrence for Lake Kyoga Basin in Uganda, East Africa. Nat Hazards 100: 493–920 

514. https://doi.org/10.1007/s11069-019-03822-x  921 

Omondi PA, Awange JL, Forootan E, Ogallo LA., Barakiza R, Girmaw GB, Fesseha I, 922 

Kululetera V, Kilembe C, Mbati MM, Kilavi M, King’uyu SM, Omeny PA, Njogu A, 923 

Badr EM, Musa TA, Muchiri P, Bamanya D, Komutunga E (2014) Changes in 924 

temperature and precipitation extremes over the Greater Horn of Africa region from 1961 925 

to 2010. Int. J. Climatol 34:1262–1277. https://doi.org/10.1002/joc.3763 926 

Ongoma V, Rahman MA, AyugI B, Nisha F, Galvin S,  Shilenje ZW, Ogwang BA (2020) 927 

Variability of diurnal temperature range over Pacific Island countries, 928 

a case study of Fiji. Meteorol atmos phys https://doi.org/10.1007/s00703-020-00743-4  929 

Ongoma V, Chen H (2017) Temporal and spatial variability of temperature and precipitation 930 

over East Africa from 1951 to 2010. Meteorol atmos phys 129:131–144. 931 

https://doi.org/10.1007/s00703-016-0462-0 932 

Ongoma V, Chena H, Gaoa C (2018) Projected changes in mean rainfall and temperature over 933 

east Africa based on CMIP5 models. Int. J. Climatol 38:1375–1392. 934 

https://doi.org/10.1002/joc.5252 935 

Osima S, Indasi VS, Zaroug M, Endris HS, Gudoshava M, Misiani HO, Nimusiima A, Anyah 936 

RO, Otieno G, Ogwang BA, Jain S, Kondowe AL, Mwangi E, Lennard C, Nikulin G, 937 

Dosio A (2018) Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C 938 

global warming. Environ. Res. Lett 13:065004. https://doi.org/10.1088/1748-939 

9326/aaba1b 940 

Patricola CM, Cook KH (2011) Sub-Saharan Northern African climate at the end of the twenty-941 

first century: Forcing factors and climate change processes. Clim dynm 37:1165–1188. 942 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2021                   doi:10.20944/preprints202101.0037.v1

https://doi.org/10.1175/JCLI-D-11-00375.1
https://doi.org/10.1007/s00704-013-0864-6
https://doi.org/10.1007/s11069-019-03822-x
https://doi.org/10.1002/joc.3763
https://doi.org/10.20944/preprints202101.0037.v1


36 

 

https://doi.org/10.1007/s00382-010-0907-y 943 

Parry M, Rosenzweig C, Livermore M (2005) Climate change, global food supply and risk of 944 

hunger. Philos. Trans. R. Soc. B Biol. Sci 360:2125–2138. 945 

https://doi.org/10.1098/rstb.2005.1751 946 

Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, 947 

Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical 948 

land biosphere dominate the climate-carbon cycle feedback 949 

during the twenty-first century? Clim Dyn 29(6):565–574 950 

Reliefweb (2020) East Africa: Drought. 2014-2019. Available at: 951 

 https://reliefweb.int/disaster/dr-2014-000131-ken. Last accessed on 01 September 2020 952 

Riahi K, Grüble A, Nakicenovic N (2007) Scenarios of long-term socio-economic and 953 

environmental development under climate stabilization. Technol Forecast Soc Change. 954 

74(7): 887-935 https://doi.org/10.1016/j.techfore.2006.05.026  955 

Rotstayn LD, Collier MA, Dix MR, Feng Y, Gordon HB, O’Farrell 956 

SP, Smith IN, Syktus J (2009) Improved simulation of Australian 957 

climate and ENSO-related climate variability in a GCM with an 958 

interactive aerosol treatment. Int J Climatol 30:1067–1088 959 

Rowell DP, Booth BBB, Nicholson SE, Good P (2015) Reconciling past and future rainfall 960 

trends over East Africa. J. Climate 28:9768–9788. https://doi.org/10.1175/JCLI-D-15-961 

0140.1 962 

Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical 963 

Indian ocean. Nature 401: 360–363. https://doi.org/10.1038/43854 964 

Saji NH, Yamagata T (2003) Structure of SST and surface wind variability during Indian Ocean 965 

Dipole mode events: COADS observations. J. Climate 16: 2735–2751. 966 

https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2 967 

Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on African 968 

agriculture. Environ. Res. Lett 5: 014010. https://doi.org/10.1088/1748-9326/5/1/014010 969 

Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J. Am. 970 

Stat. Assoc. 63, 1379–1389. https://doi.org/10.2307/2285891. 971 

Seneviratne SI, Wilhelm M, Stanelle T, Van Den Hurk B, Hagemann S, Berg A, Cheruy F, 972 

Higgins ME, Meier A, Brovkin V, Claussen M, Ducharne A, Dufresne JL, Findell KL., 973 

Ghattas J, Lawrence DM, Malyshev S, Rummukainen M, Smith B (2013) Impact of soil 974 

moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 975 

experiment. Geophys. Res. Lett 40:5212–5217. https://doi.org/10.1002/grl.50956 976 

Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S, Kossin J, Luo Y, Marengo J, 977 

McInnes K, Rahimi M, Reichstein M, Sorteberg A, Vera C, Zhang X (2012) Changes in 978 

climate extremes and their impacts on the natural physical environment. In: Field CB, 979 

Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner 980 

G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and 981 

disasters to advance climate change adaptation. A special report of working groups I and 982 

II of the intergovernmental panel on climate change. Cambridge University Press, 983 

Cambridge, pp 109–230 984 

Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices 985 

in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J 986 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2021                   doi:10.20944/preprints202101.0037.v1

https://doi.org/10.1098/rstb.2005.1751
https://doi.org/10.1016/j.techfore.2006.05.026
https://doi.org/10.1088/1748-9326/5/1/014010
https://doi.org/10.1002/grl.50956
https://doi.org/10.20944/preprints202101.0037.v1


37 

 

Geophys Res Atmos 118: 1716–1733. https://doi.org/10.1002/jgrd.50203 987 

Sneyers R (1990) On the Statistical Analysis of a Series of Observations. Tech Note 143: 988 

WMO-No. 415, 192 989 

Spinage CA (2012) African ecology - Benchmarks and historical perspectives. In African 990 

Ecology - Benchmarks and Historical Perspectives. https://doi.org/10.1007/978-3-642-991 

22872-8 992 

Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellströ 993 

E, Nikulin G, Wyser K (2012) The Rossby Centre regional climate model RCA3: model 994 

description and performance. Tellus A 63:4–23. https://doi:10.1111/j.1600-0870. 995 

2010.00478.x 996 

Ssentongo P, Muwanguzi AJB, Eden U, Sauer T, Bwanga G, Kateregga G, Aribo L, Ojara M, 997 

Mugerwa WK, Schiff SJ (2018) Changes in Ugandan Climate Rainfall at the Village and 998 

Forest Level. Sci. Rep 8:3551. https://doi.org/10.1038/s41598-018-21427-5 999 

Strandberg G, Bärring L, Hansson U, Jansson C, Jones C, Kjellström E, Michael K, Marco 1000 

KG, Nikulin PS., Wang AUS (2014) CORDEX scenarios for Europe from the Rossby 1001 

Centre regional climate model RCA4. Rep. Meteorol. Climatol 116:1–84. 1002 

https://www.smhi.se/polopoly_fs/1.90273!/Menu/general/extGroup/attachmentColHold/1003 

mainCol1/file/RMK_116.pdf 1004 

Taylor KE (2001) in a Single Diagram. J. Geophys. Res 106:7183–7192. 1005 

https://doi.org/10.1029/2000JD900719 1006 

Teutschbein C, Seibert J (2010) Regional climate models for hydrological impact studies at the 1007 

catchment scale: a review of recent modeling strategies. Geogr.Comp, 4(7), 834-860. 1008 

doi:10.1111/j.1749-8198.2010.00357.x 1009 

Teutschbein C, Seibert J (2013) Is bias correction of regional climate model (RCM) simulations 1010 

possible for non-stationary conditions?. Hydrol. Earth Syst. Sci, 17(12), 5061-5077. 1011 

doi:10.51194/hess-17-5061-2013 1012 

Tian Y, Peters-Lidard CD, Adler RF, Kubota T, Ushio T (2010) Evaluation of GSMaP 1013 

precipitation estimates over the contiguous United States. J. Hydrometeorol 11: 566–574. 1014 

https://doi.org/10.1175/2009JHM1190.1 1015 

Tierney JE, Ummenhofer CC, DeMenocal PB (2015) Past and future rainfall in the Horn of 1016 

Africa. Sci. Adv 1:1–9. https://doi.org/10.1126/sciadv.1500682 1017 

Toté C, Patricio D, Boogaard H, van der Wijngaart R, Tarnavsky E, Funk C (2015) Evaluation 1018 

of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote 1019 

Sens 7:1758–1776. https://doi.org/10.3390/rs70201758 1020 

Unden P, Rontu L, Jinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-1021 

Moya JA, Jones C, Geert Lenderlink G, Mcdonald A, Mcgrath R, Navascues B, Nielsen 1022 

NW, Degaard V, Rodriguez E, Rummukainen M, Sattler K, Sass BH, Savijarvi H, Schreur 1023 

BW, Sigg R (2002) HIRLAM-5 Scientific Documentation. 1024 

https://repositorio.aemet.es/bitstream/20.500.11765/6323/1/HIRLAMSciDoc_Dec2002.1025 

pdf (Accessed 20 Feb 2020) 1026 

Vellinga M, Milton SF (2018) Drivers of interannual variability of the East African “Long 1027 

Rains.” Q J ROY METEOR SOC 144:861–876. https://doi.org/10.1002/qj.3263 1028 

Veronika E, Peter MC , Gregory MF, Peter JG, Gab A, Peter C, William D Collins , Bettina 1029 

KG, Alex DH, Forrest MH , George CH, Alexandra J , Chris DJ , Stephen AK , John PK, 1030 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2021                   doi:10.20944/preprints202101.0037.v1

https://doi.org/10.1002/jgrd.50203
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1002/qj.3263
https://doi.org/10.20944/preprints202101.0037.v1


38 

 

Lester K, Ruth L , Eric M , Gerald AM, Angeline GP, Robert P, Alex CR, Joellen LR, 1031 

Benjamin MS, Benjamin DS, Steven CS, Isla RS, Ronald JS  Mark SW (2019)  Taking 1032 

climate model evaluation to the next level.  Nat Clim Chang 9: 102-110 1033 

https://doi.org/10.1038/s41558-018-0355-y  1034 

Wang G, Gong T, Lu J, Lou D, Hagan D F T, Chen T (2018) On the long-term changes of 1035 

drought over China (1948–2012) from different methods of potential evapotranspiration 1036 

estimations. Int. J. Climatol, 38, 2954–2966. https://doi.org/10.1002/joc.5475 1037 

Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima 1038 

H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, 1039 

Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 1040 

2010: model description and basic results of CMIP5- 20c3 m 1041 

experiments. GMD 4(4):845–872 1042 

White WB, Tourre YM (2003) Global SST/SLP waves during the 20th century. Geophys. Res.  1043 

Lett, 30: 1651 doi:10.1029/2003GL017055 1044 

Wilks SD (2006) Statistical methods in the Atmospheric Science.2ndEdn. Academic Press 1045 

Williams AP, Funk C (2011) A westward extension of the warm pool leads to a westward 1046 

extension of the Walker circulation, drying eastern Africa. Clim dyn 37: 2417–2435. 1047 

https://doi.org/10.1007/s00382-010-0984-y 1048 

Yang W, Seager R, Cane MA, Lyon B (2015) The rainfall annual cycle bias over East Africa 1049 

in CMIP5 coupled climate models. J. Climate 28:9789–9802. 1050 

https://doi.org/10.1175/JCLI-D-15-0323.1 1051 

Yin X, Nicholson SE (2002) Interpreting Annual Rainfall from the Levels of Lake Victoria. J. 1052 

Hydrometeorol 3: 406–416. https://doi.org/10.1175/1525-1053 

7541(2002)003<0406:IARFTL>2.0.CO;2 1054 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2021                   doi:10.20944/preprints202101.0037.v1

https://doi.org/10.1038/s41558-018-0355-y
https://doi.org/10.1002/joc.5475
https://doi.org/10.20944/preprints202101.0037.v1

