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LD-induced pleiotropy 
 
The scenario of LD-induces pleiotropy as depicted in Figure 2d, with variant 𝑗 in LD with two separate 
causal variants for 𝑋 and 𝑌, is a specific violation of the instrumental variable assumptions that is 
comparatively easy to test.  

If we have a causal variant 𝑘 for 𝑋 that is a valid instrument (and thus 𝛽𝑘 =
𝛾𝑌𝑘

𝛾𝑋𝑘
= 𝛽𝑋𝑌, then for 

any variant 𝑗 in LD with it (and with no other causal variants), we have 𝛾𝑋𝑗 = 𝑟𝑗𝑘𝛾𝑋𝑘 and 𝛾𝑌𝑗 = 𝑟𝑗𝑘𝛾𝑌𝑗 and 

therefore 𝛽𝑗 =
𝛾𝑌𝑗

𝛾𝑋𝑗
=

𝑟𝑗𝑘𝛾𝑌𝑗

𝑟𝑗𝑘𝛾𝑋𝑗
= 𝛽𝑘 = 𝛽𝑋𝑌, and thus variant 𝑗 is also a valid instrument. Indeed, this still 

applies when 𝑗 is in LD with multiple valid instruments, in which case the 𝑟𝑗𝑘 in these equations simply gets 

replaced everywhere with the total summed LD of 𝑗 with all those causal variants and similarly cancels out 
again in the ratio. 
 In case of the scenario in Figure 2d however (assuming 𝛽𝑌𝑋 = 0 to simplify notation), we have 

𝛾𝑋𝑗 = 𝑟𝑗𝑘𝛼𝑋𝑘 and 𝛾𝑌𝑗 = 𝑟𝑗𝑘𝛼𝑋𝑘𝛽𝑋𝑌 + 𝑟𝑖𝑗𝛼𝑌𝑖, and therefore 𝛽𝑗 = 𝛽𝑋𝑌 +
𝑟𝑖𝑗

𝑟𝑗𝑘

𝛼𝑌𝑖

𝛼𝑋𝑘
. As such, none of the 

variants in the LD block are valid instruments, including variant 𝑘 which will be in LD with variant 𝑖 in this 
case as well.  

Moreover, the 𝛽𝑗 will vary across variants in the LD block as a function of the relative ratio of LD 
𝑟𝑖𝑗

𝑟𝑗𝑘
 that a variant has with the two causal variants. As such we can test the heterogeneity of the 𝛽𝑗 within 

an associated locus to determine whether this LD-induced pleiotropy is present, and can discard any loci 
from the MR analysis if they show evidence of this. This is what the HEIDI test in SMR1 does (note that this 
is a different application from the HEIDI test in GSMR2, where it is used as a general heterogeneity test 
across loci).  
 
 

Median- and mode-based methods 
 
When using multiple variants for an MR analysis, if we assume that at least a subset of those variants are 
valid instruments, as noted in the main text, one approach we can take is to explicitly filter out all variants 
with heterogeneous 𝛽𝑗. We can then obtain 𝛽𝑋𝑌 as the shared 𝛽𝑗 of the remaining homogeneous set of 

variants. However, an alternative to this approach is to make a more specific assumption about that valid 
subset, and to then use the median3 or mode4–6 of the 𝛽𝑗 of all variants to obtain 𝛽𝑋𝑌 without any explicit 

filtering.  
 The median-based approach proceeds as follows. For any valid instrument we know that 𝛽𝑗 = 𝛽𝑋𝑌. 

If we assume that at least a majority of the variants used is a valid instrument, it must be the case that if 
we were to sort all their 𝛽𝑗 by value then the middle 𝛽𝑗 (if using an odd number of variants) or middle two 

𝛽𝑗 (if using an even number of variants) must equal 𝛽𝑋𝑌. For example, if we have 100 variants, then even 

if 49 of those are invalid instruments all with 𝛽𝑗 < 𝛽𝑋𝑌, ordered by value these will fill the first 49 places 

with the 50th and 51st being 𝛽𝑋𝑌. Hence, the median of all the 𝛽𝑗 will also equal 𝛽𝑋𝑌. 

 For the mode-based approaches, we can first note that we can write 𝛽𝑗 = 𝛽𝑋𝑌 + 𝛿𝑗  for some 

deviation term 𝛿𝑗  for every variant 𝑗. We can now partition all the variants into subsets based on their 𝛿𝑗. 

All the valid instruments will define one subset with 𝛿𝑗 = 0, whereas variants conforming to the reverse 

causation (Figure 1b) and mediating confounder (Figure 1c) scenarios will each define a subset as well 
(with separate subsets for each such mediating confounder). Other variants will generally each define their 
own subset containing a single variant, since it is unlikely that multiple 𝛽𝑗 will be the same by chance.  
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 We can now assume that the largest of these subsets is the one with 𝛿𝑗 = 0, ie. the most 

commonly occurring deviation is 0; this is also referred to as assuming that a plurality of variant are valid 
instruments, and specifically as ZEMPA (Zero Modal Pleiotropy Assumption) in various methods. If this 
assumption holds, inherently 0 is the most common value among the 𝛿𝑗  and therefore 𝛽𝑋𝑌 is the most 

common value among the 𝛽𝑗, and thus the mode of the 𝛽𝑗 must equal 𝛽𝑋𝑌. 

 
 

Collider bias 
 
For a set of three variables A, B and C, if B has a direct causal relation with both A and C then there are 
three basic scenarios that can arise (irrespective of direct relations between A and C, and for simplicity 
ignoring reciprocal causation): 

  If B is caused by one of the other two variables but causal for the other, then B is a mediator on 
the causal path between A and C 

o A -> B -> C or C -> B -> A 

 If B causes both A and C, then B is a confounder of A and C 

 A <- B -> C 

 If B is caused by both A and C, it is a collider for A and C 
o A -> B <- C 

Collider bias, also referred to as selection bias, is a bias in the association between two variables 
when conditioning on a variable that is a collider for those variables. In the typical example collider bias 
creates an association where none exists, but it can equally amplify, reduce or remove an existing 
association. The same thing happens when conditioning on a descendant of a collider as well (ie. a variable 
upon which the collider has a causal effect), though the strength of the bias will depend on the strength 
of the relation between the collider and its descendant.  

Note that this kind of bias can occur as a result of explicitly conditioning on a collider in a statistical 
analysis, but can also result from (implicit) selection mechanisms that exist as part of the data collection 
(eg. samples of older individuals implicitly select for longevity).  

The intuition behind this kind of bias can be illustrated with a simple example. Suppose we have 
two independent genetic variants A and C, both capable of causing phenotype B (100% penetrance) and 
each with effect allele frequency of 10%. This gives the following population distribution: 
 

 A = 0 A = 1  

C = 0 81% 9% 90% 
C = 1 9% 1% 10% 

 90% 10%  
 
In the population as a whole, there is no relation between A and C. In general, there is a 10% chance of C 
being 1; this is still 10% if we condition on A = 0 or A = 1, knowing the value of A gives us no information 
about C (and vice versa).  
 This changes if we select on B = 1 however (highlighted in orange; assuming no other causes of B 
exist). In this subpopulation, there is a 9/19 = 47.4% chance that C = 1. But now, if we know that A = 0 the 
chance of C = 1 becomes 100%. Given that someone has the phenotype B, something must have caused 
B. And if we know that it wasn’t A, then it must have been C (and vice versa). Conversely, if we know that 
A = 1 there is no further reason to suspect that C = 1, and hence in that case the chance of C = 1 drops 
from 47.4% back down to the 10% level in the full population.  
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In this way, selecting on the collider B creates a (negative) relation between A and C that does not 
exist in the underlying population, and that does not reflect a causal relation between A and C (and hence 
can be considered spurious). In practice the relations between variables will usually be less deterministic, 
but the same general logic applies. 

 
 

Negative control populations 
 
As noted in the main text, the central requirement for a negative control population is that the exposure 
𝑋 is constrained to a particular value. This is because if 𝑋 is truly constrained, its value is simply held 
constant regardless of any causal effects trying to operate on it, effectively cancelling out those causal 
effects.  

The causal effects of 𝑋 on other variables still exist however, but since the value of 𝑋 is the same 
for all individuals in the sample 𝑋 has no variance. It therefore also has no covariance with the variables it 
would causally affect, and only shifts the overall mean of those variables (assuming simple linear relations). 
This is the reason it does not necessarily matter what value 𝑋 is constrained at, unlike a control group in 
RCT. Whereas a control group serves as a baseline to compare the treatment groups to, the negative 
control population in MR only serves to evaluate the presence of pleiotropic effects of variants on 𝑌 that 
bypass 𝑋. 
 
Constraint versus selection 
Given the considerable utility of negative control populations for validating genetic instruments, it would 
be tempting to simply select a subpopulation where eg. 𝑋 = 0 to use as negative control population. But 
because this is selected for a value rather than constrained at 𝑋 = 0, this does not work. If 𝑋 is constrained 
to 0, this means that it is essentially fixed at that value, regardless of any causal effects operating on it. 
However, if it is selected to be 0, this means that either there are no causal effects moving it away from 0 
to begin with (assuming 𝑋 = 0 is in some way the ‘default’ state), or the causal effects operating on 𝑋 for 
these individuals happen to be balancing themselves at 0. If the latter, this means that by selecting for 
𝑋 = 0 we would implicitly also be selecting in some way for combinations of variables that causally affect 
𝑋. 
 This is highly likely to result in collider bias. Suppose that we have a variant 𝑗 that is a valid 
instrument as per Figure 1a, and is a causal variant for 𝑋 (the same still applies if it is only in LD with the 
causal variant). Assume that the other assumptions in Table 1 hold, and for simplicity also that 𝛽𝑌𝑋 = 0. 
In this scenario, 𝑋 is both a mediator of the causal effect of 𝐺𝑗 on 𝑌, as well as a collider for 𝐺𝑗 and 𝐶.  

 The marginal association between 𝐺𝑗 and 𝑌 in this case is simply 𝛾𝑋𝑗 = 𝛼𝑋𝑗𝛽𝑋𝑌, reflecting the 

mediated effect via 𝑋. If we were to now condition on 𝑋 = 0 this mediated effect will be removed, but at 

the same time due to the collider bias an association 𝛾𝐶𝑗 = −
𝛼𝑋𝑗

1−𝛼𝑋𝑗
2 𝛽𝐶𝑋 arises between 𝐺𝑗 and 𝐶, and 

therefore the conditional association with 𝑌 becomes 𝛾𝑌𝑗 = −
𝛼𝑋𝑗

1−𝛼𝑋𝑗
2 𝛽𝐶𝑋𝛽𝐶𝑌 rather than 0. As such, even 

for valid instruments this will lead to 𝛾𝑌𝑗
(𝐶) ≠ 0.  

 
Testing validity versus estimating unmediated effects 
When a likely suitable negative control sample is available, it will similarly be tempting to use an approach 
like PRMR7 to estimate the unmediated part 𝛿𝑌𝑗  of 𝛾𝑌𝑗, that is 𝛿𝑌𝑗 = 𝛾𝑌𝑗 − 𝛾𝑋𝑗𝛽𝑋𝑌 and use this as a 

correction, rather than merely testing whether variant 𝑗 is a valid instrument. As noted in the main text 
however, this type of correction is much more vulnerable to generating false positives. Whether a 
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population is a genuine negative control ultimately cannot be verified and must be assumed, which may 

itself be an invalid assumption. In this case 𝛾𝑌𝑗
(𝐶) will likely not equal the 𝛿𝑌𝑗  in the original population. 

 When merely testing 𝛿𝑌𝑗 = 0, since 𝛾𝑌𝑗
(𝐶)

 will be biased away from 0 in this case, this will generally 

result in false positives on the test of 𝛿𝑌𝑗 = 0, which in turn leads to the variant 𝑗 being incorrectly 

dismissed as an invalid instrument even if it is valid. In terms of the MR analysis itself, this will tend to 
translate to essentially a form of false negative, as it may result in all variants being marked as invalid 
instruments and therefore no test of 𝛽𝑋𝑌 being performed.  

It is of course possible that the bias is such that for an invalid instrument it exactly equals −𝛿𝑌𝑗 

and therefore yields a 𝛾𝑌𝑗
(𝐶) of 0, in which case the variant may be incorrectly concluded to be a valid 

instrument. In practice it is not very likely that the unmediated component will be exactly cancelled out 
by such a bias however, particularly for multiple independent variants, so when used carefully and with 
well-powered control samples this shouldn’t be an enormous risk. While it may be concluded that on the 
basis of the control population no valid instruments can be found, this would not lead to biased estimates 
of, or invalid inference on, the causal effect. 
 When using the negative control population to estimate 𝛿𝑌𝑗  however, such as in PRMR7, no clear 

indicator of the control population as a whole being invalid is available. The aim is to use the estimate of 
𝛿𝑌𝑗  to be able to use any variant regardless of whether it is a valid instrument, so there is no expectation 

that 𝛿𝑌𝑗  should be zero for any variant used. This can therefore easily lead to bias in the estimate of the 

causal effect. 
 An additional complication is that as noted, estimating 𝛿𝑌𝑗  requires the additional assumption that 

there is no reciprocal causation. The reason for this is that in the general scenario of Figure 2a 𝛾𝑌𝑗 =
1

1−𝛽𝑋𝑌𝛽𝑌𝑋
(𝛼𝑌𝑗 + 𝛼𝑋𝑗𝛽𝑋𝑌 + 𝛼𝐶𝑗(𝛽𝐶𝑌 + 𝛽𝐶𝑋𝛽𝑋𝑌)), which means that 𝛿𝑌𝑗 =

1

1−𝛽𝑋𝑌𝛽𝑌𝑋
(𝛼𝑌𝑗 + 𝛼𝐶𝑗𝛽𝐶𝑌). But 

since 𝛾𝑌𝑗
(𝐶)

= 𝛼𝑌𝑗 + 𝛼𝐶𝑗𝛽𝐶𝑌 as before, it does not equal 𝛿𝑌𝑗  anymore because the scaling factor 
1

1−𝛽𝑋𝑌𝛽𝑌𝑋
 

is missing from 𝛾𝑌𝑗
(𝐶)

.  

This scaling factor represents the rescaling of direct effects on 𝑌 that occurs in this kind of scenario: 
any direct effect on 𝑌 results in an effect on 𝑋 as well, which then imparts additional effect on 𝑌 again 
(and so on; mathematically, this yields a geometric series of the causal parameters). If the signs of the 

causal effects 𝛽𝑋𝑌 and 𝛽𝑌𝑋 are the same, 
1

1−𝛽𝑋𝑌𝛽𝑌𝑋
 will be greater than one and the initial direct effects 

are essentially amplified. If the signs differ 
1

1−𝛽𝑋𝑌𝛽𝑌𝑋
 will be between 0 and 1 however, resulting in a 

dampening of the initial direct effects instead.  
With 𝑋 constrained and all its causal effects blocked, this amplification/dampening disappears and 

hence 𝛾𝑌𝑗
(𝐶) only reflects the initial, direct effects on 𝑌. The reason this is not a problem when just testing 

𝛿𝑌𝑗 = 0 is that under that null hypothesis there is no direct effect to be amplified or dampen, and hence 

the scaling factor is irrelevant in that case. 
 
Using gene-environment interactions 
It has been suggested that gene-environment interaction can be used to similar effect as methods like 
PRMR7, but without the need for a negative control population8. The intuition behind this is that if there 
is a variable 𝑍 that modifies the effect of variant 𝑗 on the exposure in the form of a linear interaction, then 
this creates a so-called ‘no relevance group’, a subgroup within the population where the instrument and 
exposure are independent. The association in that subgroup with the outcome could then be used to 
estimate the unmediated component 𝛿𝑌𝑗. If this subgroup does not actually exist because it falls outside 

the range of 𝑍 within the population, then in that case it would still be possible to extrapolate to define a 
hypothetical ‘no relevance group’ (assuming the interaction is indeed fully linear). 
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 In practice however, this approach requires a number of assumptions that PRMR does not, and 
effectively just reduces to an instrumental variable analysis using the interaction term 𝐼𝑗 = 𝐺𝑗𝑍 of 𝑍 and 

variant 𝑗  as the instrument rather than 𝐺𝑗 itself. It therefore requires all the same assumptions to be 

satisfied for 𝐼𝑗 as a regular MR analysis does for 𝐺𝑗 (plus additional assumptions pertaining to the 

interaction), and runs into the same issues when these assumptions fail. For example, in just the same way 
as 𝐺𝑗 itself, 𝐼𝑗 may be directly associated with a confounder 𝐶 rather than with 𝑋, which would be similarly 

difficult to detect. 
 To better understand such a scenario, we can simplify somewhat by supposing that the variable 𝑍 
is a discrete and bounded integer, and thus divides the population in an ordered set of subpopulations for 
each value 𝑧 that 𝑍 can take. Within each of these subpopulations we will further assume the causal effects 
between 𝑋, 𝑌 and 𝐶 to be the same, though in practice these may well interact with 𝑍 themselves as well. 

 In the case that 𝐼𝑗 is indeed a valid instrument, we would have subgroup-specific effects 𝛼𝑋𝑗
(𝑧) =

𝑧𝛼𝐼𝑋𝑗, where 𝛼𝐼𝑋𝑗 is the effect of 𝐼𝑗 on 𝑋 (since for 𝑍 = 𝑧, we have 𝐼𝑗𝛼𝐼𝑋𝑗 = 𝐺𝑗𝑧𝛼𝐼𝑋𝑗 = 𝐺𝑗𝛼𝑋𝑗
(𝑧)). For further 

simplicity we will assume that there is no main effect of 𝐺𝑗 on 𝑋, and as such the 𝑍 = 0 group will be 

identified as our ‘no relevance group’. For the observable marginal effects, we therefore have 𝛾𝑋𝑗
(𝑧) = 𝛼𝑋𝑗

(𝑧) 

and 𝛾𝑌𝑗
(𝑧)

= 𝛼𝑋𝑗
(𝑧)
𝛽𝑋𝑌 = 𝛾𝑋𝑗

(𝑧)
𝛽𝑋𝑌, and hence indeed 

𝛾𝑌𝑗
(𝑧)

𝛾𝑋𝑗
(𝑧) = 𝛽𝑋𝑌 (except for 𝑍 = 0, where there this would 

yield a division by 0). 
 We can similarly see how this would be able to resolve a scenario like that in Figure 2d as well, 

where there are additional direct associations between 𝐺𝑗 and 𝑌. In this case 𝛾𝑌𝑗
(𝑧) = 𝛾𝑋𝑗

(𝑧)𝛽𝑋𝑌 + 𝛼𝑌𝑗, and 

hence in our ‘no relevance group’ 𝛾𝑌𝑗
(0) = 𝛼𝑌𝑗. It therefore follows that for the other values of 𝑍, 

𝛾𝑌𝑗
(𝑧)

−𝛾𝑌𝑗
(0)

𝛾𝑋𝑗
(𝑧) =

𝛽𝑋𝑌, in much the same way that PRMR uses the negative control population to remove bias. 

 However,  from the expression 𝛾𝑌𝑗
(𝑧) = 𝛾𝑋𝑗

(𝑧)𝛽𝑋𝑌 + 𝛼𝑌𝑗 it is also easy to spot a problem: we must 

assume that 𝛼𝑌𝑗 is in fact constant across values of 𝑍, which is by no means guaranteed to be the case. 

And one particular way in which this may occur is the mediating confounder scenario in Figure 1c (where 
for simplicity again we will assume 𝛽𝑌𝑋 = 0). In this case the interaction affects 𝐶 rather than 𝑋 directly, 

such that 𝛼𝐶𝑗
(𝑧) = 𝑧𝛼𝐼𝐶𝑗. This gives us 𝛾𝑋𝑗

(𝑧) = 𝛼𝐶𝑗
(𝑧)𝛽𝐶𝑋 and 𝛾𝑌𝑗

(𝑧) = 𝛼𝐶𝑗
(𝑧)(𝛽𝐶𝑋𝛽𝑋𝑌 + 𝛽𝐶𝑌). This would yield 

𝛾𝑌𝑗
(0) = 0 and hence 

𝛾𝑌𝑗
(𝑧)

−𝛾𝑌𝑗
(0)

𝛾𝑋𝑗
(𝑧) = 𝛽𝑋𝑌 +

𝛽𝐶𝑌

𝛽𝐶𝑋
, exactly the same biased value that we run into with this scenario 

in regular MR. 
 Conceptually speaking, the issue that we run into here is similar to the problem that arises in the 
context of using an 𝑋 = 0 subgroup of a population as a negative control, as discussed above (although 
the math works out differently here). Both approaches inherently use a form of selection, whereas the 
inferential strength of negative control populations and indeed of control groups in experimental designs 
comes from the imposition of constraints.  

When selecting a group for having a particular property (like 𝑋 = 0 or 𝛾𝑋𝑗 = 0), this only means 

that the balance of relevant forces contrived to have this particular group have that particular (parameter) 
value. A genuine constraint however, simply overrides those normally relevant forces and imposes the 
particular value on that group.  

Statistically we could still formulate the resulting situation as an interaction as we did now, by 
using a population indicator variable to define 𝑍 anddesignating the negative control population as the 

𝑍 = 0 group with 𝛾𝑋𝑗
(0) similarly 0, and this may give the appearance of similarity. Yet by the same token 

we can use the same ANOVA model to compare experimental groups as we do with observational data. 
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There we use the knowledge, not captured by the statistical model, that those experimental conditions 
were actively imposed. This is the same principle that gives negative control populations their inferential 
strength. And extending the comparison, it is limited in its inferential strength to the extent that we do 
not know whether there are other (relevant) structural differences between the populations, in the same 
way as experimental designs are limited by any factors that were not fully controlled across the conditions.   
 
 

Related non-MR methods 
 
The strong reliance on assumptions to draw causal inference is not a feature unique to MR, and affects 
other methods developed for such purposes as well. For these, we can similarly examine the underlying 
model assumed by the method to determine what role the assumptions made play in the inference and 
how the method behaves under alternate scenarios. We do so here for two methods also intended for 
causal inference based on genetic data. As in the main text we do this under the idealized scenario that 
associations between observed variables are fully known, and unless stated otherwise will also assume 
that all the assumptions in Table 1 other than the instrumental variable assumptions all hold. 
 
Latent Causal Variable 
The Latent Causal Variable (LCV) model9 is a whole-genome model presented as an alternative to MR. The 
same general model is assumed for every variant 𝑗, with effects of 𝐺𝑗 directly on 𝑋 and 𝑌 as well as 

mediated by a latent variable 𝐿, as per the graph below, with no direct effects modelled between 𝑋 and 
𝑌. The effects of the variants are modeled as random, and it is assumed that 𝛼𝐿𝑗 is independent of 𝛼𝑋𝑗  

and 𝛼𝑌𝑗 (note that for the estimation, the marginal effects 𝛾𝑋 and 𝛾𝑌 are also assumed to be standardized, 

as is the distribution of 𝛼𝐿𝑗).  

  
 
 For a given variant we can see that for a variant 𝑗, the (unstandardized) marginal effects are 𝛾𝑋𝑗 =

𝛼𝐿𝑗𝛽𝐿𝑋 + 𝛼𝑋𝑗  and 𝛾𝑌𝑗 = 𝛼𝐿𝑗𝛽𝐿𝑌 + 𝛼𝑌𝑗. When assuming the different 𝛼𝑗 parameters are independent of 

each other, it follows that cov(𝛾𝑋𝑗, 𝛾𝑌𝑗) = 𝛽𝐿𝑋𝛽𝐿𝑌 (and similiarly var(𝛾𝑋𝑗) = 𝛽𝐿𝑋
2 + var(𝛼𝑋𝑗) and 

var(𝛾𝑌𝑗) = 𝛽𝐿𝑌
2 + var(𝛼𝑌𝑗)). Effectively, the correlation of the marginal associations of 𝐺𝑗 with 𝑋 and 𝑌, 

strongly related to the genetic correlation of 𝑋 and 𝑌, is decomposed into a shared and unique part, with 
the shared part attributed to the latent variable 𝐿 (although the above equations show only three known 
values for four unknown parameters, this issue is resolved by LCV by using higher order product moments 
per variant as additional statistics).  
 The main parameters of interest are 𝛽𝐿𝑋 and 𝛽𝐿𝑌, and in particular the genetic causality proportion 

(GCP) statistic GCP =
log|𝛽𝐿𝑋|−log|𝛽𝐿𝑌|

log|𝛽𝐿𝑋|+log|𝛽𝐿𝑌|
. This reflects the relative size of 𝛽𝐿𝑋 and 𝛽𝐿𝑌 on a scale of -1 to 1, 
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being 0 if they are equal in size, going towards 1 if 𝛽𝐿𝑋 is larger and towards -1 if 𝛽𝐿𝑌 is larger. The authors 
propose an interpretation of the GCP statistic in terms of ‘genetic causality’, suggesting that 𝑋 is partially 
genetically causal for 𝑌 if 𝐿 has a stronger genetic correlation with 𝑋 than with 𝑌, ie. GCP > 0 (and vice 
versa).  
 This interpretation does not follow from the model used, however. In a literal sense, the model 
even excludes the existence of causal effects between 𝑋 and 𝑌 a priori. The apparent reasoning is that if 
such causal effects do exist, in the model these will instead essentially be absorbed into 𝐿, with causal 
effects of 𝑋 on 𝑌 effectively pulling 𝐿 ‘closer’ to 𝑋 (ie. greater 𝛽𝐿𝑋 and smaller 𝛽𝐿𝑌) and effects of 𝑌 on 𝑋 
doing the reverse. This is also reflected in the use of the GCP statistic, which reflects the relative skew of 
𝛽𝐿𝑋 and 𝛽𝐿𝑌 on a standardized scale. 
 In the case that all shared effects are indeed mediated by 𝑋 on 𝑌 (ie. all variants associated with 
𝑋 conform to the model in Figure 1d), 𝐿 is effectively absorbed into 𝑋 and the GCP becomes 1. Equivalently, 
if all effects are mediated in the opposite direction (with all variants associated with 𝑌 conforming to Figure 
1e), the GCP becomes -1. As such, if the GCP is at either extreme, this can indeed be taken as evidence for 
a causal effect of 𝑋 on 𝑌 or vice versa. 

In general however the 𝛽𝐿𝑋 and 𝛽𝐿𝑌 parameters will reflect some average of the effects across all 
the heritable confounders of 𝑋 and 𝑌, as well as a mixture of direct causal effects between 𝑋 and 𝑌 (if 
present).  The GCP then only reflects the asymmetry in the effects of 𝐿 on 𝑋 and 𝑌, but provides no further 
basis for meaningful causal inference. And although to an extent the asymmetry itself may still be 
somewhat informative, this can also induced by imperfect observation of the causally relevant instances 
of 𝑋 and 𝑌 as also discussed in the main text, and may therefore just be due to for example greater 
measurement error for one of the variables. 
 
 
Genetic Instrumental Variable regression 
In the idealized version of the Genetic Instrumental Variable regression (GIV) model10, a regression 𝑌 =
𝜃𝑋𝑋 + 𝜃𝑅𝑅𝑌|𝑋 + 휀 is performed, where 𝑅𝑌|𝑋 represents the total genetic effect on 𝑌 correcting for 𝑋. The 

estimate of 𝜃𝑋 is then used as an estimate of 𝛽𝑋𝑌. The idea behind this approach is that the conditional 
genetic effect 𝑅𝑌|𝑋 would capture all genetic associations with 𝑌 that are not mediated by 𝑋. When this 

term is then included when regressing 𝑌 on 𝑋, these pleiotropic associations are corrected for. Effectively, 
𝑅𝑌|𝑋 is intended to capture all confounding of 𝑋 and 𝑌 by the genetic effects of variants that causally affect 

both phenotypes. 
This would work if the causal model for all variants corresponds to the graph below.  

In the presence of confounders however, even if these are not heritable, this would run into the problem 
of collider bias. Assume that all variants associated with 𝑋 are valid instruments corresponding to Figure 
1d, and simplify the mathematics by also assuming there is only a single confounder 𝐶 and no LD between 

the variants. In this case, for a variant 𝑗 the association of 𝐺𝑗 with 𝑌 given 𝑋 would be −
𝛼𝑋𝑗

1−𝛼𝑋𝑗
2 𝛽𝐶𝑋𝛽𝐶𝑌.  
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We therefore obtain 𝑅𝑌|𝑋 = −𝛽𝐶𝑋𝛽𝐶𝑌∑
𝛼𝑋𝑗

1−𝛼𝑋𝑗
2𝑗 𝐺𝑗, with Var(𝑅𝑌|𝑋) = 𝛽𝐶𝑋

2 𝛽𝐶𝑌
2 ∑ (

𝛼𝑋𝑗

1−𝛼𝑋𝑗
2 )

2

𝑗 , 

Cov(𝑋, 𝑅𝑌|𝑋) = −𝛽𝐶𝑋𝛽𝐶𝑌∑
𝛼𝑋𝑗
2

1−𝛼𝑋𝑗
2𝑗  and Cov(𝑌, 𝑅𝑌|𝑋) = −𝛽𝐶𝑋𝛽𝐶𝑌𝛽𝑋𝑌∑

𝛼𝑋𝑗
2

1−𝛼𝑋𝑗
2𝑗 . For the regression given 

above it therefore follows that 𝜃𝑋 =

(𝛽𝑋𝑌+𝛽𝐶𝑋𝛽𝐶𝑌)𝛽𝐶𝑋
2 𝛽𝐶𝑌

2 ∑ (
𝛼𝑋𝑗

1−𝛼𝑋𝑗
2 )

2

𝑗 −𝛽𝑋𝑌(𝛽𝐶𝑋𝛽𝐶𝑌∑
𝛼𝑋𝑗
2

1−𝛼𝑋𝑗
2𝑗 )

2

𝛽𝐶𝑋
2 𝛽𝐶𝑌

2 ∑ (
𝛼𝑋𝑗

1−𝛼𝑋𝑗
2 )

2

𝑗 −(𝛽𝐶𝑋𝛽𝐶𝑌∑
𝛼𝑋𝑗
2

1−𝛼𝑋𝑗
2𝑗 )

2 = 𝛽𝑋𝑌 +

𝛽𝐶𝑋
3 𝛽𝐶𝑌

3 ∑ (
𝛼𝑋𝑗

1−𝛼𝑋𝑗
2 )

2

𝑗

𝛽𝐶𝑋
2 𝛽𝐶𝑌

2 ∑ (
𝛼𝑋𝑗

1−𝛼𝑋𝑗
2 )

2

𝑗 −(𝛽𝐶𝑋𝛽𝐶𝑌∑
𝛼𝑋𝑗
2

1−𝛼𝑋𝑗
2𝑗 )

2 = 𝛽𝑋𝑌 +
𝛽𝐶𝑋𝛽𝐶𝑌Var(𝑅𝑌|𝑋)

Var(𝑅𝑌|𝑋)−Cov(𝑋,𝑅𝑌|𝑋)
2 = 𝛽𝑋𝑌 + 𝛽𝐶𝑋𝛽𝐶𝑌

1

1−Cor(𝑋,𝑅𝑌|𝑋)
2.  

In other words, the slope of the regression would be biased by a term 𝛽𝐶𝑋𝛽𝐶𝑌
1

1−Cor(𝑋,𝑅𝑌|𝑋)
2 even 

if all variants are valid instruments, unless no confounding is present for 𝑋 and 𝑌 at all, which is exceedingly 
unlikely to be the case for any 𝑋 and 𝑌.  

Note also that in practice 𝑅𝑌|𝑋 would not be available in practice, it is instead constructed as a PRS 

�̂�𝑌|𝑋 for 𝑌, using weights from a GWAS for 𝑌 that includes 𝑋 as a covariate. Because this would result in 

bias due to noise in �̂�𝑌|𝑋 relative to 𝑅𝑌|𝑋, an instrumental variable approach using instruments for �̂�𝑌|𝑋 is 

used in GIV to try to remove that bias. 
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