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Abstract 

Certain studies have reported various insulin resistance responses to ambient heavy metal 

pollution, but few have reported such responses to occupational heavy metal pollution. Even 

fewer have demonstrated a relationship between mixture effects of heavy metals and insulin 

resistance in welding workers. Overall, we recruited 53 welders and 48 administrative staff 

from a shipyard located in northern Taiwan. Personal exposure to heavy metals was monitored 

for PM2.5 and urine. Blood samples from each participant were collected from the antecubital 

vein after fasting. Urine samples from each participant were collected in the same period as 

blood samples. The geometric mean levels for chromium (Cr), manganese (Mn), iron (Fe), 

cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd) in the PM2.5 of the personal 

breathing zone and urinary Mn of welders were significantly higher than those in administrative 

staffs. Ambient Cr, Co, Ni, and Cu levels in the PM2.5 and urinary Cd were positively related 

to HOMA2-IR after adjusting for personal covariates (PM2.5-Cr: β=0.036, 95%C.I.: 0.002 to 

0.070; PM2.5-Co: β=0.040, 95%C.I.: 0.002 to 0.077; PM2.5-Ni: β=0.054, 95%C.I.: 0.013 to 

0.094; PM2.5-Cu: β=0.049, 95%C.I.: 0.010 to 0.088; U-Cd: β=0.209, 95%C.I.: 0.052 to 0.366, 

respectively). Our findings indicated the PM2.5 metal components and urinary metals were 

associated with increased insulin resistance in shipyard welders.  

Key Words: shipyard welders, PM2.5 metal components, urinary metals, insulin resistance.  
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1. Introduction 

Insulin resistance (IR) is a systemic disorder defined as the compromised ability of insulin 

to regulate insulin-mediated glucose disposal and/or to inhibit hepatic glucose production and 

adipose tissue lipolysis. IR plays a major pathophysiological role in type 2 diabetes [1]. Long-

term IR have been associated with several metabolic abnormalities and major public health 

problems, including cardiovascular disease and abnormalities, visceral adiposity, endothelial 

dysfunction kidney disease, hypertension, coronary artery disease, and dyslipidemias [2, 3]. 

Trace elements deficiencies and excesses were implicated for increasing risks of type 2 

diabetes mellitus through interfered with blood glucose homeostasis [4, 5].  

Essential metals, such as manganese (Mn), iron (Fe), zinc (Zn), and copper (Cu), are 

important for the function of various enzymatic systems of human body. For example, Zn is 

required in the formation and crystallization of insulin, activation of the kinase 3 

phosphatidylinositol enzyme, and induction of the translocation of glucose transporter 4 

(GLUT4) [6, 7]. However, an excess of intake of the metals could consequently lead to 

increased risks of insulin resistance. Overload of iron could modify hepatocytes’ insulin 

sensitivity by interfering with insulin receptor and intracellular insulin signaling [8]. Also, 

studies showed that exposures to copper in excess, could create oxidative stress, which is a 

factor in the onset and the progression of type 2 diabetes [9].  

Besides essential metals, toxic metals without any known biological function, such as Cd, 

As and Pb have been reported to be associated with increases the occurrence of diabetes and 

increase the risk of metabolic syndrome [10, 11]. For example, chronic exposure to inorganic 

As at even low to moderate levels could disrupt a number of biochemical processes involved in 

glucose homeostasis, leading to both decreased insulin-stimulated glucose uptake and 

decreased glucose-stimulated insulin secretion [12, 13]. The metals could affect hormone states 

by substitute for essential metals, such as iron, zinc and/or potassium, in biological systems. 

Additionally, in vitro model showed that metals can catalyze oxidative stress reaction that leads 

to decrease insulin gene promoter activity and insulin mRNA expression in islet β-cells [4].  

Both essential and toxic metals are unambiguously present in the environment. Various 

pollution sources could result in different metal profiles. Due to traffic emissions, higher 

concentrations of Cd, Zn, Cr, Ni and Pb occur in ambient air [14]. Industrial process and 

operations, such as welding, mining, smelters, continues to a prominent source of metals and 

produce unique metal mixtures. Our biomonitoring studies showed that welding fume heavily 

include chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc 

(Zn), and cadmium (Cd) [references]. Welders experienced significantly higher concentrations 

of those metals in urine than administrators who didn’t work in welding process.  

Some epidemiologic studies have investigated the impact of metal exposure from traffic 

emissions on insulin resistance responses in the general population [references]. The 
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population-based studies found an association between cadmium and insulin resistance, but this 

association was not consistent in all studies. Also, most of the studies had measured limited 

metals. Currently, few have reported such responses to occupational heavy metal pollution 

despite the concern of health risks to occupational workers. This study aimed to 1) quantify 

personal exposure to metals in welding fumes; 2) evaluate insulin resistance of the welders and 

administrative staff; and 3) determine any associations between exposure to metals from 

welding fumes and insulin resistance of the welders and administrative staff.   
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2. Materials and Methods 

2.1. Ethics 

The Institutional Review Board of Tri-Service General Hospital, National Defense 

Medical Center in Taiwan approved this study (TSGHIRB 2-106-05-180). All participants 

provided informed consents voluntarily.  

2.2. Study Participants 

We recruited 101 health male workers, including of 53 welders and 48 administrative staffs 

from a shipyard located in northern Taiwan. The welders served as the exposed group that had 

been chronically exposed to heavy metals; while the administrative staffs served as the 

reference group. Criteria for the participant selection included males 20-65 years old, >1 year 

of employment in the plant, no diabetes, and no moderate to severe renal dysfunction. Renal 

function was estimated using the Taiwanese modification of diet in renal disease (TMDRD) 

formula [13, 14]. Trained interviewers met the participants between September 2015 and 

November 2015 to collect their demographic information, including age, work experience, 

height, weight, waist circumference, number of years of working in the shipyard and health 

condition, as well as information on their life-style, covering cigarette smoking. Cigarette 

smoking was deemed positive if either occurred on at least four days per week.  

2.3. Exposure Assessment for Metals in Workplace Air 

All participants were requested to wear the Personal Environmental Monitor (PEM, SKC 
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Ltd., Blandford, Dorset, UK.) samplers for PM2.5 with polytetrafluoroethylene filters (diameter: 

37 mm, pore size: 0.45 μm, Cat. No. 225-17-04, SKC Ltd., Blandford, Dorset, UK.) at a flow 

rate of 2.0 L/min during their working hours for monitoring 8 targeted heavy metals, including 

Cr, Mn, Fe, Co, Ni, Cu, Zn, and Cd in PM2.5. Levels of targeted heavy metals in the personal 

breathing zone of shipyard workers were quantified by using inductively coupled plasma mass 

spectrometry (ICP-MS, iCAP RQ, Thermo Scientific, Waltham, MA, USA) combined with 

microwave-assisted acid digestion, which provides superior detectability for trace elements [15, 

16]. The detection limits of Cr, Mn, Fe, Co, Ni, Cu, Zn, and Cd were 5.3 ng/L (101.9 pM), 3.0 

ng/L (54.6 pM), 220.3 pM (12.3 ng/L), 6.8 pM (0.4 ng/L), 97.1 pM (5.7 ng/L), 45.6 pM (2.9 

ng/L), 273.7 pM (17.9 ng/L), and 6.2 pM (0.7 ng/L) were obtained using seven repeated 

analyses of deionized water. The measured levels below lower detection limit were imputed by 

using monotone imputation method (IBM SPSS 22.0, IBM Corp., Armonk, NY, USA).  

2.4. Urinary Metals Determination 

The urine samples were stored at -80°C until analysis. They were prepared by centrifuging 

at 1000 rpm and took out the supernatant, then dilute it 3 times with 1.3% nitric acid (HNO3), 

filtered it through a 0.22μm syringe filter, and store it in a plastic centrifuge tube for measuring 

heavy metals. Levels of targeted urinary heavy metals including Cr, Mn, Fe, Co, Ni, Cu, Zn, 

and Cd were quantified by using inductively coupled plasma mass spectrometry (ICP-MS, 

iCAP RQ, Thermo Scientific, Waltham, MA, USA).  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2021                   doi:10.20944/preprints202101.0004.v1

https://doi.org/10.20944/preprints202101.0004.v1


9 
 

2.5. The Bio-chemical Assays 

The blood specimens were collected using the BD Vacutainer system (Becton, Dickinson 

and Company, Franklin Lakes, NJ, USA), the urine samples were collected using BD centrifuge 

tubes (Becton, Dickinson and Company, Franklin Lakes, NJ, USA). The bio-chemical assays 

were performed immediately after collection. The analytical methods was the hexokinase 

method for plasma glucose, the glycerol phosphate dehydrogenase method for serum 

triglycerides, the catalase elimination method for serum high-density lipoprotein, the Jeffe 

method for creatinine, the chemiluminescence method for serum insulin, and the high 

performance liquid chromatography method for HbA1c. The plasma glucose, serum 

triglycerides, serum high-density lipoprotein, and creatinine were measured using the 

automated ADVIA Chemistry XPT system (Siemens Healthineers AG, Erlangen, Germany). 

The serum insulin was determined using the automated ADVIA Centaur XPT system (Siemens 

Healthineers AG, Erlangen, Germany). The blood HbA1c was quantified using the automated 

D-100 System (Bio-Rad Laboratories, Inc., Hercules, CA, USA).  

2.6. Updated Homeostatic Model Assessment 

The parameters of updated Homeostatic Model Assessment (HOMA2) including 

estimated insulin resistance (IR), pancreatic β cell function (%B) and insulin sensitivity (%S) 

were obtained using the HOMA2 calculator software developed by the Diabetes Trials Unit 
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(DTU, the Oxford Centre for Diabetes, Endocrinology and Metabolism), University of 

Oxford[17].  

2.7. Statistical Analysis 

Due to the skewness of continuous variables, especially metals (Cr, Mn, Fe, Co, Ni, Cu, 

Zn, and Cd), and biochemical markers (glucose, triglycerides, high-density lipoprotein, and 

insulin), descriptive statistics were performed as geometric mean and geometric standard 

deviation. Furthermore, categorical variables were performed as frequency and percent in 

descriptive statistics. In inferential statistics, for the purpose to compare the difference of 

frequency and value of risk factors and outcomes between exposed and reference group, χ2 test 

(or fisher’s exact test), and Mann-Whitney U test were applied.  

All data from shipyard workers were then included in linear mixed-effects regression 

models to identify significant predictors of workers’ plasma glucose AC, serum insulin, blood 

HbA1c, HOMA2-IR, HOMA2-%B, and HOMA2-%. The subjects’ gender, age, BMI,serum 

triglycerides, urinary cotinine, and urinary creatinine were treated as fixed effects, and each 

worker was treated as a random effect in the data analysis. The level for statistical significance 

was set to α=0.05 in all tests. Statistical analysis was conducted using IBM SPSS statistics 

software for Windows version 22.0 (IBM Corp., Armonk, NY, USA).  
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3. Results 

3.1. Characteristics of Study Participants 

Table 1 provides the demographic characteristics of for 101 workers by job title in a 

shipyard. The study population consisted of 53 welders and 48 administrative staff. Their mean 

age was about 45 years old. Their mean BMI was approximately 25 kg/m2. There were no 

statistically significant differences between welders and administrative staff in cardiovascular 

measurements and urinary cotinine. 

 

3.2. Comparisons of HOMA2 parameters, PM2.5 and Urinary Metals between Exposed 

and Reference Groups 

Table 2 compares the HOMA2 parameters, metals in PM2.5 and urinary metals of the 

welders and the administrative staff. The GM HOMA-%B of the welders significantly exceeded 

that of the administrative staff (p=0.044). The GM Cr, Mn, Fe, Co, Ni, Cu, Zn and Cd 

concentrations of welders were all significantly higher than those of administrative staff. 

Furthermore, the GM urinary Cr, Mn, Fe, Co, Ni, Cu, Zn and Cd concentrations of welders 

significantly exceeded those of the administrative staff.  

 

3.3. . Relationship between Urinary Excretion of Metals and Metals in PM2.5 

Table 3 demonstrated the Spearman’s correlation matrix among metals in PM2.5 and 

urinary metals. Mn in PM2.5 was significantly correlated to urinary Mn (ρ=0.225, p<0.05); Fe 

in PM2.5 was significantly correlated to urinary Fe (ρ=0.204, p<0.05).  
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Table 3 shows the relationship between urinary excretion of metals and metals in PM2.5 

among 101 shipyard workers Urinary Mn levels was significantly correlated with Cr, Mn, Fe, 

Co, Ni, Cu, and Zn levels in PM2.5. Furthermore, urinary Fe levels was significantly correlated 

with Cr. Fe, Co, Ni, Cu, Zn and Cd levels in PM2.5. Moreover, urinary Ni was positively 

correlated with Zn and Cd levels in PM2.5  Among all the urinary metals, Co was the only 

metal that exhibiting reversely relationship with Cr, Mn, and Fe levels in PM2.5.  

 

3.4. Effects of metals in PM2.5 and Urinary Metals on Plasma Glucose, Serum Insulin, 

and Blood Glycated Hemoglobin 

Tables 4 presents the effects of metals in PM2.5 and urinary metals on plasma glucose, 

serum insulin, and blood glycated hemoglobin. Urinary Mn, Cu, Zn, Cd, and the summed metals 

were five significant and positive predictors of plasma glucose after adjustments were made for 

other covariates. However, metals in PM2.5 were not significant predictors of plasma glucose. 

Furthermore, Cr, Co, Ni, Cu in PM2.5 and urinary Cd were significantly related to increased 

serum insulin. However, metals in PM2.5 and urinary metals were not significant predictors of 

blood glycated hemoglobin. 

 

3.5. Effects of Metals in PM2.5 and Urinary Metals on HOMA2 Parameters 

Table 5 indicates the effects of metals in PM2.5 and urinary metals on HOMA2 parameters.   
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Airborne Cr, Co, Ni, Cu in PM2.5 and urinary Cd were significant and positive predictors of 

insulin resistance after adjustments were made for other covariates. Furthermore, airborne Cr, 

Co, Ni, Cu in PM2.5 were significant and positive related to pancreatic β cell function. The 

HOMA2 insulin sensitivity was the reciprocal of insulin resistance, therefore the regression 

coefficients of them were opposite.  
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4. Discussion 

To the best of our knowledge, the present study is the first study to investigate the effects 

of occupational metals in PM2.5 and urinary Metals on insulin resistance in shipyard welders. 

The present analysis demonstrated that increased exposure to Cr, Co, Ni, and Cu in PM2.5 and 

urinary Cd were related to the increment of serum insulin and an estimated insulin resistance 

using the HOMA2 index. These results indicates occupational metals exposure may disrupt the 

homeostatic of blood glucose and insulin.  

The relationship between occupational zinc exposure and the increased risk of diabetes 

was reported in steel production workers [5], coke oven workers [6], and non-ferrous metals 

production workers [7, 8]. Cappelletti et al. demonstrated a significant 1.39 times increment of 

relative risk of diabetes after Mantel-Haenszel method adjusting for age in steel production 

workers compare to the general population from the same province [5]. Liu et al. observed that 

urinary Cu, Zn, and Cd were significantly higher in diabetic workers and urinary Mn, Cu, Zn, 

and Cd were significantly higher in hyperglycemic workers compared with normoglycemic 

workers in a coke oven worker population. In addition, increased urinary Cu and Zn levels were 

demonstrated related to increased diabetes odds ratio, and increased urinary Mn, Cu, and Zn 

were represented related to increased hyperglycemia odds ratio [6]. As defined high-fasting-

glucose (high-FPG) as fasting blood glucose equal to 5.2 mM (93.6 mg/dL), A previous 

epidemiological study indicated that significantly elevated high-FPG odds ratios were observed 
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in the groups with highest quartiles of urinary Ni (>=0.15 μM [9.06 μg/L]) and Zn (>=8.94 μM 

[584.43μg/L]), meanwhile, the trend tests of quartiles of urinary Ni and Zn on the risks of high-

FPG was reached statistical significance level [7]. Yang et al. also observed a significant 

increment of log-transformed fasting plasma glucose in non-ferrous production workers with 

urinary zinc over 5.64 μM (369 μg/L), the trend tests of quartiles of urinary zinc on fasting 

plasma glucose was also reached statistical significance level [8]. Our study provided the 

statistically significant log-linear relationship between occupational Cr, Co, Ni, and Cu 

exposure to the homeostasis of serum insulin in shipyard welders, whom were joining 

galvanized mild steel using arc welding technique, these results may be extrapolated to the 

population worked in the same scenarios such as steel structure building workers and mild steel 

pipe welders.  

Although epidemiological studies have established the relationship between PM and the 

increased risk of type 2 DM, study investigated the relationship between inhaled metal particles 

and urine metals to the underlying mechanisms of diabetes still limited. Chuang et al have 

observed that intratracheal instilled exposed to nano-sized zinc oxide induces systemic 

inflammation and oxidative stress in Sprague-Dawley rats [18]. Pan et al have observed that 

exposed to zinc is upregulating underlying mechanisms involved in 

glycolysis/gluconegeogenesis pathway in BALB/c mice which were intratracheal instilled 

nano-sized zinc oxide [19]. Pavanello et al have investigated that steel production workers 
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occupationally exposed to Fe, Ni, Cu, and Zn in PM10 (particulate matters with an aerodynamic 

diameters less than 10 μm) is positively related to the elevated expression of micro RNA 

(ribonucleic acid) miR-196b [20], which is involved in a post-transcriptional regulation 

mechanism of insulin biosynthesis in mice [21]. 

In contrast, these metals has also play important roles in regulating normal physiological 

functions involved homeostatic of glucose and insulin. For instance, zinc ions is reported to 

target with tyrosine phosphatase 1B, which is a crucial regulator on insulin receptor 

phosphorylation [22]. Zinc is also reported to induce glucose transport into cells through 

enhancing the insulin signaling pathway [23]. Ahn et al. have found a significantly negative 

relationship between serum zinc and HOMA-IR in non-diabetic Korean general population 

based on the Korean National Health and Nutrition Examination Survey data [24].  

In this study, the urinary metals as one of the exposure assessment biomarkers. Many 

metals have been proven to cause chronic kidney disease [25], including Cd, have also been 

reported associated with renal tubular dysfunction in welders [26]. Jin et al. found that renal 

function affects the urinary metal levels [14], and may resulted in the false estimation of metals 

exposure. In addition, Kuo et al. have indicated that renal dysfunction may be a potential 

confounder to the risk of diabetes in nickel exposed population due to the significance 

difference of urinary Ni and estimated glomerular filtration rate (eGFR) between diabetic 

patients and control group in Liu’s study [27, 28]. Also, chronic kidney disease (CKD) is a 
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common comorbid disease of type 2 diabetes mellitus (T2DM) patients [29]. In the present 

study, participants with eGFR less than 60 mL/min/1.73m2 were excluded to avoid the 

confounding of renal dysfunction to the relationship between urinary metals to insulin 

resistance.  

This study has certain limitations. First, the data of dietary essential/micro nutrients intake 

were lack, possibly confounding the results concerning urinary metal excretion. Furthermore, 

The other limitation was the lack of data on the exposure to metals outside occupational settings, 

such as from vehicle traffic emissions. However, the restaurantworkers herein spent >10 h/d at 

the shipyard, including work and rest periods, but <1 h/d in traffic. The contribution of traffic 

sources to the metal exposure of shipyard workers is thus assumed to be limited. 
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5. Conclusion 

Airborne Cr, Co, Ni, Cu in PM2.5 and urinary Cd were significant and positive predictors 

of insulin resistance in a shipyard workers. It is crucial to develop proper preventive measures, 

including adequate ventilation and the use of personal protection equipment (gloves and 

respirators) to protect the health of shipyard workers. 
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All participants

(n=101)

Exposed group

(n=53)

Reference group

(n=48)

Mean±SD Mean±SD Mean±SD

Age (years) 45.510±12.273 45.655±11.610 45.351±13.089 0.981

Smoking status (n [%]) 0.330b

Current 38 (37.6) 23 (43.4) 15 (31.3)

Former 18 (17.8) 10 (18.9) 8 (16.7)

Never 45 (44.6) 20 (37.7) 25 (52.1)

U-COT (μM, GM [GSD]) 3.024 (6.516) 3.479 (6.999) 2.591 (6.047) 0.353

Family History of T2DM (n [%]) 0.126
b

Yes 14 (13.9) 10 (18.9) 4 (8.3)

No 87 (86.1) 43 (81.1) 44 (91.7)

CVD history (n [%]) 0.326b

Yes 23 (22.8) 10 (18.9) 13 (27.1)

No 78 (77.2) 43 (81.1) 35 (72.9)

Weight (kg) 72.812±12.256 70.340±9.479 75.542±14.342 0.069

Height (cm) 169.297±6.128 167.925±5.459 170.813±6.516 0.045

BMI (kg/m2) 25.311±3.254 24.909±2.785 25.754±3.682 0.373

Waist circumference (cm) 87.599±9.218 85.745±8.008 89.646±10.083 0.054

Waist circumference (n [%]) 0.223b

>=90 40 (39.6) 18 (34.0) 22 (45.8)

<90 61 (60.4) 35 (66.0) 26 (54.2)

SBP (mmHg) 131.901±18.786 131.755±18.405 132.063±19.393 0.881

DBP (mmHg) 80.228±13.057 79.660±12.235 80.854±14.014 0.648

SBP / DBP (n [%]) 0.271
b

>=130 ∨ >=85 51 (50.5) 24 (45.3) 27 (56.3)

<130 ∧ <85 50 (49.5) 29 (54.7) 21 (43.8)

S-TG (mM, GM [GSD]) 1.253 (1.880) 1.133 (1.734) 1.401 (2.011) 0.096

S-TG (n [%]) 0.446b

>=1.7 16 (15.8) 7 (13.2) 9 (18.8)

<1.7 85 (84.2) 46 (86.8) 39 (81.3)

S-HDL (mM, GM [GSD]) 1.253 (1.249) 1.295 (1.247) 1.207 (1.247) 0.091

S-HDL (n [%]) 0.817b

<1.03 18 (17.8) 9 (17.0) 9 (18.8)

>=1.03 83 (82.2) 44 (83.0) 39 (81.3)

U-CREAT (mM, GM [GSD]) 9.759 (1.598) 9.486 (1.593) 10.070 (1.609) 0.636

S-CREAT (mM, GM [GSD]) 0.079 (1.147) 0.079 (1.153) 0.079 (1.141) 0.639

TMDRD

(mL/min/1.73 m2, GM [GSD])
81.233 (1.166) 81.068 (1.170) 81.416 (1.163) 0.514

TMDRD (n [%]) 0.229b

>=60 ∧ <90 65 (64.4) 37 (69.8) 28 (58.3)

>=90 36 (35.6) 16 (30.2) 20 (41.7)

Table 1. Characteristics of study participants.

p -Valuea

aMann-Whitney U test; bχ2 test.

Abbreviations: U-COT (urinary cotinine); T2DM (type 2 diabetes mellitus); CVD (cardiovascular disease); BMI (body

mass index); SBP (systolic blood pressure); DBP (diastolic blood pressure); S-TG (serum triglycerides); S-HDL (serum

high density lipoprotein); U-CREAT (urinary creatinine); S-CREAT (serum creatinine); TMDRD (Taiwanese

modification of diet in renal disease).
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All participants

(n=101)

Exposed group

(n=53)

Reference group

(n=48)

GM (GSD) GM (GSD) GM (GSD)

HOMA2 parameters

P-FGAC (mM) 5.288 (1.099) 5.317 (1.096) 5.257 (1.103) 0.317

P-FGAC (n [%]) 0.746b

>=5.6 30 (29.7) 15 (28.3) 15 (31.3)

<5.6 71 (70.3) 38 (71.7) 33 (68.8)

S-INSL (pM) 56.253 (1.698) 50.626 (1.528) 63.196 (1.839) 0.107

B-HbA1c (mmol/mol) 35.535 (1.150) 35.071 (1.172) 36.055 (1.123) 0.779

HOMA2-IR 1.228 (1.687) 1.110 (1.526) 1.372 (1.822) 0.107

HOMA2-%B 97.708 (1.446) 89.942 (1.348) 107.065 (1.519) 0.044

HOMA2-%S 81.479 (1.688) 90.134 (1.528) 72.885 (1.823) 0.104

PM2.5 metals (μmol/m
3
)

Cr 0.001 (13.489) 0.002 (9.233) 0.000130 (9.891) <0.001

Mn 0.033 (37.269) 0.270 (16.392) 0.003 (18.939) <0.001

Fe 0.209 (23.196) 1.311 (11.234) 0.027 (12.936) <0.001

Co 0.000052 (10.088) 0.000145 (6.951) 0.000017 (8.765) <0.001

Ni 0.000366 (7.768) 0.001 (4.859) 0.000142 (8.201) <0.001

Cu 0.002 (9.016) 0.004 (5.749) 0.001 (8.580) <0.001

Zn 0.092 (10.922) 0.289 (6.990) 0.026 (9.029) <0.001

Cd 0.000016 (9.114) 0.000034 (7.328) 0.000007 (8.801) <0.001

Summed 0.420 (17.571) 2.131 (9.788) 0.070 (10.368) <0.001

Urinary metals (μM)

Cr 0.045 (1.423) 0.045 (1.351) 0.044 (1.499) 0.176

Mn 0.046 (1.407) 0.050 (1.445) 0.042 (1.332) 0.014

Fe 1.444 (1.382) 1.491 (1.339) 1.394 (1.426) 0.194

Co 0.010 (1.603) 0.010 (1.557) 0.011 (1.644) 0.268

Ni 0.401 (1.538) 0.395 (1.532) 0.408 (1.551) 0.838

Cu 1.877 (1.395) 1.852 (1.395) 1.906 (1.398) 0.729

Zn 7.337 (1.848) 6.929 (1.917) 7.815 (1.769) 0.422

Cd 0.005 (1.964) 0.005 (2.024) 0.006 (1.909) 0.724

Summed 11.726 (1.521) 11.340 (1.549) 12.168 (1.491) 0.459

Abbreviations: HOMA2 (updated homeostasis model assessment); PM2.5 (particulate matters with an aerodynamic

diameter less than 2.5 μm); P-FGAC (fasting plasma glucose ante cibum); S-INSL (serum insulin); B-HbA1c (blood

glycated hemoglobin); IR (insulin resistance); %B (percentages of β cell function of a normal reference population);

%S (percentages of insulin sensitivity of a normal reference population); Cr (chromium); Mn (manganese); Fe

(iron); Co (cobalt); Ni (nickel); Cu (copper); Zn (zinc); Cd (cadmium); Summed (the summation of the 8 measured

metals).

p -Value
a

Table 2. Comparisons of HOMA2 parameters, PM2.5 and urinary metals between exposed and reference groups.

a
Mann-Whitney U test; 

b
χ

2
 test.
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Table 3. Relationship between urinary excretion of metals and metals in PM2.5 among 101 shipyard workers 

    Urinary metals (μmol/L) 

    Cr Mn Fe Co Ni Cu Zn Cd Summed metalsa 

PM2.5  

metals  

(μmol/m3) 

Cr 0.127  0.255* 0.205* -0.225* 0.170  0.106  0.028  0.118  0.052  

Mn 0.086  0.225* 0.148  -0.206* 0.097  0.036  0.019  0.094  0.027  

Fe 0.137  0.275** 0.204* -0.230* 0.128  0.065  -0.034  0.118  -0.009  

Co 0.144  0.262** 0.264** -0.162  0.160  0.026  -0.017  0.140  -0.002  

Ni 0.107  0.225* 0.207* -0.193  0.148  0.069  0.001  0.069  0.018  

Cu 0.168  0.299** 0.262** -0.187  0.190  0.098  -0.010  0.162  0.030  

Zn 0.193  0.304** 0.227* -0.116  0.221* 0.056  0.020  0.144  0.051  

Cd 0.112  0.190  0.207* -0.169  0.208* 0.067  -0.005  0.093  0.012  

Summed metalsa 0.153  0.287** 0.212* -0.202* 0.160  0.069  0.000  0.121  0.027  

*p<0.05,  

**p<0.01  

aSummed metals: sum of Cr, Mn, Fe, Co, Ni, Cu, Zn, and Cd.  
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Table 4. Assessment of multiple linear regression analysis of plasma glucose AC, serum insulin and blood HbA1c using linear mixed-effects regression analysis and and forest plots (n=101).  

  Plasma glucose AC (mmol/L in Ln scale)   Serum insulin (pmol/L in Ln scale)   Blood HbA1c (mmol/mol in Ln scale) 

  β (95% C.I.)     β (95% C.I.)     β (95% C.I.)   

metals in PM2.5 (μmol/m3 in Ln scale) 

Cr -0.001 (-0.008, 0.005) 
 
  
 

  0.037 (0.002, 0.072)* 
 

  
 

  0.004 (-0.007, 0.015) 
 
  
 

Mn 0.002 (-0.004, 0.007)     0.018 (-0.011, 0.046)     0.003 (-0.006, 0.012)   

Fe 0.001 (-0.005, 0.008)     0.027 (-0.005, 0.059)     0.004 (-0.006, 0.014)   

Co -0.004 (-0.011, 0.004)     0.042 (0.004, 0.080)*     0.007 (-0.005, 0.020)   

Ni -0.000155 (-0.008, 0.008)     0.055 (0.014, 0.096)**     0.007 (-0.006, 0.021)   

Cu 0.000004 (-0.008, 0.008)     0.050 (0.011, 0.090)*     0.004 (-0.008, 0.017)   

Zn 0.001 (-0.006, 0.008)     0.020 (-0.018, 0.059)     0.002 (-0.010, 0.014)   

Cd -0.004 (-0.011, 0.003)     0.026 (-0.011, 0.064)     0.007 (-0.005, 0.019)   

Summed metalsa 0.001 (-0.005, 0.008)     0.027 (-0.008, 0.061)     0.003 (-0.008, 0.014)   

Urinary metals (μmol/L in Ln scale) 

Cr 0.015 (-0.030, 0.059)     -0.108 (-0.339, 0.122)     -0.062 (-0.134, 0.010)   

Mn 0.054 (0.008, 0.101)*     0.037 (-0.210, 0.283)     -0.027 (-0.105, 0.051)   

Fe 0.022 (-0.026, 0.071)     0.066 (-0.186, 0.319)     -0.076 (-0.154, 0.003)   

Co 0.025 (-0.011, 0.060)     0.046 (-0.140, 0.231)     -0.018 (-0.077, 0.040)   

Ni -0.013 (-0.050, 0.023)     -0.098 (-0.287, 0.092)     -0.017 (-0.077, 0.043)   

Cu 0.048 (0.002, 0.094)*     0.111 (-0.131, 0.353)     0.020 (-0.056, 0.097)   

Zn 0.058 (0.030, 0.087)***     0.117 (-0.040, 0.275)     0.031 (-0.019, 0.081)   

Cd 0.055 (0.026, 0.085)***     0.199 (0.039, 0.359)*     0.025 (-0.026, 0.077)   

Summed metalsa 0.091 (0.049, 0.134)***     0.192 (-0.043, 0.428)     0.034 (-0.041, 0.109)   
                 

                  

Covariates include group (exposed/reference), age (>45 years/<=45 years), waist (cm), serum triglycerides (mmol/L in Ln scale), urinary cotinine (μmol/L in Ln scale), and urinary creatinine (mmol/L 
in Ln scale).  
*p<0.05, **p<0.01, ***p<0.001  
aSummed metals: sum of Cr, Mn, Fe, Co, Ni, Cu, Zn, and Cd.  
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Table 5. Assessment of multiple linear regression analysis of HOMA2-IR, HOMA2-%B, and HOMA2-%S using linear mixed-effects regression analysis and and forest plots (n=101). 

  HOMA2-IR in Ln scale   HOMA2-%B in Ln scale   HOMA2-%S in Ln scale 

  β (95% C.I.)     β (95% C.I.)     β (95% C.I.)   

PM2.5 metals (μmol/m3 in Ln scale) 

Cr 0.036 (0.002, 0.070)* 
 
  
 

  0.028 (0.003, 0.053)* 
 
  
 

  -0.036 (-0.070, -0.002)* 
 
  
 

Mn 0.018 (-0.010, 0.046)     0.008 (-0.012, 0.029)     -0.018 (-0.046, 0.010)   

Fe 0.027 (-0.005, 0.058)     0.016 (-0.008, 0.039)     -0.027 (-0.059, 0.006)   

Co 0.040 (0.002, 0.077)*     0.036 (0.008, 0.063)*     -0.040 (-0.077, -0.002)*   

Ni 0.054 (0.013, 0.094)**     0.038 (0.008, 0.068)*     -0.053 (-0.094, -0.013)*   

Cu 0.049 (0.010, 0.088)*     0.034 (0.006, 0.063)*     -0.049 (-0.088, -0.010)*   

Zn 0.020 (-0.018, 0.058)     0.012 (-0.016, 0.040)     -0.020 (-0.058, 0.018)   

Cd 0.025 (-0.013, 0.062)     0.026 (-0.001, 0.053)     -0.024 (-0.062, 0.013)   

Summed metalsa 0.026 (-0.008, 0.061)     0.016 (-0.009, 0.041)     -0.026 (-0.061, 0.008)   

Urinary metals (μmol/L in Ln scale) 

Cr -0.101 (-0.328, 0.126)     -0.104 (-0.270, 0.062)     0.100 (-0.127, 0.328)   

Mn 0.050 (-0.193, 0.293)     -0.083 (-0.261, 0.095)     -0.051 (-0.294, 0.193)   

Fe 0.071 (-0.178, 0.320)     0.001 (-0.183, 0.184)     -0.072 (-0.321, 0.178)   

Co 0.051 (-0.131, 0.234)     -0.018 (-0.153, 0.116)     -0.051 (-0.234, 0.132)   

Ni -0.100 (-0.286, 0.087)     -0.041 (-0.178, 0.097)     0.100 (-0.087, 0.286)   

Cu 0.120 (-0.118, 0.359)     -0.018 (-0.194, 0.158)     -0.121 (-0.360, 0.118)   

Zn 0.131 (-0.024, 0.286)     -0.036 (-0.151, 0.079)     -0.130 (-0.286, 0.025)   

Cd 0.209 (0.052, 0.366)**     0.025 (-0.094, 0.144)     -0.209 (-0.366, -0.052)**   

Summed metalsa 0.213 (-0.019, 0.444)     -0.050 (-0.222, 0.123)     -0.212 (-0.444, 0.019)   

                  

                  

Covariates include group (exposed/reference), age (>45 years/<=45 years), waist (cm), serum triglycerides (mmol/L in Ln scale), urinary cotinine (μmol/L in Ln scale), and urinary creatinine 
(mmol/L in Ln scale).  
*p<0.05, **p<0.01, ***p<0.001 
aSummed metals: sum of Cr, Mn, Fe, Co, Ni, Cu, Zn, and Cd.  
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