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Abstract: Systemic lupus erythematosus (SLE) is a heterogenous autoimmune disease. While its eti-
ology remains elusive, current understanding suggests a multifactorial process with contributions
by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several
of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE
pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins,
ORF1p and ORE2p, which are immunogenic and can drive type I interferon (IFN) production by
producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside
in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60.
We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, result-
ing in a cellular and humoral immune response similar to those in chronic viral infections. However,
unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence,
dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The
clinical and immunological features of SLE can be largely explained by this model. Here we review
the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prog-
nostic, and therapeutic options in SLE.
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1. Introduction

SLE is a varied and often debilitating autoimmune disease that affects at least 5 mil-
lion people world-wide, and women more than men with a striking gender bias of 9:1.
The precise etiology of SLE remains elusive despite many decades of research to better
understand it. Current knowledge suggests a multifactorial etiology with contributions
from genetic, immunologic, hormonal, and environmental factors [1,2]. Even at that, the
exact extent to which each of these factors contribute to SLE pathogenesis is not known.
While we focus here on a specific emerging mechanism that combines genomic/genetic
and immunologic factors, with hormonal and environmental contributions, we wish to
first place it in the context of the broader genetic associations of SLE.

Genome-wide association studies have identified many genes with polymorphisms
and copy number variants that are associated with SLE [3-7]. The most significant associ-
ations are found in the major histocompatibility complex II (MHC II), which include al-
leles of HLA-DR2, HLA-DR3, and HLA-DQ?2 [8-10]. Deficiencies of the complement com-
ponents Clq [11], C2, C4A and C4B, which confer an even higher risk for SLE, are rela-
tively rare [12]. Similarly, rare polymorphisms or mutations in DNases TREX1 [13] and
DNASET [14] also confer significant risk of SLE. Loss-of-function mutations in DNASE1L3
also result in a SLE-like disease [15]. These genes imply a pathogenic role of DNA, as well
as the importance of effective clearance of immune complexes and cellular debris.
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In agreement with this notion, several genes with a role in IFN signaling, such as
IRF5, IRAK1, STAT4, SPP1, TNFAIP3, and PTPN22, also have SLE-predisposing variants
which are associated with high levels of type I IFNs and increased expression of IFN-
inducible genes [16-20]. Polymorphisms in genes involved upstream of IFNs, such as
IFIH1 [21] and TLR7 [22], have also been documented. Other genes implicated in the adap-
tive immune system, including PTPN22, PDCD1 (encodes PD-1), BANK-1, BLK, LYN, and
TNFRSF4 (OX40L), indicate that the threshold for activation of B and T cells is important
in SLE [23-26]. The MHC association also support this notion. Unlike the rare complement
deficiencies and DNase mutations, these gene polymorphisms individually confer a very
modest risk (odds ratio <2) for SLE, suggesting that they are not directly causative, but in
aggregate increase the susceptibility to SLE, presumably in combination with the absence
of protective gene variants [27,28], genomic hypomethylation, altered epigenetic control,
changes in microRNAs (miRNAs) [29-33], and the presence of environmental or endoge-
nous triggers [31-33].

In accordance with the genetics of SLE summarized above, we focus in this review
on an emerging concept that is well compatible with the genetic associations, namely the
notion that endogenous virus-like may play a part in the pathogenesis of SLE and other
related diseases [34-37]. These genomic sequences are either remnants of exogenous ret-
roviruses that infected our ancestors millions of years ago [37-39], or ancient descendants
of retroviruses that retained the ability to embed and replicate within the germline ge-
nome to become extremely abundant throughout the human genome [37,40]. Although
the vast majority of all these sequences are now inactive due to mutations and truncations,
a number of them are still more or less intact and able to create extra-chromosomal DNA,
trigger type I IFNs, and provoke an anti-viral type of immune response. The biology of
these retroelements and the evidence for their involvement in SLE are discussed here.

2. Transposable Elements in the Human Genome

Colloquially known as “jumping genes” or “parasitic DNA” [41], transposable ele-
ments (or transposons) are genomic DNA sequences that have the ability to move within
the genome, thereby altering its organization, incrementally increasing its size, and creat-
ing duplications and redundancy [42]. There are two broad classes of transposons: Class
I transposons, also known as retrotransposons, and class II or DNA transposons [43]. The
former propagate using a ‘copy-and-paste’ mechanism that consists of a reverse transcrip-
tase (RT) that uses its own RNA transcript as a template to generate a cONA copy, which
is inserted into the genome. The latter move by a ‘cut-and-paste” mechanism by their en-
coded transposase enzyme. To the best of our knowledge, only class I transposons have
been implicated in autoimmune disease and will be discussed further here.

To illustrate the sheer volume of retrotransposons in our genome, compared to all
the exons of our 20,000 genes which occupy approximately 1% of our 3-billion base-pair
genome, the retroelements occupy close to 50% of it [41,44]. There are over 3 million retro-
elements in our genome [45]. They fall into three categories: the over 440,000 long terminal
repeat (LTR) retrotransposons, also known as human endogenous retroviruses (HERVs),
the 800,000 autonomous non-LTR retrotransposons termed long interspersed nuclear ele-
ments (LINEs), and the 1,500,000 copies of the short interspersed nuclear elements
(SINEs), which are non-autonomous and include over 1 million Alu elements [46] (Figure
1).

Before delving into the immunological impacts of retroelements, it should be stated
that the retrotransposition mechanism itself can cause genomic damage and result in hu-
man disease [47]. New retrotransposon insertions in or near exonic genes can result in
altered transcription [48], disrupted mRNA splicing, premature termination of transla-
tion, and loss of protein expression or function. Besides sporadic genetic diseases [49]
caused by new retrotranspositions, this biology is accelerated in malignant cells [50] and
is a major contributor to the activation of oncogenes [51], the inactivation of tumor sup-
pressors [52,53], and larger chromosomal abnormalities [47,54-56]. Retroelements are also
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abundant around chromosome fragile sites, such as FRA3B on chromosome 3p14 and
FRA16D on chromosome 16923 [57,58].
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Figure 1. Classes and examples of transposable elements. Abbreviations: TIR, terminal inverted
repeats; LTR, long terminal repeats (transcriptional control sequence); Gag, group antigen; Prt,
protease; Pol, polymerase; Env, envelope; UTR, untranslated region; ORF, open reading frame;
HR, hexamer repeat; VNTR, variable number tandem repeats; SINE-R, Alu right monomer; SVA,
SINE-R/VNTR/Alu composite; L, left monomer; R, right monomer.

2.1. HERVs

The HERVs are the very definition of autonomous retrotransposons in that they re-
sulted from germline infections by exogenous retroviruses that upon cell entry reverse-
transcribed their RNA genome and inserted it into the host cell genome. The resulting
HERVs were subsequently passed on to off-spring in a Mendelian fashion and most of
them exist in all now living humans [59]. Transcription of such newly formed HERVSs re-
sult in a polycistronic transcript that, after splicing, encodes for all the proteins necessary
for the formation of new infectious virions [60]. However, because HERVs are not under
positive selection pressures (but rather the opposite), they accumulate random mutations,
deletions, insertions, recombinations, and other genetic alterations over evolutionary time
[59]. The modern human genome does not appear to contain any fully intact and func-
tional HERVs anymore [59,61,62], but there still are about a dozen HERV's that encode for
proteins that have some, or all, of their original functions [60-64]. Some of the youngest
(=most recently incorporated) HERVs can still form virions [65], even though they lack
measurable infectivity.

The HERVs in our genome belong to three classes: gammaretroviruses (class I), be-
taretroviruses (class II), and spumaretroviruses (class III) [66]. The published literature
proposes various roles for class I (HERV-E, and to a lesser extent -W, and -H) and class II
(HERV-K) HERVs in autoimmune diseases [67-71]. A common denominator among these
papers is the idea that their transcriptional upregulation will trigger various aspects of an
antiviral immune response, including autoantibodies against retroviral proteins [72-75].
A popular suggestion is that HERV proteins may trigger autoimmunity by molecular
mimicry [67,76] through accidental similarities between these proteins and other self-pro-
teins. However, we believe that an immune response against HERV proteins already con-
stitutes ‘autoimmunity’ whether any cross-reactivity exists with proteins encoded by ex-
onic genes, or not [71].

It should also be kept in mind that even HERVs that have lost their ability to encode
for proteins often still possess their strong transactivating long-terminal repeats
(LTRs)[77], which can influence the transcription of near-by protein-coding genes [48].
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This appears to be a driver of altered gene expression in cancer [78,79], where demethyl-
ated LTRs can respond to transcription factors, including those activated by sex hor-
mones. Demethylation of LTR sequences reportedly upregulates HERV expression also in
autoimmune diseases like SLE [80,81]. An example of this is the influence on RAB4 gene
expression exerted by the demethylated LTR of a truncated class | HERV element, termed
HRES-1 [76]. RAB4, in turn, downregulates surface CD4 expression, which together with
the immunogenic 28-kDa Gag protein of HRES-1 can contribute to the self-reactivity of T
and B cells in SLE [76]. Interestingly, polymorphisms in the HRES-I LTR are associated
with SLE [82].

2.2. L1 Retrotransposons

Intact and functional LINE retrotransposons are also autonomous in that they encode
all the components needed for their own retrotransposition [41,83,84]. This machinery is
also responsible for the retrotranspositions of the non-autonomous retrotransposons [85],
as well as for creating all our pseudogenes [41]. Research has focused primarily on LINE-
1 (or L1), which not only are abundant, but also include members that have retained all or
some of their biological functions. In contrast, the LINE-2 and LINE-3 groups, although
still prevalent, are all inactive, but can serve as templates for regulatory RNA species [86].

As depicted in Figure 2, the L1 transcript is bicistronic and encodes for two proteins,
the 40-kDa RNA-binding protein ORF1p and the 149-kDa endonuclease [87] and reverse
transcriptase ORF2p [88], which assemble in approximately a 20:1 stoichiometry into com-
plexes with high affinity for RNA, particularly L1 mRNA, but also Alu RNA and other
small RNAs [83]. To execute retrotransposition, these ORF1p/ORF2p/RNA translocate to
the nucleus, where the endonuclease activity of ORF2p cuts the genome at a poly-dT tract,
allowing the poly-A tail of the L1 transcript to align, enabling the reverse transcriptase
activity of ORF2p to synthesize a cDNA copy of the associated RNA, followed by DNA
repair [83](Figure 2). As a result, the genome now has a new 6-kb L1 element identical to
the one that created it. New Alu elements and pseudogenes are generated by the exact
same mechanism [41].
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Figure 2. The L1 retrotransposition process.

While there is presently no conclusive evidence that retrotransposition of L1 plays
any role in autoimmunity (and no evidence that it does not), there are several other aspects
of L1 biology that make these elements prime suspects in the pathogenesis of SLE and
related autoimmune diseases characterized by elevated type I IFNs.
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3. How L1 Retrotransposons May Trigger IFN-Positive SLE

There are several reasons to ask whether L1 retrotransposons play an important role
in the pathogenesis and flares of SLE. Increased L1 transcripts and ORF1p protein have
been detected in kidney biopsies from patients with lupus nephritis and in salivary gland
biopsies from Sjogren’s syndrome patients [89]. In healthy individuals, L1 transcripts are
low or undetectable, but can be induced by demethylating drugs like 5-aza-deoxycytosine
[90], including those known to cause drug-induced lupus [91,92], e.g., hydralazine and
procainamide. Reduced methylation of the 5" regulatory (‘promoter’) region of L1 has
been reported in both adult and pediatric lupus patients [93]. UV light, a well-known trig-
ger of lupus flares [94,95], also causes DNA demethylation, in addition to causing direct
DNA damage and cell death at higher exposures. L1 expression also responds to other
environmental and microbial factors [96,97].

Essentially all patients with SLE have IgG autoantibodies against ORF1p [98,99],
which correlate with disease activity measured by the SLE disease activity index
(SLEDAI), the presence of lupus nephritis, complement consumption, increased anti-
dsDNA, and higher type I IFN activity [98]. Presumably related to this finding, ORF1p
and ORF2p reside in cells in macromolecular assemblies referred to as ‘stress-granules’
[100], which are rich in RNA and RNA-binding proteins, including Ro60 and other SLE
autoantigens [101].

Importantly, L1 expression has been shown to induce type I IFNs [102-104], which
are a hallmark of SLE [105-109]. This can reportedly occur by two different mechanism
[102-104,110], which are not mutually exclusive: i) cytosolic DNA generated by reverse
transcription by ORF2p activates DNA sensors [102], such as cyclic guanosine adenosine
monophosphate synthase (cGAS), which through the stimulator of interferon genes
(STING) adapter protein [111] activates the TBK1 protein kinase [112], which phosphory-
lates the IRF3 transcription factor leading to type 1 IFN production. Indeed, cGAS activa-
tion was documented in some 17% of SLE in a recent study [113]; ii) double-stranded RNA
species [104], perhaps related to bi-directional L1 promoter activity, activates RNA sen-
sors that initiate the same kinase-transcription factor pathway to type I IFNs. While this
second pathway is not restricted to L1 transcripts, either, or both, of these mechanisms
can explain the elevated expression of IFN-inducible genes, referred to as the ‘IFN signa-
ture’ [107,114] in SLE and related autoimmune diseases, such as idiopathic inflammatory
myopathies and primary Sjogren’s syndrome [115].

Taking all these observations together, it appears that L1 elements with intact ORF1
and OREF2 are de-repressed by reduced DNA methylation (and other epigenetic mecha-
nisms that depend on it) and, therefore, transcribed at elevated levels compared to healthy
individuals. Indeed, decreased DNA methylation has been documented in SLE, including
specifically in the 5" regulatory regions of L1 [93]. Translation of these elevated L1 tran-
scripts lead to accumulation of ORF1p and ORF2p in stress granules [100], which, because
they contain immunogenic ORF1p protein and lots of RNA, seem to be of special interest
to the immune system in SLE patients. We surmise that cells expressing L1, containing
triggered DNA and/or RNA sensors, and producing type I IFNs, will appear virally in-
fected to the host immune system and drive a chronic and/or episodic systemic inflam-
mation, which will escalate every time L1 transcription increases. Since the culprit L1 ele-
ments cannot be eradicated from the genome, the frustrated immune response will in-
crease in magnitude with time and eventually be diagnosed as SLE.

This model (Figure 3) explains most of the well-recognized aspects of SLE: its long
pre-diagnosis development [116] and gradual presentation, its unpredictable and relaps-
ing/remitting nature, the high type I interferons, its sensitivity to demethylating drugs
and UV, and the focus of the autoimmune response towards nucleic acids and proteins
associated with them. These features also explain the typical symptoms of SLE, such as
fever, fatigue, arthralgias, and the multitude of organ manifestations related to the accu-
mulation of immune complexes.
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Figure 3. The L1-containing stress granule in SLE-related autoimmunity. Some cells do not express
c¢GAS, but instead have other DNA sensors, such as Z-DNA binding protein 1, ZBP1, which also
induce type I IFN production.

3.1. HERVs and Other non-L1 Retrotransposons in SLE

Elevated expression [64,117] of many HERVs as well as autoantibodies against
HERV-K and HERV-E Gag and Env proteins [37,69,72-74] have been reported in SLE [118]
and other autoimmune diseases [68]. The broader genomic hypomethylation observed in
SLE may well explain the upregulation of HERV transcription, but since most HERVs
have lost their ability to encode full-length retroviral proteins, only a few of these
transcripts are capable of supporting autoantibody production. The resulting
autoantibodies may synergize with anti-L1 immunity, for example, in the formation of
immune complexes that drive tissue inflammation and organ damage. HERVs with an
intact pol gene, encoding for their reverse transcriptase, can, in principle, produce DNA
species that trigger DNA sensors like cGAS or ZBP-1 to induce type I IFN production.
However, the retroviral life-cycle involves a protected reverse transcription of the RNA
genome only upon cell entry and in the confines of the nucleocapsid [119,120]. Hence,
HERVSs are not likely to generate pathogenic DNA in SLE, but they may well generate
double-stranded RNA transcripts that can trigger RNA sensors.

3.2. Are Defenses Against L1 and HERVs Defective in SLE?

Although many components of the model presented above are well documented, it
still contains significant gaps. Why and how does L1 become dysregulated in individuals
who develop SLE? Why is ORF1p so immunogenic? What prevents this from occurring in
healthy individuals?

Since a majority of people never develop SLE, there must be effective mechanisms to
counteract the biology of L1 and HERVs to prevent their deleterious effects on our health.
Indeed, numerous defenses exist against all retrotransposons [121,122], many discovered
during research into the infectivity of human immunodeficiency virus (HIV). These de-
fenses operate at every step of the life-cycle of retrotransposons and HERVs, as well as
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exogenous retroviruses. Some of these defense mechanisms also operate to combat other
exogenous RNA and DNA viruses.

Epigenetic regulation is a fundamental mechanism employed by cells to silence genes
whose actions are either not needed or are potentially deleterious [123]. This mechanism
of transcriptional repression operates on L1 [123] and HERVs and is initiated by DNA
methyltransferase 1 (DNMT1)[124], which methylates the 5-position of cytosine in ge-
nomic CpG islands, attracting several silencing factors such as the human silencing hub
(HUSH) complex [125] and histone modifiers [126] to effectively suppress transcription.
Next, RNA interference and silencing activities of small interfering RNAs (siRNAs), miR-
NAs, and Piwi-interacting RNAs (piRNAs) act to prevent retrotransposon mRNA trans-
lation [127]. Of these, the piRNA system is particularly important for protecting the integ-
rity of the germline genome against retrotransposons [128,129].

Hypomethylation of the genome [130] as well as specific hypomethylation of L1 ele-
ments and HERVs have been documented in SLE [131] and Sjogren’s syndrome [130]. The
epigenetic mechanisms of L1 repression may also be influenced by environmental factors
[132,133]. It is intriguing that drugs known to cause drug-induced lupus, such as hydral-
azine and procainamide[134,135], as well as UV light exposure (a well-known trigger of
lupus flares[95]), are demethylating agents [136] and increase L1 and HERV expression.

In concert with the above mechanisms, the cytosolic DNase TREX1 [137] and the het-
erotrimeric RNaseH2 enzyme [138] act to remove cytosolic DNA and RNA species, re-
spectively. Both enzymes are particularly active against DNA:RNA hybrids [139], the in-
termediate stage of reverse transcription. Indeed, loss of TREX1 results in accumulation
of L1-catalyzed DNA in cytosolic granules [139,140]. The importance of these nucleic acid
degrading enzymes is perhaps best illustrated by their loss-of-function mutations [141] in
Aicardi-Goutieres syndrome (AGS) a devastating disease characterized by constitutively
high production of type I IFNs, neurologic deficits due to IFN toxicity, and autoimmunity
with all the hallmarks and autoantibodies of SLE [142]. L1 expression is high in AGS [143]
and type I IFN production can be reduced by administering reverse transcriptase inhibi-
tors that are active against ORF2p [144]. The form of SLE caused by TREX1 mutations [13]
likely involves the same overproduction of ORF2p-generated DNA.

The function of retrotransposon proteins is also targeted by defense mechanisms,
such as translational inhibition by the ATP-dependent RNA helicase Moloney leukemia
virus 10 (MOV10) protein [145-147], which co-exists with ORF1p in stress granules [101].
Exactly how MOV10 works is not well understood. Another L1-associated protein identi-
fied by proteomics [101,148] is zinc finger CCHC domain-containing 3 (ZCCHC3), a co-
factor for both DNA and RNA sensors [149,150]. The SAMHD]1 gene, loss-of function mu-
tations of which also lead to AGS [151], encodes a phosphohydrolase that dephosphory-
lates the deoxy-nucleotide triphosphates required for reverse transcription. In addition,
the retrotransposition process is directly disrupted by mutation-inducing members of the
apolipoprotein B mRNA editing catalytic polypeptide-like 3 (APOBEC3) family of en-
zymes [152,153] which deaminate cytosines to uracil, and adenosine deaminase of RNA 1
(ADART1) [154] which deaminates adenosines to inosine. As a result of these mechanisms,
the majority of all retrotranspositions result in mutated and severely 5 truncated new
copies (reverse transcription starts in the 3’ end). Most importantly, these mechanism
counteract the production of IFN-inducing DNA and other aspects of L1 biology that can
lead to immune activation. Future work will determine if any of these mechanisms are
defective in SLE.

3.3. Subsets of SLE with Distinct Mechanisms

The therapeutic options for the management of SLE are limited and often fail to con-
trol the disease without unacceptable adverse events. Numerous candidate drugs have
failed in clinical trials, for reasons that likely include its molecular heterogeneity and the
inaccuracy of tools to assess disease activity. It is quite possible that no single drug will be
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effective and safe in all SLE patients, but that the precision medicine concept of ‘the right
medicine for the right patient’ is particularly relevant in SLE.

Based on biochemical and available clinical trial data, we proposed recently that SLE
consists of at least four distinct molecular ‘endotypes’ [155]. The first of these is the IFN-
independent form of SLE, ‘SLE1’, defined as the patients who meet the diagnostic criteria
for SLE, but consistently lack an IFN signature, i.e. IFN-induced genes are expressed at
normal low levels. The remaining three endotypes are characterized by a positive IFN
signature, but differ in which nucleic acid sensors have been activated and, consequently,
which isotypes of type I IFNs are overproduced.

We define SLE2 as the form in which extracellular immune complexes that contain
nucleic acids (e.g., L1-containing stress granules) activate endosomal toll-like receptors
(TLRs) 3, 7, 8, or 9 to induce type I IFN production [156]. Due to the predominant expres-
sion of TLRs in immune cells, particularly plasmacytoid [157], but also myeloid dendritic
cells, macrophages, monocytes, and B cells, the spectrum of induced IFNs include numer-
ous isotypes of IFNa with lesser contributions by IFN[3 and type III IFNs [114]. This form
of SLE was previously thought to be the main form [158], but the failures in phase 2 clinical
trials of multiple TLR7/9 antagonists and antibodies like rontalizumab and sifalimumab
that effectively neutralize IFN¢, indicate that only 10% or less of SLE patients have SLE2.
Most telling, the elevated IFN-inducible genes in the blood of treated patients only de-
clined marginally in patients treated with sifalimumab.

SLE3 is an IFNB-predominant endotype with activated cytosolic DNA and/or RNA
sensors, representing the two alternative mechanisms by which L1 can drive type I IFNs.
This biology can occur in any cell type that expresses L1 and/or produces pathogenic dou-
ble-stranded RNA and this is also how exogenous DNA or RNA viruses initiate an anti-
viral immune response.

We consider it plausible that SLE typically starts as a pure SLE3 endotype, but that
the immune response eventually escalates to a stage where circulating immune complexes
with L1-containing, or other, RNA-rich particles accumulate and begin to trigger TLRs on
immune cells, i.e., inducing the SLE2 endotype mechanism for type I IFN production. We
designate this overlap as SLE4, in which all type I IFNs are at play and both cytosolic and
endosomal nucleic acid sensors are active. We estimate that SLE1 represents 10-30%, SLE2
less than 10%, SLE3 and SLE4 together ~60-80% of all SLE patients.

Support for this molecular classification comes from clinical trials with drugs that
target IFNs, such as rontalizumab (anti-IFNa), sifalimumab (anti-IFNa), and anifrolumab
(anti-type I IFN receptor) [159-161], bearing in mind that average outcomes are not as il-
luminating as a more detailed responder vs non-responder assessment. Indeed, it is likely
that many clinical trial failures in SLE, e.g. with TLR7 antagonists, are the results of too
few patients of the responding endotype. In this scenario, the patients with non-respond-
ing endotypes diluted out the therapeutic effects beyond the statistical analysis of the en-
tire intent-to-treat cohort.

3.4. L1- and HERV-Related Biomarkers

Whether the above classification is relevant or not, SLE is clearly a heterogenous dis-
ease in its clinical manifestations and response to therapy [1,2]. Many tools have been de-
veloped and revised over the years to help guide the diagnosis and management of pa-
tients with SLE, as well as to measure therapeutic effects of drugs during clinical trials.
They include various high-sensitivity and -specificity clinical- and laboratory-based clas-
sification criteria (e.g. SLICC criteria) and disease activity indices (e.g. SLEDAI). Despite
all these tools, however, the management of SLE, especially in severe disease states, re-
mains one of the biggest challenges in rheumatology. There is often discordance between
laboratory evidence of immunologic activity and clinical evidence of disease activity. New
diagnostic tools or biomarkers might help narrow the gap.

As we recently demonstrated, the titers of IgG autoantibodies against L1 ORF1p cor-
relate significantly with disease phenotypes, SLEDAI, markers of disease activity, and IFN
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score [98]. These autoantibodies could conceivably aid in the diagnosis and prognosis of
the disease, perhaps guiding which endotype of SLE an individual patient has and, hence,
which treatment regimen might be most effective. High titers of anti-ORF1p autoantibod-
ies may also help identify patients who progress to end organ damage, such as lupus ne-
phritis, and may benefit from earlier optimization of their treatment. This would need to
be rigorously tested in prospective clinical studies.

Another set of biomarkers would be tests for the activation of the DNA and RNA
sensors. Quantitation of the unique second messenger that cGAS produces, cyclic-guano-
sine adenosine-2,3-monophosphate (cGAMP) by mass spectrometry is probably too cum-
bersome for use in clinical practice, but newer high-sensitivity ELISAs are under develop-
ment. For example, it would make sense to consider cGAS inhibitors specifically in those
patients that are positive for cGAMP. Another biomarker to reveal the activation of the
RNA sensors could be useful. When triggered, these sensors cause the oligomerization of
the mitochondrial antiviral signaling (MAVS) adaptor protein, a response that is readily
detectable on non-denaturing gels as an ultrahigh-molecular weight species [162]. Repre-
sentative individual isotypes of the 17 type I IFNs can be quantitated by the ultra-sensitive
single-molecule array (SIMOA) platform [163].

3.5. Novel Therapeutic Opportunities Related to L1

New effective and safe drugs are urgently needed for SLE. It stands to reason that
drugs that selectively interfere with the molecular pathways that drive SLE, rather than
broadly suppress the immune system, would be both more effective and better tolerated
than current treatments. The L1 mechanisms we discussed above offer a new option, at
least for the SLE3 and SLE4 endotypes, namely the inhibition of ORF2p-catalyzed reverse
transcription, which is upstream of type I IFN production, as well as all the other biolog-
ical responses induced by activated DNA sensors, such as the upregulation of MHC and
co-stimulatory molecules. Of the FDA-approved reverse transcriptase inhibitors used for
the treatment of HIV, some nucleoside RTIs (NRTIs) are equally or near-equally potent on
ORF2p as on HIV RT, while others, including the non-nucleoside reverse transcriptase
inhibitors, are not. Studies in Trex1-deficient mice, which suffer from severe autoimmune
myocarditis and high type I IFNs similar to AGS, have shown that these mice can be res-
cued by treatment with a three-drug NRTI combination (emtricitabine, tenofovir, and
nevirapine). Even more striking, patients with AGS treated with an FDA-approved three-
drug NRTI regimen (abacavir, lamivudine, zidovudine) showed marked reduction in the
levels of IFNa proteins and IFN-inducible genes, as well as an improvement in cerebral
blood flow. Several other novel treatments are being explored for AGS, as well as SLE,
including inhibitors of cGAS [164], and tyrosine kinase 2 (TYK2), which mediates IFN
receptor signaling. Notably, the suppression of inflammation mediated by type I IFNs
(potentially triggered by L1 DNA) is a common theme among these potential SLE thera-
pies.

Based on the biology of L1 and HERVs, agents that promote genomic CpG island
methylation or other suppressive epigenetic events, or that prevent the translation of their
transcripts, e.g. siRNAs, could also be developed for a more uniquely targeted treatment
of SLE. The testing of such agents would also go a long way to validate, or refute, the
pathogenic relevance of retrotransposons. Lastly, to the best of our knowledge, there is
nothing in the drug development pipeline specifically for type I IFN-independent SLE,
which mechanistically remains an enigma.

4. Concluding remarks

The very modest successes in SLE drug development in modern times, as well as the
shortcomings of mainstream models for its etiopathogenesis, make it apparent that new
ideas are needed. A more reliable early diagnosis, more accurate prognostication, and the
development of more effective treatments with better safety profiles, are all highly
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needed. To this end, the emerging evidence of endogenous retroelement involvement in
SLE offers a tantalizing promise of progress.

While a broader set of retrotransposons may have varying degrees of involvement in
initiating and perpetuating SLE and its flares, current evidence suggests that the L1 re-
trotransposon is likely the most consequential. However, a true causative role will need
to be demonstrated by clinical trials using drugs that interfere with relevant aspects of L1
biology, e.g. reverse transcriptase inhibitors.
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